Tower of Hanoi

-® Tower of Hanoi puzzle,
marketed in 1883 by

Algorithms and Data Structures Professor N. CLAUS (DE

Lecture 4: SIAM), an anagram
pseudonym for Professor
Recursion, Edouard LUCAS

(D’AMEINS).

® The game consists of de-
molishing the tower level
by level, and reconstruct-
ing it in a neighboring
place, conforming to the
rules given.

Dynamic programming,
Divide & Conquer

Sequence Alignment, Quicksort

Verénica Gaspes

veronica.gaspes@ide.hh.se

www.hh.se/staff/vero/itads

lecture 4 —p.A/36 lecture 4 —p.2/36

Tower of Hanoi Tower of Hanoi

Move all plates from peg A to peg C

Plates can be moved one by one from one peg to another
peg

At no stages should a smaller plate come below a bigger
plate

An extra peg B can be used.

ihave M-1 zmallest dizes topole B

Move M-1 2mallest dizes to pole £

STUDENTS-HUB.com Uploaded By: anonymous

_p.3136 lecture 4

Recursion Recursion

A recursive method is a method that directly or indirectly void hanoi(int n, char from, char to, char help){
makes a call to itself. s trommelo,tor s
System.out.println(fromt+" --> "+to);
void hanoi(int n, char from, char to, char h){ hanoi(n-1,help,to, from);
if(n>0){ }
}
—oo tto); The Base Case. Allways have at least one case that is
solved without recursion. In hanoi, 0 and all negative
) integers are base cases: do nothing!
Progress towards the base case. All recursive calls must
be done with arguments that get closer to the base
The recursive calls on values closer to 0. case. In hanodi, when c_alllng with a positive integer x,
the recursive calls are with x-1
You gotta believe! Always assume that the recursive calls
e WOrk. And complete the solution for the actual value! ..
Fibonacci numbers Fibonacci numbers
Consider the following sequence of numbers A program that computes the n — th fibonacci number:

1 1 1412 1423 2+3 5 3458 5+8 13 8+13 |

Strange as it seems it has very nice properties, it occurrs
in many places and has magazines dedicated to it!

We can define the n — th element of the sequence: . L
int fib(int n){
if(n==0| |n==1)
return 1;
else

' 1 ifn=00orn=1 return fib(n-1) + fib(n-2);
fibln) = fib(n — 1) + fib(n —2) ifn>2 }

STUDENTS-HUB.com Uploaded By: anonymous

—p.7/36 lecture 4

Fibonacci numbers

Nice, all the rules are followed (base cases, progression,
belief!)

BUT! The recursive calls are overlapping:
To compute £fib(5) we call fib(4) and £ib(3)
To compute £ib(4) wecall £ib(3) and £ib(2)
to compute £fib(3) wecall fib(2) and fib(1)
To compute £fib(2) we call fib(1) and £ib(0)

This leads to very inefficient programs!

More about this later today;, first

a good use of recursion . ..

Divide & Conquer and Sorting

Sort an array using Divide and Conquer:

To sort an array of size N.

Divide the array into two halves.

Recursively sort the two parts.

Put together the sorted parts to a sorted whole.

What to do for | putting together\ depends on how we

‘choose to divide

STUDENTS-HUB.com

—p.9/36

—p.11/36

Divide and Conquer

A problem solving technique that leads to recursive
solutions.

A divide and conqguer algorithm | is an efficient recursive
algorithm that consists of 2 parts:

Divide: Smaller problems are solved recursively
(except the base cases!)

Conquer: The solution to the original problem is
formed from the solutions to the subproblems.

Hopefully all subproblems are much smaller than the
original one and the subproblems do not overlap!

~p.10/36

Quicksort

To sort an array of size 10.

131819243 /31 65|57 (26|75|0

Divide the array in two halves.

131819243 |31 |65(57 |26 |75 |0 | Pivot?
Partition
13|0|26 |43 |57 | 31 65 |92 |75 | 81

Recursively sort the two parts. (Believe! Quicksort)

0(13/26|31|43 |57 | 65 | 75|81 |92

Put together the sorted part§.Jp|0aded By: anonymous
1 ;

Quicksort Quicksort

void quicksort(T [] a, int low, int high){
ifdsmall arrayb
insertionSort(a, low, high);

else{
int middle = (low + high) / 2;
‘sort low, middle, high‘

Auxiliary methods |

1. Find a good pivot. An element in the array that has
more or less as many elements smaller as it has larger

in the array.
Find it in constant time!
Median of 3 among a[low], a[mid] and a[high]
2. Partition. All smaller than the pivot to the left, all larger
to the right. _ _ _
Loop through the array from 1ow upwards and from) quicksort(a, 1 + 1, high);
high downwards. }
Stop on elements that are on the wrong hal.

Exchange elements when needed and continue
looping until all elements are in the proper half.

- p.13/36 lecture 4

‘partition‘
quicksort(a, low, i - 1);

Quicksort Quicksort

sort low, middle, high]

Small array

if(a[middle].compareTo(a[low]) < 0)
swapReferences(a, low, middle);

if(al[high].compareTo(a[low]) < 0)
swapReferences(a, low, high);

if(a[high].compareTo(a[middle]) < 0)
swapReferences(a, middle, high);

low + CUTOFF > high

where CUTOFF can be around 10.

STUDENTS-HUB.com Uploaded By: anonymous

Quicksort

swapReferences(a, middle, high - 1);
T pivot = a[high - 1 1;

int i, J;

for(i = low, j = high - 1; ;){
while(a[++1i].compareTo(pivot)
while(pivot.compareTo(a[--j])
if(i >= j) break;
swapReferences(a, i, J);

}

swapReferences(a, i, high - 1);

Quicksort - analysis

T(N) = T(Nsmau) + T(Nlarge) + O(N) ‘

If we manage to divide the array in equal sized parts we
will get
T(N)=2T(5)+ N =4T7()+2F + N =...
= NT(1) + Nlog(N)

constant time!
Compare with O(N?) for insertion sort!

STUDENTS-HUB.com

T(N) is O(Nlog(N)) | if we manage to find a good pivot in

—p.17/36

—p.19/36

Quicksort - analysis

T(N) | time to sort an array of size N

Divide it into two halves takes | O(¢) | to pick the pivot and

O(N) to partition. So division is O(N).

Recursively sort the two parts will take

T(Nsmall) + T(Nlarge)

Put together the solutions do nothing!
So

T(N) — T(Nsmall) + T(Nlarge) + O(N)

~p.18/36

Fibonacci’s problem

® | ook once more at the definition of fib(n):

fn=00rn=1

. 1
fib(n) = {fz'b(n — 1)+ fib(n—2) ifn>2

® An obvious java program

int fib(int n){
if(n==0| |n==1)
return 1;
else
return fib(n-1) + fib(n-2);
}
leads to an explosion of recursive calls with values
being computed once and again!

Uploaded By: anonymous

The Problem

Memoaization

Whenever we have to compute a value, check in a memo
whether we already have computed it!

This means that when we compute a value for the first
time, we have to record it in a memo!

BigInteger [] memo;

BigInteger fib(int n){

memo[n]=BigInteger.ONE;
else

if (memo[n].equals(BigInteger.ZERO))
memo[n]=fib(n-2).add(fib(n-1));
return memo[n];

}

fib(8)
fib(7) fib(6)
fib(6) fib(5)
fib(5) fib(4)
fib(4) fib(3)
fib(3) £ib(2)
fib(4) fib(3)
fib(3) fib(2)
fib(2) fib(1)
£ib(5) fib(4)
fib(4) fib(3)
fib(3) fib(2)
fib(2) fib(1)
fib(3) fib(2)
fib(2) fib(1)
fib(1) £ib(0)
wwesdNd it IS NOt over . . .

Bottom-up: Dynamic programming

It is easy to realize that we can fill the array from the base
cases and forward! And that we only need 2 values any
point!

BigInteger fibIt(int n){
BigInteger fn 1 = BigInteger.ONE;
BigInteger fn 2 = BigInteger.ZERO;
while(n-- > 0){
fn 1 = fn l.add(fn_2);
fn 2 = fn l.subtract(fn 2);
}

return fn 1;

}

In short from a recursive formulation of the problem to an

STUD Ferétie prdd Bne that recalls computed values that are

further needed

- p.23/36

lecture 4

—p.22/36

Sequence Comparison

A more advanced application of dynamic programming
A widely applied topic: file comparisson, spelling
correction, information retrieval and searching for
similarities among biosequences.
® How similar are the strings VERONICA and MARTIN?

-® How similar are spinach and rice? (according to peptide
sequences of Triosephosphate Isomerase).
® CNGTKRESITKLVSDLNSATLEAD _VDVVVAPPFVYIDQVKSSLTGRVEISA

$ CNGTTDQVDKIVKILNEGQIASTDVVEVVVSPPYVFLPVVKSQLRPEIQVAA
® And monkeys and humans?

® MNGRKONLGELIGTLNAAKVPAD TEVVCAPPTAYIDFARQKLDPKIAVAA

o MNGRKQSLGELIGTLNAAKVPAD TEVVCAPPTAYIDFARQKLDPKIAVAA

Uploaded By: anonymous

lecture 4

Minimal Edit Distance

One such string comparison problem can be stated as

Align two strings in such a way that the number of
commands needed to transform one into the other is

minimal.
VERONICA
MARTIN
requires 7 changes (editing commands)
while
VERONICA
MART IN
requires only 6!
as well as
VERONICA
MAR TIN

Minimal Edit Distance

First attempt

Enumerate all alignments and their distances and choose
an alignment with minimum distance.

Unfortunately ... there are too many!
For strings of lengths m and n there are
(m+n)!
m!n!

alignments and for n = m = 150 this is approximately 10!

STUDENTS-HUB.com

— p.25/36

— p.27/36

Minimal Edit Distance

Or, more formally

Given 2 strings compute an alignment that minimizes the
edit distance between them

For strings a and b, the distance é6(a, b) is
(5(&, b) = Z(S(ai, bz)

for the aligned strings (possibly with gaps) where

0 If ai:bi
o(ai, bi) = :
(CL) {1 if ai;«ébi

—p.26/36

Minimal Edit Distance

Second attempt
Based on the observation that Any prefix of the optimal

alignment is an optimal alignment of prefixes use the
recursion
'j fori=0
i forj =0
puli, j) = p(i—1,5)+1

min { p(i,j—1)+1
u(i —-1,7— 1) + 5(@1',1, bjfl)

\

where (i, 7) is the minimal cost of aligning the prefixes of a
and b of lengths 7 and j respectively. Base cases
correspond to empty prefixes, indexes in the strings are

0...m - 1,0pleaded By: anonymous

Minimal Edit Distance

Third attempt - Dynamic Programming

Each step of the recursion requires 3 values. Try to find a

way of recording the values in a bottom-up fashion.

N

—_—

S — =~ = 0 3
< o h N O

(14

v e r o n 1 Cc a

%345678
2 3
2_3
v
~

?

ver vero veron

Dynamic Programming

® The problem is stated as an optimization problem.

® Optimal values are defined recursively.

® Efficient solutions are derived memorizing already
computed values (using dynamic porgramming)

® |n some problems, e.g. sequence alignment, not only
the optimal value is of interest, but also how it is

achieved.

>java SequenceAlignmentl veronica martin

6
veronica
mar-ti-n

In this case extra

space must be used to trace it back

STUDENTS-HUB.com

—p.31/36

Minimal Edit Distance

Dynamic Programming
The matrix can be filled in different ways so that the values
needed in the computation are available:

% Row by row

® Column by column

-® Antidiagonal by antidiagonal /

lecture 4 —p.30/36

Tracing back an alignment

When a value is chosen for p(i, j) by taking

p(i—1,7) +1
min § pu(i,j —1)+1
p(i — 1,5 — 1) + 6(ai-1,bj-1)

we record also the coordinates of the chosen alternative:

v e r O n I C a
» 012 3 45678
mi112 3
a 222 3
r333@

We record that for (3, 3) we E?B] e fr %]Téaelég, énonymous

lecture 4

Tracing back an alignment

We have to do this for each cell in the matrix, we need a
matrix of

class Coord{
int i, J;
Coord(int x, int y){

i=x;j=y;

}

}

We fill both matrices during the same traversal of all
possible alignments

The optimal alignment is then recovered by tracing the
coordinates back from the value corresponding to the
alignment of the complete strings.

lecture 4 —p.33/36

Sequence Alignment in Bioinformatics

Score matrices

Similarity between biosequences is built up from how
similar the letters are.

There is not only match/mismatch but matrices that
describe how similar each pair of letters is

This is related to how likely it is that a letter is the result of
a mutation from some ancestor

There are many! computed score matrices: (e.g. gonnet)

C|S|T|IP|A|G|N|D| E

c(12{0/0|({-3|0(-2|-2|-3|-3

s|0j2/2(0(1|{0|1/0|0

STUDENTS-HUB.com

— p.35/36

Sequence Alignment in Bioinformatics

DNA and proteins are built as long chains of chemichal
components (biosequences) conventionaly denoted by
letters

A G Cc Tfor ADN
ACDEFGHIKLMNPOQRSTVWY
for proteins

Biosequences are compared in the hope that what holds
for a sequence also holds for similar sequences.

The way of comparing biosequences is by finding good
alignments

Alignments are good when they maximize similarity

lecture 4 —p.34/36

Sequence Alignment in Bioinformatics

Dynamic programming made sequence alignment feasible.

Many optimizations have been proposed: to minimize the
space required for computations; heuristics that reduce
the portion of 1 that is explored

There are now search engines for huge databases: BLAST
the Basic Local Alignment Search Tool.

Original sources:

A general method appplicable to search for similarities
in the amino acid sequence of two proteins by
Needleman and Wunch, JBL 1970.

Identification of common molecular subsequences by
Smith and Waterman, JBL 1981.

Basic Local Alignment Search Tool by Altschul et al.,
JBL 1990. Uploaded By: anonymous

