Chapter 11 Lecture

Essential University Physics Richard Wolfson 2nd Edition

Rotational Vectors and Angular Momentum

STUDENESSHUB.GOM Inc.

Uploaded By: Ayhams Nebanj

In this lecture you'll learn

- To treat angular quantities as vectors, with direction as well as magnitude
 - Angular velocity
 - Angular acceleration
 - Torque
- About angular momentum, the rotational analog of linear momentum
- To define the vector cross product, and use it in expressing torque and angular momentum
- To handle quantitative problems involving conservation of angular momentum in one direction
- To describe qualitatively the phenomenon of precession

Direction of the Angular Velocity Vector

- The direction of angular velocity is given by the right-hand rule.
 - Curl the fingers of your right hand in the direction of rotation, and your thumb points in the direction of the angular velocity vector $\vec{\omega}$.

STUDENESSHUBICOM Inc.

Uploaded By: Ayhansı Nebณ3i

Direction of the Angular Acceleration

• Angular acceleration points in the direction of the change in the angular velocity $\Delta \vec{\omega}$:

$$\overset{\boxtimes}{\alpha} = \lim_{\Delta t \to 0} \frac{\Delta \overset{\boxtimes}{\omega}}{\Delta t} = \frac{d \overset{\boxtimes}{\omega}}{dt}$$

- The change can be in the same direction as the angular velocity, increasing the angular speed.
- The change can be opposite the angular velocity, decreasing the angular speed.
- Or it can be in an arbitrary direction, changing the direction and speed as well.

STUDENESSHUBICEDIN Inc.

Direction of the Torque Vector

- The torque vector is perpendicular to both the force vector and the displacement vector from the rotation axis to the force application point.
 - The magnitude of the torque is $\tau = rF\sin\theta$.
 - Of the two possible directions perpendicular to $\overset{\boxtimes}{r}$ and $\overset{\boxtimes}{r}$ correct direction is given by the right-hand rule.
 - Torque is compactly expressed using the vector cross product:

$$\overset{\boldsymbol{\mathrm{id}}}{\tau}=\overset{\boldsymbol{\mathrm{id}}}{r}\times \overset{\boldsymbol{\mathrm{id}}}{F}$$

STUDENESSHUBGOM Inc.

Uploaded By: Ayhansi Nebagi

The Cross Product

• Forming from two vectors $\stackrel{\frown}{A}$ and $\stackrel{\frown}{B}$ a third vector $\stackrel{\frown}{C}$ of magnitude $C = AB\sin\theta$ and direction given by the right-hand rule is called the **cross product**:

The cross product
$$\vec{C}$$
 of two vectors \vec{A} and \vec{B} is written
 $\vec{C} = \vec{A} \times \vec{B}$

and is a vector with magnitude $AB \sin \theta$, where θ is the angle between \vec{A} and \vec{B} , and where the direction of \vec{C} is given by the right-hand rule of Fig. 11.4.

• Some properties of cross products:

$$\overset{\scriptsize{}_{\scriptstyle{}}}{A} \times \overset{\scriptsize{}_{\scriptstyle{}}}{B} = -\overset{\scriptsize{}_{\scriptstyle{}}}{B} \times \overset{\scriptsize{}_{\scriptstyle{}}}{A} \\ \overset{\scriptsize{}_{\scriptstyle{}}}{\boxtimes} \qquad \overset{\scriptsize{}}$$

STUDENESSHUBICOM Inc.

Uploaded By: Ayhansi Nehani

Angular Momentum

• For a single particle, angular momentum \overline{L} is a vector given by the cross product of the displacement vector from the rotation axis with the linear momentum of the particle:

$$\vec{L} = \vec{r} \times \vec{p}$$

- For the case of a particle in a circular path, L = mvr, and L is upward, perpendicular to the circle.
- For sufficiently symmetric objects, \overline{L} is the product of rotational inertia and angular velocity:

$$\overset{\bowtie}{L} = I\overset{\bowtie}{\omega}$$

STUDENESSHUBGOM Inc.

Newton's Law and Angular Momentum

- In terms of angular momentum, the rotational analog of Newton's second law is $\frac{1}{\tau} = \frac{d\tilde{L}}{d\tilde{L}}$
 - Therefore a system's angular momentum changes only if there's a non-zero net torque acting on the system.

dt

- If the net torque is zero, then angular momentum is conserved.
 - Changes in rotational inertia then result in changes in angular speed:

The skater's angular momentum is conserved, so her angular speed increases when she reduces her rotational inertia.

Conservation of Angular Momentum

- The spinning wheel initially contains all the system's angular momentum.
- When the student turns the wheel upside down, she changes the direction of its angular momentum vector.
- Student and turntable rotate the other way to keep the total angular momentum unchanged.

Precession

- Precession is a three-dimensional phenomenon involving rotational motion.
 - Precession occurs when a torque acts on a rotating object, changing the direction but not the magnitude of its angular momentum vector.
 - As a result the rotation axis undergoes circular motion:

Precession slowly changes the direction of Earth's rotation axis

Summary

- Angular quantities are vectors whose direction is generally associated with the direction of the rotation axis.
 - Specifically, direction is given by the right-hand rule.
 - The vector cross product provides a compact representation for torque and angular momentum.

- Angular momentum is the rotational analog of linear momentum: $\stackrel{\smile}{L} = \stackrel{\boxtimes}{r} \times \stackrel{\boxtimes}{p}$; with symmetry, $\stackrel{\smile}{L} = I\stackrel{\boxtimes}{\omega}$.
- In the absence of a net external torque, a system's angular momentum is conserved.

STUDENESSHUBIGOM Inc.