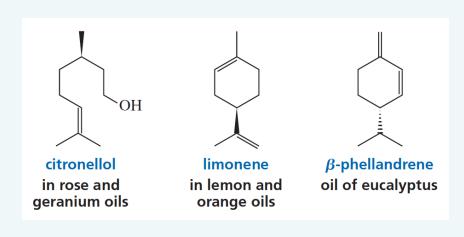
Chapter 5



Alkenes Structure,
Nomenclature, and
an introduction to
Reactivity •
Thermodynamics
and Kinetics

Paula Yurkanis Bruice University of California, Santa Barbara

© 2016 Pearson Education, Inc.

Alkenes

Saturated and Unsaturated Hydrocarbons

CH₃CH₂CH₂CH₃ an alkane a saturated hydrocarbon CH₃CH=CHCH₃
an alkene
an unsaturated hydrocarbon

Saturated hydrocarbons have no double bonds.

Unsaturated hydrocarbons have one or more double bonds.

© 2016 Pearson Education, Inc.

Nomenclature of Alkenes

2-propyl-1-hexene

Stereoisomers of an Alkene are named using a cis or trans Prefix

© 2016 Pearson Education, Inc.

Nomenclature of Dienes

two double bonds = diene

Nomenclature of Alkenes

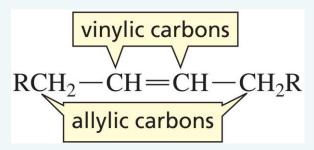
Number in the direction so that the functional group gets the lowest number.

© 2016 Pearson Education, Inc.

Nomenclature of Alkenes

$$\begin{array}{c} \text{CH}_3 & \text{CH}_2\text{CH}_3 \\ \text{CH}_3\text{CH}_2\text{C} = \text{CHCH}_2\text{CHCH}_2\text{CH}_3 \\ \text{6-ethyl-3-methyl-3-octene} \end{array}$$

Substituents are stated in alphabetical order.


Nomenclature of Alkenes

© 2016 Pearson Education, Inc

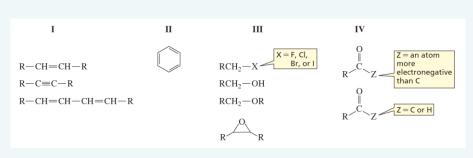
Nomenclature of Cyclic Alkenes

A number is not needed to denote the position of the functional group; it is always between C1 and C2.

Vinylic and Allylic Carbons

vinylic carbon: the sp² carbon of an alkene

allylic carbon: a carbon adjacent to a vinylic carbon


© 2016 Pearson Education, Inc.

Reactions of Organic Compounds

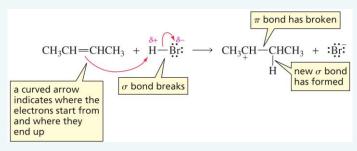
Organic compounds can be divided into families.

All members of a family react in the same way. The family a compound belongs to depends on its functional group.

Each family can be put in one of four Groups

The families in a group react in similar ways.

© 2016 Pearson Education, Inc.


Electrophiles

these are electrophiles because they have a positive charge $H^+ \quad CH_3 \overset{+}{CH_2}$

Nucleophiles HÖ: CH₃NH₂ H₂Ö: CH₃CH=CH₂ these are nucleophiles because they have a pair of electrons to share A nucleophile has a negative charge a lone pair a double bond

A Nucleophile reacts with an Electrophile $\begin{array}{c} \text{CH}_3\text{CH} = \text{CHCH}_3 \ + \ \stackrel{\delta^+}{\text{H}} = \stackrel{\delta^-}{\text{Br}} \ \longrightarrow \ \text{CH}_3\text{CH} = \text{CHCH}_3 \ + \ \stackrel{\delta^+}{\text{H}} = \stackrel{\delta^-}{\text{Br}} \ \longrightarrow \ \text{CH}_3\text{CH} = \text{CHCH}_3 \ + \ \stackrel{\delta^+}{\text{H}} = \stackrel{\delta^-}{\text{Br}} \ \longrightarrow \ \text{CH}_3\text{CH} = \text{CHCH}_3 \ + \ \stackrel{\delta^+}{\text{H}} = \stackrel{\delta^-}{\text{Br}} \ \longrightarrow \ \text{CH}_3\text{CH} = \text{CHCH}_3 \ + \ \stackrel{\delta^+}{\text{H}} = \stackrel{\delta^-}{\text{Br}} \ \longrightarrow \ \text{CH}_3\text{CH} = \text{CHCH}_3 \ + \ \stackrel{\delta^+}{\text{H}} = \stackrel{\delta^-}{\text{H}} \ \longrightarrow \ \text{CH}_3\text{CH} = \text{CHCH}_3 \ + \ \stackrel{\delta^+}{\text{H}} = \stackrel{\delta^-}{\text{H}} \ \longrightarrow \ \text{CH}_3\text{CH} = \text{CHCH}_3 \ + \ \stackrel{\delta^+}{\text{H}} = \stackrel{\delta^-}{\text{H}} \ \longrightarrow \ \text{CH}_3\text{CH} = \text{CHCH}_3 \ + \ \stackrel{\delta^+}{\text{H}} = \stackrel{\delta^-}{\text{H}} \ \longrightarrow \ \text{CH}_3\text{CH} = \text{CHCH}_3 \ + \ \stackrel{\delta^+}{\text{H}} = \stackrel{\delta^-}{\text{H}} \ \longrightarrow \ \text{CH}_3\text{CH} = \text{CHCH}_3 \ + \ \stackrel{\delta^-}{\text{H}} = \stackrel{\delta^-}{\text{H}} \longrightarrow \ \text{CH}_3\text{CH} = \text{CHCH}_3 \ + \ \stackrel{\delta^-}{\text{H}} = \stackrel{\delta^-}{\text{H}} \longrightarrow \ \text{CH}_3\text{CH} = \text{CHCH}_3 \ + \ \stackrel{\delta^-}{\text{H}} \longrightarrow \ \text{CH}_3\text{CH} = \text{CHCH}_3 \ + \ \stackrel{\delta^-}{\text{H}} \longrightarrow \ \text{CH}_3\text{CH} = \text{CHCH}_3 \ + \ \stackrel{\delta^-}{\text{H}} \longrightarrow \ \text{CH}_3\text{CH} = \text{CHCH}_3 \ + \ \stackrel{\delta^-}{\text{H}} \longrightarrow \ \text{CH}_3\text{CH} = \text{CHCH}_3 \ + \ \stackrel{\delta^-}{\text{H}} \longrightarrow \ \text{CH}_3\text{CH} = \text{CHCH}_3 \ + \ \stackrel{\delta^-}{\text{H}} \longrightarrow \ \text{CH}_3\text{CH} = \text{CHCH}_3 \ + \ \stackrel{\delta^-}{\text{H}} \longrightarrow \ \text{CH}_3\text{CH} = \text{CHCH}_3 \ + \ \stackrel{\delta^-}{\text{H}} \longrightarrow \ \text{CH}_3\text{CH} = \text{CHCH}_3 \ + \ \stackrel{\delta^-}{\text{H}} \longrightarrow \ \text{CH}_3\text{CH} = \text{CHCH}_3 \ + \ \stackrel{\delta^-}{\text{H}} \longrightarrow \ \text{CH}_3\text{CH} = \text{CHCH}_3 \ + \ \stackrel{\delta^-}{\text{H}} \longrightarrow \ \text{CH}_3\text{CH} = \text{CHCH}_3 \ + \ \stackrel{\delta^-}{\text{H}} \longrightarrow \ \text{CH}_3\text{CH} = \text{CHCH}_3 \ + \ \stackrel{\delta^-}{\text{H}} \longrightarrow \ \text{CH}_3\text{CH} = \text{CHCH}_3 \ + \ \stackrel{\delta^-}{\text{H}} \longrightarrow \ \text{CH}_3\text{CH} = \text{CHCH}_3 \ + \ \stackrel{\delta^-}{\text{H}} \longrightarrow \ \text{CH}_3\text{CH} = \text{CHCH}_3 \ + \ \stackrel{\delta^-}{\text{H}} \longrightarrow \ \text{CH}_3\text{CH} = \text{CHCH}_3 \ + \ \stackrel{\delta^-}{\text{H}} \longrightarrow \ \text{CH}_3\text{CH} = \text{CHCH}_3 \ + \ \stackrel{\delta^-}{\text{H}} \longrightarrow \ \text{CH}_3\text{CH}_3 \ + \ \stackrel{\delta^-}{\text{H}} \longrightarrow \ \text{CH}_3 \ + \$

Curved Arrows

first step of the reaction

Curved arrows are used to show the mechanism of a reaction.

The mechanism of a reaction is the step-by-step description of the process by which reactants are converted into products.

© 2016 Pearson Education, Inc.

Curved Arrows

second step of the reaction

The curved arrow shows where the electrons start from and where they end up.

How to draw Curved Arrows

How to draw Curved Arrows

© 2016 Pearson Education, Inc.

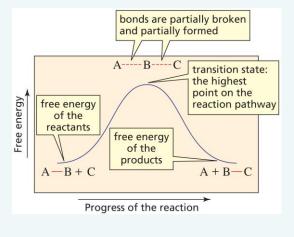
How to draw Curved Arrows

$$\begin{array}{c} \text{:} \ddot{\text{O}} \text{:} \ddot{\text{O}$$

How to draw Curved Arrows

$$CH_{3}CH = CHCH_{3} + H - \mathring{B}\mathring{r}: \longrightarrow CH_{3}\mathring{C}H - CHCH_{3} + : \mathring{B}\mathring{r}:$$

$$CH_{3}CH = CHCH_{3} + H - \mathring{B}\mathring{r}: \longrightarrow CH_{3}\mathring{C}H - CHCH_{3} + : \mathring{B}\mathring{r}:$$


$$H$$

$$Incorrect$$

$$CH_{3}CH = CHCH_{3} + H - \mathring{B}\mathring{r}: \longrightarrow CH_{3}\mathring{C}H - CHCH_{3} + : \mathring{B}\mathring{r}:$$

$$H$$

A Reaction Coordinate Diagram

A reaction coordinate diagram shows the energy changes that take place in each step of a reaction.

© 2016 Pearson Education, Inc.

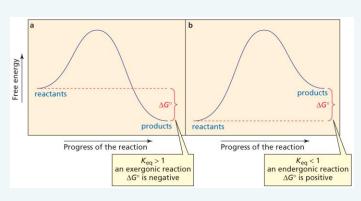
Thermodynamics and Kinetics

thermodynamics: how much Z is formed?

Y == Z

kinetics: how fast Z is formed?

The Equilibrium Constant


$$A + B \rightleftharpoons C + D$$

$$K_{eq} = \frac{[products]}{[reactants]} = \frac{[C][D]}{[A][B]}$$

The equilibrium constant gives the concentration of reactants and products at equilibrium.

© 2016 Pearson Education, Inc.

Exergonic and Endergonic Reactions

$$\Delta G^{\circ} = -RT \ln K_{\rm eq}$$

Gibbs Free-Energy Change (ΔG°)

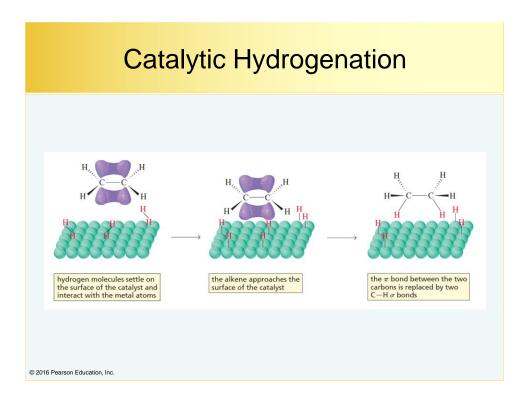
$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

 ΔG° = free energy of the products – free energy of the reactants

 ΔH° = heat required to break bones – heat released from forming bonds

ΔS° = freedom of motion of the products – freedom of motion of the reactants

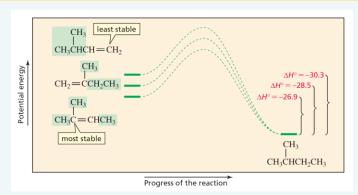
© 2016 Pearson Education, Inc.


A Reduction Reaction

$$\begin{array}{ccccc} \text{CH}_3\text{CH} = \text{CHCH}_3 & + & \text{H}_2 & \xrightarrow{\text{Pd/C}} & \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_3 \\ & & \text{2-butene} & & \text{butane} \end{array}$$

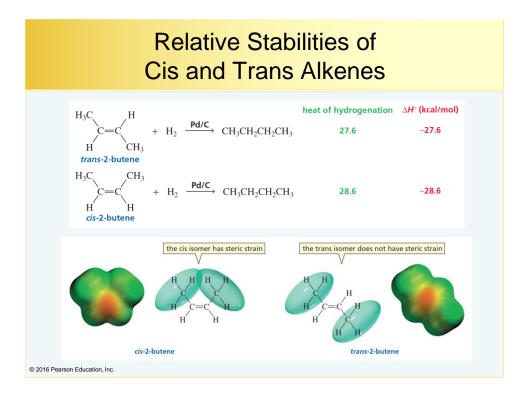
$$CH_3$$
 + H_2 Pd/C CH_3

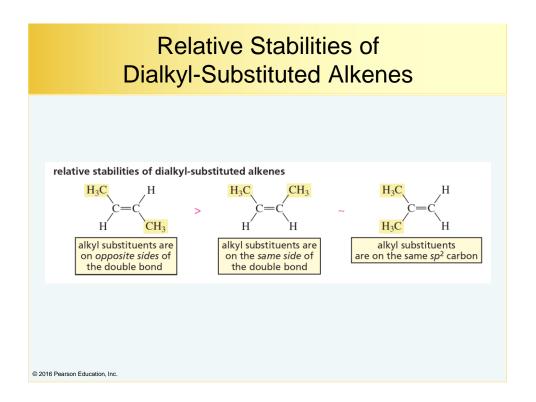
1-methylcyclohexene


methylcyclohexane

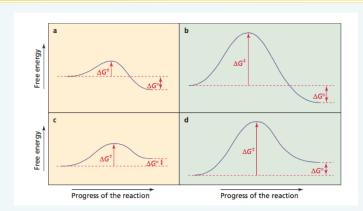
Using ΔH° Values to determine the Relative Stabilities of Alkenes

```
heat of hydrogenation \Delta H^{\circ} (kcal/mol)
      CH_3C = CHCH_3 + H_2 \xrightarrow{Pd/C} CH_3CHCH_2CH_3
                                                                         26.9 kcal/mol
                                                                                                   -26.9
     2-methyl-2-butene
      CH_2 = CCH_2CH_3 + H_2 \xrightarrow{Pd/C} CH_3CHCH_2CH_3
                                                                         28.5 kcal/mol
                                                                                                   -28.5
     2-methyl-1-butene
                                                  CH_3
     CH_3CHCH = CH_2 + H_2 \xrightarrow{Pd/C} CH_3CHCH_2CH_3
                                                                                                   -30.3
                                                                         30.3 kcal/mol
                                                   the product of each of the three
                                                   reactions is 2-methylbutane
© 2016 Pearson Education, Inc.
```


Using ΔH° Values to determine the Relative Stabilities of Alkenes



The relative energies (stabilities) of three alkenes that can be catalytically hydrogenated to 2-methylbutane. The most stable alkene has the smallest heat of hydrogenation. (Notice that when a reaction coordinate diagram shows ΔH° values, the *y*-axis is potential energy; when it shows ΔG° values, the *y*-axis is free energy [Figure 5.2].)


© 2016 Pearson Education, Inc.

Relative Stabilities of Alkenes

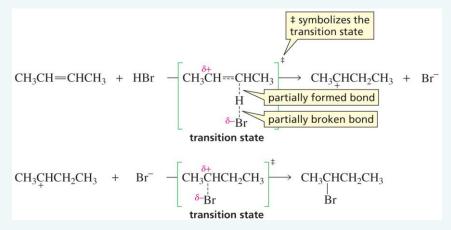
Kinetics: How fast is the product formed?

 ΔG^{\ddagger} = free energy of the transition state - free energy of the reactants

The greater the energy barrier, the slower the reaction.

© 2016 Pearson Education, Inc.

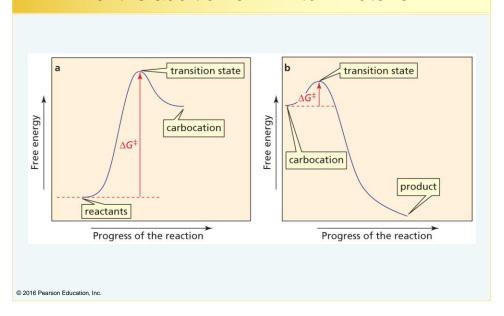
Rate of a Reaction

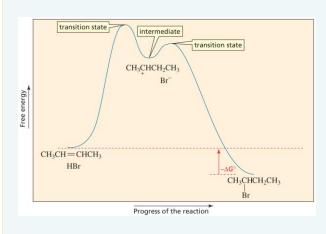

$$rate \ of \ a \ reaction \ = \left(\begin{matrix} number \ of \ collisions \\ per \ unit \ of \ time \end{matrix}\right) \times \left(\begin{matrix} fraction \ with \\ sufficient \ energy \end{matrix}\right) \times \left(\begin{matrix} fraction \ with \\ proper \ orientation \end{matrix}\right)$$

Increasing the concentration increases the rate.

Increasing the temperature increases the rate.

The rate can also be increased by a catalyst.


An Electrophilic Addition Reaction


Transition states have partially formed bonds.

© 2016 Pearson Education, Inc.

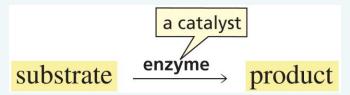
Reaction Coordinate Diagram for each step of the addition of HBr to 2-Butene

Reaction Coordinate Diagram for the addition of HBr to 2-Butene

The rate-limiting step of the reaction is the step that has its transition state at the highest point of the reaction coordinate diagram.

© 2016 Pearson Education, Inc.

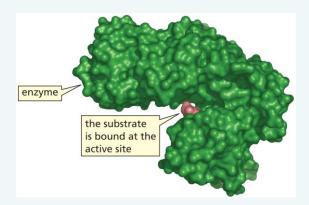
A Catalyst


A catalyst provides a pathway for a reaction with a lower energy barrier.

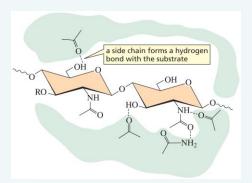
A catalyst does not change the energy of the starting point (the reactants) or the energy of the end point (the products).

Enzymes

Most biological reactions require a catalyst.


Most biological catalysts are proteins called enzymes.

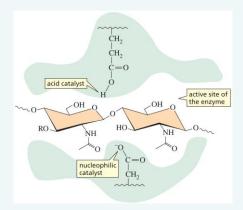
The reactant of a biological reaction is called a substrate.


© 2016 Pearson Education, Inc.

The Active Site of an Enzyme

An enzyme binds its substrate at its active site.

Enzyme Side Chains that bind the Substrate



Some enzyme side chains bind the substrate.

Some enzyme side chains are acids, bases, and nucleophiles that catalyze the reaction.

© 2016 Pearson Education, Inc.

Enzyme Side Chains that catalyze the Reaction

Some enzyme side chains are acids, bases, and nucleophiles that catalyze the reaction.