CHAPTER 7 :

Sufficient Statistics

7.1 Measures of Quality of Estimators

In Chapter 6 we presented some procedures for finding point
estimates, interval estimates, and tests of statistical hypotheses. In this
and the next two chapters, we provide reasons why certain statistics are
used in these various statistical inferences. We begin by considering
desirable properties of a point estimate.

Now it would seem that if y = u(x, x,, . . ., x,) is to qualify as a
good point estimate of 6, there should be a great probability that the
statistic Y = u(X,, X,, ..., X,) will be close to 8: that is, 6 should be
a sort of rallying point for the numbers y = u(x,, x,, . . ., x,). Thiscan
be achieved in one way by selecting ¥ = u(X,, X,,..., X,) in such a
way that not only is Y an unbiased estimator of 8, but also the variance
of Y is as small as it can be made. We do this because the variance of
Y is a measure of the intensity of the concentration of the probability
for Y in the neighborhood of the point 8 = E(Y). Accordingly, we
define an unbiased minimum variance estimator of the parameter 0 in
the following manner.

Definition 1. For a given positive integern, Y = u(X,, X3, ..., X,)
will be called an unbiased minimum variance estimator of the par-
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308 Sufficient Statistics |Ch. 7

ameter @ if Y is unbiased, that is, E(Y) = 6, and if the variance of Y
is less than or equal to the variance of every other unbiased estimator
of 6.

For illustration, let X, X,, ..., X; denote a random sample from
a_distribution that is N(f,1), —oo <6 < co. Since the statistic
X=X+ X2+ -+ X,)9is N(6, %), X is an unbiased estimator of
0. The statistic X, is N(0, 1), so X, is also an unbiased estimator of
0. Although the variance ! of X is less than the variance 1 of X,, we
cannot say, with n =9, that X is the unbiased minimum variance
estimator of §; that definition requires that the comparison be made
with every unbiased estimator of . To be sure, it is quite impossible
to tabulate all other unbiased estimators of this parameter 6, so other
methods must be developed for making the comparisons of the
variances. A beginning on this problem will be made in this chapter.

Let us now discuss the problem of point estimation of a parameter
from a slightly different standpoint. Let X, X;,..., X, denote a
random sample of size n from a distribution that has the p.d.f. f(x; ),
0 € Q. The distribution may be either of the continuous or the discrete
type. Let Y = u(X,, X;, . .., X,) be a statistic on which we wish to base
a point estimate of the parameter 6. Let 4(y) be that function of the
observed value of the statistic Y which is the point estimate of 6. Thus
the function é decides the value of our point estimate of # and ¢ is called
a decision function or a decision rule. One value of the decision function,
say d(y), is called a decision. Thus a numerically determined point
estimate of a parameter 6 is a decision. Now a decision may be correct
or it may be wrong. It would be useful to have a measure of the
seriousness of the difference, if any, between the true value of § and the
point estimate 6(y). Accordingly, with each pair, [0, 6()], 0 € Q, we
will associate a nonnegative number Z[0, 6(y)] that reflects this
seriousness. We call the function & the loss function. The expected
(mean) value of the loss function is called the risk function. If g(y; ),
0 e Q, is the p.d.f. of Y, the risk function R(6, é) is given by

R(8, ) = E{£18, s(V)]} = J Z10, 5(y)lg(y; 0) dy

if Yis a random variable of the continuous type. It would be desirable
to select a decision function that minimizes the risk R(0, é) for all values
of 8, 8 € Q. But this is usually impossible because the decision function
o that minimizes R(0, §) for one value of & may not minimize
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Sec. 7.1] Measures of Quality of Estimators 309

R(0, 6) for another value of 8. Accordingly, we need either to restrict
our decision function to a certain class or to consider methods of
ordering the risk functions. The followmg example, while very simple,

dramatizes these difficulties.

Example 1. Let X, X,, . .., X,s be a random sample from a distribution
that is N(0, 1), —0 < 8 < 0. Let Y = X, the mean of the random sample,
and let [0, 6(y)] = [6 — 6(»)]*. We shall compare the two decision functions
given by 6,(y) = y and 4,(y) = 0 for —o0 < y < o0. The corresponding risk
functions are

R(6,6,) = E[(6 — Y] =%

and

R0, 5,) = E[(6 — 0)] = 6.

Obviously, if, infact, # = 0, then 4,(y) = 0is an excellent decision and we have
R(0, 6,) = 0. However, if 8 differs from zero by very much, it is equally
clear that é,(y) =0 is a poor decision. For example, if, in fact, § = 2,
R(2,8,) =4> R(2,6,) = 5. In general, we see that R(6,d,) < R(b, ),
provided that —1 < 6 < {and that otherwise R(6, 3,) > R(0, é,). That is, one
of these decision functions is better than the other for some values of § and
the other decision functions are better for other values of 6. If, however, we
had restricted our consideration to decision functions d such that E[§(Y)] =
for all values of 8, 6 € Q, then the decision J,(y) = 0 is not allowed. Under this
restriction and with the given [0, 6(y)], the risk function is the variance of
the unbiased estimator 4(Y), and we are confronted with the problem of
finding the unbiased minimum variance estimator. Later in this chapter we
show that the solution is é(y) = y = x.

Suppose, however, that we do not want to restrict ourselves to decision
functions &, such that E[6(Y)] = @ for all values of 8, 0 € Q. Instead, let us
say that the decision function that minimizes the maximum of the risk
function is the best decision function. Because, in this example, R(0, §,) = 6*
is unbounded, J,(y) = 0 is not, in accordance with this criterion, a good
decision function. On the other hand, with — o0 < 6 < o0, we have

max R(0, 8,) - max () =

Accordingly, 8,(y) =y = X seems to bé a very good decision in accordance
with this criterion because 5 is small. As a matter of fact, it can be proved that
0, is the best decision function, as measured by the minimax criterion, when
the loss function is £[0, 3(y)] = [0 — 6(y)}"

In this example we illustrated the following:

1. Without some restriction on the decision function, it is difficult to
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310 Sufficient Statistics |Ch. 7

find a decision function that has a risk function which is uniformly
less than the risk function of another decision function.

2. A principle of selecting a best decision function, called the minimax
principle. This principle may be stated as follows: If the decision
function given by d,(y) is such that, for all 6 € Q,

max R[6, 6p(y)] < max R[0,3(y)]

for every other decision function é(y), then d,(y) is called a minimax
decision function.

With the restriction E[6(Y)]=60 and the loss function
Z10, 6(»)] = [@ — 6(»)], the decision function that minimizes the risk
function yields an unbiased estimator with minimum variance. If,
however, the restriction E[6(Y)] =0 is replaced by some other
condition, the decision function 4(Y), if it exists, which minimizes
E{[0 — 6(Y)F} uniformly in 6 is sometimes called the minimum
mean-square-error estimator, Exercises 7.6, 7.7, and 7.8 provide
examples of this type of estimator.

There are two additional observations about decision rules and loss
functions that should be made at this point. First, since Y is a statistic,
the decision rule 4(Y) is also a statistic, and we could have started
directly with a decision rule based on the observations in a random
sample, say ,(X;, Xs, ..., X,). The risk function is then given by

R(B’ 6I) = E{'?[Gs 6I(X19 XZs LB | Xu)]}

=J J‘ J -sfﬂ[gaél(xls-xla'-'axn)]

< frs; 0)+ -~ fxa; 0) dxy - - - dx,

if the random sample arises from a continuous-type distribution. We
did not do this because, as you will see in this chapter, it is rather easy
to find a good statistic, say Y, upon which to base all of the statistical
inferences associated with a particular model. Thus we thought it more
appropriate to start with a statistic that would be familiar, like the
m.l.e. Y = X in Example 1. The second decision rule of that example
could be written 6,(X|, X5, ..., X,) =0, a constant no matter what
values of X, X,, ..., X, are observed.

The second observation is that we have only used one loss
function, namely the square-error loss function (0, 6) = (0.— o).
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Sec. 7.1).  Measures of Quality of Estimators 311

The absolute-error loss function £(6, 6) = |0 — 6| is another popular
one. The loss function defined by

£6,6)=0, |0—6<a,
=b,  |0—6>a,

where a.and b are positive constants, is sometimes referred to as the
goal post loss function. The reason for this terminology is that football
fans recognize it is like kicking a field goal: There is no loss (actually
a three-point gain) if within a units of the middle but & units of loss
(zero points awarded) if outside that restriction. In addition, loss
functions can be asymmetric as well as symmetric as the three previous
ones have been. That is, for example it mlght be more costly to
underestimate the value of § than to overestimate it. (Many of us think
about this type of loss function when estimating the time it takes us
to reach an airport to catch a plane.) Some of these loss functions are
considered when studying Bayesian estimates in Chapter 8.

Let us close this section with an interesting illustration that raises
a question leading to the likelihood principle which many statisticians
believe is a quality characteristic that estimators should enjoy. Suppose
that two statisticians, 4 and B, observe 10 independent trials of a
random experiment ending in success or failure. Let the probability of
success on each trial be 0, where 0 < 6 < 1. Let us say that each
statistician observes one success in these 10 trials. Suppose, however,
that 4 had decided to take n = 10 such observations in advance-and
found only one success while B had decided to take as many
observations as needed to get the first success, which happened on the
10th trial. Themodel of A is that Yis b(n = 10, #)and y = 1is observed.
On the other hand, B is considering the random variable Z that has
a geometric p.d.f. gz)=(1—-60)""'9,z=1,2,3,...,and z=10is
observed. In either case, the relative frequency of success is

which could be used as an estimate of 6.

Let us observe, however, that one of the corresponding estnnators
Y/n and 1/Z, is biased. We have

Y\ 1 1
E(m) =5 ED =—-6(109)—
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312 Sufficient Statistics [Ch. 7

while g

1 < 2=
E(z)— y -(1 — 070

z-l

=041 —-0)0+3(1—-6000+--->0.

Thatis, 1/Zis a biased estimator while Y/10is unbiased. Thus 4 is using
an unbiased estimator while B is not. Should we adjust B’s estimator
so that it too is unbiased? A

It is interesting to note that if we maximize the two respective
likelihood functions, namely

L,(6) = (1}?)9’(*1 — 0y~

and
L®)=Q —6y~'0,

withn = 10, y = 1, and z = 10, we get exactly the same answer, § =
This must be the case, because in each situation we are maximizing
(1 — 6)°6. Many statisticians believe that this is the way it should be
and accordingly adopt the likelihood principle:

Suppose two different sets of data from possibly two different random
experiments lead to respective likelihood ratios, L,(0) and L,(0), that are
proportional to each other. These two data sets provide the same
information about the parameter 0 and a statistician should obtain the
same estimate of 8 from either.

In our special illustration, we note that L,(8)oc L,(6), and the
likelihood principle states that statisticians 4 and B should make the
same inference. Thus believers in the likelihood principle would not
adjust the second estimator to make it unbiased.

EXERCISES

7.1. Show that the mean X of a random sample of size n from a distribution
having p.d.f. f(x; 8) = (1/8)e~*®, 0 < x < 0, 0 < 0 < o0, zero elsewhere,
is an unbiased estimator of # and has variance */n.

7.2, Let X, X,, .. ., X, denote a random sample from a normal distribution

with mean zero and variance 0,0 < @ < co. Show that Z X}/nis an unbiased
estimator of § and has variance 26*/n.
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Sec. 7.1] Measures of Quality of Estimators 313

7.3. Let Y, < Y, < Y, be the order statistics of a random sample of size 3 from
the uniform distribution having p.d.f. f(x; ) = 1/0,0 < x < 0,0 < 0 < o0,
zero elsewhere. Show that 4Y, 2Y,, and 1Y, are all unbiased estimators of
0. Find the variance of each of these unbiased estimators.

7.4. Let Y, and Y, be two independent unbiased estimators of 6. Say the
variance of Y, is twice the variance of Y,. Find the constants k&, and k&, so
that k, Y, + k, Y, is an unbiased estimator with smallest possible variance
for such a linear combination.

7.5. In Example 1 of this section, take Z[0, 4(y)] = |6 — d(y)|.- Show that
R(6, 6,) = {./2/m and R(0, 8,) = |0]. Of these two decision functions 4, and
0,, which yields the smaller maximum risk?

7.6. Let X, X;, . .., X, denote a random sample from a Poisson distribution
with parameter 6, 0 <6 <oo. Let Y=) X, and let Z[0, 4(y)=

1
- [6 — 8(»)F- If we restrict our considerations to decision functions of the
form 6(y) = b + y/n, where b does not depend upon y, show that
R(0, 8) = b* + 0/n. What decision function of this form yields a uniformly
smaller risk than every other decision function of this form? With this
solution, say 4, and 0 < 8 < o0, determine max R(0, ) if it exists.

7.7. Let X}, X,, ..., X, denote a random sample from a distribution that is
N(, 6),0 < 0 < o, where u is unknown. Let Y = Z(X X)’/n = $?and

let Z[0, 6(»)] = [0 — &( y)]’, If we consider decxsnon functions of the form
8(y) = by, where b does not depend upon y, show that R(8, §) = (6%/
m)[(m* — 1)b? — 2n(n — Db+ n?]. Show that b=n/(n+ 1) yields a
minimum risk for decision functions of this form. Note that nY/(n + 1) is
not an unbiased estimator of 8. With é(y) =ny/(n+ 1) and 0 < 8 < o0,
determine max R(0, ) if it exists.

78. Let X,, X, ..., X, denote a random sample from a distribution that is
b(1,6),0<0<1.LetY= Z X; and let Z[0, 6(y)] = [@ — 6(»)). Consider
decision functions of the form 8(y) = by, where b does not depend upon y.
Prove that R(8, §) = b’n6(1 — 8) + (bn — 1)?6*. Show that

b*n?

4[b'n — (bn — 1y’

provided that the value b is such that b2n > 2(bn — 1)%. Prove that b=1/n
does not minimize max R(@®,06).

max R0, 6) =
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79. Let X}, X,, . .., X, bearandom sample from a Poisson distribution with

mean 6 > 0.

(a) Statistician A4 observes the sample to be the values x,, x,, . . ., x, with
sum y, = X x,. Find the m.l.e. of 8.

(b) Statistician B loses the sample values x;, x,, . . . , x, but remembers the
sum y, and the fact that the sample arose from a Poisson distribution.
Thus B decides to create some fake observations which he calls
2y, 2y, ..., 2, (as he knows they will probably not equal the original
x-values) as follows. He notes that the conditional probability of
independent Poisson random variables Z,, Z,, . . . , Z, being equal to
Z(yZ3y..-,2, Given Xz, =y, is IR

Gle P gug-0 Qg

Zl! Zz! . Z"! _H J’|' ' l g l 22. . l -
 (nf)re " oz ! zl\n) \n "

!

since Y, = ¥ Z; has a Poisson distribution with mean n#. The latter
distribution is multinomial with y, independent trials, each terminating
in one of 7 mutually exclusive and exhaustive ways, each of which has
_the same probability 1/n. Accordingly, B runs such a multinomial
experiment y, independent trials and obtains z,, z;, . . ., z,. Find the
likelihood function using these z-values. Is it proportional to that of
statistician A?

Hint: Here the likelihood function is the product of this conditional
p.d.f. and the pdf. of Y, =X Z,.

7.2 A Sufficient Statistic for a Parameter |

Suppose that X, X;,..., X, is a random sample from a dis-
tribution that has p:d.f. f(x; 8), 8 € Q. In Chapter 6 and Section 7.1
we constructed statistics to make statistical inferences as illustrated by
point and interval estimation and tests of statistical hypotheses. We
note that a statistic, say Y = u(X,, X,, ..., X,), is a form of data
reduction. For illustration, instead of listing all of the individual
observations X, X, ..., X,, we might prefer to give only the sample
mean X or the sample variance S?. Thus statisticians look for ways of
reducing a set of data so that these data can be more easily understood
without losing the meaning associated with the entire set of
observations.

It is interesting to note that a statistic Y = u(X,, X5, . . ., X,) really
partitions the sample space of X, X,,...,X,. For illustration,
suppose we say that the sample was observed and x = 8.32. There are
many points in the sample space which have that same mean of 8.32,
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Sec. 7.2] A Sufficient Statistic for a Parameter 315

and we can consider them as belonging to the set {(x;, x;,...,X,):
x = 8.32}. As a matter of fact, all points on the hyperplane

X+ X+ +x,=832)n

yield the mean of x = 8.32, so this hyperplane is that set. However,
there are many values that X can take and thus there are many
such sets. So, in this sense, the sample mean X—or any statistic
Y =u(X,, X5, ..., X, —partitions the sample space into a collection
of sets.

Often in the study of statistics the parameter & of the model is
unknown; thus we desire to make some statistical inference about it. In
this section we consider a statistic denoted by Y, = , (X, X3, . . ., X,),
which we call a sufficient statistic and which we find is good for making
those inferences. This sufficient statistic partitions the sample space in
such a way that, given

. (Xl’ X25 “ e aXn)e{(xlaxb' .. axn):ul(xl:xb o axn)=yl}9

the conditional probability of X|, X, . . ., X, does not depend upon 8.
Intuitively, this means that once the set determined by Y, = y, is fixed,
the distribution of another statistic, say Y, = #,(X,, X, . . ., X,), does
not depend upon.the parameter 8 because the conditional distribution
of X, X;, ..., X, does not depend upon 8. Hence it is impossible to
use Y, given Y, = y,, to make a statistical inference about 8. So, in a
sense, Y, exhausts all the information about 8 that is contained in the
sample. This is why we call ¥, =u, (X}, X,,...,X,) a sufficient
statistic.

To understand clearly the definition of a sufficient statistic for a
parameter 8, we start with an illustration.

Example 1. Let X, X,,..., X, denote a random sample from the
distribution that has p.d.f.

;0 =00 -06)-* x=0,1; 0<0<]1;
=0 elsewhere.

The statistic Y, = X, + X, + - - - 4+ X, has the p.d.f.

gl(yl;0)=(;l)6yl(1—9)"—yl’ .V|=0, 19.--9”9
|

=0 elsewhere.
What is the conditional probability
Pr(X,=x,X;=x5...,X,=x,|Y, = y)) = P(A|B),
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say, where y, =0, 1,2, ..., n? Unless the sum of the integers x,, x5, ..., x,
(each of which equals zero or 1) is equal to y,, the conditional probability
obviously equals zero because 4 N B = . Butin the case y, = I x;, we have
that 4 < Bsothat 4 n B = Aand P(A|B) = P(A)/ P(B); thus the conditional
probability equals

0‘“(1 - o)l —x|9xz(l _ o)l ~X2... ox,(l - g)l -Xp _ gixi(l — g)n—ZXr

(;I).ﬂh(] _ 0)" =N : (ZHXi)H}: x,~(1 - g)n - IX;

Since y, =x;+ x;+ - - + x, equals the number of I's in the n inde-
pendent trials, this conditional probability is the probability of selecting
a particular arrangement of y, 1's and (n — y,) zeros. Note that this
conditional probability does not depend upon the value of the parameter 6.

In general, let g,(y,;60) be the p.d.f. of the statistic Y, =
u (X, Xa, ..., X,), where X, X,, ..., X, is a random sample arising
from a distribution of the discrete type having p.d.f. f(x; ), 8 € Q. The
conditional- probability of X,=x,,X;=x;,...,X,=Xx,, given
Y, = »,, equals

Sx1; 0)f(xy; 0) - - - f(x,; 0)
gl (), X, x,); 01

provided that x;,x;,...,x, are such that the fixed y, =
w(x,, Xs,...,x,), and equals zero otherwise. We say that
Y, =u(X\, Xy, ..., X,) is a sufficient statistic for 0 if and only if this
ratio does not depend upon §. While, with distributions of the
continuous type, we cannot use the same argument, we do, in this case,
accept the fact that if this ratio does not depend upon 6, then the
conditional distribution of X}, X,, ..., X,, given Y, = y,, does not
depend upon 6. Thus, in both cases, we use the same definition of a
sufficient statistic for 8.

Definition 2. Let X,, X;, ..., X, denote a random sample
of size n from a distribution that has p.d.f. f(x;8), 8eQ. Let
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Sec. 7.2| A Sufficient Statistic for a Parameter 317

Y, =u (X, X;, ..., X,) be a statistic whose p.d.f. s g,(y,; ). Then Y,
is a sufficient statistic for @ if and only if

Sl 0)f(xy; 0) - - - f(x,; 6)
gl[ul(xls X35 ’.x‘n); 0]

where H(x,, x,, . . ., x,) does not depend upon 6 € Q.

= H(xh X2y e« vy x"),

Remark. In most cases in this book, X, X,, ..., X, do represent the
observations of a random sample; that is, they are i.i.d. It is not necessary,
however, in more general situations, that these random variables be
independent; as a matter of fact, they do not need to be identically distributed.
Thus, more generally, the definition of sufficiency of a statistic
Y, =u/(X;, X,, ..., X,) would be extended to read that

f(xla Xy s ooy Xps 0)
gilu(xy, xy ..., x,); 0]

does not depend upon 8 € Q, where f(x,, x,, ..., x,; ) is the joint p.d.f.
of X|, X5,...,X,. There are even a few situations in which we need an
extension like this one in this book.

= H(x,, X3, ..., X%,)

We now give two examples that are illustrative of the definition.

Example 2. Let X, X,,..., X, be a random sample from a gamma
distribution with « =2 and § = 0 > 0. Since the m.g.f. associated with this

distribution is M(¢r) = (1 — 6)~%, t < 1/6, the m.g.f. of ¥, = Y X;is
i=1

E[et(n +x1+m+x,,)] - E(eh\’l)E(elXZ) R E(é"x")
=[(1 -6 =(—-08)"

Thus Y, has a gamma distribution with « = 2n and § = 0, so that its p.d.f. is

gl(yl’0)= y%"‘le—)’llﬂ’ 0<y|<w»

1"(2!11)62"
=0  elsewhere.

Thus we have that the ratio in Definition 2 equals

xf —lo-xiff x§ - 1= X260 x: ~ lg—Xn/0

[ ree ][ reg ] ) [ ree ] Te)  xmeex

O+ X + - x,) e E Xk X0 QI+ x+x)
r(2n)6*
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where 0 < x; < 0, i=1,2,...,n. Since this ratio does not depend upon 6,
the sum Y, is a sufficient statistic for 6.

Example 3. Let Y, < Y, <---< Y, denote the order statistics of a
random sample of size n from the distribution with p.d.f.

S(x; 0) = e~ =g (%)
Here we use the indicator function of set 4 defined by
Li(x)=1, x€eA,
=0, x¢ A

This means, of course, that f{x; ) = e~*~9, 8 < x < o0, and zero elsewhere.
The p.d.f. of Y, = min (X)) is

g1(y1; 0) = ne="" =0, ().
Thus we have that

A
[T e %=l (x;)

f=1

ne—n(min Xi— B)I(ﬂ.uu) (mln x!) ne=" min X;

e—X1-X2— "~ Xy

since [] fip.w)(x;) = Lgy(min x;), because when 6 < min x;, then 6 < x;,
foe|

i=1,2,...,n, and at least one x-value is less than or equal to # when
min x; < 6. Since this ratio does not depend upon 8, the first order statistic
Y, is a sufficient statistic for 0.

If we are to show, by means of the definition, that a certain
statistic Y| is or is not a sufficient statistic for a parameter 6, we must
first of all know the p.d.f. of Y|, say g,(»,; 8). In some instances it may
be quite tedious to find this p.d.f. Fortunately, this problem can be
avoided if we will but prove the following factorization theorem of
Neyman.

Theorem 1. Let X,, X,, ..., X, denote a random sample from
a distribution that has p.d.f. f(x;0), 0€Q. The statistic Y, =
(X, Xa, ..., X,) is a sufficient statistic for 0 if and only if we can find -
two nonnegative functions, k, and k,, such that

J(xi; 0)f(xz; 0) - - - f(x,; 6)
= kl[ul(xli x2s ey xn); G]kZ(xl’ x29 v ey xn)’
where ky(x,, x5, . . ., X,) does not depend upon 6.

Proof. We shall prove the theorem when the random variables
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Sec. 7.2] A Sufficient Statistic for a Parameter 319

are of the continuous type. Assume that the factorization is as
stated in the theorem. In our proof we shall make the one-to-one
transformation y, =u(x;,...,%,), Va=u(X|, ... 3Xp)y e ooy Vo =
u,(x,,...,x, having the inverse functions x, =w,(y,..., V),
Xo=Wo(V1, - s Vn)s -5 Xn=W,(¥i,...,¥,) and Jacobian J. The
joint p.d.f. of the statistics Y,, Y,, ..., Y, is then given by

g(yl’yz, . e ’yn; 0) = k|(y|; B)kz(wl, Wz, c e w")ljl,
where w, = w,(J;, ¥2, .. ., V), i=1,2,...,n The p.df. of Y,, say
g(y1; 0), is given by

g.(y|;0)=J J g1, Y25 o5 Yus O) dyy - - - dy,

=k|‘(}’1;9)J‘ J | Sk, (wy, Wy, ..o, W) dy, - - - dy,.

Now the function k, does not depend upon 8. Nor is € involved in
either the Jacobian J or the limits of integration. Hence the (n — 1)-
fold integral in the right-hand member of the preceding equation is
a function of y, alone, say m(y,). Thus

£101; ) = ki (3; O)m(y).
If m(y,) =0, then g,(y,; 6) = 0. If m(y,) > 0, we can write

gln(xy, .., %) 0]
kifuCxy, . .., x3); 9]=gr£zlEu(|J(Cx. ‘...xx)'.)']]k’

and the assumed factorization becomes
ky(xy,...,x,)
m[ul (xh ey xn)]

S(x150) - f(x,; 0) = gy (xy, . - . 5 Xx,); 0]

Since neither the function k, nor the function m depends upon 8, then
in accordance with the definition, Y, is a sufficient statistic for the
parameter 6.

Conversely, if Y, is a sufficient statistic for 8, the factorization can
be realized by taking the function &, to be the p.d.f. of Y,, namely the
function g,. This completes the proof of the theorem.

Example 4. Let X, X,, ..., X, denote a random sample from a distri-
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bution that is N(8, 6?), — o0 < 8 < o0, where the variance ¢? > 0 is known.
If x= i x,/n, then

T = 0P=Y (-0 +E—-OF = (x,— 2 +nE — 6y

i=1 = i=]
because

zl_g(x..—f)(?c—e)=2(i—e)lg(x,-—i)=o.

Thus the joint p.d.f. of X, X;, ..., X, may be written
( l ) exp [— Y (xi— 0)2/20'2]
o./2n i=1

= {exp [—n(x — 6)*/247]}

exp —‘i (x; — 35)2/262]
(65/2ny

Since the first factor of the right-hand member of this equation depends upon
X{, X3, - - . y X, only through X, and since the second factor does not depend
upon 8, the factorization theorem implies that the mean X of the sample is,
for any particular value of ¢?, a sufficient statistic for 8, the mean of the normal
distribution.

We could have used the definition in the preceding example because
we know that X is N(8, ¢*/n). Let us now consider an example in which
the use of the definition is inappropriate.

Example §5. Let X\, X,, ..., X, denote a random sample from a distri-
bution with p.d.f.

flx;8)=0x"", 0<x<l,
=0 elsewhere,

where 0 < 8. We shall use the factorization theorem to prove that the product
(X, X, ..., X,) = X,X, - X,is a sufficient statistic for 8. The joint p.d.f.
of X\, X5,...,X,1s

P(xixy - x,) " =[0"(x,xy - x,,)"](———l———),

xlxzn..xn

where 0 < x;<1,i=1,2,...,n. In the factorization theorem let

- kg ey x5 . , x,) 0] = 000X - xn)e
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and
1

ka(X), X3y 000y Xp) = —————.
2( 1> *2s ’ n) XXy " X,

Since ky(x,, X3, . . ., x,) does not depend upon 0, the product X, X, - - - X, is
a sufficient statistic for 6.

There is a tendency for some readers to apply incorrectly the
factorization theorem in those instances in which the domain of
positive probability density depends upon the parameter 8. This is due
to the fact that they do not give proper consideration to the domain
of the function k,(x,, x,, . . ., x,). This will be illustrated in the next
example.

Example 6. In Example 3 with f{x; 0) = e"*~9], . (x), it was found
that the first order statistic Y, is a sufficient statistic for 8. To illustrate our
point about not considering the domain of the function, take » = 3 and note
that

e~ Ki=0p—(X2~0)p—(X3-8) [e—amux,-+ Jolle—xl —xz—x3+3mnxx,-]

or a similar expression. Certainly, in the latter formula, there is no 6 in the
second factor and it might be assumed that Y, = max X, is a sufficient
statistic for 8. Of course, this is incorrect because we should have written the
joint p.d.f. of X, X,, X, as

[e™ = Mg,y (1)1 (€2~ Mg, 000 (X)) €™ = Mg, 5 (x5)]
= [*].) (min x))][e™*1 =72~ 5]

because Jig ,(min x;) = Lg ) (X1)5.00)(X2)](6.0)(x3). A similar statement cannot
be made with max x;. Thus Y, = min X; is the sufficient statistic for 8, not
Y, = max X,.

EXERCISES

7.10. Let X,, X,, ..., X, be a random sample from the normal distribution
" N(0, 8), 0 < 6 < co. Show that )’ X7 is a sufficient statistic for 6.
1
7.11. Prove that the sum of the observations of a random sample of size n

from a Poisson distribution having parameter 8, 0 < 8 < oo, is a sufficient
statistic for 6.

7.12. Show that the nth order statistic of a random sample of size n from the
uniform distribution having p.d.f. f(x;8)=1/8, 0 <x< 8, 0 <0 < oo,
- zero elsewhere, is a sufficient statistic for 6. Generalize this result by
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considering the p.d.f. f(x; 0) = Q(M(x), 0 < x <8, 0 <8 < o0, zero
elsewhere. Here, of course,

0
J; M(x)dx=@

7.13. Let X}, X,,..., X, be a random sample of size n from a gebinetric
dlstrlbutlon that has p.d.f. f(x 0) (1—-649,x=012,...,0<0<1,

zero elsewhere. Show that Z X, is a sufficient statistic for 6.

7.14. Show that the sum of the observations of a random sample of size n
from a gamma distribution that has p.d.f. f(x; 8) = (1/8)e~**,0 < x < o0,
0 < 0 < oo, zero-elsewhere, is a sufficient statistic for 8.

7.18. LetX,, X,, ..., X,bearandom sample of size # from a beta distribution
with parameters a = 6 > 0 and # = 2. Show that the product X, X, - X,
is a sufficient statistic for.0. 4

7.16. Show that the product of the sample observations is a sufficient statistic
for 6 > 0 if the random sample is taken from a gamma distribution with
parameters a = 6 and f§ = 6. ‘

7.17. What is the sufficient statistic for 8 if theasampl_jc arises from a beta
distribution in which a = f = 6 > 0?

7.3 Properties of a Sufficient Statistic

Suppose that a random sample X,, X, ..., X, is taken from a
distribution with p.d.f. f{x; 6) that depends upon one parameter 6 € Q.
Say that a sufficient statistic Y, = u,(X,, X3, . . ., X,) for 8 exists and
has p.d.f. g,(y,; 6). Now consider two statisticians, 4 and B. The first
statistician, A4, has all of the observed data x,, x,, ..., x,; but the
second, B, has only the value y, of the sufficient statistic. Clearly, 4 has
as much information as does B. However, it turns out that B is as well
off as 4 in making statistical inferences about 8 in the following sense.
Since the conditional probability of X, X3, ..., X,, given Y, = y,,
does not depend upon 6, statistician.B can create some pseudo
observations, say Z,, Z,, . . ., Z,, that provide a likelihood function
that is proportional to that based on X,, X, . .., X, with the factor
g:(»; 6) being common to each likelihood. The other factors of the two
likelihood functions do not depend upon 6. Hence, in either case,
inferences, like the m.l.e. of 8, would be based upon the sufficient
statistic Y.

To make this clear, we provide two illustrations. The first is based
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upon Example 1 of Section 7.2. There the ratio of the likelihood
function and the p.d.f. of Y, is <

L@ 1

g.(yn;ﬂ)_(n)’
. b4

where y, =) x,. Recall that each x; is equal to zero or 1, and thus y,

i=1

is the sum of y, ones and (n— y,) zeros. Say we know only the value y,
and not x,, x,, ..., X,; sO we create pseudovalues z, z,, ..., z, by
arranging at random y, ones and (n—y,) zeros so that the probability

of each arrangement is p=1 / (; ) Thus the probability that these
- |

z-values equal the original x-values is p, and hence it is highly
unlikely, namely with probability p, that those two sets of values
would be equal. Yet the two likelihood functions are proportional,
namely

(et {ier s

because y,= Z X; —Z z;. Clearly, the m.le. of 8, using either ex-

i=1

pression, is y,/n.
The next illustration refers back to Exercise 7.9. There the sample
arose from a Poisson distribution with parameter #>0. It turns

out that Y, =) X, is a sufficient statistic for @ (see Exercise 7.11). In
i=1

Exercise 7.9 we found that

Loy ! lxll.’Cz... _l-x,,
gl(yl;g)—xl!xl!"'xn! n n nl >’

when L(60) is the likelihood function based upon x,, x,, .. ., x,. Since
this is a multinomial distribution that does not depend upon 0, we can
generate some values of Z,, Z,, ..., Z,, say z,, z, . . ., Z,, that have
this multinomial distribution. It is interesting to note that while in the
previous examples the z-values provided an arrangement of the
x-values, here the z-values do not need to equal those x-values. That
is, the values z,, z,, . . ., z, do not necessarily provide an arrangement
of x;, x3, ..., X,. It is, however, true that X z,=X x;=y,. Of course,
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from the way the z-values were obtained, the two likelihood functions
enjoy the property of being proportional, namely

. ! ' 1\" 1\
sz )
! N'//1Y? 1\"
OCg'(y';o)z,!zz!"'z,,! (-r;) (;) (Z) '

Thus, for illustration, using either of these likelihood functions, the
m.l.e. of 0 is y,/n because this is the value of  that maximizes g,(y,; ).

Since we have considered how the statistician knowing only the
value of the sufficient statistic can create a sample that satisfies the
likelihood principle; and thus, in this sense, she is as well off as
the statistician that has knowledge of all the data. So let us now state
a fairly obvious theorem that relates the m.l.e. of 8 to a sufficient
statistic.

Theorem 2. Let X, X,, ..., X, denote a random sample from a
distribution that has p.d.f. f(x;0), 0€Q. If a sufficient statistic
Y =u(X,, X5, ..., X,) for 0 exists and if a maximum likelihood
estimator O of 0 also exists uniquely, then 0 is a function of
Yi=u(X, Xy, ..., X,).

Proof. Let g,(y,; 0) be the p.d.f. of Y,. Then by the definition of
sufficiency, the likelihood function

L(09 Xis X35 00 vy xn) =f(xl; O)f(xz, 0) o -f(x,,; 0)
= gl[ul(xl, sieely xn); O]H(xla sieNedy xn)a

where H(x,,...,x,) does not depend upon 6. Thus L and g,, as
functions of 6, are maximized simultaneously. Since there is one and
only one value of 6 that maximizes L and hence g,[u,(x,, - . ., x,); 6],
that value of @ must be a function of u,(x,, x, . . ., x,). Thus the m.l.e.
0 is a function of the sufficient statistic Y; = (X, Xon ..., X,).

Let us consider another important property possessed by a
sufficient statistic Y, = u,(X, X5, . . ., X,) for 6. The conditional p.d.f.
of a second statistic, say Y, = u,(X|, X;, ..., X,), given Y, = y,, does
not depend upon 6. On intuitive grounds, we might surmise that the
conditional p.d.f. of Y;, given some linear function aY, + b, a # 0,
of Y,, does not depend upon 6. That is, it seems as though the
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random variable aY, + b is also a sufficient statistic for 8. This con-
jecture is correct. In fact, every function Z = u(Y,), or Z =
uu (X, X5, ..., X)) =v(X,, X, ..., X,), not involving 6, with a
single-valued inverse Y, = w(Z), is also a sufficient statistic for 6. To
prove this, we write, in accordance with the factorization theorem,

f(xl; 0) ©e 'f(xn; 0) = kl [ul(xla X2s oo vy xn); 0]k2(xla X250 v vy xn)'

However, we find that y, = w(z) or, equivalently, ¥,(x, x,, . . ., X,) =
wlv(x,, x,, . . ., X,)], which is not a function of 6. Hence

f(xl; 9) T 'f(xn; 0) = k|{W[U(X|, LR | xn)]; e}kZ(xb X2y - vy xn)’

Since the first factor of the right-hand member of this equation is a
function of z = v(x,, . . ., x,) and 0, while the second factor does not
depend upon 0, the factorization theorem implies that Z = u(Y,)is also
a sufficient statistic for 6.

Possibly, the preceding observation is obvious if we think about the
sufficient statistic Y, partitioning the sample space in such a way that
the conditional probability of X, X,, ..., X,, given Y, = y,, does not
depend upon 0. We say this because every function Z = u(Y,) with a
single-valued inverse Y, = w(Z) would partition the sample space in
exactly the same way, that is, the set of points

{(xl,xZa LR yxn) . U|(x|,X2, o v ,xn) =yl}9

for each y,, is exactly the same as

{(xla xZa LRI axn) : v(xla xZa LRI axn) = u(yl)}
because wlv(x;, X5, . . ., X,)] = (X1, X3, . . . 5 Xz) = V1.

Remark. Throughout the discussion of sufficient statistics, as a matter of
fact throughout much of the mathematics of statistical inference, we hope
the reader recognizes the importance of the assumption of having a certain
model. Clearly, when we say that a statistician having the value of a certain
statistic (here sufficient) is as well off in making statistical inferences as the
statistician who has all of the data, we depend upon the fact that a certain
model is true. For illustration, knowing that we have i.i.d. variables, each with
p.d.f. f(x; 0), is extremely important; because if that f(x; ) is incorrect or if
the independence assumption does not hold, our resulting inferences could
be very bad. The statistician with all the data could—and should—check to
see if the model is reasonably good. Such procedures checking the model are
often called model diagnostics, the discussion of which we leave to a more
applied course in statistics.
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We now consider a result of Rao and Blackwell from which we see
that we need consider only functions of the sufficient statistic in finding
the unbiased point estimates of parameters. In showing this, we
can refer back to a result of Section 2.2: If X, and X, are random
variables and certain expectations exist, then

E[X,] = E[E(X,| X))}
and
var (X;) = var [E(X;|X))]-

For the adaptation in context of sufficient statistics, we let the sufficient
statistic Y, be X, and Y,, an unbiased statistic of 6, be X,. Thus, with
E(Y;|y1) = ¢(y1), we have

6 = E(Y,) = E[o(Y))]
and
var (Y,) > var [¢(Y))).

That is, through this conditioning, the function ¢(Y,) of the sufficient
statistic Y, is an unbiased estimator of § having smaller variance than
that of the unbiased estimator Y,. We summarize this discussion more
formally in the following theorem, which can be attributed to Rao and
Blackwell.

Theorem 3. Let X,, X,, . .., X,, n a fixed positive integer, denote a
random sample from a distribution (continuous or discrete) that has p.d.f.
J(x;0),0eQ. Let Y, = u\(X,, X, . . ., X,) be a sufficient statistic for 0,
and let Y, =u,(X,, X, ..., X,), not a function of Y, alone, be an
unbiased estimator of 0. Then E(Y,|y,) = ¢(y,) defines a statistic p(Y,).
This statistic o(Y)) is a function of the sufficient statistic for 0; it is an
unbiased estimator of 0, and its variance is less than that of Y,.

This theorem tells us that in our search for an unbiased minimum
variance estimator of a parameter, we may, if a sufficient statistic for
the parameter exists, restrict that search to functions of the sufficient
statistic. For if we begin with an unbiased estimator Y, that is not a
function of the sufficient statistic Y, alone, then we can always improve
on this by computing E(Y,|y,) = ¢(y,) so that ¢(Y,) is an unbiased
estimator with smaller variance than that of Y,.

After Theorem 3 many students believe that it is necessary to find
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first some unbiased estimator Y, in their search for ¢(Y,), an unbiased
estimator of 8 based upon the sufficient statistic Y,. This is not the case
at all, and Theorem 3 simply convinces us that we can restrict our
search for a best estimator to functions of Y,. It frequently happens
that E(Y,) =af + b, where a+# 0 and b are constants, and. thus
(Y, — b)/ais a function of Y, that is an unbiased estimator of 8. That
is, we can usually find an unbiased estimator based on Y, without first
finding an estimator Y;. In the next two sections we discover that, in
most instances, if there is one function ¢@(Y,) that is unbiased, ¢(Y))
is the only unbiased estimator based on the sufficient statistic Y,.

Remark. Since the unbiased estimator ¢(Y;), where ¢(y,) = E(Y,|y,), has
variance smaller than that of the unbiased estimator Y, of 0, students
sometimes reason as follows. Let the function Y(y;) = E[@(Y))IY; = y3),
where Y, is another statistic, which is not sufficient for 0. By the
Rao-Blackwell theorem, we have that E[Y(Y;)] = 8 and Y(Y,) has a smaller
variance than does ¢(Y,). Accordingly, Y(Y,) must be better than ¢(Y,) as
an unbiased estimator of 0. But this is not true because Y, is not sufficient; thus
0 is present in the conditional distribution of Y|, given Y; = y;, and the
conditional mean Y(y,). So although indeed E[Y(Y;)] = 6, Y(Y;) is not even
a statistic because it involves the unknown parameter ¢ and hence cannot be
used as an estimator.

Example 1. Let X, X,, X; be a random sample from an exponential
distribution with mean 6 > 0, so that the joint p.d.f. is

8

i=1,2,3, zero elsewhere. From the factorization theorem, we see that
Y, = X, + X, + X; is a sufficient statistic for 8. Of course,

E(Y)) = E(X, + X, + X;) = 36,

3
] ,,
(— e~HirR+Xe - ) < x; < 0,

and thus Y,/3 = X is a function of the sufficient statistic that is an unbiased
estimator of 6. ,

In addition, let Y, = X, + X;and Y, = X;. The one-to-one transformation
defined by |

XN=y—y, X;=Y1— Y3 X3 =),

has Jacobian equal to 1 and the joint p.d.f. of Y, Y,, Y; is

l 3
- 8y, Y ¥ 0) = (5) eV <y <y, <y <o,
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zero elsewhere. The marginal p.d.f. of Y, and Y, is found by integrating out
¥, to obtain

1\’
gy, y3 0) = (5) O — y)e e, D<yy<y <o,

zero elsewhere. The p.d.f. of Y; alone is
&y 0) = 1 6’_”’8, 0 <y, <,

zero elsewhere, since Y, = X;is an observation of a random sample from this
exponential distribution.
Accordingly, the conditional p.d.f. of Y|, given Y; = y;, is

813(»1, 3 0)
( ):————
&3 nilys 2 0)
( )(yl — yi)e= O -y, O<y;<y <o,

zero elsewhere. Thus

Y, Y, -Y Y,
E(?'I}@):E( '3 ’ly3)+E(—3§|y3)
N (*/1\ y
=(5)[ @)on—rremmaned

»3

_11"(3)03_*_!2 20 )2
\3) & 33

Of course, E[Y(Y;)] =0 and var[Y(Y,)] < var(Y,/3), but Y(Y;) is not
a statistic as it involves 8 and cannot be used as an estimator of 8. This
illustrates the preceding remark.

= Y(y3)

EXERCISES

7.18. In each of the Exercises 7.10, 7.11, 7.13, and 7.14, show that the m.l.e.
of 0 is a function of the sufficient statistic for &.

7.19. LetY, < Y, < Y, < Y, < Y, be the order statistics of a random sample
of size 5 from the uniform distribution having p.d.f. f(x; 8) = 1/8,
0<x<8 0<8< o, zero elsewhere. Show that 2Y; is an unbiased
estimator of 6. Determine the joint p.d.f. of Y, and the sufficient statistic
Y, for 8. Find the conditional expectation E(2Y,]ys) = @(s)- Compare the
variances of 2Y, and ¢(Ys).

Hint: All of the integrals needed in this exercise can be eva]uated by
making a change of variable such as z = y/8 and using the results associated
with the beta p.d.f.; see Section 4.4,
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7.20. If X, X, is a random sample of size 2 from a distribution having p.d.f.
f(x;0) = (1/6)e=**, 0 < x < 00, 0 < 8 < o0, zero elsewhere, find the joint
p-d.f. of the sufficient statistic Y, = X, + X, for 8 and Y, = X,. Show that
Y, is an unbiased estimator of & with variance 8. Find E(Y,|y,) = ¢(»,) and
the variance of ¢(Y)).

7.21. Let the random variables X and Y have the joint p.d.f.
f(x, y) = (2/8)e " *+P2 < x < y < 0, zero elsewhere.
(a) Show that the mean and the variance of Y are, respectively, 36/2 and
56%/4.
(b) Show that E(Y]x) = x + 6. In accordance with the theory, the expected
value of X + 6 is that of Y, namely, 38/2, and the variance of X + 8 is
less than that of Y. Show that the variance of X + @ is in fact 6%/4.

7.22. In each of Exercises 7.10, 7.11, and 7.12, compute the expected value
of the given sufficient statistic and, in each case, determine an unbiased
estimator of 6 that is a function of that sufficient statistic alone.

7.4 Completeness and Uniqueness

Let X,, X, ..., X, be a random sample from the Poisson distri-
bution that has p.d.f.

@ e?
x!

f(x; 6) = R x=0,12,...; 0<8@,
=0 | elsewhere.

From Exercise 7.11 of Section 7.2 we know that ¥, =) X, is a

sufficient statistic for 6 and its p.d.f. is i=1
()
gl(y|;0)=_yl—!" yl=091929-"a

=0 elsewhere.

Let us consider the family {g,(y,; #): 0 < 6} of probability density
functions. Suppose that the function u(Y;) of Y, is such that
E[u(Y,)] = 0 for every 6 > 0. We shall show that this requires u(y,)
to be zero at every point y, =0, 1,2, . ... That is,

E[u(Y)] =0, 0<6,
implies that
O=u®)=uD)=uQ=uB3)=""--.
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We have for all 6 > 0 that
w (nB)Me—"

0= E[u(Y)] = Y, u(y)

»n=0 »!
= e-""[u(t)) +u(l) i’l—? + u(z)@;_-)— +- ] .

Since e~ does not equal zero, we have that

0 = u(0) + [nu(1))0 + [n2142(2)] 6+ --

However, if such an infinite series converges to zero for all > 0, then
each of the coefficients must equal zero. That is,

20,(2
u0)=0, nu(l)=0, ’“‘2( )_o,...
and thus 0 = u(0) = u(1) = u(2) =-- -, as we wanted to show. Of

course, the condition E[u(Y,)] =0 for all 8 > 0 does not place any
restriction on u(y,) when y, is not a nonnegative integer. So we see that,
in this illustration, E[u(Y;)] = 0 for all 8 > 0 requires that u(y,) equals
zero except on a set of points that has probability zero for each p.d.f.
g1(»; 0), 0 < 0. From the following definition we observe that the
family {g,(y,; 0) : 0 < 8} is complete.

Definition 3. Let the random variable Z of either the continuous
type or the discrete type have a p.d.f. that is one member of the family
{h(z; 6) : 6 € Q}. If the condition E[u(Z)] = 0, for every 0 € Q, requires
that u(z) be zero except on a set of points that has probability zero for
each p.d.f. (z; 0), 0 € Q, then the family {h(z; 0) : 0 € Q} is called a
complete family of probability density functions.

Remark. In Section 1.9 it was noted that the existence of E[u(X)] implies
that the integral (or sum) converges absolutely. This absolute convergence
was tacitly assumed in our definition of completeness and it is needed to
prove that certain families of probability density functions are complete.

In order to show that certain families of probability density
functions of the continuous type are complete, we must appeal to the
same type of theorem in analysis that we used when we claimed that
the moment-generating function uniquely determines a distribution.
This is illustrated in the next example.
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Example 1. Let Z have a p.d.f. that i3 a member of the family
{Mz;8):0 < 8 < 0}, where

h(z;0)=;7 -8 0<z< o,

=0 elsewhere.

Let us say that E[u(Z)] = 0 for every 8 > 0. That is,

%'[ u(2)e-®dz =0, for8>0.

0

Readers acquainted with the theory of transforms will recognize the integral
in the left-hand member as being essentially the Laplace transform of u(z). In
that theory we learn that the only function u(z) transforming to a function of
8 which is identically equal to zero is u(z) = 0, except (in our terminology) on
a set of points that has probability zero for each A(z; ), 0 < 6. That is, the
family {h(z; 0) : 0 < 8 < o0} is complete.

Let the parameter 0 in the p.d.f. f(x; 6), @ € Q, have a sufficient
statistic ¥, = 4, (X, X3, ..., X,), where X, X;, ..., X, is a random
sample from this distribution. Let the p.d.f. of Y, be g,(y,; 6), € Q.
It has been seen that, if there is any unbiased estimator Y, (not a
function of Y, alone) of 6, then there is at least one function of Y, that
is an unbiased estimator of @, and our search for a best estimator of
6 may be restricted to functions of Y,. Suppose it has been verified that
a certain function ¢(Y;), not a function of 0, is such that E[¢(Y,)] = 6
for all values of 0, 8 € Q. Let y/(Y,) be another function of the sufficient
statistic ¥, alone, so that we also have E[y(Y,)] = @ for all values of
0, 0 € Q. Hence

Elp(Y)) —¥(Y)]=0, 0eQ’

If the family {g,(y; 0) : 0 € Q} is complete, the function ¢() —
¥(») = 0, except on a set of points that has probability zero. That is,
for every other unbiased estimator y(Y,) of 6, we have

() = ¥(»)

except possibly at certain special points. Thus, in this sense [namely
o(y)) = Y(»,), except on a set of points with probability zero}, ¢(Y,)
is the unique function of Y;, which is an unbiased estimator of 8. In
accordance with the Rao-Blackwell theorem, ¢(Y,) has a smaller
variance than every other unbiased estimator of 6. That is, the
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statistic ¢(Y,) is the unbiased minimum variance estimator of 8. This
fact is stated in the following theorem of Lehmann and Scheffé.

Theorem 4. Let X, X, . .., X,, n a fixed positive integer, denote a
random sample from a distribution that has p.d.f. f(x;0), 0 €Q, let
Y, = u(X,, Xy, ..., X,) be a sufficient statistic for 8, and let the family
{g.(3:;0): 0 Q} of probability density functions be complete. If there
is a function of Y, that is an unbiased estimator of 0, then this function
of Y, is the unique unbiased minimum variance estimator of 0. Here
“unique”’ is used in the sense described in the preceding paragraph.

The statement that Y, is a sufficient statistic for a parameter 6,
0 € Q, and that the family {g,(y,; 8): 0 € Q} of probability density
functions is complete is lengthy and somewhat awkward. We shall
adopt the less descriptive, but more convenient, terminology that Y,
is a complete sufficient statistic for 6. In the next section we study a fairly
large class of probability density functions for which a complete
sufficient statistic Y, for # can be determined by inspection.

EXERCISES
7.23. If az? + bz + ¢ = 0 for more than two values of z, thena=b =c = 0.
Use this result to show that the family {&(2, 8) : 0 < 8 < 1} is complete.

7.24. Show that each of the following families is not complete by finding at
least one nonzero function #(x) such that E[u(X)] = 0, for all 6 > 0.

(a)f(x;0)=$, —0<x<f, where0< 9 < oo,

=0 elsewhere.
(b) N(0, 8), where 0 < 6 < ¢o.

7.28. Let X, X,,..., X, represent a random sample from the discrete
distribution having the probability density function

f0=0¢1-60'"* x=01, 0<f<]I,

=0 elsewhere.

Show that ¥, = ) X;is a complete sufficient statistic for 0. Find the unique

|
function of Y, that is the unbiased minimum variance estimator of 0.
Hint: Display E[u(Y,)] = 0, show that the constant term #(0) is equal
to zero, divide both members of the equation by 6 # 0, and repeat the
argument. '
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7.26. Consider the family of probability density functions {A(z; 8) : 0 € Q},
where h(z; 0) = 1/0, 0 < z < 0, zero elsewhere,

(a) Show that the family is complete provided that Q = {6:0 < 6 < oo}.
Hint: For convenience, assume that #(z) is continuous and note that the
derivative of E[u(Z)] with respect to 8 is equal to zero also.

(b) Show that this family is not complete if Q = {#: 1 < 8 < o0}.

Hint: Concentrate on the interval0 < z < 1 and find a nonzero function
#(z) on that interval such that E[1(Z)] = 0 for all 6 > 1.

7.27. Show that the first order statistic Y, of a random sample of size n from
the distribution having p.d.f. f(x;0) = e 9,0 < x < 00, —0 < 0 < w0,
zero elsewhere, is a complete sufficient statistic for 6. Find the unique
function of this statistic which is the unbiased minimum variance estimator
of 6.

7.28. Letarandom sample of size n be taken from a distribution of the discrete
typewithpd.f.f(x;0)=1/6,x=1,2,...,0, zero elsewhere, where 0 is an
unknown positive integer.

(a) Show that the largest observation, say Y, of the sample is a complete
“sufficient statistic for 6.
(b) Prove that

[P+ — (Y = Iy [ — (Y — 1Y

is the unique unbiased minimum variance estimator of 6.

7.5 The Exponential Class of Probability Density Functions

Consider a family {f(x; 6) : 8 € Q} of probability density functions,
whereQis theintervalsetQ = {6 : y < 8 < 8}, where yand 4 are known
constants, and where

S1x; 0) = exp [p(O)K(x) + S(x) + q(0)], a<x<b,
=0 elsewhere. (N

A p.d.f. of the form (1) is said to be a member of the exponential
class of probability density functions of the continuous type. If, in

addition, )

1. neither a nor b depends upon 8, y < 6 < 4,
2. p(0) is a nontrivial continuous function of 6, y < 8 < 4,
3. each of K’(x) # 0 and S(x) is a continuous function of x,a < x < b,
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we say that we have a regular case of the exponential class. A p.d.f.
f(x; 9) = exp [p(e)K(x) + S(x) + q(o)]a X = al‘! a2a a35 UK
=0 elsewhere,

is said to represent a regular case of the exponential class of probability
density functions of the discrete type if

1. The set {x: x = a,, a,, ...} does not depend upon 8.
2. p(6) is a nontrivial continuous function of 8, y < 0 < 4.
3. K(x) is a nontrivial function of x on the set {x:x=a,, a,,..}.

For example, each member of the family {f(x; 6):0 < 8 < oo},
where f(x; 6) is N(0, 0), represents a regular case of the exponential
class of the continuous type because

1 e
fx;0) = ——=e""
‘ /2n0

=exp(—519-xzfln,/2n0), —0 <X < 00.

Let X\, X,, ..., X, denote a random sample from a distribution
that has a p.d.f. that represents a regular case of the exponential class
of the continuous type. The joint p.d.f. of X, X,,..., X, 18

exp [p(e) 2 K(x) + $.S(x,-) + nq(e)]

fora<x;<b,i=1,2,...,n,y<0<$, and is zero elsewhere. At
points of positive probability density, this joint p.d.f. may be written
as the product of the two nonnegative functions

exp [p(9) ZI: K(x;) + "q(ﬂ)] exp [Z S(x.-)] :
|
In accordance with the factorization theorem (Theorem 1, Section 7.2)

Y, =) K(X))is a sufficient statistic for the parameter 6. To prove that
|

Y, =) K(X)) is a sufficient statistic for 6 in the discrete case, we take
|

the joint p.d.f. of X;, X,, ..., X, to be positive on a discrete set of
points, say, when x;e {x: x =a,,a,,...},i=1,2,...,n Wethenuse
the factorization theorem. It is left as an exercise to show that in
either the continuous or the discrete case the p.d.f. of Y, is of the form

g1(y1; 8) = R(») exp [p(8)y, + nq(0)]
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at points of positive probability density. The points of positive
probability density and the function R(y,) do not depend upon 8.

At this time we use a theorem in analysis to assert that the family
{g:(»1; 0) : y < 0 < 8} of probability density functions is complete.
This is the theorem we used when we asserted that a moment-
generating function (when it exists) uniquely determines a distribution.
In the present context it can be stated as follows.

Theorem 5. Let f(x;0), y <0 < &, be a p.d.f. which represents a
regular case of the exponential class. Then if X,, X,, . .., X, (where n
is a fixed positive integer) is a random sample from a distribution with

p.d.f. f(x; 0), the statistic Y, = Y. K(X,) is a sufficient statistic for @ and
1
the family ‘{g,(y.; ) : y < 0 < 8} of probability density functions of Y,
is complete. That is, Y, is a complete sufficient statistic for 0.
This theorem has useful implications. In a regular case of form
(1), we can see by inspection that the sufficient statisticis ¥, = Y K(X)).
|

If we can see how to form a function of Y;, say ¢(Y,), so that
Elo(Y,)] = 6, then the statistic ¢(Y;) is unique and is the unbiased
minimum variance estimator of 6.

Example 1. Let X, X,, . .., X, denote a random sample from a normal
distribution that has p.d.f.
— O)?
Six;0) = L exp[—(x )], —w<x<0, —<f<ow,
o /2n 207

or

Neexn(L e X n fomg P
f(x,0)—exp(a_2x 297 In/2no _5?)

Here o? is any fixed positive number. This is a regular case of the exponential
class with

=2, Kw=x,

P
S(x) = —% — In /2n4?, q(0) = —2g2"

Accordingly, Y, = X, + X, + - - - + X, = nX is a complete sufficient statistic
for the mean @ of a normal distribution for every fixed value of the variance
a’. Since E(Y,) = nf, then ¢(Y,) = Y,/n = X is the only function of Y, that
is an unbiased estimator of 8; and being a function of the sufficient statistic
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Y,, it has a minimum variance. That is, X is the unique unbiased minimum
variance estimator of 8. Incidentally, since Y, is a one-to-one function of
X, X itself is also a complete sufficient statistic for 6.

Example 2, Consider a Poisson distribution with parameter 8,0 < 8 < 0.
The p.d.f. of this distribution is

@ e
x!

f(x; 0) = = exp [(In 8)x — In (x!) — 4], x=0,1,2,...,

=0 elsewhere.

n ' .
In accordance with Theorem 5, Y, = )’ X is a complete sufficient statistic for
|

8. Since E(Y,) = nb, the statistic ¢(Y,) = Y,/n = X, which is also a complete
sufficient statistic for 6, is the unique unbiased minimum variance estimator
of 8. )

EXERCISES
7.29. Write the p.d.f.
f(x;0)=$x3e"/", 0O<x<ow, 0<fO<ow,

zero elsewhere, in the exponential form. If X|, X,, ..., X, is a random
sample from this distribution, find a complete sufficient statistic Y, for 0
and the unique function ¢(Y,) of this statistic that is the unbiased minimum
variance estimator of 0. Is ¢(Y,) itself a complete sufficient statistic?

7.30. Let X, X,,..., X, denote a random sample of size n > 1 from a
distribution with p.d.f. f{(x; 8) = 8e~%, 0 < x < o0, zero elsewhere, and

6 > 0. Then Y =Y X; is a sufficient statistic for 6. Prove that (n — 1)/Y is
1
the unbiased minimum variance estimator of 8.

7.31. LetX,, X, ..., X,denote arandom sample of size n from a distribution
with p.d.f. f{x; ) = 0x°*~', 0 < x < 1, zero elsewhere, and 6 > 0.
(a) Show that the geometric mean (X, X, - X,)"" of the sample is a
complete sufficient statistic for 0.
(b) Find the maximum likelihood estimator of 0, and observe that it is a
function of this geometric mean.

7.32. Let X denote the mean of the random sample X, X3, ..., X, froma
gamma-type distribution with parameters « > 0 and § = 8 > 0. Compute

ETX, |x].
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Hint: Can you find directly a function Y(X) of X such that
EW(X)] = 87 Is E(X,[X) = $()? Why?
7.33. Let X be a random variable with a p.d.f. of a regular case of the

exponential class. Show that E[K(X)] = —q¢'(0)/p’(0), provided these
derivatives exist, by differentiating both members of the equality

f exp [p(0)K(x) + S(x) + q(f)] dx = 1

with respect to 8. By a second differentiation, find the variance of K(X).

7.34. Given that f{(x; 0) = exp [0K(x) + S(x) + ¢(0)}, a<x < b, y <0 < 4,
represents a regular case of the exponential class, show that the moment-
generating function M(f) of Y = K(X) is M(t) = exp [¢(8) — q(0 + 1)},
y<0+t<é.

7.35. Given, in the preceding exercise, that E(Y) = E[K(X)] = 0. Prove that
Yis N(6, 1).
Hint: Consider M’(0) = 0 and solve the resulting differential equation.

7.36. If X}, X>, ..., X, is a random sample from a distribution that has a
p.d.f. which is a regular case of the exponential class, show that the p.d.f.

of ¥, =¥ K(X;) is of the form g,(»; 6) = R(y,) exp [p(®)y: + ng(0)].

1
Hint: Let Y, =X,,..., Y,= X, be n — | auxiliary random variables.
Find the joint p.d.f. of Y}, Y,, ..., Y, and then the marginal p.d.f. of Y,.

7.37. Let Y denote the median and let X denote the mean of a random sample
of the size n=2k + 1 from a distribution that is N(u, ¢*). Compute
E(YIX = X).

Hint: See Exercise 7.32.

7.38. Let X}, X,, ..., X, be a random sample from a distribution with p.d.f.
f(x; 0) = PPxe~, 0 < x < o0, where 0 > 0.

"(a) Argue that Y =) X,is a complete sufficient statistic for 6.
1

(b) Compute E(1/Y) and find the function of Y which is the unique
unbiased minimum variance estimator of 8.

7.39. Let X\, X,,...,X,, n>2, be a random sample from the binomial

distribution b(1, 0).

(a) Show that Y, =X, + X, + --- + X, is a complete sufficient statistic
for 0.

(b) Find the function ¢(Y,) which is the unbiased minimum variance
estimator of 0.

(c) Let Y, = (X, + X,)/2 and compute E(Y,).

(d) Determine E(Y,|Y, = ).
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7.6 Functions of a Parameter

Up to this point we have sought an unbiased and minimum
variance estimator of a parameter . Not always, however, are we
interested in 6 but rather in a function of 6. This will be illustrated in
the following examples.

Example 1. Let X\, X,,..., X, denote the observations of a random
sample of size n > 1 from a distribution that is (1, 0), 0 < 0 < 1. We know

thatif Y = ) X, then Y/nis the unique unbiased minimum variance estimator

|
of 8. Now the variance of Y/n is (1 — 8)/n. Suppose that an unbiased and
minimum variance estimator of this variance is sought. Because Y is a
sufficient statistic for 8, it is known that we can restrict our search to functions
of Y. Consider the statistic (Y/n)(1 — Y/n)/n. This statistic is suggested by the
fact that Y/n is an estimator of 8. The expectation of this statistic is given by

1 Y Y 1 1

Now E(Y) = nf and E(Y?) = n6(1 — 6) + n’0*. Hence

lE[X(l _X):|=n— 1601 —6).
n"|n n n n

If we multiply both members of this equation by n/(n — 1), we find that the
statistic (¥/n)(1 — Y/n)/(n — 1) is the unique unbiased minimum variance
estimator of the variance of Y/n.

A somewhat different, but also very important problem in point
estimation is considered in the next example. In the example the
distribution of a random variable X is described by a p.d.f. f(x; 6) that
depends upon 8 € Q. The problem is to estimate the fractional part of
the probability for this distribution which is at, or to the left of, a fixed
point ¢. Thus we seek an unbiased minimum variance estimator of
F(c; 6), where F(x; 0) is the distribution function of X.

‘ Example 2, Let X\, X,, . .., X, be a random sample of size n > | from a
distribution thatis N(8, 1). Suppose that we wish to find an unbiased minimum
variance estimator of the function of 6 defined by

1 e~ =92 gy — @(c — 0),

o

where c is a fixed constant. There are many unbiased estimators of ®(c — ).
We first exhibit one of these, say u(X,), a function of X, alone. We shall then

Pr(X_gc)=J.r
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compute the conditional expectation, E[u(X DIX = Xx] = ¢(x), of this unbiased
statistic, given the sufficient statistic X, the mean of the sample. In accordance
with the theorems of Rao-Blackwell and Lehmann-Scheffé, ¢(X) is the
unique unbiased minimum variance estimator of ®(c — 6).

Consider the function u(x,), where

u(x)) =1, x <c,

= 0 X >c.
The expected value of the random variable u(X,) is given by

o0 — )
Efu(X))] = u(x,) ! exp[—(xlz )]ﬂ'xn

¥ -0 \/2—7[

rc iy
= ) ! exp[——————(xlze)]dxl,

because u(x,) = 0, x, > c¢. But the latter integral has the value ®(c — B) That
is, u(X,) is an unbiased estimator of ®(c — ).

We shall next discuss the joint distribution of X, and X and the conditional
distribution of X, given X = X. This conditional distribution will enable us
to compute E[u(X,)|X = x] = ¢(x). In accordance with Exercise 4.92, Section
4.7, the joint distribution of X, and X is bivariate normal with means § and
6, variances g2 = 1 and o3 = 1/n, and correlation coefficient p = 1 /ﬁ. Thus
the conditional p.d.f. of X,, given X = X, is normal with linear conditional
mean :

0+ pa'(x 0)=x
0,

and with variance

Of(l—p2)=";l.

The conditional expectation of u(X)), given X =X, is then

- (e n(x, — x)’
x)= d
@(x) = ] u(t) / \/— [ 2= 1) ] Xy
) n l exp [_"(xl — })2] dx
J =1 joq 2n—1 |
The change of variable z = \/;(x. — Xx)/</n — | enables us to write, with
o = \/;(c — x)//n — |, this conditional expectation is

o(x) = J” ﬁ e P dz = P(c’) = d)l:__\/j_(:—;f)] _
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Thus the unique, unbiased, and minimum variance estimator of ®(c — ) is,

for every fixed constant c, given by (X) = ®[/n(c — X)/\/n — 1].

Remark. We should like to draw the attention of the reader to a rather
important fact. This has to do with the adoption of a principle, such as the
principle of unbiasedness and minimum variance. A principle is not a theorem,;
and seldom does a principle yield satisfactory results in all cases. So far, this
principle has provided quite satisfactory results. To see that this is not always
the case, let X have a Poisson distribution with parameter 6,0 < 0 < 0. We
may look upon X as a random sample of size 1 from this distribution. Thus
X is a complete sufficient statistic for 6. We seek the estimator of e~ that is
unbiased and has minimum variance. Consider Y = (— 1)*. We have

© — 0y -8
BN =E(-1]= 3 C0 = e

Accordingly, (— 1)¥ is the unbiased minimum variance estimator of e, Here
this estimator leaves much to be desired. We are endeavoring to elicit some
information about the number ¢~%, where 0 <e~? < 1. Yet our point
estimate is either — 1 or + 1, each of which is a very poor estimate of a number
between zero and 1. We do not wish to leave the reader with the impression
that an unbiased minimum variance estimator is bad. That is not the case at
all. We merely wish to point out that if one tries hard enough, he can find
instances where such a statistic is not good. Incidentally, the maximum
likelihood estimator of e~ ? is, in the case where the sample size equals 1, e=%*,
which is probably a much better estimator in practice than is the unbiased
estimator (— 1)*.

EXERCISES

7.40. Let X, X,, ..., X, denote a random sample from a distribution that is
N(@, 1), —o0 < 0 < . Find the unbiased minimum variance estimator
of 6.

Hint: First determine E(X?).

741. Let X, X,, ..., X, denote a random sample from a distribution that is

N(0, 0). Then Y =) X7 is a complete sufficient statistic for 6. Find the
unbiased minimum variance estimator of 6>

7.42. In the notation of Example 2 of this section, is there an unbiased
minimum variance estimator of Pr(—c < X < ¢)? Here ¢ > 0.

7.43. Let X\, X,,..., X, be a random sample from a Poisson distribution
with parameter 6 > 0. Find the unbiased minimum variance estimator of
Pr(X<1)=(+0)e".
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Hint: Let u(x;) = 1, x, < 1, zero elsewhere, and find E[u(X,)|Y = y],
where Y =) X,. Make use of Example 2, Section 4.2.
1

7.44. Let X, X;, . . ., X, denote a random sample from a Poisson distribution
with parameter # > 0. From the Remark of this section, we know that
E[(-D"]=e"2,

(a) Show that E[(—D"|Y, =y, ]=(1 —2/ny', where Y, =X, + X, +
oo 4 Xn_
Hint: First show that the conditional p.d.f. of X\, X5,...,X,_,,
givenY, = y,, is multinomial, and hence that of X, given Y, =y, is

b(y, 1/n). i}
(b) Show that the m.le. of e=% is e~ %X,

(¢) Sincey, = nx,show that (1 — 2/n)"'is approximately equal to e~ when
n is large.

7.45. Let a random sample of size n be taken from a distribution that has the
p.d.f. f(x; @) = (1/0) exp (—x/0)]g, »)(x). Find the m.l.e. and the unbiased
minimum variance estimator of Pr (X < 2).

7.7 The Case of Several Parameters

In many of the interesting problems we encounter, the p.d.f. may
not depend upon a single parameter 6, but perhaps upon two (or more)
parameters, say 6, and 6,, where (0,, 6,) € Q, a two-dimensional
parameter space. We now define joint sufficient statistics for the
parameters. For the moment we shall restrict ourselves to the case of
two parameters.

Definition 4. Let X, X,, ..., X, denote a random sample from a
distribution that has p.d.f. f(x;8,,0,), where (8,,0,)eQ. Let
Y, =u(X,, X5, ..., X,)and Y, = u,(X,, X;, . . ., X,) be two statistics
whose joint p.d.f. is g,2(y,, ¥2; 61, 0,). The statistics Y, and Y, are called
Jjoint sufficient statistics for 6, and 0, if and only if

f(xll;yel, 6,)/(x,; 6, 6;) - -+ f(xa; 01, 65)
gIZ[ul(xla eleiialy xn)v u2(xl’ all=aly xn); els 62]

= H(x, X35+ - - s Xp), -

where H(x,, x,, . . ., x,) does not depend upon 8, or 6,.

As may be anticipated, the factorization theorem can be extended.
In our notation it can be stated in the following manner. The statistics
Y,=u(X,, X5, ..., X,) and Y, = u,(X,, X;, ..., X,) are joint suffi-
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cient statistics for the parameters 8, and 6, if and only if we can find
two nonnegative functions k; and k, such that

JCxi; 01, 0:)(x2 01, 82) - - - f(xy; 01, 62)

=k (X1, Xz« oy Xy a(X0s Xy« -y %), 00 Osla (X1, Xan - ey ),

where the function k,(x,, x,, . . ., x,) does not depend upon both or
either of 6, and 6,.

Example 1. Let X, X,, .. ., X, be a random sample from a distribution

having p.d.f.
fx;6,,0) =2, 6,—6,<x<0,+6,,
20,
=0 elsewhere,
where — o0 <0,<0,0<0,<w. Let Y, <Y,< - <Y, be the order statis-
tics. The joint p.d.f. of Y, and Y, is given by
n(n—1)
gln(VI’ Vns Blv 02)= " (yn_yl)"_zs B 0] _02<yl <yn<0| +027
(260,) :
and equals zero elsewhere. Accordingly, the joint p.d.f. of X}, X3, ..., X, can

be written,-for points of positive probability density,
(L)"_n(_n—ﬁl)[mzix (x,)—min (x,)}"~? ‘

20,) (26,)"

1
g (n(n —)[max (x)—min (x.->1"-’)'

Since min (x;) < x;<max (x;), j=1,2, ..., n, the last factor does not depend
upon the parameters. Either the definition or the factorization theorem
assures us that Y, and Y, are joint sufficient statistics for 8, and 0,.

The extension of the notion of joint sufficient statistics for more
than two parameters is a natural one. Suppose that a certain p.d.f.
depends upon m parameters. Let a random sample of size n be taken
from the distribution that has this p.d.f. and define m statistics. These
m statistics are called joint sufficient statistics for the m parameters if
and only if the ratio of the joint p.d.f. of the observations of the random
sample and the joint p.d.f. of these m statistics does not depend upon
the m parameters, whatever the fixed values of the m statistics. Again
the factorization theorem is readily extended.

There is an extension of the Rao—Blackwell theorem that can be

rd
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adapted to joint sufficient- statistics for several parameters, but that
extension will not be included in this book. However, the concept of
a complete family of probability density functions is generalized as
follows: Let g

{flo,v, .. .,0430,,05,...,6,):(0,,6,,...,0,)eQ}

denote a family of probability density functions of k random variables
Vi, Va, ..., V; that depends upon m parameters (6,, 8,, ..., 6,) € Q.
Let u(v,, vy, . . ., v4) be a function of v, v,, . . ., v, (but not a function
of any or all of the parameters). If

Elu(V,,Vay ..., V)] =0

for all (8,,9,,...,0,)eQ implies that u(v,,v,,...,v;) =0 at all
points (v,, v, - . ., v4), €xcept on a set of points that has probability
zero for all members of the family of probability density functions, we
shall say that the family of probability density functions is a complete
family.

The remainder of our treatment of the case of several parameters
will be restricted to probability density functions that represent what
we shall call regular cases of the exponential class. Let X, P, CHID ¢
n > m, denote a random sample from a distribution that depends on
m parameters and has a p.d.f. of the form

+

f(x; ela 02; L | om) = €Xp [ Z pj(ala 62’ ety om)K;(x)
=1

)]
+ S(x) + 4(0,,6,, ..., Gm)]

for a < x < b, and equals zero elsewhere.
A p.d.f. of the form (1) is said to be a member of the exponential
class of probability density functions of the continuous type. If, in

addition,

1. neither @ nor b depends upon any or all of the parameters
6[7 02, e vy om,

2. the pi(0,,0,,...,6,),j=1,2,..., m, are nontrivial, functionally
independent, continuous functions of #6,y,<6,<d;j=
1,2,...,m,

3. theK/(x),j=1,2,...,m,arecontinuous fora < x < band no one
is a linear homogeneous function of the others,
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4. S(x)isa continuous function of X,a < x < b, we say that we have
a regular case of the exponential class.

The joint p.d.f. of X\, X,,..., X, is given, at points of positive
probability density, by

exp [ il pi6,...,6,) Zn:l I(j(in) + .zn:l S(x;) + nq(0,, . . ., 9,,,)]

= exp [ il pi@6,,....0,) zn: Ki(x;) + nq(6,, . . ., 9,,,)]
=

n
X exp [Z S(x,)] .
i=]
In accordance with the faciorization theorem, the statistics

= 3 K@) Y= 3 K. Y= § KD

are joint sufficient statistics for the m parameters 6,,0,,...,6,. Itis
left as an exercise to prove that the joint p.d.f. of Y,,..., Y, is of
the form '

R(}’|, e 1ym) CXp [ i pj(Bls R | Bm)yj+nq(9h tety Bm)] (2)

j=t

at points of positive probability density. These points of positive
probability density and the function R(y,, . . ., y,,) donot depend upon
any or all of the parameters 0,, 6,, . . ., 6,,. Moreover, in accordance
with a theorem in analysis, it can be asserted that, in a regular case of
the exponential class, the family of probability density functions of
these joint sufficient statistics Y|, Y5, . .., Y, is complete when n > m.
In accordance with a convention previously adopted, we shall refer to
Y\, Y, ..., Y, as joint complete sufficient statistics for the parameters
0,,0,,...,0,.

Example 2. Let X,, X,,..., X, denote a random sample from a
distribution that is N(9,,0,), —© <8, < ©,0 < 0, < co. Thus the p.d.f.
f(x; 6,, 8,) of the distribution may be written as

- 0 &
flx; 6,, 6,) =exp (*2—0—21'2 + 0—;"‘ —2—0'2 - ln,/Znoz).
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Therefore, we can take K, (x) = x*and K,(x) = x. Consequently, the statistics
Y| = Z X,2 and Y2 = 2 /\,,
1 1
are joint complete sufficient statistics for 6, and 6,. Since the relations

Y, - Y, - Y X, — X)?
Z="=X, Z=—ro 2/"=2( — d
n n—1 n—1

define a one-to-one transformation, Z, and Z, are also joint complete
sufficient statistics for 8, and 6,. Moreover,
E(Z)=6, and E(Z,)=0,.

From completeness, we have that Z, and Z, are the only functions of Y, and
Y, that are unbiased estimators of 6, and 6,, respectively.

A pd.f.

f(x:0,,6,, ..., 0,) = exp [ 3 501,05, .., O)K(X) + Sx)

j=1

+q(0h02a---30m)]9 X=4a,,a,4;,...,

zero elsewhere, is said to represent a regular case of the exponential
class of probability density functions of the discrete type if

1. the set {x:x = a, a, . . . } does not depend upon any or all of the
parameters 6,,6,,...,0,,

2. the pi(6,,6,,...,6,), j=1,2,...,m, are nontrivial, functionally
independent, and continuous functions of 6,7, <6, <9;, j =
1,2,...,m, '

3. the Kj(x), j=1,2,...,m, are nontrivial functions of x on the set
{x:x=a,,a, ...} and no one is a linear function of the others.

Let X}, X5, ..., X, denote a random sample from a discrete-type
distribution that represents a regular case of the exponential class.
Then the statements made above in connection with the random
variable of the continuous type are also valid here.

Not always do we sample from a distribution of one random
variable X. We could, for instance, sample from a distribution of two
random variables V' and W with joint p.d.f. f(v,w;8,,6,,...,80,).
Recall that by a random sample (V,, W), (V,, W), ..., (V,, W,) from
a distribution of this sort, we mean that the joint p.d.f. of these 2n
random variables is given by

f(vl’ wl; 0[, Dttt em)f(vb w2; 0|, sSeRets 0,,,) i .f(vm W,,; ola sfet sty 0,,,)
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In particular, suppose that the random sample is taken from a
distribution that has the p.d.f. of ¥ and W of the exponential class

f(v!w; ola'--,em)
m 3
= exp[ Y PO, ..., 0.)K (@, w)+ S, w) + g6, . .. ,0,,,)] ®
j=1

fora < v < b, c < w < d, and equals zero elsewhere, where a, b, ¢, ddo
not depend on the parameters and conditions similar to 1 to 4, p. 343,
are imposed. Then the m statistics

Yl = i K‘(Vi’ [VJ)a sy Ym = i Km(llh u/l)

=] i=1

are joint complete sufficient statistics for the m parameters
Blsgb---ag»r

EXERCISES

7.4€. Let Y, < Y, < Y, be the order statistics of a random sample of size 3
from the distribution with p.d.f.

. _1 x— 8,
J(x; 0,,6,) =g, €XP (_T)’

fi<x<w, —w<f <o 0<6<o0,

zero elsewhere. Find the joint pdf. of Z,=Y,, Z,=Y,, and Z, =
Y+ Y,+ Y;. The corresponding transformation maps the space

{(¥1> 2, ¥3): 61 < 1 < y; < y3 < 0} onto the space
{(2\, 23, 23): 0, < 2; < 2,<(2y — 2,)/2 < 0}
Show that Z, and Z, are joint sufficient statistics for @, and 6,.
747. Let X,, X,,..., X, be a random sample from a distribution that has

a pdf of form (I) of this section. Show that Y=Y K(X),
' {m]

= i K,.(X;) have a joint p.d.f. of form (2) of this section.
=1 '

7.48. Let (X, Y)), (X3, Ya), ..., (X,, Y,) denote a random sample of size n
from a bivariate normal distribution with means y, and ,u;, positive

variances o and o2, and correlation coefficient p. Show that 2 X, Z Y,

Z Z 7, and Z X, Y, are joint complete sufficient statistics for the five
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parameters Are X = 2 X/n Y= Z Y/n, $= i(X,- — )7)2/n", 5% =
2 (Y,— Y)¥n, and Z X, — X)( Y, — Y)/nS, S, also Jomt complete sufficient
statlstlcs for these parameters" '
7.49. Let the p.d.f. f(x; 6,, 6,) be of the form
exp [p1(0,, 0.)K\(x) + p2(6, 0,) Ky (x) + S(x) + ¢(0,,6,)), a<x<b,

zero elsewhere. Let Kj(x) = cKz(x) Show that f(x;6,, 6,) can be written
in the form v

exp [p(6,, Bz)K(x) + S(x) + q:(6,, 02)] a<x<hb,

~ zero elsewhere. This is the reason why it is required that no one K] (x) be
‘a linear homogeneous functron of the others, that is, so that the number of
suﬁicnent StatlStICS equals the ‘humber of parameters.

7.50. Let Y, < Y2 - < Y,I be the order statistics of a random sample
X, X5 .., X, Of size n from a distribution of the continuous type with
p.d.f. f(x). Show that the ratio of the joint p.d.f. of X;, X, . . ., X, and that
of Y, <Y,<---<Y,isequal to ‘1/n!, which does not depend upon the
underlying p. d f This suggests that Y, < Y, < - < Y, are joint sufficient
statistics for the unknown parameter” f

751, Let X,,X,,...,X, be a random sample from the umforrn distri-
bution with p.d. f f(x;0,,6,) =1/(26,), 6,-6,<x<86,+6, where
— o < 6, < oo and 6, > 0, and the p.d.f. is equal to zero elsewhere.

(a) Show that Y, = min(X;) and Y, = max (X)), the Jomt sufficient
statistics for 0, and 02, are complete
(b) Find the unbiased minimum variance estimators of 6, and 6,.

7.52. Let X, X3, ..., X, be a random sample from N(0;, 8,).
(a) If the constant b is defined by the equation Pr (X < b) = 0.90, find the
m.l.e. and the unbiased minimum variance estimator of b.
(b) If c is a given constant, find the m.l.e. and the unblased minimum
variance estimator of Pr (X < ¢).

7.8 Minimal Sufficient and-Ancillary Statistics

In the study of statistics, it is clear that we want to reduce the data
contained in the entire sample as much as possible without losing
relevant information about the important characteristics of the
underlying distribution. That is, a large collection of numbers in the
sample is not as meaningful as a few good summary statistics of those
data. Sufficient statistics, if they exist, are valuable because we know
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that the statistician with those summary measures is as well off as the
statistician with the entire sample. Sometimes, however, there are
several sets of joint sufficient statistics, and thus we would like to find
the simplest one of these sets. For illustration, in a sense, the
observations X, X,,...,X,,n>2, of a random sample from
N(8,, 8,) could be thought of as joint sufficient statistics for 6, and 8,.
We know, however, that we can use X and S?as joint sufficient statistics
for those parameters, which is a great simplification over using
X, Xs, . .., X, particularly if » is large.

In most instances in this chapter, we have been able to find a single
sufficient statistic for one parameter or two joint sufficient statistics for
two parameters. Possibly the most complicated case considered so far
is given in Exercise 7.48, in which we find five joint sufficient statistics
for five parameters. Exercise 7.50 suggests the possibility of using the
order statistics of a random sample for some completely unknown
distribution of the continuous type.

What we would like to do is to change from one set of joint sufficient
statistics to another, always reducing the number of statistics involved
until we cannot go any further without losing the sufficiency of the
resulting statistics. Those statistics that are there at the end of this
process are called minimal sufficient statistics for the parameters. That
is, minimal sufficient statistics are those that are sufficient for the
parameters and are functions of every other set of sufficient statistics
for those same parameters. Often, if there are k parameters, we can find
k joint sufficient statistics that are minimal. In particular, if there is one
parameter, we can often find a single sufficient statistic which is
minimal. Most of the earlier examples that we have considered
illustrate this point, but thlS is not always the case as shown by the
following example.

Example 1. Let X\, X, ..., X, be a random sample from the uniform
distribution over the interval (6 — 1,8+ 1) having p.d.f.

S 0) = D10+ (x), where — o0 < 8 < 0.

The joint p.d.f. of X, Xy, ..., X, equals the product of (3)" and certain
indicator functions, namely

(z) l—[ 1(0- 1.0+ n(x) = ('5)"{1(0 10+ n[min (x; )]} {I(a- Lo+ pimax (x; )]}

because 8 — 1 <min (x;) < x; <max(x;)) <8+ 1,j=1,2,...,n Thus the
order statistics Y, = min (X;)and ¥, = max (X;) are the sufficient statistics for
0. These two statistics actually are minimal for this one parameter, as
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we cannot reduce the number of them to less than two and still have
sufficiency.

There is an observation that helps us observe that almost all the
sufficient statistics that we have studied thus far are minimal. We have
noted that the m.le. § of 6 is a function of one or more sufficient
statistics, when the latter exist. Suppose that this m.le. § is also
sufficient. Since this sufficient statistic  is a function of the other
sufficient statistics, it must be minimal. For example, we have

1. The m.l.e. § = X of 8 in N(8, ¢?), 6 known, is a minimal sufficient
statistic for 0.

2. The m.l.e. § = X of 0 in a Poisson distribution with mean 6 is a
minimal sufficient statistic for 0.

3. Them.le. § = Y, = max (X,) of 8 in the uniform distribution over
(0, 6) is a minimal sufficient statistic for 6.

4. The maximum likelihood estimators §, = X and §, = S? of 8, and
8, in N(8,, 8,) are joint minimal sufficient statistics for 8, and 6,.

From these examples we see that the minimal sufficient statistics do
not need to be unique, for any one-to-one transformation of them also
provides minimal sufficient statistics. For illustration, in 4, the Z X;and
T X? are also minimal sufficient statistics for 8, and 6,.

‘ Example 2. Consider the model given in Example 1. There we noted that
Y, = min (X)) and Y, = max (X)) are joint sufficient statistics. Also, we have

P—-1<Y <Y <B0+1
or, equivalently,
Y,-l<f<Y +1

Hence, to maximize the likelihood function so that it equals (3)", 8 can be any
value between Y, — 1 and Y, + 1. For example, many statisticians take the
m.l.e. to be the mean of these two end points, namely

Y,,-—1+Y.+1_Y.+Y,,

6 : =

which is the midrange. We recognize, however, that this m.l.e. is not unique.
Some might argue that since # is an m.l.e. of 8 and since it is a function of
the joint sufficient statistics, Y, and Y, for 8, it will be a minimal sufficient
statistic. This is not the case at all, for 8 is not even sufficient. Note that the
m.l.e. must itself be a sufficient statistic for the parameter before it can be
considered the minimal sufficient statistic.
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There is also a relationship between a minimal sufficient statistic
and completeness that is explained more fully in the 1950 article by
Lehmann and Scheffé. Let us say simply and without explanation that
for the cases in this book, complete sufficient statistics are minimal
sufficient statistics. The converse is not true, however, by noting that
in Example 1 we have

Yn_Yl n'—l
Eli 3 _n+l]_0’ for all 6.

That is, there is a nonzero function of those minimal sufficient
statistics, Y, and Y,, whose expectation is zero for all 6.

There are other statistics that almost seem opposites of sufficient
statistics. That is, while sufficient statistics contain all the information
about the parameters, these other statistics, called ancillary statistics,
have distributions free of the parameters and seemingly contain no
information about those parameters. As an illustration, we know that
the variance S? of a random sample from N(0, 1) has a distribution that
does not depend upon 6 and hence is an ancillary statistic. Another
example is the ratio Z = X, /(X, + X;), where X, X, is a random
sample from a gamma distribution with known parameter a > 0 and
unknown parameter § = 0, because Z has a beta distribution that is
free of 0. There are a great number of examples of ancillary statistics,
and we provide some rules that make them rather easy to find with
certain models.

First consider the situation in which there is a location parameter.
That is, let X,, X,, ..., X, be a random sample from a distribution
that has a p.d.f. of the form f(x — ), for every real 6; that is, 6 is a
location parameter. Let Z = u(X,, X;, . .., X,) be a statistic such that

ux,+d, x;+d,... ., x,+dy=u(x, x,,...,x,),

for all real d. The one-to-one transformation defined by W; = X; — 6,
i=1,2,...,n, requires that the joint p.d.f. of W,, W,,..., W, b

Sw)f(wy) - -+ flw,),

which does not depend upon 6. In addition, we have, because of the
special functional nature of u(x,, x,, ..., x,), that '

Z=U(W|+0, W2+0,...,W,,+0)=u(W|, Wz,...,W,,)

o

is a function of W, W,, ..., W, alone (not of ). Hence Z must have
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a distribution that does not depend upon 6 because, for illustration,
the m.g.f. of Z, namely

Be?)=| | e Wfx, — ) flx,— 6)d, - dx,
PYes) oD
= e eI Wlf(y ) - -+ flw,) dw, + - - dw,

isfreeof . Wecall Z = u(X,, X,, ..., X,) alocation-invariant statistic.
We immediately see that we can construct many examples of
location-invariant statistics: the sample variance = S?, the sample
range = Y, — Y,, the mean deviation from the sample median =
(1/n) Z|X; — median (X})|, X, + X, — X5 — X, X, + X5 — 2X,,
(1/n) Z [X;— min (X;)], and so on.

We now consider a scale-invariant statistic. Let X,, X,, ..., X, be
a random sample from a distribution that has a p.d.f. of the form
(1/8)f(x/6), for all @ > 0; that is, 8 is a scale parameter. Say that
Z=u(X,, X,,...,X,) is a statistic such that

u(ex,, cxy, ..., cx,) = u(x,, X3, . .., X,)

for all ¢ > 0. The one-to-one transformation defined by W, =
X;/0,i=1,2,...,n, requires the following: (1) that the joint p.d.f. of
W,, Wy ..., W, be equal to

Jw)fiwy) - - - fAw,),
and (2) that the statistic Z be equal to
Z=u@BW,, 0W,,...,0W,)=u(W, W,,..., W,.

Since neither the joint p.d.f. of Wy, W,, ..., W, nor Z contain 0, the
distribution of Z must not depend upon 6. There are also many ex-

amples of scale-invariant statistics like this: Z : X, /(X, + X;), X3/} X7,
1

min (X;)/max (X;), and so on.

Finally, the location and the scale parameters can be combined in
a p.d.f. of the form (1/8,)f[(x — 6,)/6,), —0 <6, < ©,0< 0, < .
Through a one-to-one transformation defined by W, = (X; — 0,)/0,,
i=1,2,...,n,itisecasy toshow that a statistic Z = u(X,, X,, ..., X,)
such that

ulex, +d,...,ecx,+d)y=u(x,,...,x,)
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for —w0 < d < 0,0 < ¢ < o, has a distribution that does not depend
upon 8, and 6,. Statistics like this Z = u(X,, X,, . . ., X,) are location-
and-scale-invariant statistics. Again there are many examples:

n—1

[max (X;) — min (X))/S, Y. (Xis, — X)YS% (X, — X)/S, | X, — X)|/S,
i # j, and so on. =1 :

Thus these location-invariant, scale-invariant, and location-
and-scale-invariant statistics provide good illustrations, with the
appropriate model for the p.d.f.,, of ancillary statistics. Since an
ancillary statistic and a complete (minimal) sufficient statistic are such
opposites, we might believe that there is, in some sense, no relationship
between the two. This is true and in the next section we show that they
are independent statistics.

EXERCISES

7.53. Let X, X,, ..., X, be a random sample from each of the following
distributions involving the parameter 8. In each case find the m.lL.e. of @ and
show that it is a sufficient statistic for # and hence a minimal sufficient
statistic. .

(a) b(1, 0), where 0 < 0 < 1.

(b) Poisson with mean 8 > 0.

(¢) Gamma witha=3and $=60>0.
(d) N0, 1), where —0 < 0 < 0.

(e) N(0, 6), where 0 < 0 < 0.

7.54. Let Y, < Y, < -+ < Y, be the order statistics of a random sample of
size n from the uniform distribution over the closed interval [ -8, 8] having
p.d.f. f(x; 0) = (1/26)];_gg(x).

(a) Show that Y, and Y, are joint sufficient statistics for .

(b) Argue that the m.l.e. of 6 equals § = max (- Y,, Y,).

(c) Demonstrate that the m.Le. @ is a sufficient statistic for  and thus is
a minimal sufficient statistic for 6.

7.585. Let Y, < Y, <:-- <Y, be the order statistics of a random sample of
size n from a distribution with p.d.f.

f(x; 6,,8)) = (El‘) e - ﬂl)lﬂzlwlm)(x),

2

where —o0 <6, <o and 0< 6, < 0. Find joint minimal sufficient
statistics for 6, and 8,.
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7.56. With random samples from each of the distributions given in Exercises
7.53(d), 7.54, and 7.55, define at least two ancillary statistics that are
different from the examples .given in the text. These examples illustrate,
respectively, location-invariant, scale-invariant, and location-and-scale-
invariant statistics. :

7.9 Sufficiency, Completeness, and Independence

We have noted that if we have a sufficient statistic Y, for a
parameter 0, 6 €Q, then A(z]y,), the conditional p.d.f. of another
statistic Z, given Y, = y,, does not depend upon 6. If, moreover, Y, and
Z are independent, the p.d.f. g,(z) of Z is such that g,(z) = h(z|y,), and
hence g,(z) must not depend upon 6 either. So the independence of a
statistic Z and the sufficient statistic Y, for a parameter § means that
the distribution of Z does not depend upon 6 € Q. That is, Z is an
ancillary statistic.

It is interesting to investigate a converse of that property. Suppose
that the distribution of an ancillary statistic Z does not depend upon
0; then, are Z and the sufficient statistic Y, for § independent? To begin
our search for the answer, we know that the joint p.d.f. of Y, and Z
is g.(y1; O)h(zly,), where g,(y,; 6) and h(z|y,) represent the marginal
p.d.f. of Y, and the conditional p.d.f. of Z given Y, = y,, respectively.
Thus the marginal p.d.f. of Z is

f &i(y1; Oh(zly,) dy, = g2(2),

which, by hypothesis, does not depend upon 8. Because

f 8:(2)g1(y1; 0) dy, = g2(2), N

it follows, by taking the difference of the last two integrals, that
J [82(2) — h(zly)Igi(yi; 6) dy, =0 0]

for all 6 € Q. Since Y, is a sufficient statistic for 6, h(z]y,) does not
depend upon 6. By assumption, g,(z) and hence g,(z) — A(z|y,) do not
depend upon 6. Now if the family {g,(y,; 0):0€Q} is complete,
Equation (1) would require that

£:(2) —h(zly) =0  or  g(2) = h(zly).
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That is, the joint p.d.f. of Y, and Z must be equal to

gi(yi; Oh(zly)) = g1(y1; 0)g:(2).

Accordingly, ¥, and Z are independent, and we have proved the
following theorem, which was considered in special cases by Neyman
and Hogg and proved in general by Basu.

Theorem 6. Let X,, X5, ..., X, denote a random sample from a
distribution having a p.d.f. f(x; 0), 0 € Q, where Q is an interval set. Let
Y, =u (X, X,, ..., X,) be a sufficient statistic for 0, and let the family
{g:(31; 0) : 0 € Q} of probability density functions of Y, be complete. Let
Z = u(X,, Xs, . . ., X,) be any other statistic (not a function of Y, alone).
If the distribution of Z does not depend upon 0, then Z is independent of
the sufficient statistic Y.

In the discussion above, it is interesting to observe that if Y, is a
sufficient statistic for 6, then the independence of Y, and Z implies
that the distribution of -Z does not depend' upon 6 whether
{g:(y1; 0): 0 €Q} is or is not complete. However, in the converse, to
prove the independence from the fact that g,(z) does not depend upon
0, we definitely need the completeness. Accordingly, if we are dealing
with situations in which we know that the family {g(y,; 0) : 0 € Q} is
complete (such as a regular case of the exponential class), we can say
that the statistic Z is independent of the sufficient statistic ¥, if, and
only if, the distribution of Z does not depend upon € (i.e., Z is an
ancillary statistic).

It should be remarked that the theorem (including the special
formulation of it for regular cases of the exponential class) extends
immediately to probability density functions that involve m parameters
for which there exist m joint sufficient statistics. For example, let
X, X;,..., X, be a random sample from a distribution having the
p.d.f. f(x; 6,, 6,) that represents a regular case of the exponential class
such that there are two joint complete sufficient statistics for 6, and 6,.
Then any other statistic Z = u(X|, X;, . . ., X,) is independent of the
joint complete sufficient statistics if and only if the distribution of Z
does not depend upon 6, or 8,.

We give an example of the theorem that provides an alternative
proof of the independence of X and S the mean and the variance of
a random sample of size n from a distribution that is N(u, ¢?). This
proof is presented as if we did not know that nS%e” is yXn — 1)
because that fact and the independence were established in the
same argument (see Section 4.8).

STUDENTS-HUB.com Uploaded By: anonymous



Sec. 7.9 Sufficiency, Completeness, and Independence 355

Example 1. Let X,, X,, ..., X, denote a random sample of size n from a
distribution that is N(u, 6?). We know that the mean X of the sample is, for
every known o¢?, a complete sufficient statistic for the parameter ,
— 0 < u < 0. Consider the statistic

WA

l—l

which is location-invariant. Thus $* must have a distribution that does not
depend upon y; and hence, by the theorem, S? and X, the complete sufficient
statistic for yu, are independent.

Example 2. Let X,, X,, ..., X, be a random sample of size n from thex
distribution having p.d.f. )

f0) =9  f<x<o, —ow<f<ow.
=0 elsewhere.

Here the p.d.f. is of the form f(x — 6), where f(x) = ¢ *, 0 < x < o0, zero
elsewhere. Moreover, we know (Exercise 7.27) that the first order statistic
Y, = min (X;) is a complete sufficient statistic for 8. Hence Y, must be
independent of each location-invariant statistic u(X,, X, . .., X,), enjoying
the property that

u(x.+d,x2+d,...,x,,+d)=u(x.,x2,_..,x,,)

for all real 4. Illustrations of such statistics are S?, the sample range, and

1§ X, - min ()]

n:

Example 3. Let X,, X; denote a random sample of size n =2 from a
distribution with p.d.f.

f(x;0)=$e“"’, 0<x<ow, 0<6<o0,

=0 elsewhere.

The p.d.f. is of the form (1/8)f(x/0), where f(x) = e *, 0 < x < o0, zero
elsewhere. We know (Section 7.5) that ¥, = X, + X, is a complete sufficient
statistic ffor 6. Hence Y, is independent of every scale-invariant statistic
u(X,, X;) with the property u(cx,, cx,) = u(x,, xz) Illustrations of these are
X,/X, and X,/(X, + X,), statistics that have F and beta distributions,
respectively.

Example 4. Let X,,X,,..., X, denote a random sample from a
distribution that is N(8,,0,), —o© <8, < 0, 0 < 8, < 0. In Example 2,
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Section 7.7, it was proved that the mean X and the variance S? of the sample
are joint complete sufficient statistics for #, and #,. Consider the statistic

-1

DIRCOTED 0

7z = = ~ zu(Xl,Xz,...,X,,)g
Z(XI_X)Z '

which satisfies the property that w(cx, +d, ..., cx,+ d) = u(x,,. .., x,).
That is, the ancillary statistic Z is independent of both X and S°.

Let N(8,, 8;) and N(8,, 8,) denote two normal distributions. Recall
that in Example 2, Section 6.5, a statistic, which was denoted by T, was
used to test the hypothesis that 8, = 6,, provided that the unknown
variances 0, and 6, were equal. The hypothesis that 8, = 0, is rejected
if the computed |7] > ¢, where the constant ¢ is selected so that
a=Pr(|T1>c 6, =6,,0,=0,) is the assigned significance level of
the test. We shall show that, if 8, = 8,, F of Exercise 6.52 and T are
independent. Among other things, this means that if these two tests
based on F and T, respectively, are performed sequentially, with
significance levels a, and a,, the probability of accepting both these
hypotheses, when they are true, is (1 — o;)(1 — a;). Thus the
significance level of this joint test is a = 1 — (1 — a;)(1 — a,).

The independence of Fand T, when 0, = 0,, can be established by
an appeal to sufficiency and completeness. The three statistics X, Y, and

Z(X;— X)*+ Z (Y, — Y) are joint complete sufficient statistics for
1 I

the three parameters 6,, 8,, and 8, = 0,. Obviously, the distribution of
F does not depend upon 6,, 8,, or 8, = 0,, and hence Fis independent
of the three joint complete sufficient statistics. However, T'isa function
of these three joint complete sufficient statistics alone, and,
accordingly, T is independent of F. It is important to note that these
two statistics are independent whether 6, = 8, or 0, # 6,. This permits
us to calculate probabilities other than the significance level of the test.
For example, if 6; = 0, and 0, # 0,, then

Pric,c<F<c,II2c)=Pr(ci < F<c))Pr(|T] = o).

The second factor in the right-hand member is evaluated by using the
probabilities for what is called a noncentral ¢-distribution. Of course,
if 6, =0, and the difference 0, — 0, is large, we would want the
preceding probability to be close to 1 because the event
{c, < F < ¢,,|T = c} leads to a correct decision, namely accept 8, = 8,
and reject 0, = 0,.
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In this section we have given several examples in which the complete
sufficient statistics are independent of ancillary statistics. Thus, in
those cases, the ancillary statistics provide no information about
the parameters. However, if the sufficient statistics are not complete,
the ancillary statistics could provide some information as the following
example demonstrates.

Example 5. We refer back to Examples | and 2 of Section 7.8. There the
first and nth order statistics, Y, and Y,, were minimal sufficient statistics for
@, where the sample arose from an underlying distribution having p.d.f.
(Dlg— 19+ 1)(x). Often T, = (Y, + Y,)/2 is used as an estimator of @ as it is a
function of those sufficient statistics which is unbiased. Let us find a
relationship between T, and-the ancillary statistic T, = Y, — Y,.

The joint p.d.f. of Y, and Y, is

gy @) =nn— 1Dy, —y) 42", O-l<y <y, <8+1,

zero elsewhere. Accordingly, the joint p.d.f. of T, and T, is, since the absolute
value of the Jacobian equals 1,
L

!
h(ty, 1; @) = n(n — De2=y2", 0 —1 +5’<:.<e+1—\5, 0<t,<2,

zero elsewhere. Thus the p.d.f. of T , 18
hty; ) =n(n- D322 —1)2", 0<,<2,

zero elsewhere, which of course is free of 8 as T, is an ancillary statistic. Thus
the conditional p.d.f. of T|, given T, = 1,, is

1

t
h1|z(t||fz;9)=2—-_-t—2, 9—l+-23<t|<0+l—

!
52, 0<t <2,
zero elsewhere. Note that this is uniform on the interval (6 — 1 + 1,/2,
0 + 1 — 1,/2); so the conditional mean and variance of T, are, respectively,

2—-1)

ET|)=0 and var(Ti|t) = —3

That is, given T, = 1,, we know something about the conditional variance of
T,. In particular, if that observed value of T is large (close to 2), that variance
is small and we can place more reliance on the estimator 7,. On the other
hand, a small value of ¢, means that we have less confidence in T, as
an estimator of 6. It is extremely interesting to note that this conditional
variance does not depend upon the sample size n but only on the given value
of T, = t,. Of course, as the sample size increases, T, tends to become larger
and, in those cases, T, has smaller conditional variance,
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While Example 5 is a special one demonstrating mathematically
that an ancillary statistic can provide some help in point estimation,
this does actually happen in practice too. For illustration, we know that
if the sample size is large enough; then »

X—p
S/ /n—1

has an approximate standard normal distribution. Of course, if the
sample arises from a normal distribution, X and S are independent and
Thas a r-distribution with n — 1 degrees of freedom. Even if the sample
arises from a symmetric distribution, X and § are uncorrelated and T
has an approximate -distribution and certainly an approximate
standard normal distribution with sample sizes around 30 or 40. On
the other hand, if the sample arises from a highly skewed distribution
(say to the right), then X and S are highly correlated and the probability
Pr(—1.96 < T < 1.96) is not necessarily close to 0.95 unless the
sample size is extremely large (certainly much greater than 30).
Intuitively, one can understand why this correlation exists if the
underlying distribution is highly skewed to the right. While S has a
distribution free of 1 (and hence is an ancillary), a large value of §
implies a large value of X, since the underlying p.d.f. is like the one
depicted in Figure 7.1. Of course, a small value of X (say less than the
mode) requires a relatively small value of S. This means that unless n
is extremely large, it is risky to say that

T=

1.96s — 1.96s
X +

,/n—l’ n—1

provides an approximate 95 percent confidence interval with data from
a very skewed distribution. As a matter of fact, the authors have seen
situations in which this confidence coefficient is closer to 70 percent,
rather than 95 percent, with sample sizes of 30 to 40.

x —

)
=

FIGURE 7.1
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EXERCISES

7.57. Let Y, < Y, < ¥; < Y, denote the order statistics of a random sample
of size n = 4 from a distribution having p.d.f. f(x; 6) = 1/6, 0 < x < 0, zero
elsewhere, where 0 < 0-< 00. Argue that the complete sufficient statistic Y,
for fis independent of each of the statistics Yi/Ysand (Y, + 1,)/(Ys + Y,).

Hint: Show that the p.d.f. is of the form (1/6)f(x/6), where f(x) =1,
0 < x < 1, zero elsewhere.

7.58. LetY, < Y, < - < Y,be the order statistics of a random sample from
the normal dlstrlbutlon N(, 0'2) — o0 < 0 < 0. Show that the dlstnbutlon

of Z=7Y,— Y does not depend upon 6. Thus Y = Z Y,/n, a complete
sufficient statistic for 6, is independent of Z. .

7.59. Let X, X,, ..., X, be a random sample from the normal distribution
N@,0?), —0 < 6 <. Prove that a necessary and sufficient condition that

the statistics Z = Z aX; and Y= Z X,a complete sufficient statistic for 6,
1
be independent is that 2 a,=0.

7.60. Let X and Y be random variables such that E(X*) and E(Y*) # 0 exist
fork=1,2,3,....Iftheratio X/Y and its denominator Y areindependent,
prove that E[(X/Y)}] = E(XY)/E(Y"), k=1,2,3,.

Hint: Write E(X*) = E[Y*(X/ V).

7.61. Let Y, < Y, <--- <Y, be the order statistics of a random sample of
size n from a distribution that has p.d.f. f(x; 8) = (1 [@)e=*"* P < Xx < 00,

0 < 8 < o, zero elsewhere. Show that the ratio R =nY,/) Y, and its

1
denominator (a complete sufficient statistic for §) are independent. Use the
result of the preceding exercise to determine E(R*), k=1,2,3,...

7.62. Let X, X,, ..., X be arandom sample of size 5 from the distribution
that has p.d.f. f(x)=e*, 0 <x < o0, zero elsewhere. Show that
(X, + Xp)/(X, + X, + - - - + X;) and its denominator are independent.

Hint: The p.d.f. f(x) is a member of {f(x;60):0 <8 < o0}, where
f(x;0) = (1/@)e~*®, 0 < x < o0, zero elsewhere.

7.63. Let Y, < Y, < - - < Y,be the order statistics of a random sample from
the normal dlstrlbunon N@,,8,), —0 < 8, < ©, 0 < 8, < 0. Show that
the joint complete sufficient statistics X = ¥ and S? for 0, and 6, are

_independent of each of (¥, — Y)/S and (Y, — Y,)/S. ' '
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7.64. LetY, < Y, < - < Y, bethe order statistics of a random sample from
a distribution with the p.d.f.

1 — 0,
f(x 0[9 02)_ exp( 0 ),
~ 2
6, < x < o0, zero elsewhere, where —o0 < 6 < 0,0 < 6, < c0. Show that
the joint complete sufficient statistics ¥, and X = ¥ for 6, and 0, are
independent of (Y, — Y.)/Z(Y,-— Y)).
]

7.65. Let X,, X, . .., X; be a random sample of size n = 5 from the normal
distribution N(0, 8). '
(a) Argue that the ratio R = (X? + X2)/(X3 + - - - + X?) and its denomi-
nator (X2 + - - - + X?) are independent.
(b) Does SR/2 have an F-distribution with 2 and 5 degrees of freedom?
Explain your answer.
(c) Compute E(R) using Exercise 7.60.

7.66. Let Y, < Y, < - <Y, be the order statistics of a random sample of
size n from a distribution having p.d.f.

f(x; 0) = (1/6) exp (:01‘) 0<x< o,
and equal zero elsewhere, where 0 < < o0. Show that W = Z Y; and
Z =nY, / Y’ Y,areindependent. Find E(Z*),k = 1,2, 3, . . . using thc result
of Exercise 7.60. What is the distribution of Z?
7.67. Referring to Example $ of this section, determine ¢ so that
Pr(—c< T, -0 <c|T,=1) =095

Use this result to find a 95 percent confidence interval for 8, given T, = 1,;
and note how its length is smaller when the range ¢, is larger.

ADDITIONAL EXERCISES

7.68. Let X}, X,, .. ., X, be a random sample from a distribution with p.d.f.
f(x; 0) = 0e%, 0 < x < 00, zero elsewhere where 0 < 0.
(a) What is the complete sufficient statistic, say Y, for §?
(b) What function of Y is an unblased estimator of 6?7

7.69. Let Y, < Y, <--- <Y, be the order statistics of a random sample
of size n from a distribution with p.d.f. f(x;0) =1/6, 0 < x < 6, zero
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elsewhere. The statistic Y, is a complete sufficient statistic for 6 and it has
p.d.f.

ny" !
m bl

g(rs; 0) = 0<y,<8,

and zero elsewhere. '
(a) Find the distribution function H,(z; 0) of Z = n(0 — Y,).
(b) Find the lim H,,(z 0) and thus the limiting distribution of Z.

7.70. Let X,,..., X,; Yl, oy Yy Z,,...,Z, be respective independent
random samples from three normal distributions N(u, = a + f, ¢?)
N(u, = B+, 6%, N(u3 = a + v, 6°). Find a point estimator for f that is
based on X, Y, Z. Is thisestimator unique? Why? If ¢? is unknown, explain
how to find a confidence ‘interval for f. -

7.71. Let X}, X;,..., X, be a random sample from a Poisson distrib:xtion
with mean 6. Find the conditional expectation E(X, + 2X, + 3X;[}. X)).
|

7.72. Let X, X;, ..., X, be a random sample of size n from the normal
distribution N(6, 1). Find the unbiased minimum variance estimator of 6.

7.73. Let X, X,, ..., X, be a random sample from a Poisson distribution
with mean 0. Find the unbiased minimum variance estimator of .

7.74. We consider a random sample X, X, . .., X, from a distribution with
p.d.f. f(x; 8) = (1/6) exp (—x/0), 0 < x < o0, zero elsewhere, where 0 < 6.
Possibly, in a life testing situation, however, we only observe the first r order
statistics, ¥, < Y, <---<Y,.

(a) Record the joint p.d.f. of these order statistics and denote it by L(6).

(b) Under these conditions, find the m.le., f, by maximizing L().

(c) Find the m.g.f. and p.d.f. of .

(d) With a slight extension of the definition of sufficiency, is 0 a sufficient
statistic?

(¢) Find the unbiased minimum variance estimator for 6.

(f) Show that ¥,/d and 8 are independent.

7.75. Let us repeat Bernoulli trials with parameter @ until k& successes occur.
If Y is the number of trials needed:

(a) Show that the p.d.f. of Y is g(y; 0) = (z _ :)0“(1 —0y—* y=k,

k+1,..., zero elsewhere, where 0 < 8 < 1.
(b) Prove that this family of probability density functions is complete.
(c) Demonstrate that E[(k — 1)/(Y — 1)] = 0.
(d) Is it possible to find another statistic, which is a function of Y alone,
that is unbiased? Why?
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1.76. Let X\, X,, ..., X, be a random sample from a distribution with p.d.f.
fx;0)=0(1—-0),x=0,1,2,..., zero elsewhere, where 0 < # < 1.
(a) Find the m.le., 4, of 6.

(b) Show that Z X, is a complete sufficient statistic for 6.

=
(c) Determine the unbiased minimum variance estimator of 6.

7.77. If X}, X, ..., X, is a random sample from a distribution with p.d.f.
flx; 9)=10’x%~, 0 < x < a0, zero elsewhere, where 0 < 8 < co:
(a) Find the m.Le., 0,.0f 6. Is  unbiased?

Hint: First ﬁnd the p.d.f. of Y = Z X, and then compute E(f).
By

(b) Argue that Y 1s a complete suﬁicnent statistic for 6.
(c) Find the unbiased minimum variance estimator of 0.
(d) Show that X|/Y and Y are independent.

(e) What is the distribution of X,/Y?
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CHAPTER 8

More About

Estimation

8.1 Bayesian Estimation

In Chapter 6 we introduced point and interval estimation for
various parameters. In Chapter 7 we observed how such inferences
should be based upon sufficient statistics for the parameters if they
exist. In this chapter we introduce other concepts related to estimation
and begin this by considering Bayesian estimates, which are also based
upon sufficient statistics if the latter exist.

In introducing the interesting and sometimes controversial
Bayesian method of estimation, the student should constantly keep
in mind that making statistical inferences from the data does not
strictly follow a mathematical approach. Clearly, up to now, we have
had to construct models before we have been able to make such
inferences. These models are subjective, and the resulting inference
depends greatly on the model selected. For illustration, two statis-
ticians could very well select different models for exactly the same
situation and make different inferences with exactly the same data.
Most statisticians would use some type of model diagnostics to see if
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