

Faculty of Engineering and Technology Department of Electrical and Computer Engineering

Course Information		
Course Title	Computer Architecture	
Course Number	ENCS4370	
Prerequisites	ENCS2380 Computer Organization and Microprocessor	
	ENCS336 Computer Organization and Assembly Language	
	ENCS238 Computer Organization	
	ENCS2308 Computer Structure and Organization	
Semester	Second Semester 2023 – 2024	
Instructors	Ayman Hroub, Aziz Qaroush	

Text Book	
Title	Computer Organization and Design: The Hardware/Software Interface
Author(s)	John L. Hennessy and David A. Patterson
Publisher	Morgan Kaufmann
Edition	6 th Edition (2021)
References	 Computer Architecture: A Quantitative Approach John L. Hennessy and David A. Patterson, Morgan Kaufmann,6th Edition, 2019 Modern Processor Design: Fundamentals of Superscalar Processors. John Paul Shen and Mikko H. Lipasti, McGraw-Hill, 2012.

Course Objectives

- To understand performance measures used in computer design, technology and cost trends in computer design, quantitative principles of computer performance measures designers use.
- To understand the principles of instruction set design, recent instruction set architecture, study the statistics of the use of memory addressing modes in programs executing on a recent instruction set architecture, statistics of the types and sizes of operands used by programs executing on a recent instruction set architecture.
- To understand basic and advanced pipelining techniques, basic methods for handling data, control, and resource hazards in single-pipeline processors, analyze instruction-level parallelism (e.g., loop unrolling and detailed aspects of instruction dependence), dynamic scheduling, dynamic branch prediction, performance of pipelines incorporating multiple-instruction issue, limitation of Instruction-Level Parallelism and multithreading.
- To understand the aspects of memory hierarchy and cache design, cache timing and use that information in analyzing overall computer performance, implementation details of advanced cache features (e.g., write buffers, prefetch buffers, out-of-order fetches). analyze cache and TLB interaction and timing
- To understand the aspects Storage and I/O Systems: Types of Storage Devices, Buses, I/O Performance Measures, Memory Interface, Designing an I/O System.
- Be able to analyze and use techniques that guarantee cache coherence and correct sequential memory access across multiprocessor systems.

Assessment Policy				
Assessment Type	Expected Due Date	Weight		
Quizzes	TBA	10%		
Midterm Exam	TBA	25%		
Final Exam	TBA	40%		
Two Projects	TBA	25%		

Course Schedule				
Topics		#Lectures	Materials	
Introduction		1	T.B Ch. #1	
Instructions Set Principles and Architecture	Basic ConceptsMIPS Architecture	2	T.B Ch. #2	
MIPS32 Assembly Language Programming	 Introduction to Assembly Language Arithmetic Instructions Control Flow Instructions Load/Store Instructions Floating Points Instructions 	2	T.B Ch. #2	
Performance	BenchmarksAnalysis (CPU execution time)Amdal's Law	2	T.B Ch. #4 + R.B Ch. #1	
CPU Organization & Design	 CPU Organization – Data path and Control Single cycle scheme Multi-Cycle scheme Pipelining scheme 	7	T.B Ch. #5	
Instruction-Level Parallelism & Superscalar Processors	 Dynamic scheduling Hardware-Based Speculation Dynamic Branch Prediction Superscalar Processors Multiple Issue Processors 	6	R.B Ch. #2	
Memory Hierarchy & Cache Design	 Basics of memory hierarchy and caches Main Memory Measuring and improving cache performance Parallelisms and memory hierarchy Virtual memory 	7	T.B Ch. #5 + R.B Ch. #5	
Storage & I/O Systems	Disk structure, Interfacing, RAID Systems Measuring I/O Performance	If time allows	T.B Ch. #6 R.B Ch #6	

Teaching	g and Learning Methods

Lectures, assignments, projects, in-class activities and exams.

Additional Notes		
Assignments	No late assignments	
Exams	Comprehensive exams	
Makeup Exams	No makeup exam	
Drop Date	ТВА	
Attendance	Your attendances is very important	
Key to a good grade	Reading the TEXTBOOK and HANDOUT + DOING the PROJECTS	