

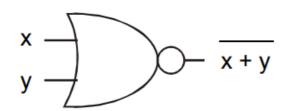
DEPARTMENT OF COMPUTER SYSTEM ENGINEERING

Digital Integrated Circuits - ENCS333

Dr. Khader Mohammad
Lecture #9 Combinational Circuit
Integrated-Circuit Devices and Modeling

CMOS NOR Gate

NOR Symbol



Karnaugh map

NOR Truth Table

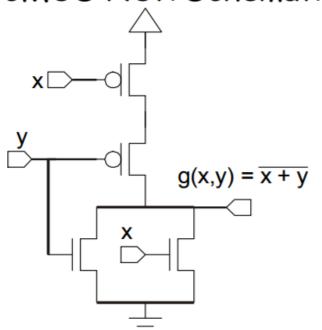
x y	<u>x+y</u>
0 0	1
0 1	0
1 0	0
1 1	0

$$g(x,y) = \overline{x} \cdot \overline{y} \cdot 1 + x \cdot 0 + y \cdot 0$$

- construct Sum of Products equation with all terms
- each term represents a MOSFET path to the output
- '1' terms are connected to VDD via pMOS
- '0' terms are connected to ground via nMOS

CMOS NOR Gate

CMOS NOR Schematic



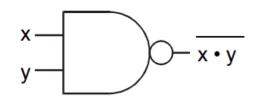
$$g(x,y) = \overline{x} \cdot \overline{y} \cdot 1 + x \cdot 0 + y \cdot 0$$

- output is LOW if x OR y is true
 - parallel nMOS
 - output is HIGH when x AND y are false
 - series pMOS

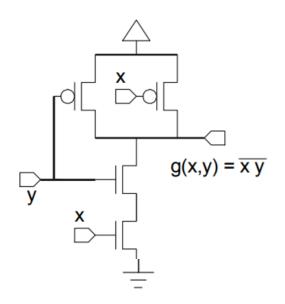
- · Important Points
 - series-parallel arrangement
 - when nMOS in series, pMOS in parallel, and visa versa
 - true for all CMOS logic gates
 - allows us to construct more complex logic functions

CMOS NAND Gate

NAND Symbol



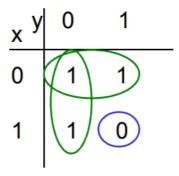
CMOS Schematic



Truth Table

x y	$\sqrt{x^{\bullet}y}$
0 (1
0 1	1 1
1 () 1
1 1	0

K-map



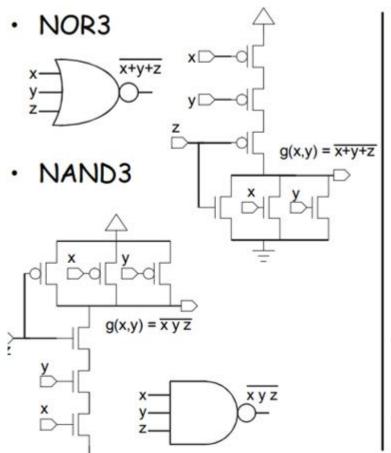
$$g(x,y) = (\overline{x} \cdot \overline{y} \cdot 1) + (\overline{x} \cdot y \cdot 1) + (x \cdot \overline{y} \cdot 1)$$

$$(x \cdot y \cdot 0)$$

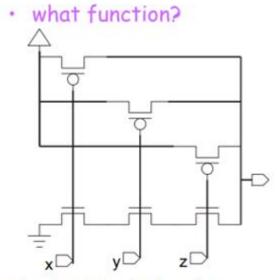
$$= x \cdot y \cdot 0 + \overline{x} \cdot 1 + \overline{y} \cdot 1$$

- output is LOW if x AND y are true
 - series nMOS
- output is HIGH when x OR y is false
 - parallel pMOS

3-Input Gates



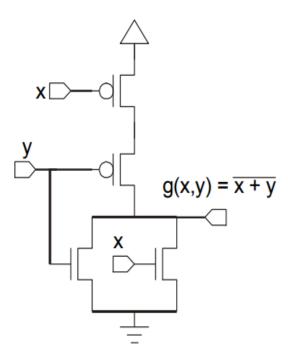
Alternate Schematic



- note shared gate inputs
 - · is input order important?
 - · in series, parallel, both?
- schematic resembles how the circuit will look in physical layout

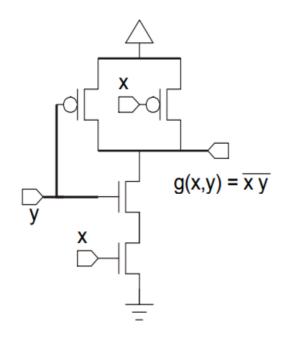
Review: CMOS NAND/NOR Gates

NOR Schematic



- output is LOW if x OR y is true
 - parallel nMOS
- output is HIGH when x AND y are false
 - series pMOS

NAND Schematic



- output is LOW if x AND y are true
 - series nMOS
 - output is HIGH when x OR y is false
 - parallel pMOS

Complex Combinational Logic

- General logic functions
 - for example

$$f = \overline{a \cdot (b + c)}, \quad f = (\overline{d \cdot e}) + a \cdot (\overline{b} + c)$$

- How do we construct the CMOS gate?
 - use DeMorgan principles to modify expression
 - construct nMOS and pMOS networks

$$a \cdot b = a + b$$
 $a + b = a \cdot b$

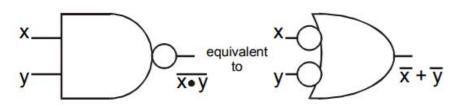
- use Structured Logic
 - AOI (AND OR INV)
 - OAI (OR AND INV)

Using DeMorgan

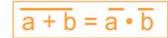
- DeMorgan Relations
 - NAND-OR rule

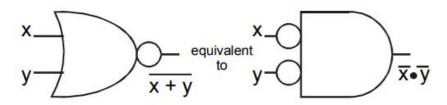


· bubble pushing illustration



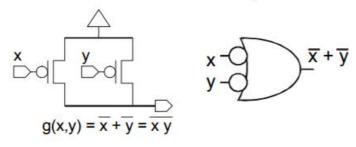
- · bubbles = inversions
- NOR-AND rule



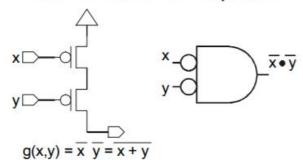


to implement pMOS this way, must push all bubbles to the inputs and remove all NAND/NOR output bubbles

- pMOS and bubble pushing
 - Parallel-connected pMOS



- assert-low OR
- creates NAND function
- Series-connected pMOS



- assert-low AND
- creates NOR function

Rules for Constructing CMOS Gates

The Mathematical Method

Given a logic function

$$F = f(a, b, c)$$

- Reduce (using DeMorgan) to eliminate inverted operations
 - inverted variables are OK, but not operations (NAND, NOR)
- Form pMOS network by complementing the inputs

$$Fp = f(a, b, c)$$

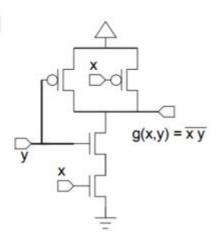
Form the nMOS network by complementing the output

$$Fn = f(a, b, c) = \overline{F}$$

 Construct Fn and Fp using AND/OR series/parallel MOSFET structures

EXAMPLE:

$$F = \overline{ab} \Rightarrow$$
 $Fp = \overline{ab} = a+b;$ OR/parallel
 $Fn = \overline{ab} = ab;$ AND/series



complementary p-channel

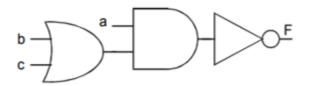
network

n-channel network

CMOS Combinational Logic Example

Construct a CMOS logic gate to implement the function:

$$F = \overline{a \cdot (b + c)}$$



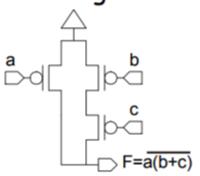
14 transistors (cascaded gates)

- pMOS
 - Apply DeMorgan expansions

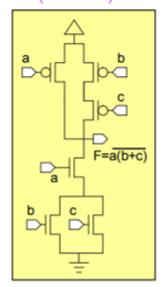
$$F = \overline{a} + (\overline{b} + \overline{c})$$

 $F = \overline{a} + (\overline{b} \cdot \overline{c})$

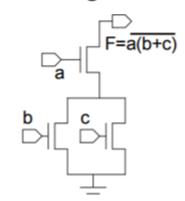
- Invert inputs for pMOSFp = a + (b · c)
- Resulting Schematic



6 transistors (CMOS)



- · nMOS
 - Invert output for nMOSFn = a · (b + c)
 - Apply DeMorgan none needed
 - Resulting Schematic



Structured Logic

- Recall CMOS is inherently Inverting logic
- Can use structured circuits to implement general logic functions
- AOI: implements logic function in the order AND, OR, NOT (Invert)
 - Example: F = a · b + c · d
 - operation order: i) a AND b, c AND d, ii) (ab) OR (cd), iii) NOT
 - Inverted <u>Sum-of-Products</u> (SOP) form
- OAI: implements logic function in the order OR, AND, NOT (Invert)
 - Example: $G = (x+y) \cdot (z+w)$
 - · operation order: i) x OR y, z OR w, ii) (x+y) AND (z+w), iii) NOT
 - Inverted Product-of-Sums (POS) form

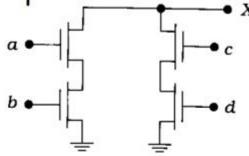
Use a structured CMOS array to realize such functions

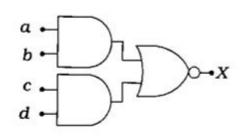
AOI/OAI nMOS Circuits

· nMOS AOI structure

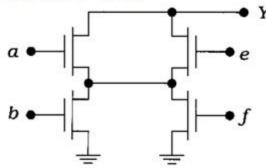
$$F = a \cdot b + c \cdot d$$

- series txs in parallel

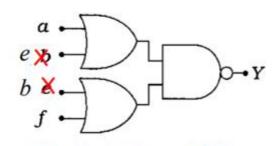




- nMOS OAI structure
 - series of parallel txs



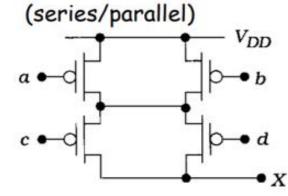
$$F = (a + e) \cdot (b + f)$$



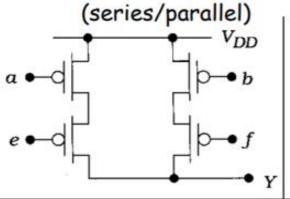
error in textbook Figure 2.45

AOI/OAI pMOS Circuits

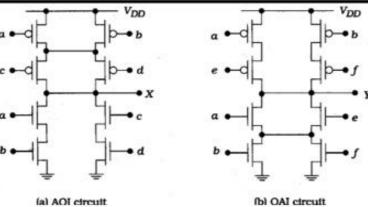
- pMOS AOI structure
 - series of parallel txs
 - opposite of nMOS



- pMOS OAI structure
 - series txs in parallel
 - opposite of nMOS



Complete CMOS
AOI/OAI circuits



Implementing Logic in CMOS

- Reducing Logic Functions
 - fewest operations ⇒ fewest txs
 - minimized function to eliminate txs

```
- Example: x y + x z + x v = x (y + z + v)
5 operations: 3 operations: 1 AND, 2 OR
# txs = # txs =
```

- Suggested approach to implement a CMOS logic function
 - create nMOS network
 - invert output
 - reduce function, use DeMorgan to eliminate NANDs/NORs
 - implement using series for AND and parallel for OR
 - create pMOS network
 - complement each operation in nMOS network
 - i.e. make parallel into series and visa versa

CMOS Logic Example

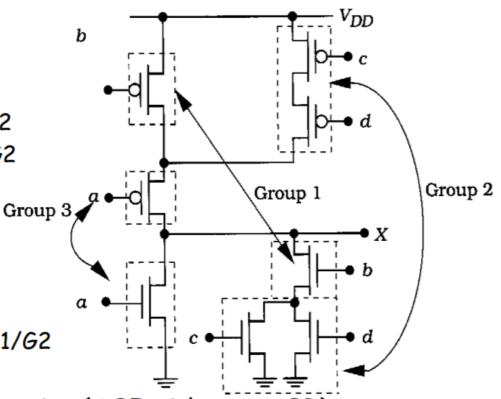
Construct the function below in CMOS

 $F = a + b \cdot (c + d)$; remember AND operations occur before OR

 $Fn = a + b \cdot (c + d)$

- nMOS
 - Group 2: c & d in parallel
 - Group 1: b in series with G2
 - Group 3: a parallel to G1/G2
- pMOS
 - Group 2: c & d in series
 - Group 1: b parallel to G2
 - Group 3: a in series with G1/G2

Circuit has an OAOI organization (AOI with extra OR)



Another Combinational Logic Example

 Construct a CMOS logic gate which implements the function:

$$F = \overline{a \cdot (b + c)}$$

- pMOS
 - Apply DeMorgan expansions none needed
 - Invert inputs for pMOS $Fp = a \cdot (\overline{b} + c)$
 - Resulting Schematic?

- nMOS
 - Inver<u>t output</u> for nMOS Fn = $a \cdot (b + c)$
 - Apply De<u>Morg</u>an Fn = a + (b+c) Fn = a + (b · c)
 - Resulting Schematic?

Another Combinational Logic Example

 Implement the function below by constructing the nMOS network and complementing operations for the pMOS:

$$F = \overline{a \cdot b} \cdot (a + c)$$

- nMOS
 - Invert Output

• Fn =
$$\overline{a \cdot b} \cdot (a + c) = \overline{a \cdot b} + (a + c)$$

- Eliminate NANDs and NORs

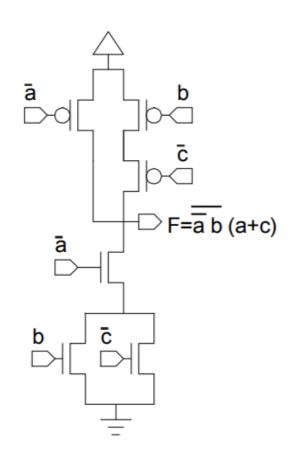
• Fn =
$$\overline{a}$$
 • b + $(\overline{a}$ • $\overline{c})$

- Reduce Function

• Fn =
$$\overline{a}$$
 · (b + \overline{c})

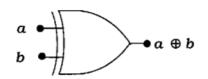
- Resulting Schematic?
- Complement operations for pMOS

• Fp =
$$\overline{a}$$
 + (b • \overline{c})



XOR and XNOR

- Exclusive-OR (XOR)
 - $-a \oplus b = \overline{a} \cdot b + a \cdot b$
 - not AOI form

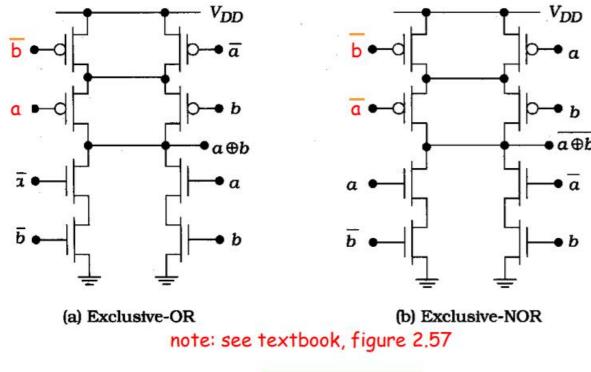


а	b	a ⊕ b	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

- Exclusive-NOR
 - $-\overline{a \oplus b} = a \cdot b + \overline{a} \cdot \overline{b}$
 - inverse of XOR
- XOR/XNOR in AOI form
 - XOR: $a \oplus b = a \cdot b + a \cdot \overline{b}$, formed by complementing XNOR above
 - XNOR: $\overline{a \oplus b} = \overline{a \cdot b} + a \cdot \overline{b}$, formed by complementing XOR

thus, interchanging a and \overline{a} (or b and \overline{b}) converts from XOR to XNOR

XOR and XNOR AOI Schematic



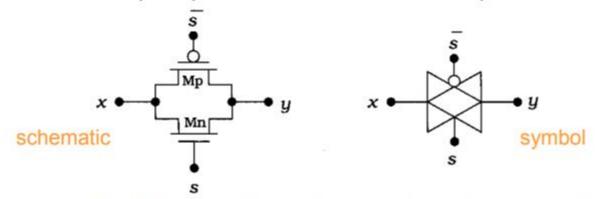
-XOR:
$$a \oplus b = \overline{a \cdot b + \overline{a \cdot b}}$$

-XNOR:
$$\overline{a \oplus b} = \overline{a \cdot b + a \cdot \overline{b}}$$

CMOS Transmission Gates

Function

- recall: pMOS passes a good '1' and nMOS passes a good '0'
- gated switch, capable of passing both '1' and '0'
- Formed by a parallel nMOS and pMOS tx

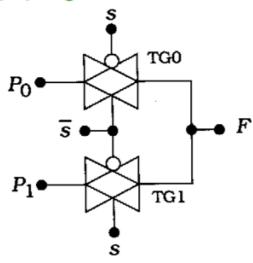


- Controlled by gate select signals, s and \overline{s}
 - if s = 1, y = x, switch is closed, txs are on
 - if s = 0, y = unknown (high impedance), y = x s, for s=1 switch open, txs off

Transmission Gate Logic Functions

- TG circuits used extensively in CMOS
 - good switch, can pass full range of voltage (VDD-ground)
- 2-to-1 MUX using TGs

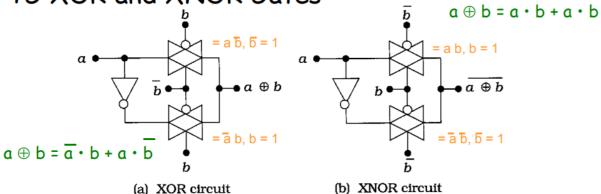
$$F = Po \cdot \overline{s} + P1 \cdot s$$

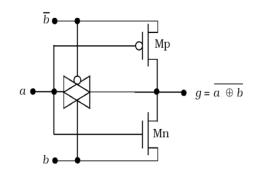


s	TG0 TG1	F
0	Closed Open	P_0
1	Open Closed	P_1

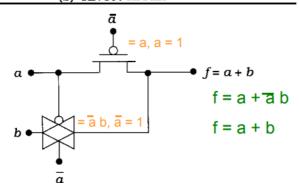
More TG Functions

TG XOR and XNOR Gates





- Using TGs instead of "static CMOS"
 - TG OR gate



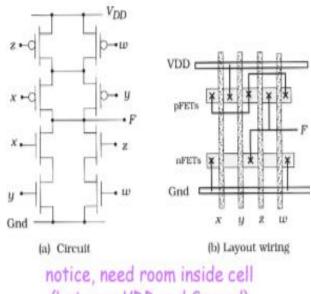
Structured Layout

General Approach

- power rails
- horizontal Active
- vertical Poly (inputs from top/bottom)
- Metal1 connects nodes as needed in schematic
- Structured Layout
 - AOI circuit figure
 - useful for many logic functions
 - see examples in textbook
- Disadvantages
 - not optimized for speed
 - large S/D regions = higher

capacitance

- interconnect paths could be shorter
- not optimized for area/size



notice, need room inside cell (between VDD and Ground) to route internal connections

Euler Graphs

- Euler Graph
 - method for determining what order to layout txs
 - assign each circuit node as a point
 - assign each tx as a line between points
- Method
 - locate starting point
 - trace a loop from starting point through each transistor
 - can only re-cross a point once, separate nMOS loop must cross each pMOS
 - if above is possible, all tx can be in same Active
 - if not, will require multiple Active regions

