

Chapter 41

Animal Nutrition

Lecture Presentations by Nicole Tunbridge and Kathleen Fitzpatrick

The Need to Feed

- Food is taken in, taken apart, and taken up in the process of animal nutrition
- In general, animals fall into three categories:
 - Herbivores eat mainly plants or algae
 - Carnivores eat other animals
 - Omnivores regularly consume animals as well as plants or algae
- Most animals are also opportunistic feeders

© 2017 Pearson Education, Inc.

Concept 41.1: An animal's diet must supply chemical energy, organic building blocks, and essential nutrients

- An animal's diet must provide
 - Chemical energy for cellular processes
 - Organic building blocks for macromolecules
 - Essential nutrients

© 2017 Pearson Education, Inc

Essential Nutrients

- Required materials that an animal cannot assemble from simpler organic molecules are called essential nutrients
- These must be obtained from an animal's diet
- There are four classes:
 - Essential amino acids
 - Essential fatty acids
 - Vitamins
 - Minerals

© 2017 Pearson Education, Inc.

Essential Amino Acids

- Animals require 20 amino acids and can make about half from molecules in their diet
- The remaining amino acids, the essential amino acids, must be obtained from food
- Meat, eggs, and cheese provide all the essential amino acids and are thus "complete" proteins
- Most plant proteins are incomplete in amino acid composition
- Vegetarians can easily obtain all essential amino acids by eating a varied diet of plant proteins

© 2017 Pearson Education, Inc.

Essential Fatty Acids

- Animals can synthesize many of the fatty acids they need
- The essential fatty acids must be obtained from the diet and include certain unsaturated fatty acids (i.e., fatty acids with one or more double bonds)
- Animals typically obtain good amounts of essential fatty acids in their diet

© 2017 Pearson Education, Inc.

Vitamins

- Vitamins are organic molecules required in the diet in very small amounts
- Thirteen vitamins are essential for humans
- Vitamins are grouped into two categories: fat-soluble and water-soluble

© 2017 Pearson Education, Inc.

Table 41.1 Vitamin Requirements of Humans					
Vitamin	Major Dietary Sources	Major Functions in the Body	Symptoms of Deficiency		
Water-Soluble Vitamins					
B ₁ (thiamine)	Pork, legumes, peanuts, whole grains	Coenzyme used in removing CO ₂ from organic compounds	Beriberi (tingling, poor coordina- tion, reduced heart function)		
B ₂ (riboflavin)	Dairy products, meats, enriched grains, vegetables	Component of coenzymes FAD and FMN	Skin lesions, such as cracks at corners of mouth		
B ₃ (niacin)	Nuts, meats, grains	Component of coenzymes NAD ⁺ and NADP ⁺	Skin and gastrointestinal lesions, delusions, confusion		
B _s (pantothenic acid)	Meats, dairy products, whole grains, fruits, vegetables	Component of coenzyme A	Fatigue, numbness, tingling of hands and feet		
B ₆ (pyridoxine)	Meats, vegetables, whole grains	Coenzyme used in amino acid metabolism	Irritability, convulsions, muscular twitching, anemia		
B ₇ (biotin)	Legumes, other vegetables, meats	Coenzyme in synthesis of fat, glycogen, and amino acids	Scaly skin inflammation, neuromuscular disorders		
B ₉ (folic acid)	Green vegetables, oranges, nuts, legumes, whole grains	Coenzyme in nucleic acid and amino acid metabolism	Anemia, birth defects		
B ₁₂ (cobalamin)	Meats, eggs, dairy products	Production of nucleic acids and red blood cells	Anemia, numbness, loss of balance		
C (ascorbic acid)	Citrus fruits, broccoli, tomatoes	Used in collagen synthesis; antioxidant	Scurvy (degeneration of skin and teeth), delayed wound healing		
Fat-Soluble Vitamins					
A (retinol)	Dark green and orange vegetables and fruits, dairy products	Component of visual pigments; maintenance of epithelial tissues	Blindness, skin disorders, impaired immunity		
D	Dairy products, egg yolk	Aids in absorption and use of calcium and phosphorus	Rickets (bone deformities) in children, bone softening in adults		
E (tocopherol)	Vegetable oils, nuts, seeds	Antioxidant; helps prevent damage to cell membranes	Nervous system degeneration		
K (phylloquinone)	Green vegetables, tea; also made by colon bacteria	Important in blood clotting	Defective blood clotting		

Minerals

- Minerals are simple inorganic nutrients, usually required in small amounts
- Ingesting large amounts of some minerals can upset homeostatic balance

Table 41.2 Mineral Requirements of Humans*

Mineral		Major Dietary Sources	Major Functions in the Body	Symptoms of Deficiency
More than 200 mg per day required	Calcium (Ca)	Dairy products, dark green vegetables, legumes	Bone and tooth formation, blood clotting, nerve and muscle function	Impaired growth, loss of bone mas
	Phosphorus (P)	Dairy products, meats, grains	Bone and tooth formation, acid- base balance, nucleotide synthesis	Weakness, loss of minerals from bone, calcium loss
	Sulfur (S)	Proteins from many sources	Component of certain amino acids	Impaired growth, fatigue, swelling
	Potassium (K)	Meats, dairy products, many fruits and vegetables, grains	Acid-base balance, water balance, nerve function	Muscular weakness, paralysis, nausea, heart failure
	Chlorine (CI)	Table salt	Acid-base balance, formation of gastric juice, nerve function, osmotic balance	Muscle cramps, reduced appetite
	Sodium (Na)	Table salt	Acid-base balance, water balance, nerve function	Muscle cramps, reduced appetite
	Magnesium (Mg)	Whole grains, green leafy vegetables	Enzyme cofactor; ATP bioenergetics	Nervous system disturbances
Iron (Fe)		Meats, eggs, legumes, whole grains, green leafy vegetables	Component of hemoglobin and of electron carriers; enzyme cofactor	Iron-deficiency anemia, weakness, impaired immunity
Fluorine (F)		Drinking water, tea, seafood	Maintenance of tooth structure	Higher frequency of tooth decay
lodine (I)		Seafood, iodized salt	Component of thyroid hormones	Goiter (enlarged thyroid gland)

Dietary Deficiencies

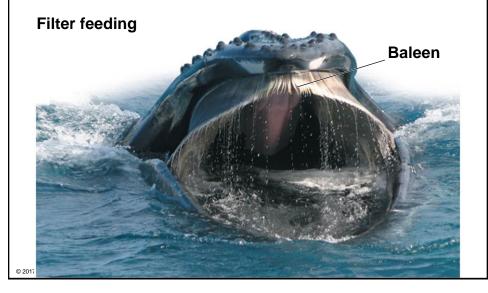
- Malnutrition is a failure to obtain adequate nutrition
- Malnutrition can have negative impacts on health and survival
 - Deficiencies in essential nutrients can cause deformities, disease, and death
 - Cattle, deer, and other herbivores can prevent phosphorus deficiency by consuming concentrated sources of salt or other minerals
 - In children, protein deficiency may arise when their diet shifts from breast milk to foods containing very little protein

© 2017 Pearson Education, Inc.

Undernourishment

- Undernourishment results when a diet does not provide enough chemical energy
- An undernourished individual will
 - Use up stored fat and carbohydrates
 - Break down its own proteins
 - Lose muscle mass
 - Suffer protein deficiency of the brain
 - Die or suffer irreversible damage

© 2017 Pearson Education, Inc


Concept 41.2: Food processing involves ingestion, digestion, absorption, and elimination

- Ingestion is the act of eating or feeding
- Feeding mechanisms differ widely among animal species

© 2017 Pearson Education, Inc.

Filter Feeders

 Many aquatic animals are filter feeders, which sift small food particles from the water

Substrate Feeders

 Substrate feeders are animals that live in or on their food source

Substrate feeding

Caterpillar Feces

© 2017 Pearson Education, Inc.

Fluid Feeders

 Fluid feeders suck nutrient-rich fluid from a living host

Fluid feeding

© 2017 Pearson Education, Inc.

Bulk Feeders

Bulk feeders eat relatively large pieces of food

© 2017 Pearson Education, Inc.

- Digestion is the process of breaking food down into molecules small enough to absorb
- Mechanical digestion, chewing or grinding, increases the surface area of food
- Chemical digestion splits food into small molecules that can pass through membranes; these are used to build larger molecules
- In chemical digestion, the process of enzymatic hydrolysis splits bonds in molecules with the addition of water

- Absorption is uptake of small molecules by body cells
- Elimination is the passage of undigested material out of the digestive system

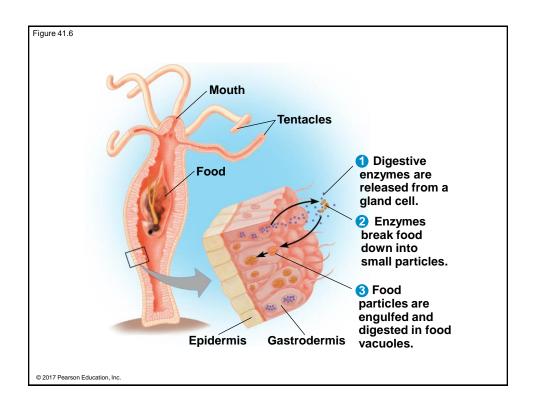
© 2017 Pearson Education, Inc.

Digestive Compartments

- Most animals process food in specialized compartments
- These compartments reduce the risk of an animal digesting its own cells and tissues

© 2017 Pearson Education, Inc

Intracellular Digestion

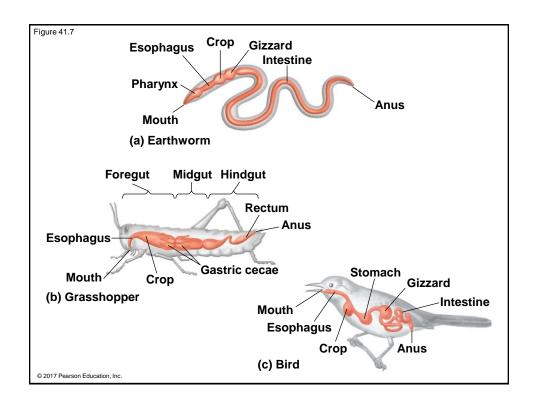

- In intracellular digestion, food particles are engulfed by phagocytosis and liquids by pinocytosis
- Food vacuoles, containing food, fuse with lysosomes containing hydrolytic enzymes
- A few animals, such as sponges, digest their food entirely by this mechanism

© 2017 Pearson Education, Inc.

Extracellular Digestion

- Extracellular digestion is the breakdown of food particles outside of cells
- It occurs in compartments that are continuous with the outside of the animal's body
- Animals with simple body plans have a gastrovascular cavity that functions in both digestion and distribution of nutrients

© 2017 Pearson Education, Inc.

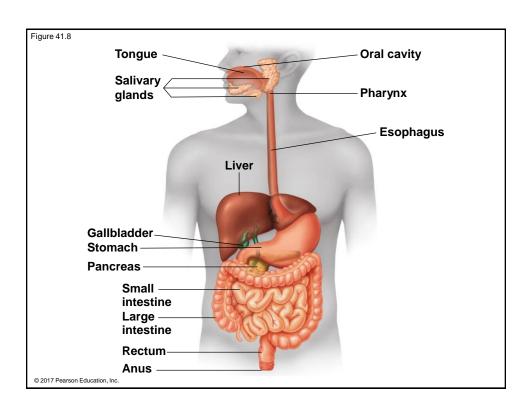

Video: Hydra Eating *Daphnia* (Time Lapse)

© 2017 Pearson Education, Inc.

- More complex animals have a digestive tube with two openings, a mouth and an anus
- This digestive tube is called a complete digestive tract, or an alimentary canal
- It can have specialized regions that carry out digestion and absorption in a stepwise fashion

© 2017 Pearson Education, Inc.

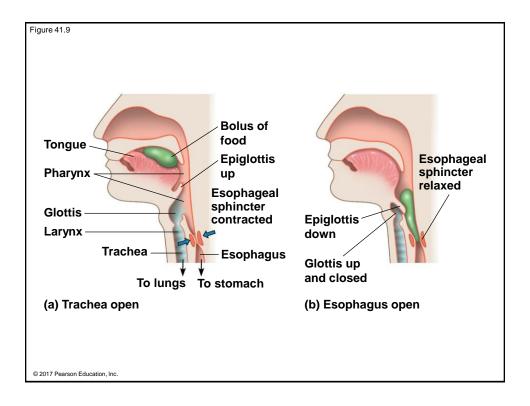
Concept 41.3: Organs specialized for sequential stages of food processing form the mammalian digestive system


- In mammals, a number of accessory glands secrete digestive juices through ducts into the alimentary canal
- Mammalian accessory glands are the salivary glands, the pancreas, the liver, and the gallbladder

© 2017 Pearson Education, Inc.

The Oral Cavity, Pharynx, and Esophagus

- Food processing begins in the oral cavity
- Salivary glands deliver saliva to lubricate food
- Saliva contains mucus, a viscous mixture of water, salts, cells, and glycoproteins
- Saliva also contains amylase, which breaks down starch


© 2017 Pearson Education, Inc.

- The tongue movements shape food into a **bolus** and help with swallowing
- The throat, or **pharynx**, is the junction that opens to both the esophagus and the trachea
- The esophagus connects to the stomach
- The trachea (windpipe) leads to the lungs

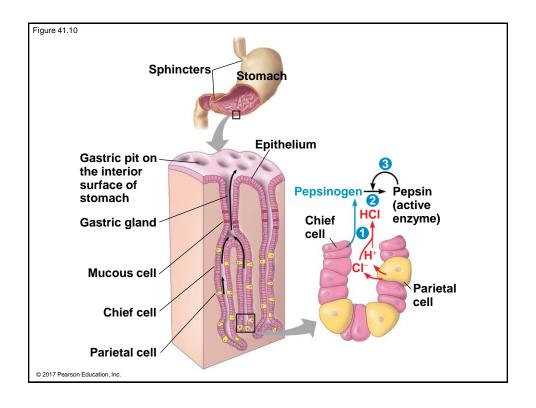
- Swallowing causes the epiglottis to block entry to the trachea, and the bolus is guided by the larynx, the upper part of the respiratory tract
- Coughing occurs when the swallowing reflex fails and food or liquids reach the windpipe

© 2017 Pearson Education, Inc

- Within the esophagus, food is pushed along from the pharynx to the stomach by **peristalsis**, rhythmic contractions of muscles in the wall of the canal
- Valves called **sphincters** regulate the movement of material between compartments

Digestion in the Stomach

- The **stomach** stores food and processes it into a liquid suspension
- The stomach secretes gastric juice
- The mixture of ingested food and gastric juice is called **chyme**


© 2017 Pearson Education, Inc

Chemical Digestion in the Stomach

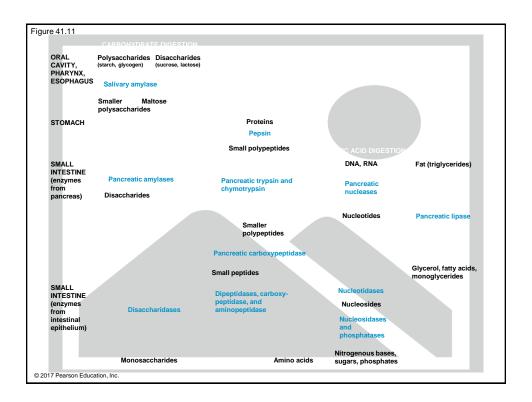
- Gastric juice has a low pH of about 2, which kills bacteria and denatures proteins
- Gastric juice is made up of hydrochloric acid (HCl) and pepsin
- Pepsin is a protease, which breaks peptide bonds to cleave proteins into smaller peptides

© 2017 Pearson Education, Inc.

- Parietal cells secrete hydrogen and chloride ions separately into the lumen (cavity) of the stomach
- Chief cells secrete inactive pepsinogen, which is activated to pepsin when mixed with hydrochloric acid in the stomach
- Mucus protects the stomach lining from gastric juice
- Cell division adds a new epithelial layer every three days
- Gastric ulcers, lesions in the lining, are caused mainly by the bacterium Helicobacter pylori

Stomach Dynamics

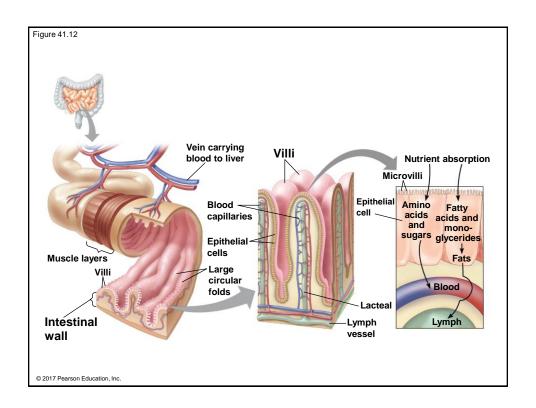
- Coordinated contraction and relaxation of stomach muscles churn the stomach's contents
- Sphincters prevent chyme from entering the esophagus and regulate its entry into the small intestine
- If the sphincter at the top of the stomach allows movement of chyme back to the lower end of the esophagus, the result is "heartburn"


© 2017 Pearson Education, Inc

Digestion in the Small Intestine

- The small intestine is the longest compartment of the alimentary canal
- Most enzymatic hydrolysis of macromolecules from food occurs here
- The first portion of the small intestine is the duodenum
- Here, chyme from the stomach mixes with digestive juices from the pancreas, liver, gallbladder, and the small intestine itself

© 2017 Pearson Education, Inc.


- The pancreas produces the proteases trypsin and chymotrypsin, which are activated in the lumen of the duodenum
- Its solution is alkaline and neutralizes the acidic chyme
- Bile salts facilitate digestion of fats and are a major component of bile
- Bile is made in the liver and stored in the gallbladder
- Bile also destroys nonfunctional red blood cells

Absorption in the Small Intestine

- The small intestine has a huge surface area due to villi and microvilli that are exposed to the intestinal lumen
- The enormous microvillar surface creates a brush border that greatly increases the rate of nutrient absorption
- Transport across the epithelial cells can be passive or active, depending on the nutrient

© 2017 Pearson Education, Inc.

- The hepatic portal vein carries nutrient-rich blood from the capillaries of the villi to the liver, then to the heart
- The liver regulates nutrient distribution, interconverts many organic molecules, and detoxifies many organic molecules

Processing in the Large Intestine

- The alimentary canal ends with the large intestine
- It includes the colon, caecum, and rectum
- The colon leads to the rectum and anus
- The cecum aids in the fermentation of plant material and connects where the small and large intestines meet
- The human cecum has an extension called the appendix, which plays a minor role in immunity

© 2017 Pearson Education, Inc.

- The colon completes the recovery of water that began in the small intestine
- Feces, the wastes of the digestive system, become more solid as they move through the colon
- Feces are stored in the rectum until they can be eliminated through the anus
- Two sphincters between the rectum and anus control bowel movements

Ascending portion of colon Small intestine Appendix

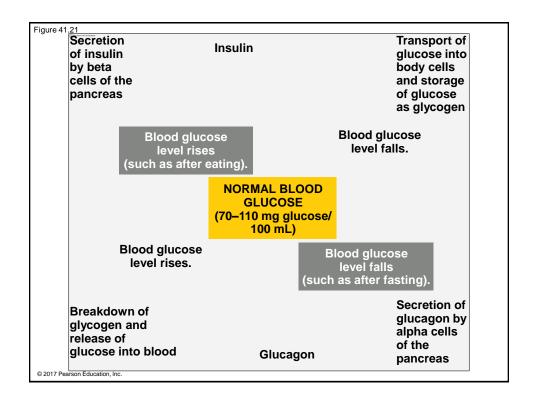
© 2017 Pearson Education, Inc.

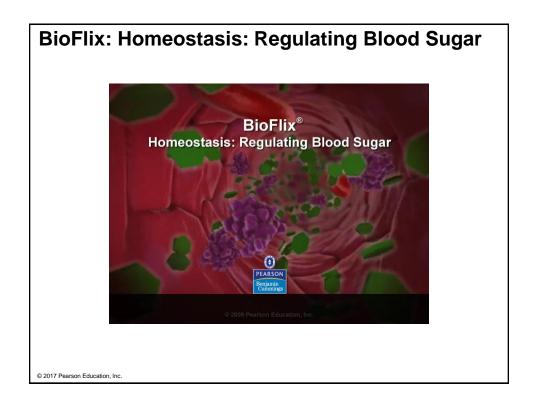
Concept 41.5: Feedback circuits regulate digestion, energy storage, and appetite

 The processes that enable an animal to obtain nutrients are matched to the organism's circumstances and need for energy

© 2017 Pearson Education, Inc

Regulation of Energy Storage


- The body stores energy-rich molecules that are not needed for metabolism right away
- In humans, energy is stored first in the liver and muscle cells in the polymer glycogen
- Excess energy is stored in fat in adipose cells
- When fewer calories are taken in than expended, the human body expends liver glycogen first, then muscle glycogen and fat


© 2017 Pearson Education, Inc

Glucose Homeostasis

- Synthesis and breakdown of glycogen are central to maintaining metabolic balance
- The hormones insulin and glucagon regulate the breakdown of glycogen into glucose
- The liver is the site for glucose homeostasis
 - A carbohydrate-rich meal raises insulin levels, which triggers the synthesis of glycogen
 - Low blood sugar causes glucagon to stimulate the breakdown of glycogen and release glucose

© 2017 Pearson Education, Inc.

- Insulin acts on nearly all body cells to stimulate glucose uptake from blood
- Brain cells are an exception; they can take up glucose whether or not insulin is present
- Glucagon and insulin are both produced in the islets of the pancreas
- Alpha cells make glucagon, and beta cells make insulin

Diabetes Mellitus

- The disease diabetes mellitus is caused by a deficiency of insulin or a decreased response to insulin in target tissues
- Cells are unable to take up enough glucose to meet metabolic needs
- The level of glucose in the blood may exceed the capacity of kidneys to reabsorb it
- Sugar in the urine is one test for diabetes

© 2017 Pearson Education, Inc.

Type 1 Diabetes

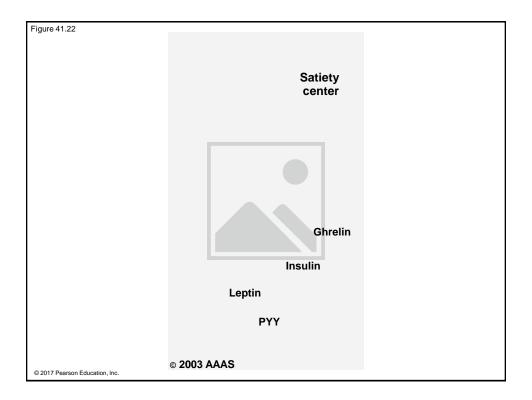
- Type 1 diabetes is an autoimmune disorder in which the immune system destroys the beta cells of the pancreas
- It usually appears during childhood
- Treatment consists of insulin injections, typically several times per day

© 2017 Pearson Education, Inc

Type 2 Diabetes

- Type 2 diabetes, or non-insulin-dependent diabetes, is characterized by a failure of target cells to respond normally to insulin
- Excess body weight and lack of exercise significantly increase the risk of type 2 diabetes
- It generally appears after age 40, but may develop earlier in younger people who are sedentary

© 2017 Pearson Education, Inc.


Regulation of Appetite and Consumption

- Overnourishment causes obesity, which results from excessive intake of food energy with the excess stored as fat
- Obesity contributes to type 2 diabetes, cancer of the colon and breasts, heart attacks, and strokes
- Researchers have discovered several of the mechanisms that help regulate body weight

© 2017 Pearson Education, Inc

- Hormones regulate long-term and short-term appetite by affecting a "satiety center" in the brain
- Ghrelin, a hormone secreted by the stomach wall, triggers feelings of <u>hunger</u> before meals
- Insulin and PYY, a hormone secreted by the small intestine after meals, both <u>suppress appetite</u>
- Leptin, produced by adipose (fat) tissue, also <u>suppresses appetite</u> and plays a role in regulating body fat levels

© 2017 Pearson Education, Inc.

