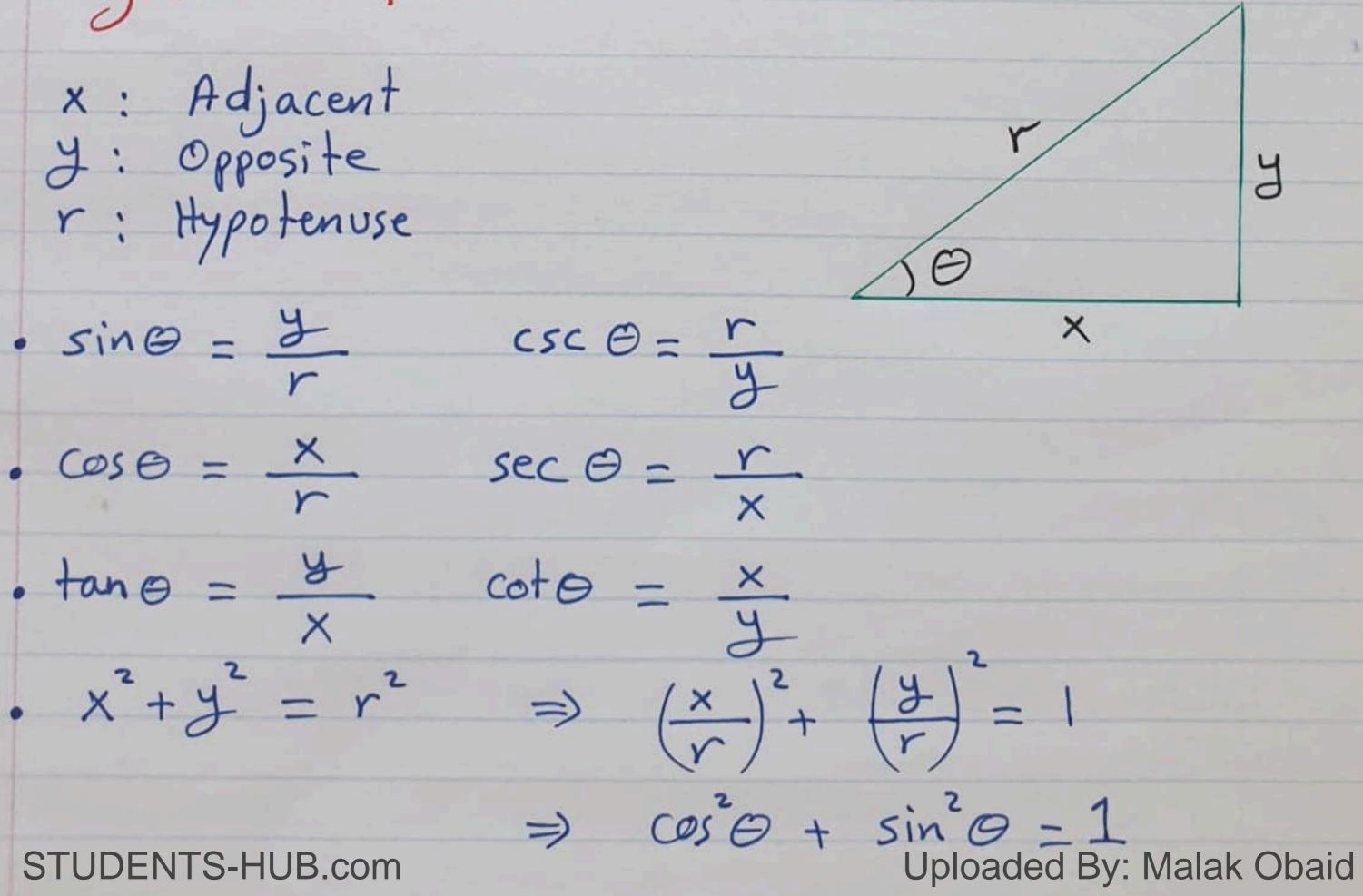


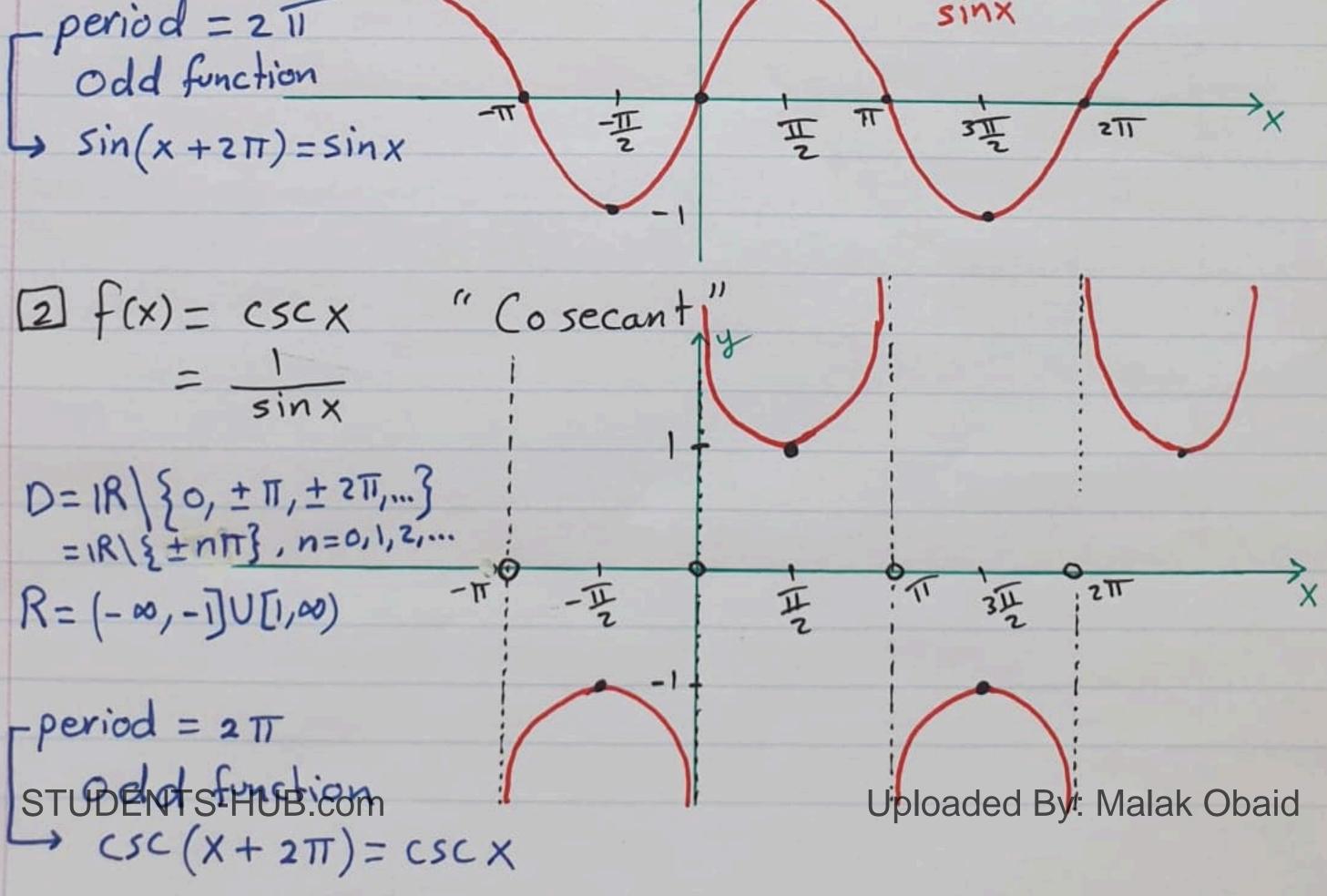
· Sign of functions y=f(x) => First find roots of f(x)

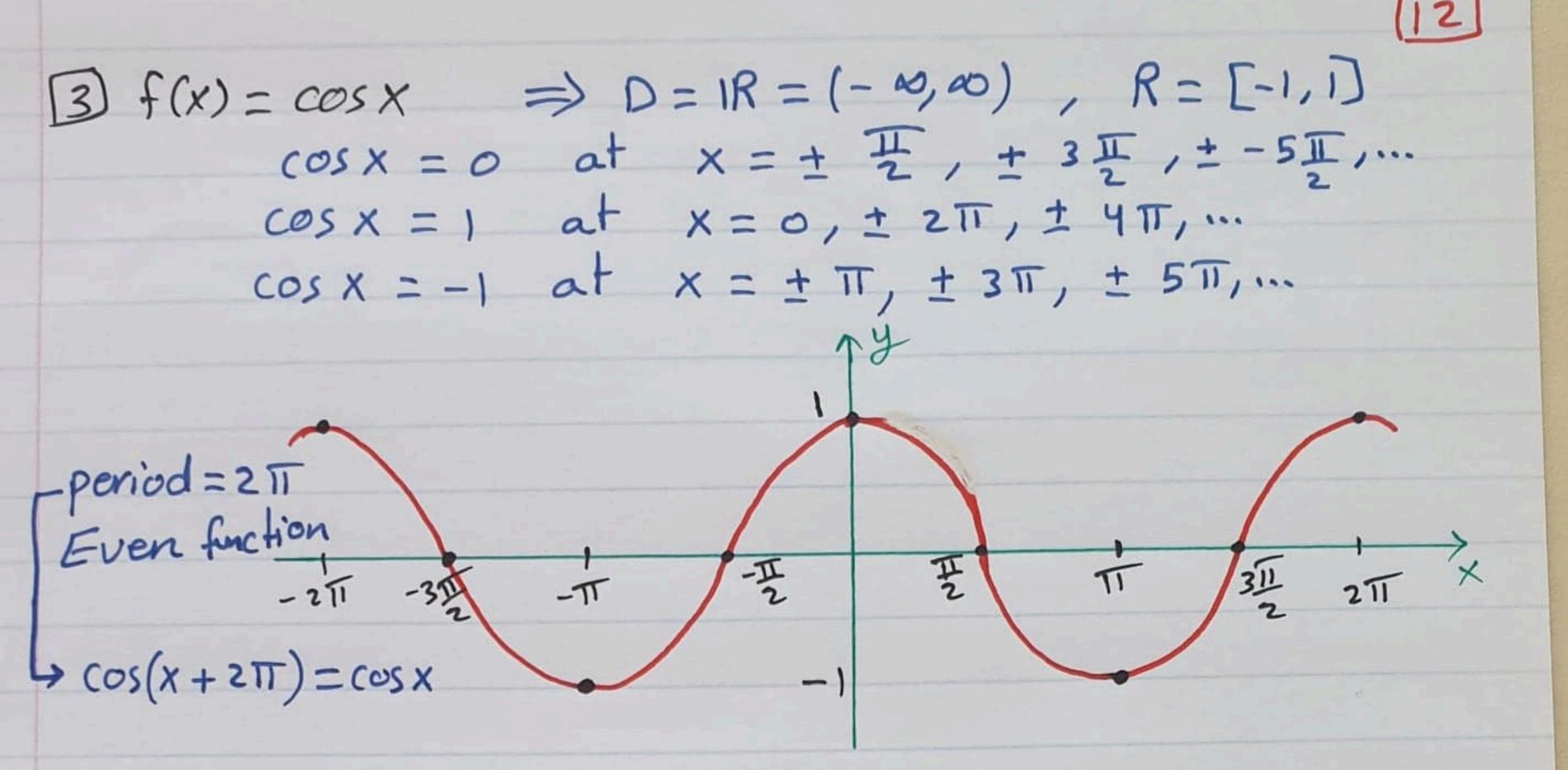
Exp $f(x) = x^{2} + x - 2$ $f(x) = 0 \Rightarrow x^{2} + x - 2 = 0$ =) (X-1)(X+2) = 0 $\underbrace{Exp \ f(x) = x - 4x}_{f(x)=0} = \frac{y^{2} - 4x}{y^{2} - 4x=0}$ X=0, X=2, X=-2 +++++ $Exp f(x) = x^2 + 1$ has no roots

• Rational functions = Relynomial = Numerator
Polynomial Denominator
Exp
$$f(x) = \frac{x^2 - 9}{x - 1}$$

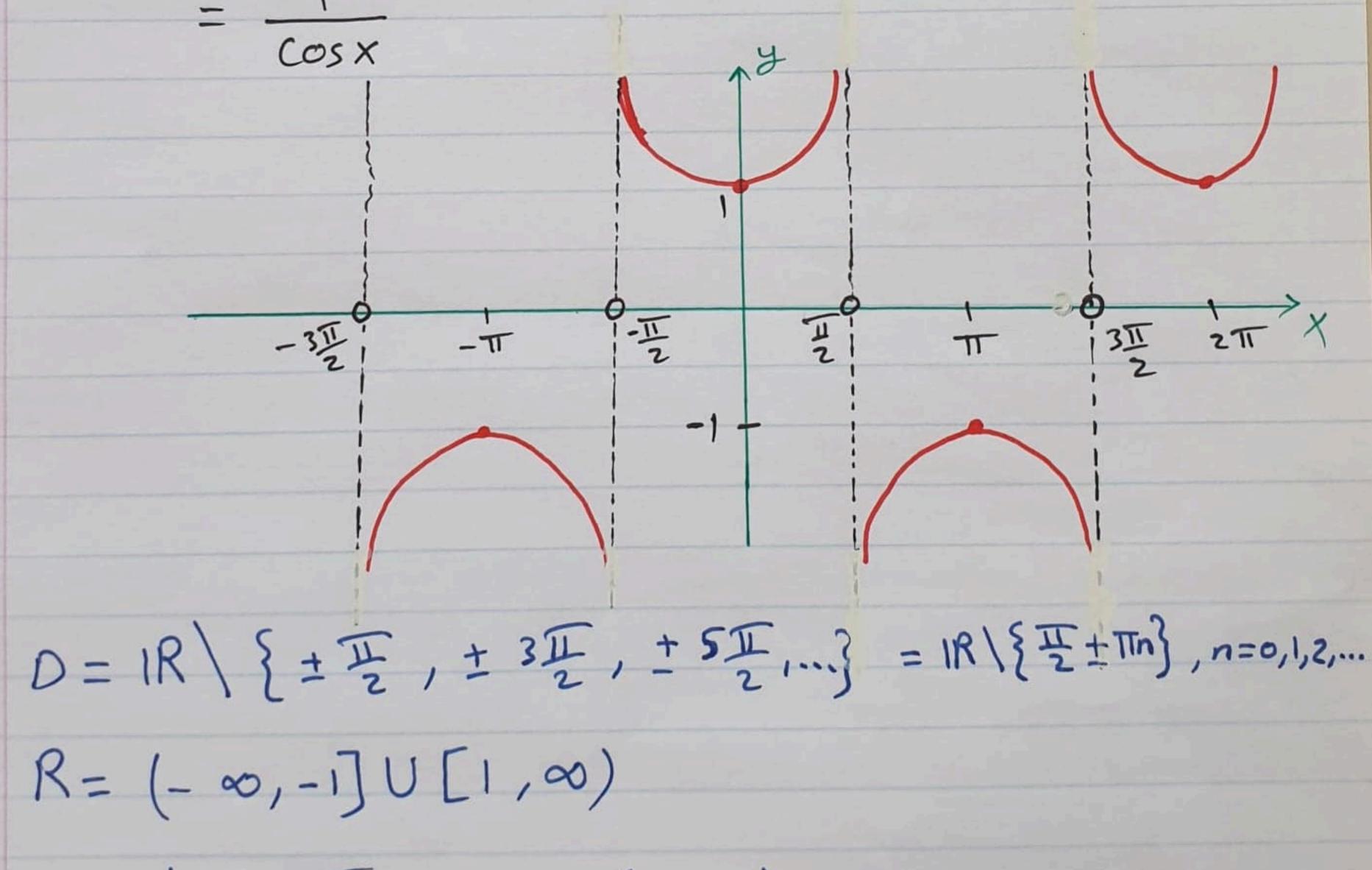
Numerator $\frac{x^2 - 9}{x - 1} = 0 = 3(x - 3)(x + 3) = 0 = 3x = 3$ or
Denominator $x - 1 = 0 = 3x = 1$
Numerator $\frac{1}{x - 3} = \frac{1}{3} = \frac{1}{x - 3}$
Numerator $\frac{1}{x - 1} = \frac{1}{x - 3} = \frac{1}{3} = \frac{1}{x - 3}$
Denominator $\frac{1}{x - 1} = \frac{1}{x - 3} = \frac{1}{3} = \frac{1}{x - 3}$
Exp $f(x) = \frac{x}{x^2 + 1} = \frac{1}{0} = \frac{1}{x - 3} = \frac{1}{x - 3}$
Trigonometric functions







" secant" f(x) = sec x



period = 271 Even function \Rightarrow sec(x + 2T) = sec x

STUDENTS-HUB.com

Uploaded By: Malak Obaid

 $\overline{5} f(x) = \tan x = \frac{\sin x}{2}$ COSX $D = |R| \{ \pm \pm, \pm 3 \pm, \pm -5 \pm, \dots\} = |R| \{ \pm n \pm 1 \}$ n=0,1,2,... $R = |R = (-\infty, \infty)$ NY -period = 11 odd function >tan(x+IT)=tanx 31 -31 -11 王 TT

 $[6] f'(x) = \cot x = \cos x$ "cotan" sinx $D = IR \setminus \{0, \pm \Pi, \pm 2\Pi, \pm 3\Pi, ...\}$ and $R = (-\infty, \infty) = IR$ $= |R| \{ \pm n\pi \}, n = 0, 1, 2, ...$ NY period = TT Odd function

STUDENTS-HUB.com

 $4 \cot(x+\pi) = \cot x$

Uploaded By: Malak Obaid

~

Inigonometric Identities

$$\sin^{2}x + \cos^{2}x = 1 \quad \dots \quad *$$

 $\tan^{2}x + 1 = \sec^{2}x \quad \text{Pivide } * \text{ by } \cos^{2}x$
 $1 + \cot^{2}x = \csc^{2}x \quad \text{Divide } * \text{ by } \sin^{2}x$
 $\sin 2x = 2\sin x \cos x$
 $\cos 2x = (\cos^{2}x - \sin^{2}x)$
 $= 2\cos^{2}x - 1 \implies \cos^{2}x = \frac{1 + \cos 2x}{2}$
 $= 1 - 2\sin^{2}x \implies \sin^{2}x = \frac{1 - \cos 2x}{2}$

• $\cos(A+B) = \cos A \cos B - \sin A \sin B$ • $\sin(A+B) = \sin A \cos B + \cos A \sin B$

Exp
$$sin(x + 2\pi) = sinx cos(2\pi) + cosx sin(2\pi) = sinx$$

 $sin(x + \pi) = sinx cos\pi + cosx sin\pi = -sinx$
 $cos(x + \pi) = cosx cos\pi - sinx sin\pi = -cosx$
 $cos(x + \pi) = cosx cos\pi - sinx sin\pi = -cosx$
 $cos(x + \pi) = cosx cos\pi - sinx sin\pi = -sinx$
Even function defined on interval I is symmetric about
 $y - axis$ and satisfy $f(-x) = f(x) \forall x \in I$.
Exp $f(x) = x^{2}, \quad y = x^{4}, \quad g(x) = x^{6}, \quad h(x) = |x|,$
 $r(x) = cosx, \quad m(x) = secx \dots$ are even
Odd function defined on interval I is symmetric about
origin (0,0) and satisfy $f(-x) = -f(x) \forall x \in I$.
STUDENTS-HUB.com $f(x) = x, \quad y = x^{3}, \quad g(x) = x^{5}, \quad h(x) = \frac{1}{y}$
 $r(x) = sinx, \quad m(x) = sicx, \quad are odd$

Exp(D) show that
$$f(x) = \frac{x}{x^{2}-1}$$
 is odd function

$$f(-x) = \frac{(-x)}{(-x)^{2}-1} = \frac{-x}{x^{2}-1} = -\frac{x}{x^{2}-1} = -f(x)$$
(2) show that $g(x) = \frac{1}{x^{2}-1}$ is even function
 $g(-x) = \frac{1}{(-x)^{2}-1} = \frac{1}{x^{2}-1} = g(x)$
Composition $(f \circ g)(x) = f(g(x))$
Exp $f(x) = \sqrt{x}$, $g(x) = x^{2}$ OF ind fog and its domain
 $D(f) = [o, \infty)$ $D(g) = 1R$ (2) Find gof and its domain
 $D(f \circ g)(x) = f(g(x)) = f(x^{2}) = \sqrt{x^{2}} = 1 \times 1 \implies p = 1R L$
(2) $(g \circ f)(x) = g(f(x)) = g(\sqrt{x}) = (\sqrt{x})^{2} = x \implies p = [o, \infty) L$
 $y = A \sin (B(x + c)) + D$
 $|A|: Amplifude$
 $period = \frac{2\pi}{B}$ to the left if $c > 0$
 $C : Horizontal shift $f(x) = y(x)$ if $p > 0$
 $D : Vertical shift $f(x) = y(x)$$$

