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C H A P T E R  1 0

Rotation

10-1 ROTATIONAL VARIABLES

After reading this module, you should be able to . . .

10.01 Identify that if all parts of a body rotate around a fixed
axis locked together, the body is a rigid body. (This chapter
is about the motion of such bodies.)

10.02 Identify that the angular position of a rotating rigid body
is the angle that an internal reference line makes with a
fixed, external reference line. 

10.03 Apply the relationship between angular displacement
and the initial and final angular positions.

10.04 Apply the relationship between average angular veloc-
ity, angular displacement, and the time interval for that dis-
placement.

10.05 Apply the relationship between average angular accel-
eration, change in angular velocity, and the time interval for
that change.

10.06 Identify that counterclockwise motion is in the positive 
direction and clockwise motion is in the negative direction.

10.07 Given angular position as a function of time, calculate the
instantaneous angular velocity at any particular time and the
average angular velocity between any two particular times.

10.08 Given a graph of angular position versus time, deter-
mine the instantaneous angular velocity at a particular time
and the average angular velocity between any two particu-
lar times.

10.09 Identify instantaneous angular speed as the magnitude
of the instantaneous angular velocity.

10.10 Given angular velocity as a function of time, calculate
the instantaneous angular acceleration at any particular
time and the average angular acceleration between any
two particular times.

10.11 Given a graph of angular velocity versus time, deter-
mine the instantaneous angular acceleration at any partic-
ular time and the average angular acceleration between
any two particular times. 

10.12 Calculate a body’s change in angular velocity by 
integrating its angular acceleration function with respect
to time.

10.13 Calculate a body’s change in angular position by inte-
grating its angular velocity function with respect to time.

● To describe the rotation of a rigid body about a fixed axis,
called the rotation axis, we assume a reference line is fixed in
the body, perpendicular to that axis and rotating with the
body. We measure the angular position u of this line 
relative to a fixed direction. When u is measured in radians,

(radian measure),

where s is the arc length of a circular path of radius r and
angle u. 

● Radian measure is related to angle measure in revolutions
and degrees by

1 rev � 360� � 2p rad.

● A body that rotates about a rotation axis, changing its angu-
lar position from u1 to u2, undergoes an angular displacement

�u � u2 � u1,

where �u is positive for counterclockwise rotation and nega-
tive for clockwise rotation.

● If a body rotates through an angular displacement �u in a
time interval �t, its average angular velocity vavg is

u �
s
r

The (instantaneous) angular velocity v of the body is

Both vavg and v are vectors, with directions given by a 
right-hand rule. They are positive for counterclockwise rota-
tion and negative for clockwise rotation. The magnitude of the
body’s angular velocity is the angular speed.

● If the angular velocity of a body changes from v1 to v2 in a
time interval �t � t2 � t1, the average angular acceleration
aavg of the body is

The (instantaneous) angular acceleration a of the body is

Both aavg and a are vectors.

a �
dv

dt
.

aavg �
v2 � v1

t2 � t1
�

�v

�t
.

v �
du

dt
.

vavg �
�u

�t
.

Key Ideas

Learning Objectives
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222 CHAPTER 10 ROTATION

What Is Physics?
As we have discussed, one focus of physics is motion. However, so far we
have examined only the motion of translation, in which an object moves along
a straight or curved line, as in Fig. 10-1a. We now turn to the motion of rotation,
in which an object turns about an axis, as in Fig. 10-1b.

You see rotation in nearly every machine, you use it every time you open a
beverage can with a pull tab, and you pay to experience it every time you go to an
amusement park. Rotation is the key to many fun activities, such as hitting a long
drive in golf (the ball needs to rotate in order for the air to keep it aloft longer)
and throwing a curveball in baseball (the ball needs to rotate in order for the air
to push it left or right). Rotation is also the key to more serious matters, such as
metal failure in aging airplanes.

We begin our discussion of rotation by defining the variables for the 
motion, just as we did for translation in Chapter 2. As we shall see, the vari-
ables for rotation are analogous to those for one-dimensional motion and, as
in Chapter 2, an important special situation is where the acceleration (here the
rotational acceleration) is constant. We shall also see that Newton’s second
law can be written for rotational motion, but we must use a new quantity
called torque instead of just force. Work and the work–kinetic energy
theorem can also be applied to rotational motion, but we must use a new quan-
tity called rotational inertia instead of just mass. In short, much of what we
have discussed so far can be applied to rotational motion with, perhaps, a few
changes.

Caution: In spite of this repetition of physics ideas, many students find this
and the next chapter very challenging. Instructors have a variety of reasons as
to why, but two reasons stand out: (1) There are a lot of symbols (with Greek

Figure 10-1 Figure skater Sasha Cohen in motion of (a) pure translation in a fixed
direction and (b) pure rotation about a vertical axis.
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22310-1 ROTATIONAL VARIABLES

letters) to sort out. (2) Although you are very familiar with linear motion (you
can get across the room and down the road just fine), you are probably very
unfamiliar with rotation (and that is one reason why you are willing to pay so
much for amusement park rides). If a homework problem looks like a foreign
language to you, see if translating it into the one-dimensional linear motion of
Chapter 2 helps. For example, if you are to find, say, an angular distance, tem-
porarily delete the word angular and see if you can work the problem with the
Chapter 2 notation and ideas.

Rotational Variables
We wish to examine the rotation of a rigid body about a fixed axis.A rigid body is
a body that can rotate with all its parts locked together and without any change in
its shape. A fixed axis means that the rotation occurs about an axis that does not
move. Thus, we shall not examine an object like the Sun, because the parts of the
Sun (a ball of gas) are not locked together. We also shall not examine an object
like a bowling ball rolling along a lane, because the ball rotates about a moving
axis (the ball’s motion is a mixture of rotation and translation).

Figure 10-2 shows a rigid body of arbitrary shape in rotation about a fixed
axis, called the axis of rotation or the rotation axis. In pure rotation (angular 
motion), every point of the body moves in a circle whose center lies on the axis of
rotation, and every point moves through the same angle during a particular time
interval. In pure translation (linear motion), every point of the body moves in a
straight line, and every point moves through the same linear distance during a
particular time interval.

We deal now—one at a time—with the angular equivalents of the linear
quantities position, displacement, velocity, and acceleration.

Angular Position
Figure 10-2 shows a reference line, fixed in the body, perpendicular to the rotation
axis and rotating with the body. The angular position of this line is the angle of
the line relative to a fixed direction, which we take as the zero angular position.
In Fig. 10-3, the angular position u is measured relative to the positive direction of
the x axis. From geometry, we know that u is given by

(radian measure). (10-1)

Here s is the length of a circular arc that extends from the x axis (the zero angular
position) to the reference line, and r is the radius of the circle.

u �
s
r

Figure 10-2 A rigid body of arbitrary shape in pure rotation about the z axis of a coordinate
system. The position of the reference line with respect to the rigid body is arbitrary, but it is
perpendicular to the rotation axis. It is fixed in the body and rotates with the body.

z 

O 

Reference line 

Rotation 
axis 

x 

y 

Body This reference line is part of the body
and perpendicular to the rotation axis. 
We use it to measure the rotation of the
body relative to a fixed direction.

Figure 10-3 The rotating rigid body of
Fig. 10-2 in cross section, viewed from
above. The plane of the cross section is
perpendicular to the rotation axis, which
now extends out of the page, toward you.
In this position of the body, the reference
line makes an angle u with the x axis.
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y 
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θ
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Rotation
axis

The body has rotated
counterclockwise
by angle   . This is the
positive direction.

θ

This dot means that 
the rotation axis is 
out toward you.
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An angle defined in this way is measured in radians (rad) rather than in
revolutions (rev) or degrees. The radian, being the ratio of two lengths, is a
pure number and thus has no dimension. Because the circumference of a circle of
radius r is 2pr, there are 2p radians in a complete circle:

(10-2)

and thus 1 rad � 57.3� � 0.159 rev. (10-3)

We do not reset u to zero with each complete rotation of the reference line about
the rotation axis. If the reference line completes two revolutions from the zero
angular position, then the angular position u of the line is u � 4p rad.

For pure translation along an x axis, we can know all there is to know
about a moving body if we know x(t), its position as a function of time.
Similarly, for pure rotation, we can know all there is to know about a rotating
body if we know u(t), the angular position of the body’s reference line as a
function of time.

Angular Displacement
If the body of Fig. 10-3 rotates about the rotation axis as in Fig. 10-4, changing the
angular position of the reference line from u1 to u2, the body undergoes an 
angular displacement �u given by

�u � u2 � u1. (10-4)

This definition of angular displacement holds not only for the rigid body as a
whole but also for every particle within that body.

Clocks Are Negative. If a body is in translational motion along an x axis, its
displacement �x is either positive or negative, depending on whether the body is
moving in the positive or negative direction of the axis. Similarly, the angular dis-
placement �u of a rotating body is either positive or negative, according to the
following rule:

1 rev � 360� �
2pr

r
� 2p rad,

224 CHAPTER 10 ROTATION

An angular displacement in the counterclockwise direction is positive, and one in
the clockwise direction is negative.

Checkpoint 1
A disk can rotate about its central axis like a merry-go-round.Which of the following
pairs of values for its initial and final angular positions, respectively, give a negative 
angular displacement: (a) �3 rad, �5 rad, (b) �3 rad, �7 rad, (c) 7 rad, �3 rad?

The phrase “clocks are negative” can help you remember this rule (they certainly
are negative when their alarms sound off early in the morning).

Angular Velocity
Suppose that our rotating body is at angular position u1 at time t1 and at 
angular position u2 at time t2 as in Fig. 10-4. We define the average angular velocity
of the body in the time interval �t from t1 to t2 to be

(10-5)

where �u is the angular displacement during �t (v is the lowercase  omega).

vavg �
u2 � u1

t2 � t1
�

�u

�t
,
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22510-1 ROTATIONAL VARIABLES

Figure 10-4 The reference line of the rigid body of Figs. 10-2 and 10-3 is at angular position
u1 at time t1 and at angular position u2 at a later time t2. The quantity �u (� u2 � u1) is the
angular displacement that occurs during the interval �t (� t2 � t1). The body itself is not
shown.

x 

y 

Rotation axis O 
θ   1 

θ   2 

Δ   θ 

At t2 

At t1 

Reference line

This change in the angle of the reference line 
(which is part of the body) is equal to the angular
displacement of the body itself during this 
time interval.

The (instantaneous) angular velocity v, with which we shall be most con-
cerned, is the limit of the ratio in Eq. 10-5 as �t approaches zero.Thus,

(10-6)

If we know u(t), we can find the angular velocity v by differentiation.
Equations 10-5 and 10-6 hold not only for the rotating rigid body as a whole

but also for every particle of that body because the particles are all locked
together. The unit of angular velocity is commonly the radian per second (rad/s)
or the revolution per second (rev/s). Another measure of angular velocity was
used during at least the first three decades of rock: Music was produced by vinyl
(phonograph) records that were played on turntables at “ ” or “45 rpm,”
meaning at or 45 rev/min.

If a particle moves in translation along an x axis, its linear velocity v is either
positive or negative, depending on its direction along the axis. Similarly, the angu-
lar velocity v of a rotating rigid body is either positive or negative, depending on
whether the body is rotating counterclockwise (positive) or clockwise (negative).
(“Clocks are negative” still works.) The magnitude of an angular velocity is called
the angular speed, which is also represented with v.

Angular Acceleration
If the angular velocity of a rotating body is not constant, then the body has an an-
gular acceleration. Let v2 and v1 be its angular velocities at times t2 and t1,
respectively.The average angular acceleration of the rotating body in the interval
from t1 to t2 is defined as

(10-7)

in which �v is the change in the angular velocity that occurs during the time
interval �t. The (instantaneous) angular acceleration a, with which we shall be
most concerned, is the limit of this quantity as �t approaches zero.Thus,

(10-8)

As the name suggests, this is the angular acceleration of the body at a given in-
stant. Equations 10-7 and 10-8 also hold for every particle of that body. The unit of
angular acceleration is commonly the radian per second-squared (rad/s2) or the
revolution per second-squared (rev/s2).

a � lim
�t:0

 
�v

�t
�

dv

dt
.

aavg �
v 2 � v 1

t2 � t1
�

�v

�t
,

331
3 rev/min

331
3 rpm

v � lim
�t:0

 
�u

�t
�

du

dt
.
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226 CHAPTER 10 ROTATION

Calculations: To sketch the disk and its reference line at a
particular time, we need to determine u for that time. To do
so, we substitute the time into Eq. 10-9. For t � �2.0 s, we get

This means that at t � �2.0 s the reference line on the disk
is rotated counterclockwise from the zero position by angle
1.2 rad � 69� (counterclockwise because u is positive). Sketch
1 in Fig. 10-5b shows this position of the reference line.

Similarly, for t � 0, we find u � �1.00 rad � �57�,
which means that the reference line is rotated clockwise
from the zero angular position by 1.0 rad, or 57�, as shown
in sketch 3. For t � 4.0 s, we find u � 0.60 rad � 34�
(sketch 5). Drawing sketches for when the curve crosses
the t axis is easy, because then u � 0 and the reference line
is momentarily aligned with the zero angular position
(sketches 2 and 4).

(b) At what time tmin does u(t) reach the minimum 
value shown in Fig. 10-5b? What is that minimum value?

 � 1.2 rad � 1.2 rad 
360�

2� rad
� 69�.

 u � �1.00 � (0.600)(�2.0) � (0.250)(�2.0)2

Sample Problem 10.01 Angular velocity derived from angular position

The disk in Fig. 10-5a is rotating about its central axis like a
merry-go-round. The angular position u(t) of a reference
line on the disk is given by

u � �1.00 � 0.600t � 0.250t2, (10-9)

with t in seconds, u in radians, and the zero angular position
as indicated in the figure. (If you like, you can translate all
this into Chapter 2 notation by momentarily dropping the
word “angular” from “angular position” and replacing the
symbol u with the symbol x. What you then have is an equa-
tion that gives the position as a function of time, for the one-
dimensional motion of Chapter 2.)

(a) Graph the angular position of the disk versus time
from t � �3.0 s to t � 5.4 s. Sketch the disk and its angular
position reference line at t � �2.0 s, 0 s, and 4.0 s, and
when the curve crosses the t axis.

KEY IDEA

The angular position of the disk is the angular position 
u(t) of its reference line, which is given by Eq. 10-9 as a function
of time t. So we graph Eq. 10-9; the result is shown in Fig. 10-5b.

A

Zero
angular
position

Reference
line

Rotation axis

(a)

(b)

2

0

–2
0 2 4 6

(rad)

(1) (2) (3) (4) (5)

t (s)

θ

–2

The angular position
of the disk is the angle
between these two lines.

Now, the disk is
at a zero angle.

θ

At t = −2 s, the disk
is at a positive
(counterclockwise)
angle. So, a positive
   value is plotted.

This is a plot of the angle
of the disk versus time.

Now, it is at a
negative (clockwise)
angle. So, a negative
   value is plotted.θ

It has reversed
its rotation and
is again at a
zero angle.

Now, it is
back at a
positive
angle.

Figure 10-5 (a) A rotating disk. (b) A plot of the disk’s angular position u(t). Five sketches indicate the angular position of the refer-
ence line on the disk for five points on the curve. (c) A plot of the disk’s angular velocity v(t). Positive values of v correspond to
counterclockwise rotation, and negative values to clockwise rotation.

halliday_c10_221-254v3.0.1.qxd  3/5/14  9:57 AM  Page 226

Uploaded By: Ayham NobaniSTUDENTS-HUB.com



22710-1 ROTATIONAL VARIABLES

t � �3.0 s to t � 6.0 s. Sketch the disk and indicate the direc-
tion of turning and the sign of v at t � �2.0 s,4.0 s,and tmin.

KEY IDEA

From Eq. 10-6, the angular velocity v is equal to du/dt as
given in Eq. 10-10. So, we have

v � �0.600 � 0.500t. (10-11)

The graph of this function v(t) is shown in Fig. 10-5c.
Because the function is linear, the plot is a straight line. The
slope is 0.500 rad/s2 and the intercept with the vertical axis
(not shown) is  �0.600 rad/s.

Calculations: To sketch the disk at t � �2.0 s, we substitute
that value into Eq. 10-11, obtaining

v � �1.6 rad/s. (Answer)

The minus sign here tells us that at t � �2.0 s, the disk is
turning clockwise (as indicated by the left-hand  sketch in
Fig. 10-5c).

Substituting t � 4.0 s into Eq. 10-11 gives us

v � 1.4 rad/s. (Answer)

The implied plus sign tells us that now the disk is turning
counterclockwise (the right-hand sketch in Fig. 10-5c).

For tmin, we already know that du/dt � 0. So, we must
also have v � 0. That is, the disk momentarily stops when
the reference line reaches the minimum value of u in
Fig. 10-5b, as suggested by the center sketch in Fig. 10-5c. On
the graph of v versus t in Fig. 10-5c, this momentary stop is
the zero point where the plot changes from the negative
clockwise motion to the positive counterclockwise motion.

(d) Use the results in parts (a) through (c) to describe the
motion of the disk from t � �3.0 s to t � 6.0 s.

Description: When we first observe the disk at t � �3.0 s, it
has a positive angular position and is turning clockwise but
slowing. It stops at angular position u � �1.36 rad and then
begins to turn counterclockwise, with its angular position
eventually becoming positive again.

KEY IDEA

To find the extreme value (here the minimum) of a function,
we take the first derivative of the function and set the result
to zero.

Calculations: The first derivative of u(t) is

(10-10)

Setting this to zero and solving for t give us the time at
which u(t) is minimum:

tmin � 1.20 s. (Answer)

To get the minimum value of u, we next substitute tmin into
Eq. 10-9, finding

u � �1.36 rad � �77.9�. (Answer)

This minimum of u(t) (the bottom of the curve in Fig. 10-5b)
corresponds to the maximum clockwise rotation of the disk
from the zero angular position, somewhat more than is
shown in sketch 3.

(c) Graph the angular velocity v of the disk versus time from 

du

dt
� �0.600 � 0.500t.

(c)

2

0

–2
–2 0 2 4 6

(rad/s)ω

t (s)

negative ω zero ω positive ω

This is a plot of the angular
velocity of the disk versus time.

The angular velocity is
initially negative and slowing,
then momentarily zero during
reversal, and then positive and
increasing.

Additional examples, video, and
practice available at WileyPLUS
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228 CHAPTER 10 ROTATION

Are Angular Quantities Vectors?
We can describe the position, velocity, and acceleration of a single particle by
means of vectors. If the particle is confined to a straight line, however, we do not
really need vector notation. Such a particle has only two directions available to it,
and we can indicate these directions with plus and minus signs.

In the same way, a rigid body rotating about a fixed axis can rotate only
clockwise or counterclockwise as seen along the axis, and again we can select
between the two directions by means of plus and minus signs.The question arises:
“Can we treat the angular displacement, velocity, and acceleration of a rotating
body as vectors?” The answer is a qualified “yes” (see the caution below, in con-
nection with angular displacements).

Angular Velocities. Consider the angular velocity. Figure 10-6a shows a
vinyl record rotating on a turntable. The record has a constant angular speed

in the clockwise direction. We can represent its angular ve-
locity as a vector pointing along the axis of rotation, as in Fig. 10-6b. Here’s
how: We choose the length of this vector according to some convenient scale,
for example, with 1 cm corresponding to 10 rev/min. Then we establish a direc-
tion for the vector by using a right-hand rule, as Fig. 10-6c shows: Curl your
right hand about the rotating record, your fingers pointing in the direction of
rotation. Your extended thumb will then point in the direction of the angular
velocity vector. If the record were to rotate in the opposite sense, the right-

v:

v:
v (� 331

3 rev/min)

To evaluate the constant of integration C, we note that v �
5 rad/s at t � 0. Substituting these values in our expression
for v yields

,

so C � 5 rad/s.Then

. (Answer)

(b) Obtain an expression for the angular position u(t) of the
top.

KEY IDEA

By definition, v(t) is the derivative of u(t) with respect to
time. Therefore, we can find u(t) by integrating v(t) with 
respect to time.

Calculations: Since Eq. 10-6 tells us that

du � v dt,
we can write

(Answer)

where C� has been evaluated by noting that u � 2 rad at t � 0.

 � 1
4 
t5 � 2

3 
t3 � 5t � 2,

 � 1
4 
t5 � 2

3 
t3 � 5t � C�

 u � � v  dt � � (5
4 
t4 � 2t2 � 5) dt

v � 5
4 
t4 � 2t2 � 5

5 rad/s � 0 � 0 � C

Sample Problem 10.02 Angular velocity derived from angular acceleration

A child’s top is spun with angular acceleration

,

with t in seconds and a in radians per second-squared. At
t � 0, the top has angular velocity 5 rad/s, and a reference
line on it is at angular position u � 2 rad.

(a) Obtain an expression for the angular velocity v(t) of the
top.That is, find an expression that explicitly indicates how the
angular velocity depends on time. (We can tell that there is
such a dependence because the top is undergoing an angular
acceleration,which means that its angular velocity is changing.)

KEY IDEA

By definition, a(t) is the derivative of v(t) with respect to time.
Thus, we can find v(t) by integrating a(t) with respect to time.

Calculations: Equation 10-8 tells us

,

so .

From this we find

.v � �(5t3 � 4t) dt � 5
4t

4 � 4
2t

2 � C

� dv � �a  dt

dv � a dt

a � 5t3 � 4t

Additional examples, video, and practice available at WileyPLUS
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22910-1 ROTATIONAL VARIABLES

hand rule would tell you that the angular velocity vector then points in the op-
posite direction.

It is not easy to get used to representing angular quantities as vectors. We in-
stinctively expect that something should be moving along the direction of a vec-
tor. That is not the case here. Instead, something (the rigid body) is rotating
around the direction of the vector. In the world of pure rotation, a vector defines
an axis of rotation, not a direction in which something moves. Nonetheless, the
vector also defines the motion. Furthermore, it obeys all the rules for vector
manipulation discussed in Chapter 3. The angular acceleration is another
vector, and it too obeys those rules.

In this chapter we consider only rotations that are about a fixed axis. For such
situations, we need not consider vectors—we can represent angular velocity with
v and angular acceleration with a, and we can indicate direction with an implied
plus sign for counterclockwise or an explicit minus sign for clockwise.

Angular Displacements. Now for the caution: Angular displacements
(unless they are very small) cannot be treated as vectors. Why not? We can cer-
tainly give them both magnitude and direction, as we did for the angular veloc-
ity vector in Fig. 10-6. However, to be represented as a vector, a quantity must
also obey the rules of vector addition, one of which says that if you add two
vectors, the order in which you add them does not matter. Angular displace-
ments fail this test.

Figure 10-7 gives an example. An initially horizontal book is given two
90� angular displacements, first in the order of Fig. 10-7a and then in the order
of Fig. 10-7b. Although the two angular displacements are identical, their order
is not, and the book ends up with different orientations. Here’s another exam-
ple. Hold your right arm downward, palm toward your thigh. Keeping your
wrist rigid, (1) lift the arm forward until it is horizontal, (2) move it horizon-
tally until it points toward the right, and (3) then bring it down to your side.
Your palm faces forward. If you start over, but reverse the steps, which way
does your palm end up facing? From either example, we must conclude that
the addition of two angular displacements depends on their order and they
cannot be vectors.

a:

Figure 10-6 (a) A record rotating about a vertical axis that coincides with the axis of the
spindle. (b) The angular velocity of the rotating record can be represented by the vector

, lying along the axis and pointing down, as shown. (c) We establish the direction of the
angular velocity vector as downward by using a right-hand rule. When the fingers of the
right hand curl around the record and point the way it is moving, the extended thumb
points in the direction of .v:

v:

z z z

(a) (b) (c) 

Axis Axis Axis

ω 

Spindle 

ω 

This right-hand rule
establishes the
direction of the
angular velocity
vector.

Figure 10-7 (a) From its initial position, at
the top, the book is given two successive
90� rotations, first about the (horizontal)
x axis and then about the (vertical) y axis.
(b) The book is given the same rotations,
but in the reverse order.
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z The order of the
rotations makes
a big difference
in the result.
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230 CHAPTER 10 ROTATION

Rotation with Constant Angular Acceleration
In pure translation, motion with a constant linear acceleration (for example, that
of a falling body) is an important special case. In Table 2-1, we displayed a series
of equations that hold for such motion.

In pure rotation, the case of constant angular acceleration is also important,
and a parallel set of equations holds for this case also. We shall not derive them
here, but simply write them from the corresponding linear equations, substituting
equivalent angular quantities for the linear ones.This is done in Table 10-1, which
lists both sets of equations (Eqs. 2-11 and 2-15 to 2-18; 10-12 to 10-16).

Recall that Eqs. 2-11 and 2-15 are basic equations for constant linear 
acceleration—the other equations in the Linear list can be derived from them.
Similarly, Eqs. 10-12 and 10-13 are the basic equations for constant angular
acceleration, and the other equations in the Angular list can be derived from
them.To solve a simple problem involving constant angular acceleration, you can
usually use an equation from the Angular list (if you have the list). Choose
an equation for which the only unknown variable will be the variable requested
in the problem. A better plan is to remember only Eqs. 10-12 and 10-13, and then
solve them as simultaneous equations whenever needed.

10-2 ROTATION WITH CONSTANT ANGULAR ACCELERATION

After reading this module, you should be able to . . .

10.14 For constant angular acceleration, apply the relation-
ships between angular position, angular displacement, 

Key Idea
● Constant angular acceleration (a � constant) is an important special case of rotational motion. The appropriate kinematic
equations are

v � v0 � at,

u � u0 � vt � 1
2 at2.

u � u0 � 1
2 (v0 � v)t,

v2 � v0
2 � 2a(u � u0),

u � u0 � v0t � 1
2at2,

Learning Objective

angular velocity, angular acceleration, and elapsed time 
(Table 10-1).

Table 10-1 Equations of Motion for Constant Linear Acceleration and for Constant Angular Acceleration

Equation Linear Missing Angular Equation
Number Equation Variable Equation Number

(2-11) v � v0 � at x � x0 u � u0 v � v0 � at (10-12)
(2-15) v v (10-13)
(2-16) t t (10-14)
(2-17) a a (10-15)
(2-18) v0 v0 (10-16)u � u0 � vt � 1

2at2x � x0 � vt � 1
2at2

u � u0 � 1
2(v0 � v)tx � x0 � 1

2(v0 � v)t

v2 � v0
2 � 2a(u � u0)v2 � v0

2 � 2a(x � x0)
u � u0 � v0t � 1

2at2x � x0 � v0 t � 1
2 at2

Checkpoint 2
In four situations, a rotating body has angular position u(t) given by (a) u � 3t � 4,
(b) u � �5t3 � 4t2 � 6, (c) u � 2/t2 � 4/t, and (d) u � 5t2 � 3.To which situations do
the angular equations of Table 10-1 apply?
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23110-2 ROTATION WITH CONSTANT ANGULAR ACCELERATION

(We converted 5.0 rev to 10p rad to keep the units consis-
tent.) Solving this quadratic equation for t, we find

t � 32 s. (Answer)

Now notice something a bit strange. We first see the wheel
when it is rotating in the negative direction and through the
u � 0 orientation.Yet, we just found out that 32 s later it is at
the positive orientation of u � 5.0 rev. What happened in
that time interval so that it could be at a positive orientation?

(b) Describe the grindstone’s rotation between t � 0 and 
t � 32 s.

Description: The wheel is initially rotating in the negative
(clockwise) direction with angular velocity v0 � �4.6 rad/s,
but its angular acceleration a is positive. This initial opposi-
tion of the signs of angular velocity and angular accelera-
tion means that the wheel slows in its rotation in the nega-
tive direction, stops, and then reverses to rotate in the
positive direction. After the reference line comes back
through its initial orientation of u � 0, the wheel turns an
additional 5.0 rev by time t � 32 s.

(c) At what time t does the grindstone momentarily stop?

Calculation: We again go to the table of equations for con-
stant angular acceleration, and again we need an equation
that contains only the desired unknown variable t. However,
now the equation must also contain the variable v, so that we
can set it to 0 and then solve for the corresponding time t. We
choose Eq. 10-12, which yields

(Answer)t �
v � v0

a
�

0 � (�4.6 rad/s)
0.35 rad/s2 � 13 s.

Sample Problem 10.03 Constant angular acceleration, grindstone

A grindstone (Fig. 10-8) rotates at constant angular acceler-
ation a � 0.35 rad/s2. At time t � 0, it has an angular velocity
of v0 � �4.6 rad/s and a reference line on it is horizontal, at
the angular position u0 � 0.

(a) At what time after t � 0 is the reference line at the 
angular position u � 5.0 rev?

KEY IDEA

The angular acceleration is constant, so we can use the rota-
tion equations of Table 10-1.We choose Eq. 10-13,

,

because the only unknown variable it contains is the desired
time t.

Calculations: Substituting known values and setting u0 � 0
and u � 5.0 rev � 10p rad give us

.10p rad � (�4.6 rad/s)t � 1
2 (0.35 rad/s2)t2

u � u0 � v0t � 1
2 at2

Figure 10-8 A grindstone. At t � 0 the reference line (which we
imagine to be marked on the stone) is horizontal.

Axis

Reference
line

Zero angular
position

We measure rotation by using
this reference line.
Clockwise = negative
Counterclockwise = positive

rad/s, the angular displacement is u � u0 � 20.0 rev, and the
angular velocity at the end of that displacement is v � 2.00
rad/s. In addition to the angular acceleration a that we want,
both basic equations also contain time t, which we do not
necessarily want.

To eliminate the unknown t, we use Eq. 10-12 to write

which we then substitute into Eq. 10-13 to write

Solving for a, substituting known data, and converting
20 rev to 125.7 rad, we find

(Answer) � �0.0301 rad/s2.

 a �
v2 � v0

2

2(u � u0)
�

(2.00 rad/s)2 � (3.40 rad/s)2

2(125.7 rad)

u � u0 � v0� v � v0

a � � 1
2 a� v � v0

a
 �

2

.

t �
v � v0

a
,

Sample Problem 10.04 Constant angular acceleration, riding a Rotor

While you are operating a Rotor (a large, vertical, rotating
cylinder found in amusement parks), you spot a passenger in
acute distress and decrease the angular velocity of the cylin-
der from 3.40 rad/s to 2.00 rad/s in 20.0 rev, at constant angu-
lar acceleration. (The passenger is obviously more of a “trans-
lation person” than a “rotation person.”)

(a) What is the constant angular acceleration during this
decrease in angular speed?

KEY IDEA

Because the cylinder’s angular acceleration is constant, we
can relate it to the angular velocity and angular displacement
via the basic equations for constant angular acceleration
(Eqs. 10-12 and 10-13).

Calculations: Let’s first do a quick check to see if we can solve
the basic equations. The initial angular velocity is v0 � 3.40
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232 CHAPTER 10 ROTATION

Relating the Linear and Angular Variables
In Module 4-5,we discussed uniform circular motion, in which a particle travels at con-
stant linear speed v along a circle and around an axis of rotation. When a rigid body,
such as a merry-go-round,rotates around an axis,each particle in the body moves in its
own circle around that axis. Since the body is rigid, all the particles make one revolu-
tion in the same amount of time;that is, they all have the same angular speed v.

However, the farther a particle is from the axis, the greater the circumference
of its circle is, and so the faster its linear speed v must be. You can notice this on a
merry-go-round. You turn with the same angular speed v regardless of your dis-
tance from the center, but your linear speed v increases noticeably if you move to
the outside edge of the merry-go-round.

We often need to relate the linear variables s, v, and a for a particular point in
a rotating body to the angular variables u, v, and a for that body. The two sets of
variables are related by r, the perpendicular distance of the point from the
rotation axis. This perpendicular distance is the distance between the point and
the rotation axis, measured along a perpendicular to the axis. It is also the radius r
of the circle traveled by the point around the axis of rotation.

(b) How much time did the speed decrease take?

Calculation: Now that we know a, we can use Eq. 10-12 to
solve for t: (Answer) � 46.5 s.

 t �
v � v0

a
�

2.00 rad/s � 3.40 rad/s
�0.0301 rad/s2

10-3 RELATING THE LINEAR AND ANGULAR VARIABLES

After reading this module, you should be able to . . .

10.15 For a rigid body rotating about a fixed axis, relate the angular
variables of the body (angular position, angular velocity, and an-
gular acceleration) and the linear variables of a particle on the
body (position, velocity, and acceleration) at any given radius.

10.16 Distinguish between tangential acceleration and radial
acceleration, and draw a vector for each in a sketch of a
particle on a body rotating about an axis, for both an in-
crease in angular speed and a decrease.

● A point in a rigid rotating body, at a perpendicular distance
r from the rotation axis, moves in a circle with radius r. If the
body rotates through an angle u, the point moves along an
arc with length s given by

s � ur (radian measure),

where u is in radians.

● The linear velocity of the point is tangent to the circle; the
point’s linear speed v is given by

v � vr (radian measure),

where v is the angular speed (in radians per second) of the body,
and thus also the point.

v:

● The linear acceleration of the point has both tangential
and radial components. The tangential component is

at � ar (radian measure),

where a is the magnitude of the angular acceleration (in radi-
ans per second-squared) of the body. The radial component
of is

(radian measure).

● If the point moves in uniform circular motion, the period T of
the motion for the point and the body is

(radian measure).T �
2pr

v
�

2p

v

ar �
v2

r
� v2r

a:

a:

Learning Objectives

Key Ideas

Additional examples, video, and practice available at WileyPLUS
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23310-3 RELATING THE LINEAR AND ANGULAR VARIABLES

The Position
If a reference line on a rigid body rotates through an angle u, a point within the
body at a position r from the rotation axis moves a distance s along a circular arc,
where s is given by Eq. 10-1:

s � ur (radian measure). (10-17)

This is the first of our linear–angular relations. Caution: The angle u here must be
measured in radians because Eq. 10-17 is itself the definition of angular measure
in radians.

The Speed
Differentiating Eq. 10-17 with respect to time—with r held constant—leads to

However, ds/dt is the linear speed (the magnitude of the linear velocity) of the
point in question, and du/dt is the angular speed v of the rotating body. So

v � vr (radian measure). (10-18)

Caution: The angular speed v must be expressed in radian measure.
Equation 10-18 tells us that since all points within the rigid body have the

same angular speed v, points with greater radius r have greater linear speed v.
Figure 10-9a reminds us that the linear velocity is always tangent to the circular
path of the point in question.

If the angular speed v of the rigid body is constant, then Eq. 10-18 tells
us that the linear speed v of any point within it is also constant. Thus, each point
within the body undergoes uniform circular motion. The period of revolution T
for the motion of each point and for the rigid body itself is given by Eq. 4-35:

. (10-19)

This equation tells us that the time for one revolution is the distance 2pr traveled
in one revolution divided by the speed at which that distance is traveled.
Substituting for v from Eq. 10-18 and canceling r, we find also that

(radian measure). (10-20)

This equivalent equation says that the time for one revolution is the angular dis-
tance 2p rad traveled in one revolution divided by the angular speed (or rate) at
which that angle is traveled.

The Acceleration
Differentiating Eq. 10-18 with respect to time—again with r held constant—
leads to

(10-21)

Here we run up against a complication. In Eq. 10-21, dv/dt represents only the
part of the linear acceleration that is responsible for changes in the magnitude v
of the linear velocity . Like , that part of the linear acceleration is tangent to
the path of the point in question. We call it the tangential component at of the lin-
ear acceleration of the point, and we write

at � ar (radian measure), (10-22)

v:v:

dv
dt

�
dv

dt
 r.

T �
2p

v

T �
2pr

v

ds
dt

�
du

dt
 r.

Figure 10-9 The rotating rigid body of Fig. 10-2,
shown in cross section viewed from above.
Every point of the body (such as P) moves
in a circle around the rotation axis. (a) The
linear velocity of every point is tangent to
the circle in which the point moves. (b) The
linear acceleration of the point has (in
general) two components: tangential at and
radial ar.

a:

v:

x 

y 

r 

Rotation 
axis 

P 

Circle 
traveled by P 

(a) 

v 

The velocity vector is
always tangent to this
circle around the
rotation axis.

x

y

ar

P

(b)

at

Rotation
axis

The acceleration always
has a radial (centripetal)
component and may have
a tangential component.
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234 CHAPTER 10 ROTATION

where a � dv/dt. Caution: The angular acceleration a in Eq. 10-22 must be
expressed in radian measure.

In addition, as Eq. 4-34 tells us, a particle (or point) moving in a circular path
has a radial component of linear acceleration, ar � v2/r (directed radially inward),
that is responsible for changes in the direction of the linear velocity . By substi-
tuting for v from Eq. 10-18, we can write this component as

(radian measure). (10-23)

Thus, as Fig. 10-9b shows, the linear acceleration of a point on a rotating rigid
body has, in general, two components. The radially inward component ar (given
by Eq. 10-23) is present whenever the angular velocity of the body is not zero.
The tangential component at (given by Eq. 10-22) is present whenever the angu-
lar acceleration is not zero.

ar �
v2

r
� v2r

v:

Checkpoint 3
A cockroach rides the rim of a rotating merry-go-round. If the angular speed of this
system (merry-go-round � cockroach) is constant, does the cockroach have (a) radial
acceleration and (b) tangential acceleration? If v is decreasing, does the cockroach
have (c) radial acceleration and (d) tangential acceleration?

and radial accelerations are the (perpendicular) compo-
nents of the (full) acceleration .

Calculations: Let’s go through the steps. We first find the
angular velocity by taking the time derivative of the given
angular position function and then substituting the given
time of t � 2.20 s:

v � (ct3) � 3ct2 (10-25)

� 3(6.39 	 10�2 rad/s3)(2.20 s)2

� 0.928 rad/s. (Answer)

From Eq. 10-18, the linear speed just then is

v � vr � 3ct2r (10-26)
� 3(6.39 	 10�2 rad/s3)(2.20 s)2(33.1 m)

� 30.7 m/s. (Answer)

du

dt
�

d
dt

a:

Sample Problem 10.05 Designing The Giant Ring, a large-scale amusement park ride

We are given the job of designing a large horizontal ring
that will rotate around a vertical axis and that will have a ra-
dius of r � 33.1 m (matching that of Beijing’s The Great
Observation Wheel, the largest Ferris wheel in the world).
Passengers will enter through a door in the outer wall of the
ring and then stand next to that wall (Fig. 10-10a).We decide
that for the time interval t � 0 to t � 2.30 s, the angular posi-
tion u(t) of a reference line on the ring will be given by

u � ct3, (10-24)

with c � 6.39 	 10�2 rad/s3. After t � 2.30 s, the angular
speed will be held constant until the end of the ride. Once
the ring begins to rotate, the floor of the ring will drop away
from the riders but the riders will not fall—indeed, they feel
as though they are pinned to the wall. For the time t � 2.20 s,
let’s determine a rider’s angular speed v, linear speed v, an-
gular acceleration a, tangential acceleration at, radial accel-
eration ar, and acceleration .

KEY IDEAS

(1) The angular speed v is given by Eq. 10-6 (v � du/dt).
(2) The linear speed v (along the circular path) is related to
the angular speed (around the rotation axis) by Eq. 10-18 
(v � vr). (3) The angular acceleration a is given by Eq. 10-8
(a � dv/dt). (4) The tangential acceleration at (along the cir-
cular path) is related to the angular acceleration (around
the rotation axis) by Eq. 10-22 (at � ar). (5) The radial accel-
eration ar is given Eq. 10-23 (ar � v2r). (6) The tangential

a:

u

a

ar

at

(b)(a)

Figure 10-10 (a) Overhead view of
a passenger ready to ride The
Giant Ring. (b) The radial and
tangential acceleration compo-
nents of the (full) acceleration.
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23510-4 KINETIC ENERGY OF ROTATION

The radial and tangential accelerations are perpendicu-
lar to each other and form the components of the rider’s 
acceleration (Fig. 10-10b). The magnitude of is given by

a � (10-29)

39.9 m/s2, (Answer)

or 4.1g (which is really exciting!). All these values are 
acceptable.

To find the orientation of , we can calculate the angle u
shown in Fig. 10-10b:

tan u �

However, instead of substituting our numerical results, let’s
use the algebraic results from Eqs. 10-27 and 10-28:

u � tan�1 . (10-30)

The big advantage of solving for the angle algebraically is that
we can then see that the angle (1) does not depend on the
ring’s radius and (2) decreases as t goes from 0 to 2.20 s. That
is, the acceleration vector swings toward being radially in-
ward because the radial acceleration (which depends on t4)
quickly dominates over the tangential acceleration (which
depends on only t).At our given time t � 2.20 s, we have

u �. (Answer)� tan�1 2
3(6.39 	 10�2 rad/s3)(2.20 s)3 � 44.4

a:

� 6ctr
9c2t4r � � tan�1� 2

3ct3 �

at

ar
.

a:

�

� 2(28.49 m/s2)2 � (27.91 m/s2)2

2a2
r � a2

t

a:a:

Although this is fast (111 km/h or 68.7 mi/h), such speeds are
common in amusement parks and not alarming because (as
mentioned in Chapter 2) your body reacts to accelerations but
not to velocities. (It is an accelerometer, not a speedometer.)
From Eq. 10-26 we see that the linear speed is increasing as the
square of the time (but this increase will cut off at t � 2.30 s).

Next, let’s tackle the angular acceleration by taking the
time derivative of Eq. 10-25:

a � (3ct2) � 6ct

� 6(6.39 	 10�2 rad/s3)(2.20 s) � 0.843 rad/s2. (Answer)

The tangential acceleration then follows from Eq. 10-22:

at � ar � 6ctr (10-27)

� 6(6.39 	 10�2 rad/s3)(2.20 s)(33.1 m)

� 27.91 m/s2 27.9 m/s2, (Answer)

or 2.8g (which is reasonable and a bit exciting). Equation 
10-27 tells us that the tangential acceleration is increasing
with time (but it will cut off at t � 2.30 s). From Eq. 10-23,
we write the radial acceleration as

ar � v2r.

Substituting from Eq. 10-25 leads us to

ar � (3ct2)2r � 9c2t4r (10-28)

� 9(6.39 	 10�2 rad/s3)2(2.20 s)4(33.1 m)

� 28.49 m/s2 28.5 m/s2, (Answer)

or 2.9g (which is also reasonable and a bit exciting).

�

�

dv

dt
�

d
dt

10-4 KINETIC ENERGY OF ROTATION

After reading this module, you should be able to . . .

10.17 Find the rotational inertia of a particle about a point.
10.18 Find the total rotational inertia of many particles moving

around the same fixed axis. 

10.19 Calculate the rotational kinetic energy of a 
body in terms of its rotational inertia and its angular 
speed.

● The kinetic energy K of a rigid body rotating about a fixed
axis is given by

(radian measure),K � 1
2Iv2

in which I is the rotational inertia of the body, defined as

for a system of discrete particles.

I � � miri
2

Learning Objectives

Key Idea

Kinetic Energy of Rotation
The rapidly rotating blade of a table saw certainly has kinetic energy due to that
rotation. How can we express the energy? We cannot apply the familiar formula

to the saw as a whole because that would give us the kinetic energy
only of the saw’s center of mass, which is zero.
K � 1

2 mv2

Additional examples, video, and practice available at WileyPLUS
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236 CHAPTER 10 ROTATION

Figure 10-11 A long rod is much easier to
rotate about (a) its central (longitudinal)
axis than about (b) an axis through its 
center and perpendicular to its length. The
reason for the difference is that the mass
is distributed closer to the rotation axis in
(a) than in (b).

Rotation 
axis 

(a) 

(b) 

Rod is easy to rotate
this way.

Harder this way.

Instead, we shall treat the table saw (and any other rotating rigid body) as a
collection of particles with different speeds. We can then add up the kinetic
energies of all the particles to find the kinetic energy of the body as a whole.
In this way we obtain, for the kinetic energy of a rotating body,

(10-31)

in which mi is the mass of the ith particle and vi is its speed.The sum is taken over
all the particles in the body.

The problem with Eq. 10-31 is that vi is not the same for all particles.We solve
this problem by substituting for v from Eq. 10-18 (v � vr), so that we have

(10-32)

in which v is the same for all particles.
The quantity in parentheses on the right side of Eq. 10-32 tells us how

the mass of the rotating body is distributed about its axis of rotation. We call
that quantity the rotational inertia (or moment of inertia) I of the body with
respect to the axis of rotation. It is a constant for a particular rigid body and
a particular rotation axis. (Caution: That axis must always be specified if the
value of I is to be meaningful.)

We may now write

(rotational inertia) (10-33)

and substitute into Eq. 10-32, obtaining

(radian measure) (10-34)

as the expression we seek. Because we have used the relation v � vr in deriving
Eq. 10-34, v must be expressed in radian measure. The SI unit for I is the
kilogram–square meter (kg 
m2).

The Plan. If we have a few particles and a specified rotation axis, we find mr2

for each particle and then add the results as in Eq. 10-33 to get the total rotational in-
ertia I. If we want the total rotational kinetic energy, we can then substitute that I
into Eq. 10-34.That is the plan for a few particles, but suppose we have a huge num-
ber of particles such as in a rod. In the next module we shall see how to handle such
continuous bodies and do the calculation in only a few minutes.

Equation 10-34, which gives the kinetic energy of a rigid body in pure rotation,
is the angular equivalent of the formula , which gives the kinetic energyK � 1

2 Mvcom
2

K � 1
2 I�2

I � � mir i
2

K � � 12 mi(vri)2 � 1
2 �� miri

2�v2,

� � 12 mivi
2,

K � 1
2 m1v2

1 � 1
2 m2v2

2 � 1
2 m3v2

3 � 
 
 


of a rigid body in pure translation. In both formulas there is a factor of . Where
mass M appears in one equation, I (which involves both mass and its distribution)
appears in the other. Finally, each equation contains as a factor the square of a
speed—translational or rotational as appropriate. The kinetic energies of transla-
tion and of rotation are not different kinds of energy. They are both kinetic energy,
expressed in ways that are appropriate to the motion at hand.

We noted previously that the rotational inertia of a rotating body involves
not only its mass but also how that mass is distributed. Here is an example that
you can literally feel. Rotate a long, fairly heavy rod (a pole, a length of lumber,
or something similar), first around its central (longitudinal) axis (Fig. 10-11a)
and then around an axis perpendicular to the rod and through the center
(Fig. 10-11b). Both rotations involve the very same mass, but the first rotation is
much easier than the second. The reason is that the mass is distributed much
closer to the rotation axis in the first rotation. As a result, the rotational inertia
of the rod is much smaller in Fig. 10-11a than in Fig. 10-11b. In general, smaller
rotational inertia means easier rotation.

1
2
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23710-5 CALCULATING THE ROTATIONAL INERTIA

Checkpoint 4
The figure shows three small spheres that rotate
about a vertical axis.The perpendicular distance 
between the axis and the center of each sphere is
given. Rank the three spheres according to their 
rotational inertia about that axis, greatest first.

Rotation 
axis 

4 kg 
3 m 

2 m 

1 m 

9 kg 

36 kg 

10-5 CALCULATING THE ROTATIONAL INERTIA

After reading this module, you should be able to . . .

10.20 Determine the rotational inertia of a body if it is given in
Table 10-2.

10.21 Calculate the rotational inertia of a body by integration
over the mass elements of the body.

10.22 Apply the parallel-axis theorem for a rotation axis that is
displaced from a parallel axis through the center of mass of
a body.

● I is the rotational inertia of the body, defined as

for a system of discrete particles and defined as

for a body with continuously distributed mass. The r and ri in
these expressions represent the perpendicular distance from
the axis of rotation to each mass element in the body, and the
integration is carried out over the entire body so as to include
every mass element.

I � � r 2 dm

I � � miri
2

● The parallel-axis theorem relates the rotational inertia I of a
body about any axis to that of the same body about a parallel
axis through the center of mass:

I � Icom � Mh2.

Here h is the perpendicular distance between the two axes,
and Icom is the rotational inertia of the body about the axis
through the com. We can describe h as being the distance
the actual rotation axis has been shifted from the rotation axis
through the com.

Learning Objectives

Key Ideas

Calculating the Rotational Inertia
If a rigid body consists of a few particles, we can calculate its rotational inertia
about a given rotation axis with Eq. 10-33 ; that is, we can find the
product mr 2 for each particle and then sum the products. (Recall that r is the per-
pendicular distance a particle is from the given rotation axis.)

If a rigid body consists of a great many adjacent particles (it is continuous, like
a Frisbee), using Eq. 10-33 would require a computer.Thus, instead, we replace the
sum in Eq. 10-33 with an integral and define the rotational inertia of the body as

(rotational inertia, continuous body). (10-35)

Table 10-2 gives the results of such integration for nine common body shapes and
the indicated axes of rotation.

Parallel-Axis Theorem
Suppose we want to find the rotational inertia I of a body of mass M about a
given axis. In principle, we can always find I with the integration of Eq. 10-35.
However, there is a neat shortcut if we happen to already know the rotational in-
ertia Icom of the body about a parallel axis that extends through the body’s center
of mass. Let h be the perpendicular distance between the given axis and the axis

I � � r 2 dm

(I � � miri
2)
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238 CHAPTER 10 ROTATION

Table 10-2 Some Rotational Inertias

Axis 

Hoop about 
central axis 

Axis 

Annular cylinder 
(or ring) about  

central axis 

R 

I = MR 2 (b) (a) I =   M(R 1
2  +  R 2

2)

R 2 

R 1 

Thin rod about 
axis through center  

perpendicular to 
length 

(e) 
I =    ML 2

L 

Axis 

Axis Axis 

Hoop about any  
diameter 

Slab about  
perpendicular  
axis through 

center  

(i) (h) 
I =   MR 2 I =    M(a 2  + b 2)  

R 

b  
a  

Axis 

Solid cylinder 
(or disk) about 

central axis 

(c) 
I =   MR 2

R 
L  

Axis 

Solid cylinder 
(or disk) about 

central diameter 

(d)  
I =   MR 2  +    ML 2  

R 
L  

Axis 

Thin  
spherical shell 

about any  
diameter 

(g) 
I =   MR 2

2R 

Solid sphere 
about any  
diameter 

(f) 
I =   MR 2

2R 

Axis 

1 __
 2 1 __

 2 

2 __
 5 

1 __
 4 

2 __
 3 

1 __
 2 

1 __
 12 

1 __
 12 

1 __
 12 

Figure 10-12 A rigid body in cross section,
with its center of mass at O. The parallel-
axis theorem (Eq. 10-36) relates the 
rotational inertia of the body about an axis
through O to that about a parallel axis
through a point such as P, a distance h
from the body’s center of mass.

dm 

r 

P 

h 

a 
b 

x – a 

y – b 

com 
O 

Rotation axis 
through 

center of mass 

Rotation axis 
through P 

y 

x 

We need to relate the rotational inertia 
around the axis at P to that around the 
axis at the com.

through the center of mass (remember these two axes must be parallel).Then the
rotational inertia I about the given axis is

I � Icom � Mh2 (parallel-axis theorem). (10-36)

Think of the distance h as being the distance we have shifted the rotation axis
from being through the com.This equation is known as the parallel-axis theorem.
We shall now prove it.

Proof of the Parallel-Axis Theorem
Let O be the center of mass of the arbitrarily shaped body shown in cross section
in Fig. 10-12. Place the origin of the coordinates at O. Consider an axis through O
perpendicular to the plane of the figure, and another axis through point P paral-
lel to the first axis. Let the x and y coordinates of P be a and b.

Let dm be a mass element with the general coordinates x and y. The rota-
tional inertia of the body about the axis through P is then, from Eq. 10-35,

which we can rearrange as

(10-37)

From the definition of the center of mass (Eq. 9-9), the middle two integrals of
Eq. 10-37 give the coordinates of the center of mass (multiplied by a constant)

I � � (x2 � y2) dm � 2a � x dm � 2b � y dm � � (a2 � b2) dm.

I � � r 2 dm � � [(x � a)2 � ( y � b)2] dm,
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23910-5 CALCULATING THE ROTATIONAL INERTIA

and thus must each be zero. Because x2 � y2 is equal to R2, where R is the dis-
tance from O to dm, the first integral is simply Icom, the rotational inertia of the
body about an axis through its center of mass. Inspection of Fig. 10-12 shows that
the last term in Eq. 10-37 is Mh2, where M is the body’s total mass. Thus,
Eq. 10-37 reduces to Eq. 10-36, which is the relation that we set out to prove.

Checkpoint 5
The figure shows a book-like object (one side is
longer than the other) and four choices of rotation
axes, all perpendicular to the face of the object.
Rank the choices according to the rotational inertia
of the object about the axis, greatest first.

(1) (2) (3) (4) 

left and L for the particle on the right. Now Eq. 10-33
gives us

I � m(0)2 � mL2 � mL2. (Answer)

Second technique: Because we already know Icom about an
axis through the center of mass and because the axis here is
parallel to that “com axis,” we can apply the parallel-axis
theorem (Eq. 10-36).We find

(Answer)� mL2.

 I � Icom � Mh2 � 1
2 mL2 � (2m)(1

2 L)2

Sample Problem 10.06 Rotational inertia of a two-particle system

Figure 10-13a shows a rigid body consisting of two particles of
mass m connected by a rod of length L and negligible mass.

(a) What is the rotational inertia Icom about an axis through the
center of mass,perpendicular to the rod as shown?

KEY IDEA

Because we have only two particles with mass, we can find
the body’s rotational inertia Icom by using Eq. 10-33 rather
than by integration. That is, we find the rotational inertia of
each particle and then just add the results.

Calculations: For the two particles, each at perpendicular
distance from the rotation axis, we have

(Answer)

(b) What is the rotational inertia I of the body about an axis
through the left end of the rod and parallel to the first axis
(Fig. 10-13b)?

KEY IDEAS

This situation is simple enough that we can find I using 
either of two techniques. The first is similar to the one used
in part (a). The other, more powerful one is to apply the 
parallel-axis theorem.

First technique: We calculate I as in part (a), except here
the perpendicular distance ri is zero for the particle on the

� 1
2 mL2.

I � � miri
2 � (m)(1

2 L)2 � (m)(1
2 L)2

1
2 L

m m 

(a) 

L L 

com 

Rotation axis 
through  

center of mass 

m m 

(b) 

L 

com 

Rotation axis through 
end of rod 

1 __
 2 

1 __
 2 

Here the rotation axis is through the com.

Here it has been shifted from the com 
without changing the orientation. We 
can use the parallel-axis theorem.

Figure 10-13 A rigid body consisting of two particles of mass m
joined by a rod of negligible mass.

Additional examples, video, and practice available at WileyPLUS
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240 CHAPTER 10 ROTATION

Sample Problem 10.07 Rotational inertia of a uniform rod, integration

Figure 10-14 shows a thin, uniform rod of mass M and length
L, on an x axis with the origin at the rod’s center.

(a) What is the rotational inertia of the rod about the
perpendicular rotation axis through the center?

KEY IDEAS

(1) The rod consists of a huge number of particles at a great
many different distances from the rotation axis. We certainly
don’t want to sum their rotational inertias individually. So, we
first write a general expression for the rotational inertia of a
mass element dm at distance r from the rotation axis: r2 dm.
(2) Then we sum all such rotational inertias by integrating the
expression (rather than adding them up one by one). From
Eq. 10-35, we write

(10-38)

(3) Because the rod is uniform and the rotation axis is at the
center, we are actually calculating the rotational inertia Icom

about the center of mass.

Calculations: We want to integrate with respect to coordinate
x (not mass m as indicated in the integral), so we must relate
the mass dm of an element of the rod to its length dx along the
rod. (Such an element is shown in Fig. 10-14.) Because the rod
is uniform, the ratio of mass to length is the same for all the el-
ements and for the rod as a whole.Thus, we can write

or dm �
M
L

 dx.

element’s mass dm
element’s length dx

�
rod’s mass M
rod’s length L

I � � r 2 dm.

Figure 10-14 A uniform rod of length L
and mass M. An element of mass dm
and length dx is represented.

A

We can now substitute this result for dm and x for r in
Eq. 10-38.Then we integrate from end to end of the rod (from
x � �L/2 to x � L/2) to include all the elements.We find

(Answer)

(b) What is the rod’s rotational inertia I about a new rotation
axis that is perpendicular to the rod and through the left end?

KEY IDEAS

We can find I by shifting the origin of the x axis to the left end
of the rod and then integrating from to . However,
here we shall use a more powerful (and easier) technique by
applying the parallel-axis theorem (Eq. 10-36), in which we
shift the rotation axis without changing its orientation.

Calculations: If we place the axis at the rod’s end so that it
is parallel to the axis through the center of mass, then we
can use the parallel-axis theorem (Eq. 10-36). We know
from part (a) that Icom is . From Fig. 10-14, the perpen-
dicular distance h between the new rotation axis and the
center of mass is . Equation 10-36 then gives us

(Answer)

Actually, this result holds for any axis through the left
or right end that is perpendicular to the rod.

� 1
3 ML2.

 I � Icom � Mh2 � 1
12 ML2 � (M)(1

2 L)2

1
2 L

1
12 ML2

x � Lx � 0

� 1
12 ML2.

 �
M
3L �x3�

�L/2

�L/2

�
M
3L �� L

2
 �

3

� ��
L
2 �

3

�

 I � �x��L/2

x��L/2
x2 � M

L � dx

x

Rotation
axis

L__
2

L__
2

com M

We want the 
rotational inertia.

x

Rotation
axis

x dm

dx

First, pick any tiny element
and write its rotational
inertia as x2 dm.

x

x = −

Rotation
axis

Leftmost Rightmost

L__
2

x = L__
2

Then, using integration, add up
the rotational inertias for all of
the elements, from leftmost to
rightmost.

Additional examples, video, and practice available at WileyPLUS
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24110-6 TORQUE

KEY IDEA

The released energy was equal to the rotational kinetic en-
ergy K of the rotor just as it reached the angular speed of
14 000 rev/min.

Calculations: We can find K with Eq. 10-34 , but
first we need an expression for the rotational inertia I. Because
the rotor was a disk that rotated like a merry-go-round, I is
given  in Table 10-2c .Thus,

The angular speed of the rotor was

Then, with Eq. 10-34, we find the (huge) energy release:

(Answer)� 2.1 	 107 J.

 K � 1
2 Iv2 � 1

2(19.64 kg 
m2)(1.466 	 103 rad/s)2

 � 1.466 	 103 rad/s.

 v � (14 000 rev/min)(2p rad/rev)� 1 min
60 s �

I � 1
2 MR2 � 1

2 (272 kg)(0.38 m)2 � 19.64 kg 
m2.

(I � 1
2 MR2)

(K � 1
2 Iv2)

Sample Problem 10.08 Rotational kinetic energy, spin test explosion

Large machine components that undergo prolonged, high-
speed rotation are first examined for the possibility of fail-
ure in a spin test system. In this system, a component is spun
up (brought up to high speed) while inside a cylindrical
arrangement of lead bricks and containment liner, all within
a steel shell that is closed by a lid clamped into place. If the
rotation causes the component to shatter, the soft lead
bricks are supposed to catch the pieces for later analysis.

In 1985, Test Devices, Inc. (www.testdevices.com) was spin
testing a sample of a solid steel rotor (a disk) of mass M �
272 kg and radius R � 38.0 cm. When the sample reached
an angular speed v of 14 000 rev/min, the test engineers
heard a dull thump from the test system, which was
located one floor down and one room over from them.
Investigating, they found that lead bricks had been thrown
out in the hallway leading to the test room, a door to the
room had been hurled into the adjacent parking lot, one
lead brick had shot from the test site through the wall of a
neighbor’s kitchen, the structural beams of the test build-
ing had been damaged, the concrete floor beneath the
spin chamber had been shoved downward by about 0.5
cm, and the 900 kg lid had been blown upward through
the ceiling and had then crashed back onto the test equip-
ment (Fig. 10-15). The exploding pieces had not pene-
trated the room of the test engineers only by luck.

How much energy was released in the explosion of the
rotor?

Figure 10-15 Some of the
destruction caused by
the explosion of a rap-
idly rotating steel disk.
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10-6 TORQUE

After reading this module, you should be able to . . .

10.23 Identify that a torque on a body involves a force and a
position vector, which extends from a rotation axis to the
point where the force is applied.

10.24 Calculate the torque by using (a) the angle between
the position vector and the force vector, (b) the line of ac-
tion and the moment arm of the force, and (c) the force
component perpendicular to the position vector.

10.25 Identify that a rotation axis must always be specified to
calculate a torque.

10.26 Identify that a torque is assigned a positive or negative
sign depending on the direction it tends to make the body 
rotate about a specified rotation axis: “clocks are negative.”

10.27 When more than one torque acts on a body about a 
rotation axis, calculate the net torque.

Learning Objectives

● Torque is a turning or twisting action on a body about a
rotation axis due to a force . If is exerted at a point given
by the position vector relative to the axis, then the magni-
tude of the torque is

where Ft is the component of perpendicular to and 
f is the angle between and . The quantity is the r�F

:
r:

r:F
:

t � rFt � r�F � rF sin f,

r:
F
:

F
:

perpendicular distance between the rotation axis and
an extended line running through the vector. This line
is called the line of action of , and is called the
moment arm of . Similarly, r is the moment arm of Ft.

● The SI unit of torque is the newton-meter (N 
m). A
torque t is positive if it tends to rotate a body at rest 
counterclockwise and negative if it tends to rotate the
body clockwise.

F
:

r�F
:

F
:

Key Ideas

Additional examples, video, and practice available at WileyPLUS
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242 CHAPTER 10 ROTATION

Checkpoint 6
The figure shows an overhead view of a meter stick that can pivot about the dot at the position
marked 20 (for 20 cm).All five forces on the stick are horizontal and have the same magnitude.
Rank the forces according to the magnitude of the torque they produce, greatest first.

0 20 40 
Pivot point 

100 

F1 
F2 

F3 

F4 

F5 

Figure 10-16 (a) A force acts on a rigid
body, with a rotation axis perpendicular to
the page. The torque can be found with
(a) angle f, (b) tangential force compo-
nent Ft, or (c) moment arm .r�

F
:

(a)

(b)

(c)

O

P

φ FrFt

Rotation
axis

F

r

O

P

φ

Rotation
axis

φ
Line of
action of F

r
Moment arm
of F

F

r

O

P

φ

Rotation
axis

F

r

The torque due to this force
causes rotation around this axis 
(which extends out toward you).

You calculate the same torque by 
using this moment arm distance 
and the full force magnitude.

But actually only the tangential
component of the force causes
the rotation.

magnitude Ft � F sin f.This component does cause rotation.
Calculating Torques. The ability of to rotate the body depends not only

on the magnitude of its tangential component Ft, but also on just how far from O
the force is applied. To include both these factors, we define a quantity called
torque t as the product of the two factors and write it as

t � (r)(F sin f). (10-39)

Two equivalent ways of computing the torque are

t � (r)(F sin f) � rFt (10-40)

and (10-41)

where is the perpendicular distance between the rotation axis at O and an extendedr�

t � (r sin f)(F) � r�F,

F
:

Torque
A doorknob is located as far as possible from the door’s hinge line for a good rea-
son. If you want to open a heavy door, you must certainly apply a force, but that
is not enough.Where you apply that force and in what direction you push are also
important. If you apply your force nearer to the hinge line than the knob, or at
any angle other than 90� to the plane of the door, you must use a greater force
than if you apply the force at the knob and perpendicular to the door’s plane.

Figure 10-16a shows a cross section of a body that is free to rotate about an
axis passing through O and perpendicular to the cross section. A force is
applied at point P, whose position relative to O is defined by a position vector .
The directions of vectors and make an angle f with each other. (For simplic-
ity, we consider only forces that have no component parallel to the rotation axis;
thus, is in the plane of the page.)

To determine how results in a rotation of the body around the rotation
axis, we resolve into two components (Fig. 10-16b). One component, called the
radial component Fr, points along . This component does not cause rotation,
because it acts along a line that extends through O. (If you pull on a door par-
allel to the plane of the door, you do not rotate the door.) The other compo-
nent of , called the tangential component Ft, is perpendicular to and hasr:F

:

r:
F
:

F
:

F
:

r:F
:

r:
F
:

line running through the vector (Fig. 10-16c). This extended line is called the line
of action of , and is called the moment arm of . Figure 10-16b shows that we
can describe r, the magnitude of ,as being the moment arm of the force component Ft.

Torque, which comes from the Latin word meaning “to twist,” may be loosely
identified as the turning or twisting action of the force . When you apply a force
to an object—such as a screwdriver or torque wrench—with the purpose of turn-
ing that object, you are applying a torque. The SI unit of torque is the newton-
meter (N 
m). Caution: The newton-meter is also the unit of work. Torque and
work, however, are quite different quantities and must not be confused. Work is
often expressed in joules (1 J � 1 N 
m), but torque never is.

Clocks Are Negative. In Chapter 11 we shall use vector notation for torques,
but here, with rotation around a single axis, we use only an algebraic sign. If a
torque would cause counterclockwise rotation, it is positive. If it would cause
clockwise rotation, it is negative. (The phrase “clocks are negative” from Module
10-1 still works.)

Torques obey the superposition principle that we discussed in Chapter 5 for
forces:When several torques act on a body, the net torque (or resultant torque) is
the sum of the individual torques.The symbol for net torque is tnet.

F
:

r:
F
:

r�F
:

F
:
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10-7 NEWTON’S SECOND LAW FOR ROTATION

After reading this module, you should be able to . . .

10.28 Apply Newton’s second law for rotation to relate the
net torque on a body to the body’s rotational inertia and 

rotational acceleration, all calculated relative to a specified 
rotation axis.

● The rotational analog of Newton’s second law is
tnet � Ia,

where tnet is the net torque acting on a particle or rigid body, 

I is the rotational inertia of the particle or body about the
rotation axis, and a is the resulting angular acceleration about
that axis.

Learning Objective

Key Idea

Newton’s Second Law for Rotation
A torque can cause rotation of a rigid body, as when you use a torque to rotate
a door. Here we want to relate the net torque tnet on a rigid body to the angular
acceleration a that torque causes about a rotation axis. We do so by analogy with
Newton’s second law (Fnet � ma) for the acceleration a of a body of mass m due
to a net force Fnet along a coordinate axis.We replace Fnet with tnet, m with I, and a
with a in radian measure, writing

tnet � Ia (Newton’s second law for rotation). (10-42)

Proof of Equation 10-42
We prove Eq. 10-42 by first considering the simple situation shown in Fig. 10-17.
The rigid body there consists of a particle of mass m on one end of a massless rod
of length r. The rod can move only by rotating about its other end, around a rota-
tion axis (an axle) that is perpendicular to the plane of the page.Thus, the particle
can move only in a circular path that has the rotation axis at its center.

A force acts on the particle. However, because the particle can move
only along the circular path, only the tangential component Ft of the force (the
component that is tangent to the circular path) can accelerate the particle along
the path. We can relate Ft to the particle’s tangential acceleration at along the
path with Newton’s second law, writing

Ft � mat.

The torque acting on the particle is, from Eq. 10-40,

t � Ftr � matr.

From Eq. 10-22 (at � ar) we can write this as

t � m(ar)r � (mr 2)a. (10-43)

The quantity in parentheses on the right is the rotational inertia of the particle
about the rotation axis (see Eq. 10-33, but here we have only a single particle).
Thus, using I for the rotational inertia, Eq. 10-43 reduces to

t � Ia (radian measure). (10-44)

If more than one force is applied to the particle, Eq. 10-44 becomes

tnet � Ia (radian measure), (10-45)

which we set out to prove. We can extend this equation to any rigid body rotating
about a fixed axis, because any such body can always be analyzed as an assembly
of single particles.

F
:

Figure 10-17 A simple rigid body, free to
rotate about an axis through O, consists of
a particle of mass m fastened to the end of
a rod of length r and negligible mass. An
applied force causes the body to rotate.F

:

O 
x 

y 

Rod 

θ 

Rotation axis 

r 

m 
Fr 

Ft 

φ 

F 

The torque due to the tangential
component of the force causes
an angular acceleration around
the rotation axis.
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KEY IDEA 

Because the moment arm for is no longer zero, the torqueF
:

g

Checkpoint 7
The figure shows an overhead view of a meter stick that can pivot about the point indicated, which is
to the left of the stick’s midpoint.Two horizontal forces, and , are applied to the stick. Only is
shown. Force is perpendicular to the stick and is applied at the right end. If the stick is not to turn,
(a) what should be the direction of , and (b) should F2 be greater than, less than, or equal to F1?F

:

2

F
:

2

F
:

1F
:

2F
:

1

F1 

Pivot point 

Sample Problem 10.09 Using Newton’s second law for rotation in a basic judo hip throw

To throw an 80 kg opponent with a basic judo hip throw, you
intend to pull his uniform with a force and a moment arm
d1 � 0.30 m from a pivot point (rotation axis) on your right
hip (Fig. 10-18). You wish to rotate him about the pivot
point with an angular acceleration a of �6.0 rad/s2—that is,
with an angular acceleration that is clockwise in the figure.
Assume that his rotational inertia I relative to the pivot
point is 15 kg
m2.

(a) What must the magnitude of be if, before you throw
him, you bend your opponent forward to bring his center of
mass to your hip (Fig. 10-18a)?

KEY IDEA 

We can relate your pull on your opponent to the given an-
gular acceleration a via Newton’s second law for rotation
(tnet � Ia).

Calculations: As his feet leave the floor, we can assume that
only three forces act on him: your pull , a force on him
from you at the pivot point (this force is not indicated in Fig.
10-18), and the gravitational force .To use tnet � Ia, we need
the corresponding three torques,each about the pivot point.

From Eq. 10-41 (t � F), the torque due to your pull F
:

r�

F
:

g

N
:

F
:

F
:

F
:

F
:

Figure 10-18 A judo hip throw (a) correctly executed and (b) incor-
rectly executed.

Opponent's 
 center of  

mass 

Moment arm d1 
of your pull 

Pivot  
on hip 

Moment arm d2
of gravitational 

force on 
opponent 

Moment  
arm d1 

of your pull 

FgFg

(a) (b) 

F 
F 

is equal to � F, where is the moment arm and the
sign indicates the clockwise rotation this torque tends to
cause. The torque due to is zero, because acts at theN

:
N
:

r�d1d1

pivot point and thus has moment arm � 0.
To evaluate the torque due to , we can assume that 

acts at your opponent’s center of mass. With the center of
mass at the pivot point, has moment arm � 0 and thusr�F

:
g

F
:

gF
:

g

r�

ponent is due to your pull , and we can write tnet � Ia as

�d1F � Ia.
We then find

� 300 N. (Answer)

(b) What must the magnitude of be if your opponent 
remains upright before you throw him, so that has a mo-
ment arm d2 � 0.12 m (Fig. 10-18b)?

F
:

g

F
:

F �
�Ia

d1
�

�(15 kg 
m2)(�6.0 rad/s2)
0.30 m

F
:

the torque due to is zero. So, the only torque on your op-F
:

g

due to is now equal to d2mg and is positive because the
torque attempts counterclockwise rotation.

Calculations: Now we write tnet � Ia as

�d1F � d2mg � Ia,
which gives

From (a), we know that the first term on the right is equal to
300 N. Substituting this and the given data, we have

� 613.6 N 610 N. (Answer)

The results indicate that you will have to pull much harder if
you do not initially bend your opponent to bring his center
of mass to your hip. A good judo fighter knows this lesson
from physics. Indeed, physics is the basis of most of the mar-
tial arts, figured out after countless hours of trial and error
over the centuries.

�

F � 300 N �
(0.12 m)(80 kg)(9.8 m/s2)

0.30 m

F � �
Ia

d1
�

d2mg
d1

.

F
:

g

Additional examples, video, and practice available at WileyPLUS
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24510-7 NEWTON’S SECOND LAW FOR ROTATION

Sample Problem 10.10 Newton’s second law, rotation, torque, disk

Figure 10-19a shows a uniform disk, with mass M � 2.5 kg
and radius R � 20 cm, mounted on a fixed horizontal axle.
A block with mass m � 1.2 kg hangs from a massless cord that
is wrapped around the rim of the disk. Find the acceleration of
the falling block, the angular acceleration of the disk, and the
tension in the cord.The cord does not slip, and there is no fric-
tion at the axle.

KEY IDEAS 

(1) Taking the block as a system, we can relate its accelera-
tion a to the forces acting on it with Newton’s second law
( ). (2) Taking the disk as a system, we can relate
its angular acceleration a to the torque acting on it with
Newton’s second law for rotation (tnet � Ia). (3) To combine
the motions of block and disk, we use the fact that the linear
acceleration a of the block and the (tangential) linear accel-
eration of the disk rim are equal. (To avoid confusion
about signs, let’s work with acceleration magnitudes and 
explicit algebraic signs.)

Forces on block: The forces are shown in the block’s free-
body diagram in Fig. 10-19b: The force from the cord is ,
and the gravitational force is , of magnitude mg. We can
now write Newton’s second law for components along a ver-
tical y axis (Fnet,y � may) as

T � mg � m(�a), (10-46)

where a is the magnitude of the acceleration (down the y
axis). However, we cannot solve this equation for a because
it also contains the unknown T.

Torque on disk: Previously, when we got stuck on the y axis,
we switched to the x axis. Here, we switch to the rotation of
the disk and use Newton’s second law in angular form. To
calculate the torques and the rotational inertia I, we take
the rotation axis to be perpendicular to the disk and through
its center, at point O in Fig. 10-19c.

The torques are then given by Eq. 10-40 (t � rFt). The
gravitational force on the disk and the force on the disk from
the axle both act at the center of the disk and thus at distance
r � 0, so their torques are zero.The force on the disk due to
the cord acts at distance r � R and is tangent to the rim of the
disk. Therefore, its torque is �RT, negative because the
torque rotates the disk clockwise from rest. Let a be the mag-
nitude of the negative (clockwise) angular acceleration. From
Table 10-2c, the rotational inertia I of the disk is . Thus
we can write the general equation tnet � Ia as

(10-47)�RT � 1
2 MR2(�a).

1
2MR2

T
:

F
:

g

T
:

at

F
:

net � m:a

This equation seems useless because it has two
unknowns, a and T, neither of which is the desired a.
However, mustering physics courage, we can make it useful
with this fact: Because the cord does not slip, the magnitude
a of the block’s linear acceleration and the magnitude at of
the (tangential) linear acceleration of the rim of the disk are
equal. Then, by Eq. 10-22 (at � ar) we see that here a �
a /R. Substituting this in Eq. 10-47 yields

(10-48)

Combining results: Combining Eqs. 10-46 and 10-48 leads to

. (Answer)

We then use Eq. 10-48 to find T:

(Answer)

As we should expect, acceleration a of the falling block is less
than g, and tension T in the cord (� 6.0 N) is less than the
gravitational force on the hanging block (� mg � 11.8 N).
We see also that a and T depend on the mass of the disk but
not on its radius.

As a check, we note that the formulas derived above
predict a � g and T � 0 for the case of a massless disk (M �
0). This is what we would expect; the block simply falls as a
free body. From Eq. 10-22, the magnitude of the angular ac-
celeration of the disk is

(Answer)a �
a
R

�
4.8 m/s2

0.20 m
� 24 rad/s2.

� 6.0 N.

 T � 1
2 Ma � 1

2(2.5 kg)(4.8 m/s2)

� 4.8 m/s2

 a � g 
2m

M � 2m
� (9.8 m/s2) 

(2)(1.2 kg)
2.5 kg � (2)(1.2 kg)

T � 1
2 Ma.

m 

M 

M R 
O 

Fg 

(b) (a) 

(c) 

m 

T 

T 

The torque due to the 
cord's pull on the rim 
causes an angular 
acceleration of the disk.

These two forces 
determine the block's 
(linear) acceleration.

We need to relate 
those two
accelerations.

y

Figure 10-19 (a) The falling block causes the disk to rotate. (b) A
free-body diagram for the block. (c) An incomplete free-body 
diagram for the disk.

Additional examples, video, and practice available at WileyPLUS
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246 CHAPTER 10 ROTATION

Work and Rotational Kinetic Energy
As we discussed in Chapter 7, when a force F causes a rigid body of mass m to ac-
celerate along a coordinate axis, the force does work W on the body. Thus, the
body’s kinetic energy can change. Suppose it is the only energy of the(K � 1

2 mv2)

10-8 WORK AND ROTATIONAL KINETIC ENERGY

After reading this module, you should be able to . . .

10.29 Calculate the work done by a torque acting on a rotat-
ing body by integrating the torque with respect to the an-
gle of rotation.

10.30 Apply the work–kinetic energy theorem to relate the
work done by a torque to the resulting change in the rota-
tional kinetic energy of the body.

10.31 Calculate the work done by a constant torque by relat-
ing the work to the angle through which the body rotates.

10.32 Calculate the power of a torque by finding the rate at
which work is done.

10.33 Calculate the power of a torque at any given instant by
relating it to the torque and the angular velocity at that instant.

● The equations used for calculating work and power in rota-
tional motion correspond to equations used for translational
motion and are

and P �
dW
dt

� tv.

W � �uf

ui

t du

● When t is constant, the integral reduces to

W � t(uf � ui).

● The form of the work – kinetic energy theorem used for
rotating bodies is

�K � Kf � Ki � 1
2 Ivf

2 � 1
2�vi

2 � W.

Learning Objectives

Key Ideas

body that changes.Then we relate the change �K in kinetic energy to the work W
with the work–kinetic energy theorem (Eq. 7-10), writing

(work–kinetic energy theorem). (10-49)

For motion confined to an x axis, we can calculate the work with Eq. 7-32,

(work, one-dimensional motion). (10-50)

This reduces to W � Fd when F is constant and the body’s displacement is d.
The rate at which the work is done is the power, which we can find with Eqs. 7-43
and 7-48,

(power, one-dimensional motion). (10-51)

Now let us consider a rotational situation that is similar. When a torque
accelerates a rigid body in rotation about a fixed axis, the torque does work W
on the body. Therefore, the body’s rotational kinetic energy can
change. Suppose that it is the only energy of the body that changes. Then we
can still relate the change �K in kinetic energy to the work W with the
work – kinetic energy theorem, except now the kinetic energy is a rotational 
kinetic energy:

(work–kinetic energy theorem). (10-52)

Here, I is the rotational inertia of the body about the fixed axis and vi and vf are
the angular speeds of the body before and after the work is done.

�K � Kf � Ki � 1
2 Ivf

2 � 1
2�vi

2 � W

(K � 1
2 I�2)

P �
dW
dt

� Fv

W � �xf

xi

F dx

�K � Kf � Ki � 1
2 mvf

2 � 1
2 mvi

2 � W
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24710-8 WORK AND ROTATIONAL KINETIC ENERGY

Also, we can calculate the work with a rotational equivalent of Eq. 10-50,

(work, rotation about fixed axis), (10-53)

where t is the torque doing the work W, and ui and uf are the body’s angular
positions before and after the work is done, respectively. When t is constant,
Eq. 10-53 reduces to

W � t(uf � ui) (work, constant torque). (10-54)

The rate at which the work is done is the power, which we can find with the rota-
tional equivalent of Eq. 10-51,

(power, rotation about fixed axis). (10-55)

Table 10-3 summarizes the equations that apply to the rotation of a rigid body
about a fixed axis and the corresponding equations for translational motion.

Proof of Eqs. 10-52 through 10-55
Let us again consider the situation of Fig. 10-17, in which force rotates a rigid
body consisting of a single particle of mass m fastened to the end of a massless
rod. During the rotation, force does work on the body. Let us assume that the
only energy of the body that is changed by is the kinetic energy. Then we can
apply the work–kinetic energy theorem of Eq. 10-49:

�K � Kf � Ki � W. (10-56)

Using and Eq. 10-18 (v � vr), we can rewrite Eq. 10-56 as

(10-57)

From Eq. 10-33, the rotational inertia for this one-particle body is I � mr2.
Substituting this into Eq. 10-57 yields

which is Eq. 10-52.We derived it for a rigid body with one particle, but it holds for
any rigid body rotated about a fixed axis.

We next relate the work W done on the body in Fig. 10-17 to the torque t

on the body due to force . When the particle moves a distance ds along itsF
:

�K � 1
2 Ivf

2 � 1
2 �vi

2 � W,

�K � 1
2 mr 2vf

2 � 1
2 mr 2vi

2 � W.

K � 1
2 mv2

F
:

F
:

F
:

P �
dW
dt

� tv

W � �uf

ui

 t du

Table 10-3 Some Corresponding Relations for Translational and Rotational Motion

Pure Translation (Fixed Direction) Pure Rotation (Fixed Axis)

Position x Angular position u

Velocity v � dx/dt Angular velocity v � du/dt
Acceleration a � dv/dt Angular acceleration a � dv/dt
Mass m Rotational inertia I
Newton’s second law Fnet � ma Newton’s second law tnet � Ia

Work W � 	 F dx Work W � 	 t du

Kinetic energy Kinetic energy K � 1
2 Iv2K � 1

2 mv2

Power (constant force) P � Fv Power (constant torque) P � tv

Work–kinetic energy theorem W � �K Work–kinetic energy theorem W � �K
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248 CHAPTER 10 ROTATION

Sample Problem 10.11 Work, rotational kinetic energy, torque, disk

Let the disk in Fig. 10-19 start from rest at time t � 0 and
also let the tension in the massless cord be 6.0 N and the an-
gular acceleration of the disk be �24 rad/s2. What is its rota-
tional kinetic energy K at t � 2.5 s?

KEY IDEA

We can find K with Eq. 10-34 We already know(K � 1
2 Iv2).

Calculations: First, we relate the change in the kinetic 
energy of the disk to the net work W done on the disk, using
the work–kinetic energy theorem of Eq. 10-52 (Kf � Ki � W).
With K substituted for Kf and 0 for Ki,we get

K � Ki � W � 0 � W � W. (10-60)

Next we want to find the work W. We can relate W to
the torques acting on the disk with Eq. 10-53 or 10-54. The
only torque causing angular acceleration and doing work is
the torque due to force on the disk from the cord, which isT

:

that , but we do not yet know v at t � 2.5 s.
However, because the angular acceleration a has the con-
stant value of �24 rad/s2, we can apply the equations for
constant angular acceleration in Table 10-1.

Calculations: Because we want v and know a and v0 (� 0),
we use Eq. 10-12:

v � v0 � at � 0 � at � at.

Substituting v � at and into Eq.10-34,we find

(Answer)

KEY IDEA

We can also get this answer by finding the disk’s kinetic 
energy from the work done on the disk.

� 90 J.
� 1

4 (2.5 kg)[(0.20 m)(�24 rad/s2)(2.5 s)]2

 K � 1
2 Iv2 � 1

2(
1
2MR2)(at)2 � 1

4M(Rat)2

I � 1
2 MR2

I � 1
2 MR2

circular path, only the tangential component Ft of the force accelerates the parti-
cle along the path. Therefore, only Ft does work on the particle. We write that
work dW as Ft ds. However, we can replace ds with r du, where du is the angle
through which the particle moves.Thus we have

dW � Ftr du. (10-58)

From Eq. 10-40, we see that the product Ftr is equal to the torque t, so we can
rewrite Eq. 10-58 as

dW � t du. (10-59)

The work done during a finite angular displacement from ui to uf is then

which is Eq. 10-53. It holds for any rigid body rotating about a fixed axis.
Equation 10-54 comes directly from Eq. 10-53.

We can find the power P for rotational motion from Eq. 10-59:

which is Eq. 10-55.

P �
dW
dt

� t 
du

dt
� tv,

W � �uf

ui

 t du,

equal to �TR. Because a is constant, this torque also must
be constant.Thus, we can use Eq. 10-54 to write

W � t(uf � ui) � �TR(uf � ui). (10-61)

Because a is constant, we can use Eq. 10-13 to find
uf � ui.With vi � 0, we have

.

Now we substitute this into Eq. 10-61 and then substitute the
result into Eq. 10-60. Inserting the given values T � 6.0 N
and a � �24 rad/s2, we have

(Answer) � 90 J.

 � �1
2 (6.0 N)(0.20 m)(�24 rad/s2)(2.5 s)2

 K � W � �TR(uf � ui) � �TR(1
2at2) � �1

2TRat2

uf � ui � vit � 1
2at2 � 0 � 1

2at2 � 1
2at2

Additional examples, video, and practice available at WileyPLUS
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249REVIEW & SUMMARY

Angular Position To describe the rotation of a rigid body about
a fixed axis, called the rotation axis, we assume a reference line is
fixed in the body, perpendicular to that axis and rotating with the
body.We measure the angular position u of this line relative to a fixed
direction.When u is measured in radians,

(radian measure), (10-1)

where s is the arc length of a circular path of radius r and angle u.
Radian measure is related to angle measure in revolutions and de-
grees by

1 rev � 360� � 2p rad. (10-2)

Angular Displacement A body that rotates about a rotation
axis, changing its angular position from u1 to u2, undergoes an angu-
lar displacement

�u � u2 � u1, (10-4)

where �u is positive for counterclockwise rotation and negative for
clockwise rotation.

Angular Velocity and Speed If a body rotates through an
angular displacement �u in a time interval �t, its average angular
velocity vavg is

(10-5)

The (instantaneous) angular velocity v of the body is

(10-6)

Both vavg and v are vectors, with directions given by the right-hand
rule of Fig. 10-6. They are positive for counterclockwise rotation
and negative for clockwise rotation. The magnitude of the body’s
angular velocity is the angular speed.

Angular Acceleration If the angular velocity of a body
changes from v1 to v2 in a time interval �t � t2 � t1, the average
angular acceleration aavg of the body is

(10-7)

The (instantaneous) angular acceleration a of the body is

(10-8)

Both aavg and a are vectors.

The Kinematic Equations for Constant Angular Accel-
eration Constant angular acceleration (a � constant) is an im-
portant special case of rotational motion. The appropriate kine-
matic equations, given in Table 10-1, are

v � v0 � at, (10-12)

(10-13)

(10-14)

(10-15)

(10-16)

Linear and Angular Variables Related A point in a rigid
rotating body, at a perpendicular distance r from the rotation axis,

u � u0 � vt � 1
2 at2.

u � u0 � 1
2 (v0 � v)t,

v2 � v0
2 � 2a(u � u0),

u � u0 � v0t � 1
2at2,

a �
dv

dt
.

aavg �
v2 � v1

t2 � t1
�

�v

�t
.

v �
du

dt
.

vavg �
�u

�t
.

u �
s
r

Review & Summary

moves in a circle with radius r. If the body rotates through an angle u,
the point moves along an arc with length s given by

s � ur (radian measure), (10-17)
where u is in radians.

The linear velocity of the point is tangent to the circle; the
point’s linear speed v is given by

v � vr (radian measure), (10-18)

where v is the angular speed (in radians per second) of the body.
The linear acceleration of the point has both tangential and

radial components.The tangential component is

at � ar (radian measure), (10-22)

where a is the magnitude of the angular acceleration (in radians
per second-squared) of the body.The radial component of is

(radian measure). (10-23)

If the point moves in uniform circular motion, the period T of
the motion for the point and the body is

(radian measure). (10-19, 10-20)

Rotational Kinetic Energy and Rotational Inertia The ki-
netic energy K of a rigid body rotating about a fixed axis is given by

(radian measure), (10-34)

in which I is the rotational inertia of the body, defined as

(10-33)

for a system of discrete particles and defined as

(10-35)

for a body with continuously distributed mass. The r and ri in these
expressions represent the perpendicular distance from the axis of
rotation to each mass element in the body, and the integration is car-
ried out over the entire body so as to include every mass element.

The Parallel-Axis Theorem The parallel-axis theorem relates
the rotational inertia I of a body about any axis to that of the same
body about a parallel axis through the center of mass:

I � Icom � Mh2. (10-36)

Here h is the perpendicular distance between the two axes, and
Icom is the rotational inertia of the body about the axis through the
com. We can describe h as being the distance the actual rotation
axis has been shifted from the rotation axis through the com.

Torque Torque is a turning or twisting action on a body about a ro-
tation axis due to a force . If is exerted at a point given by the po-
sition vector relative to the axis, then the magnitude of the torque is

(10-40, 10-41, 10-39)

where Ft is the component of perpendicular to and f is the an-
gle between and . The quantity is the perpendicular distance
between the rotation axis and an extended line running through
the vector. This line is called the line of action of , and is
called the moment arm of . Similarly, r is the moment arm of Ft.F

:
r�F

:
F
:

r�F
:

r:
r:F

:

t � rFt � r�F � rF sin f,

r:
F
:

F
:

I � � r 2 dm

I � � miri
2

K � 1
2Iv2

T �
2pr

v
�

2p

v

ar �
v2

r
� v2r

a:

a:

v:
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250 CHAPTER 10 ROTATION

The SI unit of torque is the newton-meter (N 
m). A torque t
is positive if it tends to rotate a body at rest counterclockwise and
negative if it tends to rotate the body clockwise.

Newton’s Second Law in Angular Form The rotational
analog of Newton’s second law is

tnet � Ia, (10-45)

where tnet is the net torque acting on a particle or rigid body, I is the ro-
tational inertia of the particle or body about the rotation axis, and a is
the resulting angular acceleration about that axis.

Work and Rotational Kinetic Energy The equations used
for calculating work and power in rotational motion correspond to

equations used for translational motion and are

(10-53)

and (10-55)

When t is constant, Eq. 10-53 reduces to

W � t(uf � ui). (10-54)

The form of the work–kinetic energy theorem used for rotating
bodies is

(10-52)�K � Kf � Ki � 1
2 Ivf

2 � 1
2�vi

2 � W.

P �
dW
dt

� tv.

W � �uf

ui

t du

1 A tractor has rear wheels with a radius of 1.00 m and front wheels
with a radius of 0.250 m.The rear wheels are rotating at 100 rev/min.
Find (a) the angular speed of the front wheels in revolutions per
minute and (b) the distance covered by the tractor in 10.0 min.

2 Just as a helicopter is landing, its blades are turning at 30.0 rev/s
and slowing at a constant rate. In the 2.00 min required for them to
stop, how many revolutions do they make?

3 When a slice of buttered toast is accidentally pushed over the
edge of a counter, it rotates as it falls. If the distance to the floor is
76 cm and for rotation less than 1 rev, what are the (a) smallest and
(b) largest angular speeds that cause the toast to hit and then top-
ple to be butter-side down?

4 The angular position of a point on a rotating wheel is given by 
u � 2.0 � 4.0t2 � 2.0t3, where u is in radians and t is in seconds. At 
t � 0, what are (a) the point’s angular position and (b) its angular ve-
locity? (c) What is its angular velocity at t � 3.0 s? (d) Calculate its an-
gular acceleration at t � 4.0 s. (e) Is its angular acceleration constant?

5 At time t = 0, a rotating bicycle wheel is thrown horizontally from
a rooftop with a speed of 49 m/s. By the time its vertical speed is also
49 m/s, it has completed 40 revolutions.What has been its average an-
gular speed to that point in the fall?

6 A horizontal pottery wheel (a horizontal disk) with a radius of
30.0 cm can rotate about a vertical axis with negligible friction but is
initially stationary. A horizontal rubber wheel of radius 2.00 cm is
placed against its rim. That wheel is mounted on a motor. When the
motor is switched on at time t = 0, the rubber wheel undergoes a con-
stant angular acceleration of 5.00 rad/s2. Its contact with the pottery
wheel causes the pottery wheel to undergo an angular acceleration.
When the pottery wheel reaches an angular speed of 5.00 rev/s, the
rubber wheel is pulled away from contact and thereafter the pottery
wheel rotates at 5.00 rev/s.From t = 0 to t = 2.00 min,how many full ro-
tations does the pottery wheel make?

7 The wheel in Fig. 10-20 has eight
equally spaced spokes and a radius of
30 cm. It is mounted on a fixed axle
and is spinning at 2.5 rev/s. You want
to shoot a 20 cm long arrow parallel
to this axle and through the wheel
without hitting any of the spokes.
Assume that the arrow and the
spokes are very thin. (a) What mini-
mum speed must the arrow have? (b) Does it matter where between
the axle and rim of the wheel you aim? If so, what is the best location?

8 The angular acceleration of a wheel is a � 6.0t4 � 4.0t2, with a
in radians per second-squared and t in seconds. At time t � 0, the
wheel has an angular velocity of �2.5 rad/s and an angular position
of �1.5 rad. Write expressions for (a) the angular velocity (rad/s)
and (b) the angular position (rad) as functions of time (s).

9 In 5.00 s, a 2.00 kg stone moves in a horizontal circle of radius
2.00 m from rest to an angular speed of 4.00 rev/s. What are the
stone’s (a) average angular acceleration and (b) rotational inertia
around the circle’s center?

10 Starting from rest, a disk rotates about its central axis with
constant angular acceleration. In 5.0 s, it rotates 20 rad. During that
time, what are the magnitudes of (a) the angular acceleration and
(b) the average angular velocity? (c) What is the instantaneous an-
gular velocity of the disk at the end of the 5.0 s? (d) With the angu-
lar acceleration unchanged, through what additional angle will the
disk turn during the next 5.0 s?

11 Two identical disks A and B can spin around vertical axes. Disk
A is spinning with an initial angular speed of 40 rev/s when its rim
touches initially stationary disk B, causing that disk to begin to spin.
The rubbing at the contact point slows A while speeding up B. The
rate at which both disks change their angular speeds is 2.0 rev/s2.
Find the time required for the two disks to reach the same angular
speed.

12 The angular speed of an automobile engine is increased at a
constant rate from 1200 rev/min to 3200 rev/min in 12 s. (a) What is
its angular acceleration in revolutions per minute-squared? (b) How
many revolutions does the engine make during this 12 s interval?

13 A flywheel turns through 40 rev as it slows from an angular
speed of 1.5 rad/s to a stop. (a) Assuming a constant angular accel-
eration, find the time for it to come to rest. (b) What is its angular
acceleration? (c) How much time is required for it to complete the
first 20 of the 40 revolutions?

14 A disk rotates about its central axis starting from rest and ac-
celerates with constant angular acceleration.At one time it is rotat-
ing at 10 rev/s; 60 revolutions later, its angular speed is 15 rev/s.
Calculate (a) the angular acceleration, (b) the time required to
complete the 60 revolutions, (c) the time required to reach the
10 rev/s angular speed, and (d) the number of revolutions from rest
until the time the disk reaches the 10 rev/s angular speed.

15 Starting from rest, a wheel has constant a = 3.0 rad/s2. During
a certain 4.0 s interval, it turns through 120 rad. How much time
did it take to reach that 4.0 s interval?

Problems

Figure 10-20 Problem 7.
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30 A gyroscope flywheel of radius 2.62 cm is accelerated from
rest at 14.2 rad/s2 until its angular speed is 2760 rev/min. (a) What is
the tangential acceleration of a point on the rim of the flywheel
during this spin-up process? (b) What is the radial acceleration of
this point when the flywheel is spinning at full speed? (c) Through
what distance does a point on the rim move during the spin-up?

26 The flywheel of a steam engine runs with a constant angular
velocity of 160 rev/min. When steam is shut off, the friction of the
bearings and of the air stops the wheel in 2.2 h. (a) What is the con-
stant angular acceleration, in revolutions per minute-squared, of
the wheel during the slowdown? (b) How many revolutions does
the wheel make before stopping? (c) At the instant the flywheel is
turning at 75 rev/min, what is the tangential component of the lin-
ear acceleration of a flywheel particle that is 50 cm from the axis of
rotation? (d) What is the magnitude of the net linear acceleration of
the particle in (c)?

27 A seed is on a turntable rotating at rev/min, 6.0 cm from
the rotation axis. What are (a) the seed’s acceleration and (b) the
least coefficient of static friction to avoid slippage? (c) If the
turntable had undergone constant angular acceleration from rest
in 0.25 s, what is the least coefficient to avoid slippage?

28 In Fig. 10-21, wheel A of ra-
dius rA � 10 cm is coupled by belt
B to wheel C of radius rC � 25 cm.
The angular speed of wheel A is in-
creased from rest at a constant rate
of 2.0 rad/s2. Find the time needed
for wheel C to reach an angular
speed of 100 rev/min, assuming the
belt does not slip. (Hint: If the belt does not slip, the linear speeds
at the two rims must be equal.)

29 Figure 10-22 shows an early method of measuring the speed
of light that makes use of a rotating slotted wheel. A beam of light
passes through one of the slots at the outside edge of the wheel,
travels to a distant mirror, and returns to the wheel just in time
to pass through the next slot in the wheel. One such slotted
wheel has a radius of 5.0 cm and 500 slots around its edge.
Measurements taken when the mirror is L � 500 m from the
wheel indicate a speed of light of 3.0 	 105 km/s. (a) What is the
(constant) angular speed of the wheel? (b) What is the linear
speed of a point on the edge of the wheel?

331
3

16 A merry-go-round rotates from rest with an angular accelera-
tion of 1.20 rad/s2. How long does it take to rotate through (a) the
first 2.00 rev and (b) the next 2.00 rev?

17 At t � 0, a flywheel has an angular velocity of 4.7 rad/s, a con-
stant angular acceleration of �0.25 rad/s2, and a reference line at
u0 � 0. (a) Through what maximum angle umax will the reference
line turn in the positive direction? What are the (b) first and
(c) second times the reference line will be at ? At what
(d) negative time and (e) positive time will the reference line be
at 10.5 rad? (f) Graph u versus t, and indicate your answers.

18 A pulsar is a rapidly rotating neutron star that emits a radio
beam the way a lighthouse emits a light beam. We receive a radio
pulse for each rotation of the star.The period T of rotation is found
by measuring the time between pulses. The pulsar in the Crab neb-
ula has a period of rotation of T � 0.033 s that is increasing at the
rate of 1.26 	 10�5 s/y. (a) What is the pulsar’s angular acceleration
a? (b) If a is constant, how many years from now will the pulsar
stop rotating? (c) The pulsar originated in a supernova explosion
seen in the year 1054.Assuming constant a, find the initial T.

19 An open jar of water moves in a vertical circle of radius 0.50 m
with a frequency that is small enough to put the water on the verge of
falling out of the jar at the top of the circle. If the same demonstration
were repeated on Mars, where the gravitational acceleration is only
3.7 m/s2, what is the change in the circling frequency to again put the
water on the verge of falling out at the top point?

20 An object rotates about a fixed axis, and the angular position
of a reference line on the object is given byu � 0.40e2t, where u is in
radians and t is in seconds. Consider a point on the object that is 6.0
cm from the axis of rotation. At t � 0, what are the magnitudes of
the point’s (a) tangential component of acceleration and (b) radial
component of acceleration?

21 Between 1911 and 1990, the top of the leaning bell tower at
Pisa, Italy, moved toward the south at an average rate of 1.2 mm/y.
The tower is 55 m tall. In radians per second, what is the average
angular speed of the tower’s top about its base?

22 Starting from rest at time t � 0, a circus stunt man drives a
motorbike on a horizontal circular track of radius 10.0 m. His
speed is given by v � ct2, where c � 1.00 m/s3. At t � 2.00 s, what is
the angle between his (total) acceleration vector and his radial ac-
celeration vector?

23 A flywheel with a diameter of 1.20 m is rotating at an angular
speed of 200 rev/min. (a) What is the angular speed of the flywheel
in radians per second? (b) What is the linear speed of a point on
the rim of the flywheel? (c) What constant angular acceleration (in
revolutions per minute-squared) will increase the wheel’s angular
speed to 1000 rev/min in 60.0 s? (d) How many revolutions does
the wheel make during that 60.0 s?

24 A vinyl record is played by rotating the record so that an ap-
proximately circular groove in the vinyl slides under a stylus.
Bumps in the groove run into the stylus, causing it to oscillate. The
equipment converts those oscillations to electrical signals and then
to sound. Suppose that a record turns at the rate of , the
groove being played is at a radius of 10.0 cm, and the bumps in the
groove are uniformly separated by 1.85 mm. At what rate (hits per
second) do the bumps hit the stylus?

25 (a) What is the angular speed v about the polar axis of a point
on Earth’s surface at latitude 40� N? (Earth rotates about that
axis.) (b) What is the linear speed v of the point? What are (c) v

and (d) v for a point at the equator?

331
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Figure 10-21 Problem 28.
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Figure 10-22 Problem 29.
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252 CHAPTER 10 ROTATION

41 In Fig. 10-27, two particles, each
with mass m 0.85 kg, are fastened
to each other, and to a rotation axis at
O, by two thin rods, each with length
d � 5.6 cm and mass M � 1.2 kg.
The combination rotates around the
rotation axis with the angular speed
v � 0.30 rad/s. Measured about O,
what are the combination’s (a) rota-
tional inertia and (b) kinetic energy? 
42 Figure 10-28 is an overhead
view of a rod of length 1.0 m and
mass 1.0 kg that is lying station-
ary on a frictionless surface
when three bullets hit it simulta-
neously. The bullets move along
paths that are in the plane of the
rod and perpendicular to the
rod. Bullet 1 has mass 10 g and
speed 2.0 m/s. Bullet 2 has mass 20 g and speed 3.0 m/s. Bullet 3
has mass 30 g and speed 5.0 m/s. The labelled distances are a �
10 cm, b � 60 cm, and c � 80 cm. As a result of the impacts, the
rod–bullets system rotates around its center of mass while the
center of mass moves in a straight line over the frictionless sur-
face. (a) What is the linear speed of the system’s center of mass?
(b) What is the distance between the rod’s center and the sys-
tem’s center of mass? (c) What is the rotational inertia of the
system about the system’s center of mass?

�

L 

O 

31 A disk, with a radius of 0.25 m, is to be rotated like a merry-
go-round through 800 rad, starting from rest, gaining angular
speed at the constant rate a1 through the first 400 rad and then los-
ing angular speed at the constant rate �a1 until it is again at rest.
The magnitude of the centripetal acceleration of any portion of the
disk is not to exceed 400 m/s2. (a) What is the least time required
for the rotation? (b) What is the corresponding value of a1? 

32 A car starts from rest and moves around a circular track of ra-
dius 32.0 m. Its speed increases at the constant rate of 0.600 m/s2.
(a) What is the magnitude of its net linear acceleration 15.0 s later?
(b) What angle does this net acceleration vector make with the car’s
velocity at this time?

33 (a) A uniform 2.00 kg disk of radius 0.300 m can rotate
around its central axis like a merry-go-round. Beginning from rest
at time t � 0, it undergoes a constant angular acceleration of 
30.0 rad/s2. When is the rotational kinetic energy equal to 2000 J? 
(b) Repeat the calculation but
substitute a ring of the same
mass and radius and assume that
the spokes have negligible mass.

34 Figure 10-23 gives angular
speed versus time for a thin rod
that rotates around one end.
The scale on the v axis is set by

(a) What is the
magnitude of the rod’s angular
acceleration? (b) At t 4.0 s,
the rod has a rotational kinetic
energy of 1.60 J.What is its kinetic energy at t � 0?

35 A meter stick of negligible mass can rotate about a vertical
axis through a point at distance x from the point marked “0”. A
small block of mass 0.100 kg is glued at the mark of “0” and a small
block of mass 0.500 kg is glued at the opposite end, at the mark of
“1.” The stick and blocks are to rotate with an angular speed of
5.00 rad/min. (a) For what choice of x is the associated rotational
kinetic energy least and (b) what is that least energy?

36 Figure 10-24a shows a disk that can rotate about an axis at a
radial distance h from the center of the disk. Figure 10-24b gives the
rotational inertia I of the disk about the axis as a function of that dis-
tance h, from the center out to the edge of the disk.The scale on the I
axis is set by and What is the
mass of the disk?

IB � 0.150 kg 
  m2.IA � 0.050 kg 
  m2

�

vs � 6.0 rad/s.

38 Figure 10-25 shows three 0.0100 kg particles that have been
glued to a rod of length L � 8.00 cm and negligible mass. The as-
sembly can rotate around a perpen-
dicular axis through point O at the
left end. If we remove one particle
(that is, 33% of the mass), by what
percentage does the rotational iner-
tia of the assembly around the rota-
tion axis decrease when that re-
moved particle is (a) the innermost
one and (b) the outermost one?
39 A wheel with a rotational inertia of 0.50 kg
m2 about its cen-
tral axis is initially rotating at an angular speed of 15 rad/s. At time
t � 0, a man begins to slow it at a uniform rate until it stops at t �
5.0 s. (a) By time t � 3.0 s, how much work had the man done? 
(b) For the full 5.0 s, at what average rate did the man do work?
40 Figure 10-26 shows an arrangement of 15 identical disks that
have been glued together in a rod-like shape of length L � 1.0000 m
and (total) mass M � 100.0 mg.The disks are uniform, and the disk
arrangement can rotate about a perpendicular axis through its cen-
tral disk at point O. (a) What is the rotational inertia of the
arrangement about that axis? (b) If we approximated the arrange-
ment as being a uniform rod of mass M and length L, what percent-
age error would we make in using the formula in Table 10-2e to cal-
culate the rotational inertia?0
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Figure 10-23 Problem 34.

I 
(k

g 
•  m

2 ) 

IB 

IA 0 0.1
h (m) 

0.2 

(b) (a) 

Axis 

h 

Figure 10-24 Problem 36.

Figure 10-26 Problem 40.
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37 A 0.50 kg meter stick can rotate around an axis perpendicular
to the stick. Find the difference in the stick’s rotational inertia
about the rotation axis if that axis is initially at the point marked
“40 cm” and then at the point marked “10 cm.”

Center
of rod

1 2

3c

a b

Figure 10-28 Problem 42.

Figure 10-27 Problem 41.
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43 The uniform solid block in Fig.
10-29 has mass 0.172 kg and edge
lengths a � 3.5 cm, b � 8.4 cm, and 
c � 1.4 cm. Calculate its rotational
inertia about an axis through one
corner and perpendicular to the
large faces.

44 Four identical particles of mass
0.75 kg each are placed at the ver-
tices of a 2.0 m 	 2.0 m square and
held there by four massless rods, which form the sides of the
square. What is the rotational inertia of this rigid body about an
axis that (a) passes through the midpoints of opposite sides and
lies in the plane of the square, (b) passes through the midpoint of
one of the sides and is perpendicular to the plane of the square,
and (c) lies in the plane of the square and passes through two diag-
onally opposite particles?

45 The body in Fig. 10-30 is
pivoted at O,and two forces act
on it as shown. If r1 � 1.30 m,
r2 � 2.15 m, F1 � 4.20 N, F2 �
4.90 N, u1 � 75.0�, and u2 �
60.0�, what is the net torque
about the pivot?

46 The body in Fig. 10-31
is pivoted at O. Three forces
act on it: FA � 12 N at point
A, 8.0 m from O; FB � 14 N
at B, 4.0 m from O; and FC �
23 N at C, 3.0 m from O.
What is the net torque 
about O?

47 A 60 kg father and 20 kg
child sit on opposite ends of a
seesaw consisting of a board
of length 4.0 m and negligible mass.The pivot can be placed anywhere
between the father and the child. At what distance from the child
should it be placed so that the seesaw is balanced when the father and
child are stationary?
48 A 100 kg cubical box lies on a floor. A child pushes horizon-
tally at a top edge.What force magnitude puts the box on the verge
of tipping over if there is sufficient friction between it and the floor
to prevent sliding?
49 A cord with negligible mass is wrapped around a pulley that is a
uniform disk of mass 5.00 kg and radius 0.300 m and that can rotate
without friction about its central axis.A 1.0 kg bucket is attached at the
free end of the cord hanging down from the pulley and then released at
time t � 0.The cord begins to unwrap from the pulley as the bucket de-
scends.At t � 5.00 s, through how many ro-
tations has the pulley turned (the bucket is
still descending)?

50 If a 42.0 N 
m torque on a wheel
causes angular acceleration 25.0 rad/s2,
what is the wheel’s rotational inertia?

51 In Fig. 10-32, block 1 has mass
, block 2 has mass ,

and the pulley, which is mounted on a
horizontal axle with negligible friction,

m2 � 500 gm1 � 460 g
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Rotation 
axis 

Figure 10-29 Problem 43.

53 Figure 10-34 shows a uniform disk
that can rotate around its center like a
merry-go-round. The disk has a radius of
2.00 cm and a mass of 20.0 grams and is ini-
tially at rest. Starting at time t � 0, two
forces are to be applied tangentially to the
rim as indicated, so that at time t � 1.25 s
the disk has an angular velocity of 250
rad/s counterclockwise. Force has a magnitude of 0.100 N. What
is magnitude F2?

54 In a judo foot-sweep move,
you sweep your opponent’s left
foot out from under him while
pulling on his gi (uniform) toward
that side. As a result, your oppo-
nent rotates around his right foot
and onto the mat. Figure 10-35
shows a simplified diagram of your
opponent as you face him, with his
left foot swept out. The rotational
axis is through point O. The gravi-
tational force on him effectively
acts at his center of mass, which is a
horizontal distance d � 28 cm from
point O. His mass is 75 kg, and his
rotational inertia about point O is
65 kg 
m2.What is the magnitude of
his initial angular acceleration
about point O if your pull on his
gi is (a) negligible and (b) horizontal with a magnitude of 300 N and
applied at height h � 1.4 m?

F
:

a

F
:

g

F
:

1

F2 

F1

Figure 10-34
Problem 53.
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Figure 10-32
Problem 51.

Figure 10-35 Problem 54.
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h

has radius . When released from rest, block 2 falls
75.0 cm in 5.00 s without the cord slipping on the pulley. (a)
What is the magnitude of the acceleration of the blocks? What
are (b) tension and (c) tension ? (d) What is the magnitude
of the pulley’s angular acceleration? (e) What is its rotational
inertia?   
52 In Fig. 10-33, a cylinder having a mass of 3.0 kg can rotate
about its central axis through point O. Forces are applied as
shown: F1 � 6.0 N, F2 � 4.0 N, F3 � 2.0 N, and F4 � 5.0 N. Also,
r � 5.0 cm and R � 12 cm. Find the (a) magnitude and (b) direc-
tion of the angular acceleration of the cylinder. (During the
rotation, the forces maintain their same angles relative to the
cylinder.)

T1T2

R � 5.00 cm

FC C

FB

B

160°

90°
O

FA

A135°

Figure 10-31 Problem 46.

Figure 10-33 Problem 52.

Figure 10-30 Problem 45.
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254 CHAPTER 10 ROTATION

55 In Fig. 10-36a, an irregularly shaped
plastic plate with uniform thickness and den-
sity (mass per unit volume) is to be rotated
around an axle that is perpendicular to the
plate face and through point O. The rota-
tional inertia of the plate about that axle is
measured with the following method. A cir-
cular disk of mass 0.500 kg and radius
2.00 cm is glued to the plate, with its center
aligned with point O (Fig. 10-36b). A string is
wrapped around the edge of the disk the way
a string is wrapped around a top. Then the
string is pulled for 5.00 s. As a result, the disk
and plate are rotated by a constant force of
0.400 N that is applied by the string tangentially to the edge of
the disk. The resulting angular speed is 114 rad/s. What is the ro-
tational inertia of the plate about the axle?

56 Figure 10-37 shows
particles 1 and 2, each of
mass m, fixed to the ends of
a rigid massless rod of
length L1 � L2, with L1 �
20 cm and L2 � 80 cm. The
rod is held horizontally on the fulcrum and then released.What are 
the magnitudes of the initial accelerations of (a) particle 1 and 
(b) particle 2?

57 A pulley, with a rotational inertia of 1.0 	 10�3 kg 
m2 about its
axle and a radius of 10 cm, is acted on by a force applied tangentially at
its rim.The force magnitude varies in time as F � 0.50t � 0.30t2, with F
in newtons and t in seconds. The pulley is initially at rest. At t � 3.0 s
what are its (a) angular acceleration and (b) angular speed?

58 (a) If R � 15 cm, M � 350 g, and m � 50 g in Fig. 10-19, find
the speed of the block after it has descended 50 cm starting from
rest. Solve the problem using energy conservation principles. (b)
Repeat (a) with R � 5.0 cm.

59 A uniform metal pole of height 30.0 m and mass 100 kg is ini-
tially standing upright but then falls over to one side without its
lower end sliding or losing contact with the ground.What is the lin-
ear speed of the pole’s upper end just before impact?

60 A thin rod of length 0.75 m and mass 0.42 kg is suspended freely
from one end. It is pulled to one side and then allowed to swing like a
pendulum, passing through its lowest position with angular speed 3.5
rad/s. Neglecting friction and air resistance, find (a) the rod’s kinetic
energy at its lowest position and (b) how far above that position the
center of mass rises.

61 Disks A and B each have a rotational inertia of 0.300 kg
m2

about the central axis and a radius of 20.0 cm and are free to rotate
on a central rod through both of them. To set them spinning
around the rod in the same direction, each is wrapped with a string
that is then pulled for 10.0 s (the string detaches at the end). The
magnitudes of the forces pulling the strings are 30.0 N for disk A
and 20.0 N for disk B. After the strings detach, the disks happen to
collide and the frictional force between them brings them to the
same final angular speed in 6.00 s. What are (a) magnitude of the
average frictional torque that brings them to the final angular
speed and (b) the loss in kinetic energy as that torque acts on
them? (c) Where did the “lost energy” go?

62 In Fig. 10-25, three 0.0100 kg particles have been glued to a
rod of length L � 6.00 cm and negligible mass and can rotate

around a perpendicular axis through point O at one end. How
much work is required to change the rotational rate (a) from 0 to
20.0 rad/s, (b) from 20.0 rad/s to 40.0 rad/s, and (c) from 40.0 rad/s to
60.0 rad/s? (d) What is the slope of a plot of the assembly’s kinetic
energy (in joules) versus the square of its rotation rate (in radians-
squared per second-squared)?

63 A meter stick is held vertically with one end on the floor and
is then allowed to fall. Find the speed of the other end just before it
hits the floor, assuming that the end on the floor does not slip.
(Hint: Consider the stick to be a thin rod and use the conservation
of energy principle.)

64 A uniform cylinder of radius 12 cm and mass 25 kg is
mounted so as to rotate freely about a horizontal axis that is paral-
lel to and 5.0 cm from the central longitudinal axis of the cylinder.
(a) What is the rotational inertia of the cylinder about the axis of
rotation? (b) If the cylinder is released from rest with its central
longitudinal axis at the same height as the axis about which the
cylinder rotates, what is the angular speed of the cylinder as it
passes through its lowest position?

65 A tall, cylindrical chimney falls over when its base is ruptured.
Treat the chimney as a thin rod of length 55.0 m. At the instant it
makes an angle of 35.0� with the vertical as it falls, what are (a) the
radial acceleration of the top, and (b) the tangential acceleration of
the top. (Hint: Use energy considerations, not a torque.) (c) At what
angle u is the tangential acceleration equal to g?

66 A uniform spherical shell of mass M � 4.5 kg and radius 
R � 8.5 cm can rotate about a vertical axis on frictionless bear-
ings (Fig. 10-38). A massless cord passes around the equator of
the shell, over a pulley of rotational inertia I � 3.0 	 10�3 kg m2

and radius r � 5.0 cm, and is attached to a small object of mass
m � 0.60 kg. There is no friction on the pulley’s axle; the cord
does not slip on the pulley. What is the speed of the object when
it has fallen 82 cm after being released from rest? Use energy
considerations.
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Figure 10-37 Problem 56.

Figure 10-38 Problem 66.
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67 Figure 10-39 shows a rigid assem-
bly of a thin hoop (of mass m and ra-
dius R � 0.150 m) and a thin radial
rod (of mass m and length L � 2.00R).
The assembly is upright, but if we give
it a slight nudge, it will rotate around a
horizontal axis in the plane of the rod
and hoop, through the lower end of
the rod. Assuming that the energy
given to the assembly in such a nudge
is negligible, what would be the assembly’s angular speed about the
rotation axis when it passes through the upside-down (inverted)
orientation?

Figure 10-39 Problem 67.
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