Operating Systems
Chapter 1 # Introduction

O Operating Systems Goals

(1) Overall goal: Execute user programs
(2) Primary goal: Conveniency

* It’s easier for the user to interact with the OS.

(3) Secondary goal: Efficiency

O Computer Resources

(1) CPU
(2) Memory
(3) I/O Devices

* The OS is responsible for managing the resources.

O Operating System (OS)

A set of Algorithms that run the computer machine.

e OS manages the computer resources and must manage them efficiently.

Other goal of OS: Utilization of computer resources

- Utilization of CPU: make the CPU as busy as possible.
- Utilization of Memory: To benefit or use the memory as much as possible.
- Utilization of I/O Devices.

e Computer Performance can be measured with throughput.
e Throughput: The number of jobs(programs) that finish execution per unit of time.

ST ENTSRUB.com

'_l

Uploaded By: BioedA2i0Lfs

O Computer

[1] Hardware

- Physical devices: chips, wires, power supplies, ...

- Microprogram: A primitive software that communicates with physical devices which is an
Interpreter that fetches.

- Fetch: Execute machine language (Assembly Language) instructions.

[2] Operating System

' ™

Ul V2| U3 || Un

Applica«tion Package.s

oS
Machine Language

Microprogram

Plnysical Devices

J

[3] Application Packages
[4] User Programs

O Operating System Views

(1) It’s central program: It control the execution of all the programs - Overall goal

(2) Extended machine: Extension of the physical machine = Primary goal
* That, it hides all the complexity of system programming and provide the user with
simple clean machine to deal with.

' Maclﬁ\me Languas{e E
l(CcomPu‘ter Hardware)

(3) Resource Manager. It manages the computer resources efficiently = Secondary goal
(4) Kernal: Part of the OS that’s always running and executing instructions.

SN BRNEFSBaRUB.com 2 Uploaded By: BioedA2i0Lfs

O History & Evolution of OS

Os
Output | Print P
5 - pUlL | rinter, aper,
Card Reader i) IR, == ,.;_ et
00000 or Tape
b
112 \3 41516 @ e n
; I3 > 3 ?acln line nee:S azgcng
So it a program has ines
S]ngle Card o E E = g the usPer ?uaeds 200 cards
(m | * Hexodecimal wos used
o Blolo|B
Early Software:
- Machine Language
- Assembly Language (Assemblers)
- Loaders
- Linkers: The Addition of software to the program
- Compilers

* Poor Performance
e A great portion of time is wasted in set-up time
e No Overlap between I/O & CPU execution

e Low CPU Utilization (due to the big difference between I/O speed & CPU speed)
o A fast card reader can read 1200 cards/min
o 1200 / 60 = 20 cards/sec
o The CPU can process 300 cards/sec

60 sec 4 sec 60 sec 4 sec
Card Reader CPU Card Reader CPU

Time

o Percentage of CPU Utilization = 4/64 = 1/16 = 6%

ST ENTSRUB.com

W

Uploaded By: BioedA2i0Lfs

* CPU instruction e | i %
1 CPU |>
| —— |
A CPU instruction will keep executing until reaching I/O (print Output / Read /o
Input) :- c P U ': >
L o e o 5
I/0
A] Offline Operation Feeeee 3
- P 1 CPU
(1) Before L e e = J
! I/0
Card Reader Trpat e Output Printer
Mewmory
(2) After
‘T'ape Tape
Card Reader ——»(0) > (©) ——» Printer
; Memory ;
Offline Operation Offline Operation

A Tape to Memory is much faster than Card Reader to Memory (Improve Execution)

[B] Buffering

Os

: User
5 Program .
Prmter

Input Buffer

Output
Buffer

it il

Card Reader

il

e When CPU reaches I/O it brings data from the buffer not from Card Reader
** The I/O of one job is overlapped with the execution of the same job.

SN BRNEFSBaRUB.com 4 Uploaded By: BioedA2i0Lfs

[C] Spooling

Job Queue

Pool” Spoof Area

WY’

Input Device 19 ME“"C’”(/CPU > Device

In Spooling 2 kinds of data-structures were introduced:

(1) Job Queue/Pool: a queue contains the jobs(programs) that demands execution
(2) Spool Area: Contains the jobs that need printing

<« The I/O of one job is overlapped with the execution of another job

[D] Multiprogramming Batch Systems

- Memory is divided into regions(partitions)
- Regions sizes normally different
- Each Region contains only one job

Two kinds of jobs:

(1) CPU-bound job: contains few very long CPU bursts.
(2) I0-bound job: contains many very short CPU bursts.

Mewmory

05

Re.gion 1

R’e,gion 2

Re.gion n

m
cr
)

/\ Keep in Mind: Any job(process/program) is sequence of CPU burst & I/O wait
and it must start and end with a CPU burst.

ST ENTSRUB.com

[&)]

Uploaded By: BioedA2i0Lfs

Job 1 Job 2

== I

I/o \ : waiting

* Context Switch

|
o N~ L
Wm'tmg| ==

| —
| #¥/————___* Context Switch I/o
== L

el

293 e

** The CPU switches to another job when first one needs I/O
* Context Switch: Saves Register for Job 1 & Reloads Register for Job 2

[E] Time Sharing Systems

- Same as multi-programming
- Memory divided into regions
- Several jobs are kept in memory
- Each job is assigned a slice of time called quantum Q.
- Each job is executed for this quantum of time & the CPU switches to another job when
quantum Q is finished. In addition to normal cases:
o Ifthejob needsI/O
o If the job finishes execution
o High priority process

Multi — programming # Time Sharing

e Multi-programming: The CPU switches when the job needs I/O
e Time Sharing: The CPU switches when Quantum Q is finished

ST ENTSRUB.com

[=)]

Uploaded By: BioedA2i0Lfs

[F] Parallel Systems
Multi-processor systems with more than one CPU in-close communication.

(1) Loosely Coupled Systems: Ex. Networks, Distributed Systems connected via servers.
(2) Tightly Coupled Systems:
Processors share memory, clock, & communication usually takes place in memory

Mewmory

There are two types of processing:

a. Symmetric multi-processing: Each CPU has the same identical copy of
the OS [Reliable & Simple]
b. Asymmetric multi-processing:
i. There are huge OS that runs this scheme
ii. There’s one CPU called the master CPU which controls other activities of other CPUs
iii. The relation between the master and other CPUs is called master/slave relationship.
Reliable on all cases unless the master CPU is Faulty.

[G] Realtime Systems

- Takes data using sensors
- For systems that needs immediate response

SN BRNEFSBaRUB.com 7 Uploaded By: BioedA2i0Lfs

Chapter 2 # Computer System
Operations

rd
Pr1 || PR-2 :
\/

Cl=l=I=C X"
\ T /7 \ |

Disk Controller Tape Controller

Printer Controller e | Device Controller

[) 3

4

3

[}

. wmain BUS

d—b Memory Controller

e I/O can run concurrently with the CPU.

e A Each device controller is in-charge of particular device.
e A Each device controller has a local buffer.

e CPU moves data from/to main memory to/from the local buffers.
e I/Ois from the device to local buffer of the controller.
¢ Device controller informs the CPU that it has finished its operation by causing an interrupt.

Your Program

..'_‘. N
\ H

9 L1

'.Iﬁl'

Another Job

[T

Instruction Register

IR | leo?

A Operating Systems are interrupt driven (CPU is interrupted)

Kernel

1000 Address Bootstrap

Program

[T

ST ENTSRUB.com

Boot sector "Boot Record”

1000 Address

SS
OO

Uploaded By: BioedA2i0Lfs

U Interrupt

A signal sent to the CPU by:

- Hardware
- Software “Trap”

Examples:

- Completion of an I/O. (Hardware Interrupt)
- Division by Zero. (Software Interrupt)

- Invalid Memory Access (Hardware Interrupt)
- Request of an OS service.

OS services that can be asked:
(1) System Program
> format a:
> copy A.dat B.dat

(2) System Call: Its an assembly language instruction.

N Interrupt Handling

(1) Interrupt Vector (Table)

Assume that the Interrupt which comes from the hard disk informing the CPU the input
is completed has number 45

(@) Interrupt [45]
—
e Disk Controller
oS Local Buffer
[0] = _Ajol;es_s = =
. e =2 == = o] [oomet vecter I

[45] 25164

(1) when the disk controller finishes I/0 o eration,
P
sends interrupt to the CPU
2) when the CPU isn't busy, or the job has high
Y J 9
(3) priority, will go to the requested address in
the Interrupt vector (table)
(3) go to the specified instruction to execute the
g P

Service Routine

0x25164 SE,!’V:C& (4) In this example the service routine will be to
. get the result from the local buffer to the
Routine memory

ST ENTSRUB.com

o

Uploaded By: BioedA2i0Lfs

(2) By Polling
1 I/0 interrupt structure:

g

HD Disk Controller ﬁer—_

I/0 instruction
Loecal IR
BNF'FQV load

IR

(TR

O Types of 1/0:

(a) Synchronize I/O: after the I/O starts, the control (CPU) returns to the program only
upon I/O completion.
» The CPU waits until the I/O is completed
» Wait instruction “CPU is idle”
» Loop: jump loop

(b) Asynchronous I/O: After the I/O starts, the control (CPU) switches to another
program without I/O completion.

O Direct Memory Access (DMA):

- Slow I/O devices such as keyboard, can send one character every 1 milliseconds
1 mils = 1000 mics.

- The CPU can process (the service routine) to handle the instruction of
the character in 2 mics through an I

Time
—
1000wmics 2mics : A98mics 1000mics

char char char char
received received received received
2 wmics is the time the CPU spends on 9498 mics is the remaining time the CPU
L\o\ndhng the ‘m’terrupt when the device has for other tasks, like Processing
(lke a keyboard) sends one character. asynchronous I/O or other jobs.

- But, in high speed I/O devices (i.e. Hard Disk) the HD can send/receive char every 4mics

Time >
Gmics 2mics . 2wmics 4mics
L
CL\G\r CL\G\F CL\QY Cl\ar
received received received received

= This leaves the CPU with 4 — 2 = 2mics for Asynchronous multiprocessing
(not enough for switching).

SN BRNEFSBaRUB.com 10 Uploaded By: BioedA2i0Lfs

* In this case (HD) the OS sends one block of data each time & sends an interrupt to
the CPU to process this block.

Os
Mewmory

_ Disk Controller
interrupt r
. Local Buffer

N

_— L—,\Ock | IR

of date

O Primary Storage (Memory-RAM) “volatile”

- Memory is the largest storage media accessed

directly by the CPU
Words {

A041
D302
0382
A3B1

- Memory is an array of words; each has an address.
- Word size = 2-8 byte
o More common 4 bytes.

- The CPU performs the following instructions:

(a) Load Instruction: Fetch(get) instruction from the

memory to the IR.
(b) Store Instruction: Storing a Register into a memory
location.

N Instruction Cycle

oS

Analyze

Instruction

!

(2) Decode

Your

Pl"ogl’am
* Instruction Cycle *

(3) Perform the
ope,ra'tions with
the given operands (4) Store

the result

SN BRNEFSBaRUB.com 11 Uploaded By: BioedA2i0Lfs

O Secondary Storage

- Such as: Hard Disks, Tapes, CDs, Flash Memory, etc.....
- Factors that affect the secondary storge:

(1) Speed

(2) Cost

(3) Volatility. “al\=d 5e”
- The fastest storage medium in the System

Fastest =>! Slowest
Register Caches RAM HD Tapes .. etc

N Cache Memory

Caching: is simply copying data to a fastest storage medium to speedup execution,
and ensure good performance.

Examples:

(1) Memory (RAM) is considered as cache for HD.
(2) Registers are considered as cache for Memory.
(3) Instruction Cache Register (ICR).

oS
ICR 1
f)’
IR Cy cle == Your
Program

T

A 1 & 2 are concurrent (parallel).

- from ICR to IR is much faster than RAM to IR

- L1 Cache is the fastest cache type because it’s built with in the CPU
- L2 Bigger but slower

etc

SN BRNEFSBaRUB.com 12 Uploaded By: BioedA2i0Lfs

0 Hardware Protection

How does the OS protect the Computer Resources (CPU, Memory, I/O Devices)?

N Dual mode of operation:

(a) Monitor (Supervisor) Mode: In this case the OS execute process on behalf of itself.
(i.e. interrupts).
(b) User Mode: The OS execute on behalf of the user (it run user programs).

A Implementation: One bit is assigned called “mode bit”. (1: user mode, 0: monitor mode)
N Definition: A privileged instruction is an instruction that’s execute only in monitor mode.
Al I/O Protection: All I/0O instructions are mode privileged instruction.

Al Memory Protection: To protect the memory allocation space of the user program &

the OS itself.
(OA
User 1 Base Regis.‘ter
> 4362 Limit Registe.r
User 2 —| 1000

Base Register
—> 5262 Limit Register
User 3 = 2000

Loaded to the memory * where

User 2 PVDQI"O\M /?36 aololre.ss S‘tarting from
4262 and has limit of 1000

T

|

* Logical Address (LA): is the offset of the instruction in your program &
LA = Address seen in your program.

* Physical Address (PA): is the actual address in memory &
PA = LA + Base Register
(i.e.) PA = 736 + 4262 = 4998

S BENTERRUB.com 13 Uploaded By: BioedA2i0Lfs

= The most important concept; is How the OS compute the PA?

Limit Base Base
Reg?ster Re.g‘;ste.r Limit

|
cPUVLA T 4 P4

Mew\orl/ 'Fault

Al CPU Protection

- Timer

- With every clock the timer is decremented by 1

- When the timer reaches zero it sends an interrupt to the CPU

- When the CPU receives interruption, it executes the interruption service routine which is
responsible for checking the CPU

- Timer can be used in Computer time calculation

A Operating System Structure

(1) Process Management
(2) Memory Management
(3) File System (I/O) Management

= The OS services can be provided in two methods:
(1) System Call: it’s an assembly language instruction.
(2) System Programs.

S BENTERRUB.com 14 Uploaded By: BioedA2i0Lfs

Chapter 3 # Processes

Process Definition: A process is a program in execution. [process = program = job].

1 Process Types

(1) Batch Process: Generally, Batch processes have low priority.
(2) Time Sharing Process:

o Users

o Program Development

o Data Entry

o Gaming
(3) System Tasks: such as Interrupt

O Process Control Process

Code Section
pa

The process contains:

(1) Code Section (Program Counter PC) 1
“PC”: is the address of the instruction executed currently. Stack Section

(2) Data Section: Memory allocation were the input & output data is stored. J

(3) Stack Section: Global variable — static

Data Section

[Process States

(1) NEW: the process is newly created

(2) READY: the process is loaded into the memory & ready to run and have the CPU.
The process is in READY queue waiting to have the CPU to run.

(3) RUNNING: The process is having the CPU & execution.

(4) WAITING: waiting for some event to happen. Typically, waiting for I/O.

(5) TERMINATED: The process finishes execution.

Job Queue)
"Pool"

Ready GQueue

Interrupt 7
Q is Finished

I/0O needed
I/O completed

Major Process States

SN BRNEFSBaRUB.com 15 Uploaded By: BioedA2i0Lfs

© Where data about the process is stored? PCR

The proce.s,s control block (PCB): it’s a kind of datastructure, Proiess ID
generally it’s a table. Process State
PC
. Registers
1 Scheduling & System Queues Scheduling info
Mewmory info
SCL\edu[Ing algoritlnm(FIFO) (Base & Limit) Registers|

Queue

Accoun‘ting Info

Intermediate Queue

Medium-Term Scheduling
cPU Sclneduhnsf

"Short-Term"

Job Queue "Pool"%l?eady Queue — Bk it

Interrupt

I/0 is Completed * @ is Finished
"HD SCL\eduI:ng o|gor1thm"

1/0 s reauived

I/O Queuer

* HD Queue

N Long-Term “Job” scheduling

It’s selecting a job from the job queue to be admitted to memory and in term it’s added to the
READY queue. This selection “Interrupt” is invoked(called), this invoked (seconds, minutes).
That is, the OS has enough time to decide carefully which job to fetch.

N Short-Term scheduling
It’s selecting a process(job) from the REDAY queue to be given to the CPU to RUN.

(Milliseconds, Microseconds, or Nanoseconds), therefore it should be very fast.

= Definition of Degree of multiprogramming: is the # of jobs in the memory “READY Queue”.
Therefore, Long-Term scheduling controls the degree of multiprogramming.

SN BRNEFSBaRUB.com 16 Uploaded By: BioedA2i0Lfs

N Job Scheduling

- If most jobs in memory are CPU-bound jobs

- the CPU will always be busy “High CPU Utilization”, But I/O queues are empty.
- If most jobs in memory are I0-bound jobs

- the I/O queues are always full and CPU almost free “Low CPU Utilization”.

A\ In both cases the system unbalanced!

- Long-Term Scheduling: selects a mix of CPU & I/O bound jobs, So the system will be
reasonably balanced.

N Process Creation

Parent process creates children processes, which in return create other processes.
Forming a Tree of Processes

Al Resource Sharing: -

- Parent & children share all resources.
- Children share a subset of the parent’s resources.
- Parent & children share no resources. “Both compete for all resources”.

Al Execution: -

- Parent & children execute concurrently.
- Parent waits until the child terminates.

Al Address Space: -

- Child duplicate of parent.
- Child has a program loaded into it.

N Unix examples: -

- fork system call creates new process.
- execve system used after a fork to replace the process’s memory space.

fork()

co.«nputation

Concurre.nﬂy
"Parallel”

SN BRNEFSBaRUB.com 17 Uploaded By: BioedA2i0Lfs

N Process Termination

- Process execute last statement & asks the OS to delete it “exit”
1. Output data from child to parent ‘via fork’
2. Process’s resources are deallocated by OS

A When a process is killed all of its resources are deallocated.

- Parent may terminate execution of children processes ‘Abort’, when?
1. Task assigned to child is no longer required.
2. Child has exceeded allocated resources.
3. Parent is exiting.

OS doesn’t allow child to continue if its parent terminates.

Cascading Termination: If the parent process ends ‘exit’ all children &
sub-children are forced to exit.

N Cooperating Processes

Concurrent processes are either:

1. Independent process: Can't affect or be affected by the execution of another process.
2. Cooperating process: Can affect or be affected by the execution of another process.

A Advantages of process cooperation:

1. Information sharing
2. Computation speed-up
3. Modularity

4. Convenience

Al Producer-Consumer Problem

Concurrency requires:

- Cooperation among processes (communication)
- Synchronization of processes action

O To illustrate the idea of cooperation process. Consider the producer-consumer problem:

Producer process produces information.

Consumer process consumes this information.

S * Buffer

'Concurrenth/'

© Examples

1. Print program produces characters consumed by the printer.
2. Compiler produces assembly code consumed by the assembler.
3. Assembler produces machine language code consumed by the Loader.

SN BRNEFSBaRUB.com 18 Uploaded By: BioedA2i0Lfs

O Datastructure Required

const int n; // Size of buffer

type item; // Item can be char, bit, word...

var int buffer[n];

int in; // Index where we add items in the buffer

int out; // Index where we take items from the buffer
item nextP; // Next produced item

item nextC; // Next consumed item

A We will use the Circular Buffer idea in the implementation.

n=¢%
/* Buffer \ 5]
[4] c
nextP nextC (3] Y
[2] A =out = 2
* Full Buffer: Gin + 1) % n = out [1] [T
* Buffer is Empty: in = out [0] e
Buffer
Al Producer Process
while (true) {
// Produce an item in nextP
// ... (ilmplementation of producing an 1tem)
while ((in + 1) % n == t) {
// No operation {NﬂiL for buffer space)
}
buffer[in] = nextP;
in = (in + 1) % n;
1
Al Consumer Process
while (true) {
while (in == out) {
// No operation (busy waiting)
}
nextC = buffer|[out];
out = (out + 1) % n;
// Consume the item
// ... (implementation of consuming the item)

® Producer & Consumer processes run concurrently.

A\ Disadvantages: we only use (n-1) buffer if we have n buffers.

SN BRNEFSBaRUB.com 19 Uploaded By: BioedA2i0Lfs

Chapter 4 # Threads

Process (Heavily Weight Process)

Remember
/ ; \ Code Data Operamol
I — rocess | Section | | Section files | ®°°
| ;Code Section PCB |
E P Process ID Register| | Stack
: = ’ ProcesPscState : PID ge‘t Se.c;'lon oo
| Regist | — i
| | Stack Section Scl«:juin;ri{:o | Process
| : |
| I (Bose 2"—:;::{'?)"'::9;“”& | Pc =
| Accountlng Info| |
| | Data Section
\
. v m—mes s e o o o /
Thread (Light Weight Process) Contains: -
- Program Counter
- Register Set
- Stack Section
=>» All peer threads share: -
- Code Section
- Data Section
- I/O Resources
Code Data Oper‘amo(
s . . o000
Section Section Files
D Register| | Stack s Register| | Stack e
Set Section | **° Set Section
PC —> PC —>

® Advantages of Threads is: Concurrency & Sharing Resources

20

SN BRNEFSBaRUB.com Uploaded By: BioedA2i0Lfs

O Two kinds of Threads support

1. At User Level: It’s totally the responsibility of the user (very complex & very difficult).
2. At kernel Level: Most OS support this kind of threads.

O User & Kernel Threads Relationship

=» Think about user threads as processes(programs)
=» Think about kernel threads as CPUs

® We have: multi-threads & multi-CPUs

(1) Many-to-One
Many user threads are mapped to one kernel thread
A\ Disadvantage: No Concurrent Execution

(2) One-to-One

Each kernel thread is assigned to one user thread

~» Main advantage: this allows concurrent execution

A Disadvantage: we need enough kernel threads

(3) Many-to-Many
Many user threads are mapped to an equal or a smaller number of kernel threads.

SN BRNEFSBaRUB.com 21 Uploaded By: BioedA2i0Lfs

Operating Systems
Chapter 5 # CPU Scheduling

CPU Scheduling: Is the process or decision at which process the OS should select from the ready
queue and give to the CPU to execute [short-term scheduling]

Re_ady cCPU Sclne.oluhng
Qu eue Short-term

O Cases to invoke the CPU Scheduling?

I/O required

Interrupt

Process I/0 is Completed - (In synchronous mode)
Process terminated

ok

R e-ad v CPU Sclneo(u[ing
Qu eue. "Short-term"

CPU S Exit
o

2. Interrupt 1. I/O Requﬁred

1/0 Completed I/ O Queue

3. In synclnronous
wmode of I/O

In cases:

- 1& 4: None-preemptive “CPU ¢& i ghy clis”
- 2 & 3: Preemptive “CPU J! 5 giry @34

=» Our Objective is to introduce all scheduling algorithms, such that we take in consideration the
following criteria:
(1) CPU utilization (max)
(2) Throughput (max)
(3) Turnaround time (min): It’s the time from submitting job until it finishes execution
(4) Waiting Time (min): It’s the time the process spends in the READY queue

(5) Response Time: It’s the time from submitting job until you see the first response from the
computer

Turnaround Time (Minimum is better)

Weighted Turnaround Time = , ,
Service (CPU)Time

SnuD BXFBaRUB.com 22 Uploaded By: BioedA2i0Lfs

= Every switching from processes P; to Pj needs: 2 Context switch

P1 P2
g —T
== 1

|
I
wc\iting | =t

l ==
| #/———— * Context Switch I/o
== ==

! ==

o o

o o

(] (]

[1] FCFS - First Come First Serve

Example: Given the following READY Queue
- Process Arrival Time Service Time (CPU Brust)

P1 _ o 3
P2 2 5
P3 4 1
Pa 5 4
Ps5 8 1

Compute the average turnaround time & average waiting time. > We use Gantt Diagram

= P2 P3 P4 P5

6 ¥ ® 9 10 1 12 13 14

Ll
P1| [p2 @ P3 @ @ 4

Ar| | Ar Ar || Ar F9 £
Ar

- Turnaround = Finish Time — Arrival Time

- Waiting Time = Turnaround Time — Service (CPU) Time

- Avg Turnaround Time = (B_OJ+(3_2)+(9_:)+(13_S)+(14_8) = 5.6 unit

_ Avg W(lltmg Time = (3—0—3)+(8—2—5)+(9—4;1)+(13—5—4}+(14—B—1) = 2.8 unit

SN BRNEFSBaRUB.com 23 Uploaded By: BioedA2i0Lfs

FCFS: Convy Problem
Examples: S 5o J sm 5 4800

- Process | Arrival Time Service Time (CPU Brust)

P1 : 0 . 1
P2 _ o _ 5
P3 ! Q . 27

(1-0)+(6-0)+(33—-0)

= 13.33 unit

(1-0-1)+(6-0-5)+(33-0-27)
3

- ATT =
- AWT =

= 2.33 unit

" Process Arrival Time = Service Time (CPU Brust)

P3 o | 27

P2 _ 0 . 5

P1 o 1

P3 I P2 IP1

| | L L = ||
T 10 20 2% 32 33
P1
e @
P3
Arrive

- ATT = (27—0)+(323—0)+(33—0) - 30.%1”1&

(27-0-27)+(32—-0-5)+(33-0-1)
3

- AWT = = 19.66 unit

SN BRNEFSBaRUB.com 24 Uploaded By: BioedA2i0Lfs

[2] Shortest Job First

The CPU is given to the process with the smallest CPU burst (Service Time). Example:

- Process Arrival Time Service Time (CPU Brust)

Pr o _ 24
P2 _ 0 _ 3
P3 o 3

0 3 6 30
v @
P1
P2
P3
Arrive

(3—0)+(6-0)+(30—-0)

- ATT =
- AWT =

=13 unit

(3-0-3)+(6—0-3)+(30—0—-24)
3

= 3 unit

A Note: Shortest job first gives the minimum (optimal) solution, That it gives the minimum
waiting time.

Two versions of SJF

(1) Preemptive: if the job arrives at the READY queue with CPU burst less than the remaining
of the running process, then the CPU switches to the new arriving process.
Shortest Remaining Time First (SRTF)

(2) None- Preemptive: if a job arrives at the READY queue with CPU burst less than the
remaining of the running process, then the CPU continues with running process & then
switches to the new arriving process.

Example:

Process Arrival Time Service Time (CPU Brust)

P1 o} 7
P2 2 4
P3 | 4 B
P4 5 4

S BENTERRUB.com 25 Uploaded By: BioedA2i0Lfs

(a) Preemptive

P1 P2 [r3]| P2 Py I P1

5
[[|
B P2 P3| |P4
Ar Ar Ar| | Ar @ @

- ATT = (16-0)+(7-2)+(5-4)+(11-5) _ 7 unit

4
(16-0-7)+(7—-2-4)+(5-4—-1)+(11-5-4)

4

- AWT =
(b) None-Preemptive

P1 " P3 ' P2 || P4
I I
2

= 3 unit

I I
0 2 4 5[7 2 1 16
P1 P2 P3| P4
Ar Ar Ar| | Ar
- ATT = (7—0)+(12—2)1-(B—4)+(16—5) . ——
- AWT = (7—0—7)-1-(12—2—4):(8—4—1)+(16—5—4) _ ? unit

A Problem: Starvation, Solution: Aging
=» Aging: as time progress, give the process some priority.
/A Major Problem: How the OS can decide the length of the next CPU burst (service time)??!

~ Solution: the OS can only estimate the length of the next CPU burst.

Example: Assume

st CPU T, = Actual length of nth CPU burst

- Y, = Estimated length of the ntt CPU burst
= Take a constanto <sw <1

2nd CPU _ pefine the formula:

Ynr=wxTh+Ynx(1-w)
ew=09Yn+1=Yn
ew=19Yn+1=Tn

3rd CPU

nth CPU

s

SN BRNEFSBaRUB.com 26 Uploaded By: BioedA2i0Lfs

- Let us expand the equation:
Ypr=wxT, + A —-w)«[wxTp_ 1 + (A —w) *[w*Tp_, + (1 —w) %[...
Vo1 =w*Tp+ (1 —=w)*Tpy+ wx(1—=w)? T, +wx(1—w)®=*Tp_3+ -
1

Substitutew =

Y _ T_n_l_ Tn—l Tn—z Tn—3 Tn—4
LT D 22 23 D4 25

[3] Priority

- The CPU is given to the process with the high priority.

- Every process is given a priority number. Generally, low number means low priority
- System tasks have high priority (i.e. Interrupts)

- There are Two versions of priority:
(1) Preemptive
(2) None-preemptive

Example: Given the queue as follows:

~ Process CPU Brust Priority Arrival Time
' P1 10 1 10:00

P2 5 2 10:02

P3 1 5 10:05

Py 8 4 10:08

A High # = High Priority

(a) Preemptive

P1 P2 P3 | P2 P4 P1

0] 2 -] 6 8 16 24

l 1 P4
P P2 P3 Ar
A Ar Ar @ p2)

F

Y

=

(b) None-Preemptive

P1 | P3 P4 | P2

| |

0 Li. 5 2 10 11 19 24
Ar Ar Ar Ar

A Problem: Starvation, Solution: Aging

=» Aging: as time progress, give the process some priority.

SN BRNEFSBaRUB.com 27 Uploaded By: BioedA2i0Lfs

[4] Round Robin (RR)

- It’s best designed for time sharing interaction systems
- Each process is assigned a slice of time called Quantum Q. The process runs for this Q &
CPU switches to another process on FCFS basis.

IF
2 Qw-:ry hig“) FCFS
D Qvei'y small 2> ?!

Example: Q = 20

. Process Service Time

P1 53
P2 _ 17
P3 68
P4 24

P1 | P2 P3| P4 | P1L P3| P4 | P1 | P3| P1 | P3

20 3¢ 5% ¥ ¢ 117 121 141 161 164 172

¢ # G B

[5]1 Multi-Level Queues

- Ready queue is divided into several queues.
- Each queue has its own scheduling algorithm.
- Scheduling between queues, that is How to distribute CPU time among the queues?!
There are two Algorithms:
(1) Time slice: Each queue is assigned a slice of CPU time, which scheduled among its
process.
(2) Fixed priority:
- Serve all jobs in “System tasks”
- Then serve all jobs in “interactive”
- Then serve all jobs in “Batch”
- Preemptive & None-Preemptive

Higk Priority
Process run By the OS
08 i RR, Q=100 5" Syctem Tasks |—>
- e user 4~
100 =i RR, Q=10 %l Interactive Jobs H
20 wils FCFS Botch Jobs

A\ Problem: Starvation

SN BRNEFSBaRUB.com 28 Uploaded By: BioedA2i0Lfs

[|6] Multi-Level Feedback Queues

- Ready Queue is divided into several queues.
- The process can move up & down between queues.
- Preemptive & None-Preemptive

—> Q1 ——= RR, Q=10

|

—> Q2 —>RR, Q=100

|

—> Q3 |—> FeFs

New Process enters Q1

Example:

: Process @ CPU-Burst

P1 25
P2 | 160
P3 . 120
Py 8

P1 | P2 | P3| Pe | P1 | P2 | P3| P2]P3

£ 10 20 30 3 253 303 313

3% 53 15
P3
Arrive

O Algorithm Evaluation

(1) Deterministic mode “poor”

(2) Queuing Theory “Theoretical”

(3) Simulation “good”

(4) Implementation “best algorithm for evaluation”

S BENTERRUB.com 29 Uploaded By: BioedA2i0Lfs

Chapter 6 # Concurrent Processes
and Process Synchronization

Concurrent Processes

- Concurrent process and either independent or cooperating
- Independent process: can't affect or be affected by the processors

Precedence Graph @

Given the following statements:

(1)a=x+y(s1) @ @

(2)b=z+1(s2)

(3)c=a—-b(s3)

(4)w=c+1(s4) @
Clearly, @
- Statmetns

- (3) & {(1) & (2)} can’t execute concurrentley

- (4) & (3) can’t execute concurrentley

- (4) & {(1) or (2) or (3)} can’t execute concurrentley
- But statements (1) & (2) can be executed concurrentley

- So if we have multiple functional units in our CPU such as address or we have multiprocesser
system then the statements (1) & (2) can be executed concurrentley (in parallel).

Definition: A precedence graph is a directed graph whose nodes correspond to statements.
An edge form node S; to node S; means that S;jis only executed after S;.
In the given graph:

- S, & S5 can be executed only after S, completes

- S, can be executéd only after S. completes.

- S5 & Se can be executed only after S, completes.

- S, can be executed only after S, Se, S; completes.
- S;can be executed concurrently with S. S, S5 Se.

SnuD BXFBaRUB.com 30 Uploaded By: BioedA2i0Lfs

Concurrency Condition

¢ How do we know if two statements can be executed concurrently & produce the same result?
¢ Define:
o R(Si) ={ay, a,, am} be the READ set for statement S;, which is the set of all variables
whose values are referenced by statement S; during execution.
o WI(S;) = {by, b,, bn} be the WRITE set for statement S;, which is the set of all variables
whose values are changed(written) by the execution of statement S;.
e Examples: Given the statements:

o S:c=a-b
R(S) = {a, b} o g(;;:é:f{({g)} or scanf(a)
W(S) = {c} Wit}

o S:w=c+1 -
R(S) = {c}

o ‘S‘;V(f)==x{r(i o S: print(a) or printf(a)
R(S) = {x} R(S) = {a}
W(S) = {x} WES)={}=D

The Bernstein’s conditions for concurrent statements are:

Given the statements S1 & S2, then S1 & S2 can be executed concurrently if:
[R(S1) N W(S2) = @] AND [W(S1) N R(S2) = ®] AND [W(S1) N W(S2) = @]

Example 1: Given

Sita=x+y R(S1) = {x, y} {x,y}N{b}=®

S2:b=z+1 W(S1) = {a} {z} N{a} =D
R(S2) = {z} {a} N{b} =@
W(S2) = {b}

Example 2: Given S3: ¢ =a —b = R(S3) N W(S2) ={a, b} N {b} + ®

Fork & Join Constructs

e Precedence graph is difficult to use in Programming Languages, so other means must be
provided to specify precedence relation.
e The Fork L instruction produces two concurrent executions
o One starts at statement labeled L
o Other, the continuation of the statement following the fork instruction

Example: the programming segment corresponds to the Job S'l
precedence graph is: =E 51} seq. ‘

517 Fork
Fork L; == <o |
S)Z . Concurrent 52 53
“ee ===s3 3 y
L= 535 Nt
i Jcm
543 seq B
o s4)

SN BRNEFSBaRUB.com 31 Uploaded By: BioedA2i0Lfs

(*) When the fork L statement is executed, a new computation is started at S; which is executed
concurrently with the old computation, which continues at S.. That is, the fork statement splits one
single computation into two independent computations; hence the name Fork.

The join instruction recombines two concurrent computations. Each computation must ask
to be joined.
o Since the two computations executes at different speeds, the statement which executes first
the join first is terminated while the second is allowed to continue.
o For 3 computations, two are terminated while the third continues.
If count is number of computations to join, then the execution of the join has the effect

count = count — 1

if count # o then quit (quit this computation)

The join statement for two computation is executed atomically. Can’t be executed concurrently
but in sequential manner, because this might affect count giving a wrong result.

For Example: if both decrement count at the same time, then count = 0, and then computation
dues not quit.

S o N bW NN

|

= M

-1 &y LN

B =

w1 & & WK

count = # of computations to join \E$1
function join () {
count = count - 1 <Fork>
if (count != 0) Quit (stop) computation; —
: \\
—
(52) (Forkd
N , ui®
For two processes: A, /
count = 2 jj’; t/S% Sq
Fork I.l; 2 = %
-t
e -\ 1 -
S, ’:__._hh“‘\
goto Ll; <&¢£3‘ﬂ;/j
Lil: 42 o

count =3->2->1->0

L2: join count
Let us go back to our four statements in the beginning of this chapter. Using fork & join:

count = 2

Fork Ll;

a =x + y;

goto L2;

Ll: b = z+1;
L2: join count;
e =53 = b
w=c + 1

SN BRNEFSBaRUB.com 32 Uploaded By: BioedA2i0Lfs

e For precedence graph earlier:

SNy

count = 3

Fork L1;

S2

S4;

Fork LZ2;

Sl

goto L3;
LAs 56

goto L3;
Thl7aengs s

join count;
Sz

Fork L2
(s6)

¢ Another example is to copy a sequential file f to g using double buffers r & s.
e The program can read from f & write to g concurrently.

T = some-record-type
iy gz £tile of T7;
Ty Se L
Begin
reset (f)
read(f, r)
while (not eof (f))
count = 2
g =01
Fork L1
write(g, s)
goto L2
Ll: read(f, r)
L2: join count
End
write(g, r)
End

do begin

The concurrent statement

£

b §
(ad o)
1 2
r > s
* 2 records r & s :

e The fork & join instructions are powerful means of writing concurrent programs,
unfortunately, it is clumsy and very difficult to keep track, because the fork is similar to goto

statements.

¢ A higher-level language constructs for specifying concurrency due to Dijkstra using the
notations parbegin / parend

ST ENTSRUB.com

33

Uploaded By: BioedA2i0Lfs

Example: ‘i:'
S
Parbegin

S51; ‘i’ 'eia ‘a"

S

GBIy

Parend;
SR+l

¢ All statements enclosed between parbegin and parend can be executed concurrently.

For precedence graph earlier:

Sl
parbegin
335

begin '

@ @
S4;
parbegin

S0\

S6;
parend; @
end ‘Eii'
parend; @
Bl

For the files copying example:

begin
reset (£)
read (£, r)
while (not eof(f)) do begin
s = r
parbegin
write(g, s);
read (£, r):;
parend;
end;
write(g, r):
end;

SN BRNEFSBaRUB.com 34 Uploaded By: BioedA2i0Lfs

Process Synchronization
Background

Process Cooperation

e Information Sharing

e Computation Speedup
e Modularity

e Convenience

Example: Producer-Consumer problem, the bounded buffer problem:

Data Structure used:

item ..; // Any Data Type

item buffer[n], nextP, nextC;

int in = 0, out = 0;

Producer: Consumer:

do | do {
= while (in == out)
Produce an item in nextP no-op; // Empty buff
. nextC = buffer|[out];
while ((in + 1) % n == out)

T o e L out = (out+ 1) % n
no—op; // Full Buffer

buffer[in] = nextP; - , .
. . Y Consume an 1tem in nextC
in = ((in + 1) % n

} while true;

} while true;

Shared memory solution to bounded buffer problem discussed before allows at mostn - 1
items in buffer at the same time.

Suppose that we modify the producer consumer code by adding a variable counter,
initialized to o and incremented each time a new item is added to the buffer, and
decremented each time an item is taken from the buffer.

Remember:

3
]
~

6 E
o, o>
* Buffer 4] -
nextP nextC

[3] B

[2] A F>out = 2

* Full Buffer: (in + 1) % n = out 1] s 4
* Buffer is Empty: in = out (0] =
Buffer

S BENTERRUB.com 35 Uploaded By: BioedA2i0Lfs

Bounded Buffer

Data Structure used:

item ..; // An Y Data T ype
item buffer[n], nextP, nextC;
TirE an = 0, out = 0;
int counter = 0;
Producer: Consumer:
do { do {
o while (counter == 0)
Produce an item in nextP no-op; // Empty buffe:
2 nextC = buffer|[out];
while (counter == n) a
T e e out = (out+ 1) % n;
no—op; Burrel
burffer[in] = nextpP; counter = counter - 1; *
in = ((in + 1) % n: .
AT S SRS S * Consume an l1tem 1in nextC
while truse; -
} l } while true;
* is a critical section
Producer critical section implementation: Consumer critical section implementation:
registerl = counter; registerl = counter;
registerl = registerl + 1; registerl = registerl - 1;
counter = registerl; counter = registerl;
* Both Producer & Consumer run Concurrently.
Consider this execution interleaving:
So: producer execute register1 = counter {register1 = 5}

S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 — 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6}
S5: consumer execute counter = register2 {counter = 4}

+ No problems if there is a strict alternation of the consumer and producer processes.

Problems with Bounded-Buffer with Counter

- Concurrent access to shared data may result in data inconsistency.
- Maintaining data consistency requires mechanisms to ensure the orderly execution of
cooperating processes.

S BENTERRUB.com 36 Uploaded By: BioedA2i0Lfs

- The statements:
o counter = counter + 1
o counter = counter - 1
must be executed Atomically.

counter++

counter--

. . s Critic

Atomically: If one process is modifying ritical
counter the other process must wait, that is, as Section
if this is executed sequentially.

The Critical Section Problem

The Problem with Concurrent Execution:

e Concurrent processes (or threads) often need access to shared data and shared resource.

¢ If there is no controlled access to shared data, it’s possible to obtain an inconsistent view of
this data.

¢ Maintaining data consistency require Maintaining data consistency requires mechanisms to
ensure the orderly execution of cooperating processes.

Race Condition: A situation in where several processes access and manipulate data concurrently
and the outcome of execution depends on the particular order in which the access takes place.

¢ N processes all competing to use some shared data.
e FEach process has code segment called Critical Section, in which the shared data is accessed.

e Problem: ensure that when one process is executing in its critical section, no other process is
allowed to execute in its critical section.

e Structure of process P;:

ssasnes

repeat
entry section
critical section
exit section
remainder section
until false;

* Shared data is
Accessed Atomically
Solution Requirements

1. Mutual Exclusion: If process P; is executing in its critical section, then no other processes
can be executing in their critical sections. “One process at a time”

2. Progress: If no process is executing in its critical section and there exists some processes
that wish to enter their critical section, then the selection of the processes that will enter the
critical section next cannot be postponed indefinitely.

“If there are no processes in their critical section & process wants to use the
critical section it can get it”

3. Bounded Waiting: A bound must exist on the number of times that other processes are
allowed to enter their critical section after a process has made a request to enter its critical
section and before the request is granted.

e Assume that each process executes at a nonzero speed.

¢ No assumption concerning relative speed of n processes.

SnuD BXFBaRUB.com 37 Uploaded By: BioedA2i0Lfs

Solution to Critical Section Problem
Types of solutions:

¢ Software Solutions
o Algorithms whose correctness does not rely on any assumptions other than positive
processing speed (that may mean no failure).
o Busy waiting.
¢ Hardware Solutions: Rely on some special machine instructions (System Calls).

¢ Operating System Solutions: Extending hardware solutions to provide functions and data
structure support to the programmer.

Software Solution
« Only 2 processes P, & P,
. General structure of process P; (other process P;)
repeat
entry section
critical section
exit section
remainder section
until false;

. Processes may share some common variables to synchronize their actions.

Algorithm 1

Shared variables: -

int turn; // turn ecan have walue of 0, 1

¢t/ 1f turn = i, P; can enter ilts critical section
Process P; Process P;

do { do {

Busy waiting // Busy waiting
while (tuern != i} no~op; while (turn !=) ng=ops
critical section critical section
turn = j; turn = 1i;
remainder section remainder section

} while (true) } while (true)

- Mutual Exclusion v
- Bounded waiting v - each only waits at most 1 go.

- Progress X - each has to wait 1 go. P, gone into its (long) remainder, P, executes critical and
finishes its (short) remainder long before P, but still has to wait for P, to finish and do
critical before it can again.

A\ Strict alternation not necessarily good - Buffer is actually pointless, since never used! Only ever
use 1 space of it.

A Works based on turns so concurrency isn’t used.

SN BRNEFSBaRUB.com 38 Uploaded By: BioedA2i0Lfs

Algorithm 2
Shared variables: -

boolean flag[2];

flag[0] = flag[l] = false;

ol flae o true, P; ready lts critical section

Process P; Process P;

do { do {
flagli] = true: flag[]j] = true;
while (flag([j]) no-op; while (flag([i]) no-op;
critical section critical section
flag([i] = false; flag[j] = false;
remainder section remainder section

} while (true) } while (true)

e Doesn’t work at all. Both flags set to true at the start. “After you.” “No, after you.” “I insist.”

= EXC,
o Infinite loop.

Algorithm 3

Shared variables: -

int turn; // turn can have ve

L LE Eurn

boolean flag|
flag[0] = fla
IR fllag il =

QN e

Process P; Process P;
do { do {
flag[i] = true; flag[]] = true;
turn = j; turn = i;
while (flag[j] && turn == 7j) while (flag[i] && turn == i)
no-op; no—-op;
critical section critical section
flag[i] = false; flag[]] = false;
remainder section remainder section
} while (tru=) } while (true)

e Meets all three requirements; solves the critical section problem for two processes.

ST ENTSRUB.com 39

“flag” maintains a truth about the world - that I am at start/end of critical. “turn” is not
actually whose turn it is. It is just a variable for solving conflict if two processes are ready to go
into critical. They all give up their turns so that one will win and go ahead.

e.g. flags both true, turn = 1, turn = o lasts, P, runs into critical, P, waits. Eventually P, finishes
critical, flag = false, P, now runs critical, even though turn is still o.

Doesn't matter what turn is, each can run critical so long as other flag is false. Can run at
different speeds.

If other flag is true, then other one is either in critical (in which case it will exit, you wait until
then) or at start of critical (in which case, you both resolve conflict with turn).

Uploaded By: BioedA2i0Lfs

Drawbacks of Software Solutions
1. Complicated to program
2. Busy waiting (wasted CPU cycles)
3. More efficient to block processes that are waiting (just as if they had requested I/O)

Operating System Solution

Semaphores (wait & signal)
- Wait: checks if the critical section is empty or not.

- Signal: opens the critical section.

(1) Train Armives ‘2) Tra'n 2 Arsi
«2) Tran 2 Arrives

_— <) ;
critical seetior
EEELT T TR

(3) Train 1 Leaves

) Tran 2 Leaves

& =
N #

EEEN e NS ns

EVREANEN)

signal

Semaphore S — integer variable which can only be accessed via two indivisible atomic operations.

Wait(S): Signal(S):
while (s <= 0) { /* do nothing */ g e
1

s = s - 1

mutex: semaphore = 1;

Repeat

wait (mutex) ;
critical section
signal (mutex) ;
remainder section
Forever

SN BRNEFSBaRUB.com 40 Uploaded By: BioedA2i0Lfs

Semaphore Implementation

e Define a semaphore as a record/structure

struct semaphore |{
int wvalue;
List *L:

}

e Assume two simple operations:

o block suspends the process that invokes it.

o wakeup(P) resumes the execution of the blocked process P.

e Semaphore operations now defined as:

function wait (S) {
S.value = S.value - 1;
if (S.value < 0) f{
add this process to S.L;
block;

}

function signal (S) {
S.value = S.value + 1;
if (S.value <= 0) {

remove a process P from S.L;

wakeup (P) ;

Classical Problems of Synchronization

1. Bounded Buffer Problem
e Shared Data

char item;

char buffer[n];
semaphore full = 0
semaphore empty =
semaphore mutex =
char nextp, nextc;

n;
di
e Producer Process

do {
produce an item in nextp

wait (empty);//if buffer fu

wait (mutex); // counter
add nextp to buffer;
signal (mutex) ;
signal (full) ;

} while (true);

ST ENTSRUB.com

41

Consumer Process

do {

wait (full) ;

wait (mutex) ;

remove an item from buffer
to nextc;

signal (mutex) ;

signal (empty) ;

consume the item in nextc;
} while (true);

Uploaded By: BioedA2i0Lfs

2. Readers-Writers Problem

e Shared Data e Writer Process
semaphore mutex = 1; wait (wrt) ;
semaphore wrt = 1; writing 1is preformed
int readcount = 0; signal (wrt) ;

e Reader Process

wait (mutex) ;
readcount = readcount + 1;
if (readcount == 1) wait(wrt) ;
signal (mutex) ;
reading is preformed
wait (mutex) ;
readcount = readcount - 1;
if (readcount == 0) signal (wrt);
signal (mutex) ;

3. Dining Philosopher Problem
e Shared Data

semaphore chopstick[5];
chopstick[i] = 1; // 1: available

e Philosopheri

do {
wait (chopstick([i]) ;
wait (chopstick[(i + 1)% 5]);
eat() ;
signal (chopstick[i]) ;
signal (chopstick[(i + 1)% 5]);
think () ;

} while (true) ;

A\ Problems:

(1) Deadlocks
(2) Starvation

Shud BNISRUB.com 42 Uploaded By: BaidedA2{defs

Chapter 7 # Deadlocks

Definition: Two processes are deadlocked if every process is holding a resource & waiting for the
other process to release its resource.

Resource is PR-"
Allocated teo
the Process
Cyc|e @
Process is
Requestins-
the Resource PiR-1

[Deadlock

A set of waiting (blocked processes), each process is holding a resource & waiting for other
processes to release its resources.

O System Model

- We have the resources types Ro, R1, ..., Rny
- We have Wi instances of each resource type. Wo, W1, ..., Wy
- Each process uses the resources in the following order:

o Requests the resource.

o Uses the resource.

o Releases the resource.

O Deadlock Handling

The OS handles the deadlock in one of two methods:

(1) Allow the system to enter a deadlock and then recovers from it. (UNIX)
(2) The OS prevents the system from entering a deadlock state.

O Necessary Condition

4 necessary conditions must hold simultaneously in order for the deadlock to occur.

(1) Mutual Exclusion: The resource type must be used exclusively that’s can’t be shared.

(2) Hold & wait: Each process is holding a resource type and waiting for the other process to
release the resource of the same type.

(3) Non Pre-emption: Can’t remove any of the resources.

(4) Circular wait: “Cycle”

SnuD BXFBaRUB.com 43 Uploaded By: BioedA2i0Lfs

0 Resource Allocation Graph

_ {P: process
R:resource

E= [(Pi,Rj): Process Pi is requesting one instance of resource Rj
~ |(Rj, Pi): one instance of resource Rj is allocated to Process Pi

Example:

P =4{Pi, P2, Pg}

R = {R1: 1, R2: 2, R3: 1, R4: 3}

E = {(P1, R1), (P2, R3), (R1, P2), (R2, P2), (R2, P1), (R3, P3)}

Assume P3 demands an instance of R3.

1 Deadlock Prevention

To make sure at least one of the necessary conditions don’t hold:

1- Mutual Exclusion: By default, some resources are mutually exclusive, and we can’t do
anything about it, such as printers.

2- Hold & Wait: To break this condition we might do:
(i) Let the process request all its resources at the beginning.
(i) The process is granted all its resources when it has none.

A\ Problem: Starvation

3- Non Pre-emption: If a process request a resource which is not available, it must releases
the resources it has.
4- Circular Wait:
(1) Card Reader
(2) Hard Disk
(3) Tape
(4) Printer

SN BRNEFSBaRUB.com a4 Uploaded By: BioedA2i0Lfs

 Deadlock Avoidence

Definition: a system in a safe state, if there exists a sequence of processes <Po, Py, ..., Pni>
such that:

P, can take all available resources, execute, and finish.
P, can take all available resources, and resources released by P,, execute, and finish.

P. can take all available resources, and resources released by P,, P,, execute, and finish.

Py can take all available resources, and resources released by Py, Py, ..., Pn.o, execute, and finish.

* If there’s such a sequence, then the system is safe, no deadlock.

Example: A system with 12 tapes units and 3 processes, A snapshot at the system looks like:

Process Max Needs Allocated Current Needs
Po 10 5 5

P1 4 2 2

P2 9 23 76

The available at this thisis: 12 —9 =3
- Isthe system safe? Yes <P1, Po, P2>
Available: 31 5
5610
10312

- Assume, process 2 demanded extra tape & the OS granted the request.
The available at this thisis: 12 —10 =2
Is the system safe? No safe sequence (deadlock)

Available: 21 4 <P1, ??

Example:
Process Allocation Max Needs Current Needs
A B C A B C A B €
Po o 1 0 7 5 3 73 4 3
3] 2 0o o} 3 2 2 1 2 2
P 3 o 2 9 0 2 6 (o] o
P3 2 1 1 2 2 2 o 1 1
P4 63 ©3 2 4 3 3 41 30 1
- Is the system safe? - Assume process 4 requested (3, 3, 0) more,
Available: is the system safe?
g g 2 z II;; Available:
29
243> Po 0 0 2 =2 ?? (Not safe)
7532 P2
10552 P4
1057
SN BRNEFSBaRUB.com 45 Uploaded By: BioedA2i0Lfs

0 Banker’s Algorithm

Considering only one resource type for simplicity.

- Each process declares its maximum needs at the beginning.
- When a process requests a resource, it might have to wait.
- When the process gets all resources, it must release them in a finite time.

= Datastrucre used:
- Array max, max[i] = j; means Pi will need max of j units of the resource.
- Array allocation, allocation[i] = j; means Pi is currently allocated j units of the resource.
- Array NEED, NEED[i] = j; means Pi needs j units of the resource.
- A NEED[i] = max[i] — allocation[i];
- Available = W, W is the number of units available of the resource.
1. let w = available;
2. Define an array K[i] = 1 for all n
3. Find i such that:
K[i] = 1 & NEED[i] £ W
If no such 1 exists GoTo step 5
4, W =W + allocation[i]
K[i] = 0
GoTo step(3)
5. 1f K[1] = 0 for all n then safe system
else not safe system
Example:
Process Max Allocation Needs
Po 10 5 5
P1 4 2 2
P2 9 2 7

Available (W = 3)

™0

ST ENTSRUB.com

46

M0

M0

K

Uploaded By: BioedA2i0Lfs

Chapter 8 # Memory Management

‘Ordinary memory system’: means all programs must be admitted (allocated to memory before
execution starts).

O Logical Address vs. Physical Address

* Logical Address: The address seen in your program, It’s the offset of the address in your
program.

* Physical Address: It’s the actual address in memory.

O Binding Times
When the operating system determines the physical address?

(1) At compilation time: The PAs are assigned at the beginning which means the program
must be loaded into the memory every time at the same location. Also notice that the
program can’t change its location during the execution.

(2) At loading time: The PAs are decided when the program is loaded in to the memory.

A\ Problem: The program can’t be moved during execution

(3) At execution time: ‘Best’

= Our objective is to compute or calculate the physical address, so it’ll be available for the CPU
to fetch the instruction or data.
= The most important thing is how to calculate the physical address and give it to the CPU.

[1] Contiguous Allocation
Or multiple partitions (Regions).

- Memory is divided into partitions or regions.

- Every region can hold only one process, when a region or partition becomes free, a new
program is loaded in to it.

- Hardware support means: what data structure we need to compute the PA?!

- Answer: Base & Limit Registers

Limit Base
Register Register

|
<O PA

F

Mewmory fault

PA = LA + Base Register

SnuD BXFBaRUB.com a7 Uploaded By: BioedA2i0Lfs

0 Memory Management Algorithms

(1) Fixed Regions
(2) Dynamic (variable) Regions

(1) Fixed Regions (IBM: MFT)
Multiprogramming with fixed number of regions.

- Memory is divided in to a fixed number of regions (partitions) and sizes.
- Every region can hold one job.
- The degree of multiprogramming is bounded by the number of regions.

Job scheduling, how the OS selects a job for a certain region?!

(a) Each region has its own queue of waiting jobs

OSs
70| [a0| |go|—>11OOMB

5 14| |30| |20|—=>{50MB
300 |—>{50MB

100MB

(b) There is only one queue of waiting jobs

oS
100MB
50MB
5 14 30| |20 =
50MB
100MB
* Scheduling is:

(1) FCFS with or without skip
(2) Best Fit only
(3) Best available Fit

A\ Problem:

1. Internal Fragmentation: Which is the remaining unused memory inside the region
2. External Fragmentation: The unused regions which is small to fit any available jobs

S BENTERRUB.com 48 Uploaded By: BioedA2i0Lfs

(2) Dynamic (variables) Regions

Example: Assume we found the following queue of jobs:

Assume we have memory 2500MB & the OS is reserving 400MB. ‘Use FCFS’

Process | Memory Needed | Time In Memory
P1 600MB 10
P2 1000MB 5
P3 300MB 20
P4 700MB 8
P5 500MB 15
0] 0 %
OS
400
400 OA 400 OA 500MB
600MB 600MB P5
P1 P1 900 1
1000 1000 1000 100MB
1000MB > 700MB > Z00MB
P2 P4
2000 P 1700 . P4
3001 _[zo0nz]
2200 B3 2000 mr—— 2000 300MB
‘ p3 300MB
200MB 2300 P3
2300
200MB 200MB
At T =0 AL T=5

At T =10

After a while memory will contain:

- Allocated regions.
- Set of holes ‘External Fragmentation’

* Job scheduling: how we select a hole ‘variable region’ for a process.
(1) First Fit

(2) Best Fit

(3) Worst Fit

A Problem: External Fragmentation

SN BRNEFSBaRUB.com 49 Uploaded By: BioedA2i0Lfs

[2] Non-Contiguous / Paging
- The logical program is divided into equal size partitions called pages
- Memory is divided into partitions of the same size called frames
Mewmor

Your Program

A

Pages
B E> v Frames

e

- Hardware support needed to compute the PA:
We need what’s called “Page Table” which is a table that contains the frame members of the
pages in the logical program.

Example: Assume page size = 100 byte, given the following:

Mewory
Log'ur.‘a| 1000 A
Page # b ocrom Frame # 1001
1002
0 A 1003 e
| B | 1010 1004
1005
B C 1008 1006]_D
1007
> LD | 1006 Il
1009
10010] B

Example: Take the LA = 271 > P =271 /100 = 2,d = 271 % 100 = 71

In general:
LA

P =LA / Page Size

. B P: Page Numb
D = LA % Page Size @ P d di F'agz o:{:s.ee;

A - The OS must compute P & d in every
P O! 1 PA = F * Page Size + d| instruction in your program.
A

Fged Prine ¥ - Note: /, % operations are
o 11003 multiplication operations, which
means these operations take time in
111010 execution.
—+] 2 1100% - Does the OS, in real life perform
those operations? NOO!
3 11006

SN BRNEFSBaRUB.com 50 Uploaded By: BioedA2i0Lfs

A Note: the page size in practice is always 2" bytes, generally, 1024 < page size < 8192.

Most of the time, Page Size = 4096 = 212. In this case the low order “Low significant bits” n bits of
the logical address represent d and the remaining bits represent P.

Example: Assume page size = 32 bytes = 2°, LA = 12bits
n = 5, also assume LA = 12 bit, given LA = 150, then:

P=150/32=4 0000100 | 10110

d=150% 32 =22 > d
4 22

A The major problem in paging is:

In the page size & where to store?

Example: Assume LA = 32bit, page size = 22

3

;*_:’g‘i:' Frome # - Maximum program can be executed on this machine = 22°
: = Page Table Size = 220 x 4 = 4MB
If LA = 40 bits, page size 2!2 then the page table size = 2(40-12) x 4 = 1GB
If LA = 48 bits, page size 22
then the page table size = 2(48-12) x 4 = 256GB

A
|l

PCR

Active Page Table

Where does the OS store the page table?!

The active page table is the page table executing.

S BENTERRUB.com 51 Uploaded By: BioedA2i0Lfs

0 Implementation of the page table

Where we store the active page table?!

(1) Registers: ok, this only can be implemented if the page size is small.
Example: In PDP_11, OS (minicomputer digital corporation)
LA = 16bits
Page size = 8192 = 213
* Maximum program can be executed containing only 2(0lA-n) = 26 -13) = 23 = § Pages
* Page table size = 23 * Frame number size (say 4 bytes typical integer)
= 23% 4 = 32 bytes.

But, if LA = 32bits, page size = 212 - size of page table = 220* 4 = 4MB

(2) Memory: Keep the page table in memory identified by the Page Table Base Register
(PTBR) & Page Table Limit Register (PTLR)

A Problem: In this case we need two memory accesses, one to access the page
table & the other to access the instruction.

LA
P O(| ® Memory
Page # Frame # 2,4\
0 |1003 Access/

st 1 11 T1010
Access fetch
-1 2 11002 /
3 11006

(3) Memory + Registers
- A small number of registers called ‘Associative Register’ or ‘translation look aside buffers’
are assigned or dedicated for a small page table whose entry contains (Page #, Frame #)
- Performance of Associative Registers depends on Hit Ratio (h)
- Hit Ratio: probability that the desired page in the associative registers.

Example: Memory access (m) = 100nans, search time in associative register (t) = 1tnans,
Hit Ratio (h) = 0.95.
- Effective Access Time (EAT) = h(m+t)+ (1 -h)(2m+1t)

EAT = 0.95 (1 + 100) + 0.05 (200 + 1) = 106nans

SN BRNEFSBaRUB.com 52 Uploaded By: BioedA2i0Lfs

0 Memory Protection

In multiple partitions, memory protection is performed using base & limit registers.
While In paging, protection is performed using additional bits in the page table.
Lo g?CQI

(1) Legal/Illegal Bit:
o -> Illegal page Program

1-> legal page
(2) R/W Bit: A

o -> Read only page,

F’age. Table

1-> Read & Write
page
O Paging Advantages
‘Advantages of sharing pages’
Paave_ Table Mewmory
U1 - Word W 110 100
102 101
e 102 w2
D1 106 103
104 D2
P Tabl s
U2 - Word s o8 L2l
- o
Wi 110 107
w2 102 10€
D2 104 109
110 wl
0 Paging Disadvantages

Some people have reservation that the program is divided in too many pieces in memory.

SnuD BXFBaRUB.com 53 Uploaded By: BioedA2i0Lfs

0 Multi-Level Page Table

Assume LA = 32bit & Page size = 212
So, page table size = 22° * 4 = 4MB. Which is big to store contiguously in memory.

Let’s divide the page table into 2 levels

LA

7 ' Page Size *F +d = P4
|P1‘ P2 o |

address
| address
laddress |

Outer Pouge. Table

[|
Inner Page Table .

- In our example, assuming P1 = 8 bits & P2 = 12bits
- Outer Page table size = 28 * 4 = 1KB
- Inner Page table size = 212 * 4 = 16KB

A Problem: We need more memory access as the LA increases in size.
Ty

- Intwo level page table, we need 3 memory accesses.
o One to get address (P1)
o OnetogetF
o One to fetch the instruction
- In four level page table, we need 5 memory access. But, with good associative register
algorithm, the performance will be as well good
- Paging separates the user’s view of the memory from the actual memory

SN BRNEFSBaRUB.com 54 Uploaded By: BioedA2i0Lfs

[3] Segmentation

User Progr‘am

Data structure

Seq0

‘ Procedure
Se.g'l Main I3
Program Function |Seg3

Stack

Segment Segment Aemoly
Base Register Lengtl« 1000
0|2%000 | 2,000 Seq1 35000
1] WY | 5000 18000
2| 18,000 | 3,000 Seg2 oo $ 3000
3| 21,000| 2,000 Seg3 3 2000
Segment Table 22000
Seg0 3 7000
S: segment #
d: LA offset
s|d B +d= P4
S| B| L
—P>

Example: S = 2,d = 350
PA =B +d =18000 + 350 = 18350

SN BRNEFSBaRUB.com 55 Uploaded By: BioedA2i0Lfs

0 Segmentation with Paging

‘Paging with segments’

Seg# Page. #

N = O

SegO? ————————

1

Seg'l % """" 3 17

———————— 12600
Y i i e PA/

5392

12600 * Page Size + 17
It seg size = 64K

Page size = 4K

every seq contains 16 pages

@o)—> S| P/d

Page. size *F + d = P4

s address | P F

SN BRNEFSBaRUB.com 56 Uploaded By: BioedA2i0Lfs

Chapter 9 # Virtual Memory

Management

=>» How to run bigger programs on smaller memory?

=» No need for the whole program to be loaded into memory, only the part of it will do.

= We will discuss ‘Demand Paging’

Logica\[Progm\m

Page Table
O 4 F v/iBit
1 B 106 1
2| @ 109 g
3D 101 1
4 B

V/i (Valid/Invalid) Bits
1: in memory. ‘Valid’

o: not in memory ‘Invalid’

Me_mory
100
101 D
102 E
103
104
105
06|l A

107
102
109
10
m

12

- The LA is checked through the page table
if its valid address (V/i bit = 1) that it P

d

continues the execution as usual.
- Ifthe V/ibit = o, that’s the page isn’t in

the memory, then we say a page fault

occurs. R
- The OS looks for free frame in memory,

swap in the required page from the HD, it

updates the page table & resumes execution.
- Ifthere is no free frame?
It selects a victim frame
Maybe, it swap-out the page from memory to HD.
It swap-in the required page from HD to Memory.
Update the page table.
Resumes execution.

YV VVYVYY

ST ENTSRUB.com 57

F V/i

Page Size *F +d=P4

=

Page 'T'able

Uploaded By: BioedA2i0Lfs

O Performance of demand pages

- Assume Page fault rate (probability) = P (o<P<1)

» If P = o, All execution with no page fault. “Perfect”

» If P =1, Every execution of instruction, there is a page fault.
- Assume memory access = m

Page fault overhead = Swap;, + Maybe Swap,,, Page + m

EAT = (1—-P) *m+ P * Page fault overhead

Example: Assume memory access = 10mics

- Page fault rate (P)
- Page transfer (swap) time = 10mils
- 40% of the time the page needs to be swap-out

EAT=(1-P)*10+ P « (10 * 1000 + 0.4 = 10 « 1000 + 10)
=10+ 14000P ~ 14000 P

mils, mics = mils -> mics sl Clas sl HSY Claa sl Jyai A
. Result: Performance depends on P (page fault rate).

O Objective: Minimize the page fault rate

A Note: A new bit called “dirty bit” is added to the page table to indicate if the page is modified.

1: modified or o: not modified

O Page Replacement Algorithms

The OS must select the victim frame, so that, to minimize the page fault rate.

[1] FIFO
Replace the page which enters the memory first (Oldest page in memory).
Example: given the following page references.

2 5 1

1 3 1 2 3 4 5
|
[

9 F’age_ fault

SnuD BXFBaRUB.com 58 Uploaded By: BioedA2i0Lfs

4

1 2 3 4 1 2 5 1 2 3 4 5
11 [1] [[+ 5| 5] [s] 5] [4] (¢4
2| [2] |2 / 2 (1111]| |5
2013 3 311211212 2
4 al 14l 4] 3] 3] |3
10 Page fault
< Belady's Anomaly
[2] Optimal Replacement

Replace the page which won’t be used in the future for the longest period.

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 1 1 3 3

2| [2] |2 / / 2 / / 21 |4

31 |4 S 5| |5
?Page. fault

A Major Problem: How the OS know in advance the next page in which execution occurs?!

© Optimal Replacement is used as a bench mark.

[3] Least Recently Used [LRU]

Replace the page which have not been used in the past for the longest period of time.

1 2 3 4 1 2 8 3 4

17 2
11 (1] 1] 4] 4] |4] |5
THEEEE

1
31131 |3] |2] |2

)
31 (3] 3
1 4] |4
2| |21 |5

10 Page fault "3 Frames"

S BENTERRUB.com 59 Uploaded By: BioedA2i0Lfs

1 2 3 4 1 2 9 1 2 3 4 5
11 [1] [1] [+ 1 s
2(12] |2 2 21 12|12
4 4 3113113
g Pa\ge Faul‘t "4 Frames"
Implementation:
(1) Add a counter to the page table that contains the last time the page is referenced (used).
Time OF
Refrence
+——= Integer
10:3:20
10:3:11
Page Table

(2) Keep a queue of referenced pages

<1351

14}

out
T

0 LRU approximation:
Add one bit to the page table called (reference bit)

=> 1: page is referenced (used) READ or WRITE
=>» 0: page isn’t referenced.

= LRU approximation, replace the page whose reference bit is 0.

S BENTERRUB.com 60 Uploaded By: BioedA2i0Lfs

[Second Chance

>
1
él?e.place N %3
I §
0 23
-3 Replace &~ 0
%
. <
— Replace ,CLV %
, ¥
%R’eplace) g
!
0
—>» Replace A~
4
—>» Replace O)l"

0 Enhanced Second Chance
Use the reference bit & the dirty bit (Reference bit, Dirty Bit)

= (0, 0) = Page isn’t referenced & not modified = BEST
= (0, 1) = Page isn’t referenced but modified

=> (1, 0) = Page is referenced but not modified

= (1, 1) = Page is referenced & modified - WORST

* Counting Algorithms
1- MFU (Most Frequently Used)

Replace the page which has been used for the maximum # of all times.

2- LFU (Least Frequently Used)

Replace the page which has been used for the minimum number of times.

O Global vs. Local Replacement

SN BRNEFSBaRUB.com 61 Uploaded By: BioedA2i0Lfs

O Allocation of frames for processes

(1) Equal Allocation: Each process gets the same number of pages (frames).
Example: memory 100 frames, 5 process.
o Every process gets (100/5) = 20 frames.
o Unfair - not good performance.

(2) Proportional Allocation according to size:
Example: Assume size of process Pi = Si

Si
- Assume we have m frames of memory process Pi gets ﬁ *m
- Assume memory 100 frames, 3 process with sizes 100, 400, 700 KB

- P1=-24100 ~ 8 frame
1200

- Pa=22,100 ~ 34 frame
1200
700

= Py T 100 = 58 frame

(3) Proportional according to priority:
Example:
- Assume we have P1, P2, P3 with priority 2, 3, 7 and we have 100 frames in memory

= Pi= % * 100 = 17 frame
- Po= 13—2 * 100 =~ 25 frame
= Pg= é *100 =~ 59 frame

0 Thrashing

The OS is busy swapping page in & out.

Some times the number of allocated
frames for the process is low, which

. Eueid Purboraansi lea.d.s to' poor performance (Low
Utilization)
. Poor Performance The OS thinks that degree of

multiprogramming is low

Page, Faul'ts

- OS increases the degree of
multiprogramming

- The system gets worse

- Most of the time OS is doing
swapping of pages.

Allocated Frames
For Process

SN BRNEFSBaRUB.com 62 Uploaded By: BioedA2i0Lfs

Chapter 10

O File Concept

¢ Contiguous logical address space
o Types:
o Data
Numeric, characters, binary

o Program

Source, object (load image)

o0 Documents

O File Attributes

- Name: only information kept in human-readable form.
- Type: needed for systems that support different types.

- Location: Pointer to file location on device.

- Size: Current file size.

- Protection: Controls who can do reading, writing, executing.
- Time, date, and user identification: for protection, security, and usage monitoring.

(***) Information about files are kept in the directory structure, which is maintained on the disk,

which is called generally, Device Directory.

O File Operations

- Create

- Open

- Close

- Write

- Read

- Reposition within the file
- Delete

[Access Methods

A- Sequential Access
read next
write next
reset

No read after last writes (generally no
rewrite)

ST ENTSRUB.com 63

B- Direct Access

read n
write n
position ton
read next
write next
rewrite n

n = relative block number

Uploaded By: BioedA2i0Lfs

O Directory Structure

The general information kept about the directory system are:

- Name

- Type

- Address (Location)

- Current Length

- Maximum Length

- Current Position (File Pointer -- FP)
- Date last accessed (for archival)

- Data last updated (for dump)

- OwnerID

- Protection Information

Operations performed on directory:

- Search file

- Create file

- Delete file

- List a directory

- Rename a file

- Traverse the file system e.g. Date last accessed (for archival)

Directory Systems

1- Device Directory: The directory where the physical information generally is kept
about the files in that device, such as, name, size, date, ... etc.

2- User File Directory: The directory where the logical information generally is kept
about the user files, such as, name, size, date, ...etc.

[Device Directory Implementation

Hash Table — Liner list with hash data structure.

- Decreases directory search time
- Collisions — situation where two files’ names hash to the same location.

SN BRNEFSBaRUB.com 64 Uploaded By: BioedA2i0Lfs

[User File Directory Implementation

Organize the directory (logically) to obtain:

1. Efficiency — locating a file quickly
2. Naming — convenient to users
- Two users can have the same name for different files.
- The same file can have several different names (Aliases)
3. Grouping — logical grouping of files by properties, e.g. all C programs files, all Games ...etc.

The structure of UFD:
Tree-structured directories

e Efficient searching
e Grouping capabilities
e Current directory (working directory)

SN BRNEFSBaRUB.com 65 Uploaded By: BioedA2i0Lfs

Chapter 11 + 12

Sectors Tracks Read/write head (1 per surfoce) Direction of
' / arm motion
—_—
Inter-sector gap l -— _
L
] . Inter-track gap Burivced
h‘\b ! e Pliatter ———»
r)
el
o)
]
. &
%
£ e
£y ‘l.“ Surfuce
Spindle Boom
.~
Address G, } k)
Trok # i Block #
Surface #
Seek Time
_

f—

I_

* The time to move from one track to
another is called ‘seek time’ which is a
mechanical move.

O Disk Structure

- Adisk can be viewed as an array of blocks

A sector (block): smallest addressable unit in the disk (track, surface, sector)
- Given the address (i, j, k), then transformation from 3-dim to 1-dim

b=k+s*(G+i*t)
where t = number of surfaces (tracks per cylinder)
s = number of sectors per surface

e Seek Time: The time needed to move the R/W head to particular track.
¢ Latency Time: Time to rotate the sector under the R/W head.
e Access Time: Seek time + latency time + transfer time.

SN BRNEFSBaRUB.com 66 Uploaded By: BioedA2i0Lfs

a

We could improve the seek time by selecting a good disk scheduling algorithm.

(minimize seek time)

Blocking

Packing and unpacking a number of logical records in physical block.

Bloking factor: The number of logical records packed into a physical block.

U Free-Space Management

Bit Map: Vector (n blocks)
Linked List (Free List)

Counting: keep the address of the first free block and the number n of adjacent free
blocks. This is best used with contiguous allocation.

Grouping: Store the addresses of n free blocks in the first free block.

A Note: The logical file must be mapped into the physical storage media (disk).

O Allocation Methods

How the disk blocks are selected and allocated for a file.

A\ Note: Every storage device has ‘device directory’ which contains the information about the
file stored on that device, generally it’s a Hash Table.

1. Contiguous Allocation

Shub

Each file occupies a set of contiguous blocks on the disk.
The file is defined by address of the first block and its length.
No seek time is required to access block (b+1) after block b unless is last block in the

cylinder.

Random and Sequential access are
supported easily.

Problem: External fragmentation (holes)
in the disk.

Solution: Compaction

Major Problem: Files can’t grow ®
How to find hole for the file: First Fit, Best
Fit, Worst Fit.

BNFBRRUB.com 67

f T per——

(IR
m_//
o] 10 21 3
4[] s[] 6|:|f7|:|
8] e[10111
12[]13[]14I:|t1rslj
16[J17[J18[yo[]
20[]21E]2§[:|23[:]

242526 J27[]

directory
file start length
count 0 2
ir 14 3
mail 19 6
list 28 4
f / 6 2

28[J29[130[J31[]

N

Uploaded By: BioedA2i0Lfs

2. Linked Allocation

- Each file is a linked list of disk blocks.
- Blocks may be scattered anywhere on the disk.
- Allocate as needed, link together
- Advantages:
o Simple — need only starting address and size.
o Free-space management system — no waste of space. (No External Fragmentation)
o File can grow ©
Problem: Address pointer waste.
Major Problem: Supports only sequential access.

File Start End
Pics 2 7

3. Indexed Allocation

Brings all pointers together into the index block

- Need index table.

- Random access in addition to sequential access.

- Dynamic access without external fragmentation, but have over head of index block.

- Mapping from logical to physical in file of maximum size of 256K words and block of size
512 words. We need only 1 block for index table.

© directory
fle index block

o 10, 200 30J jeep i
4[] 5{;\ 7(] I
8] sJ1ofX110]

12[J13[J14

16 18

20[J21[J22[423

24[J2s[CJ2e[Je7(]

28 J2o[130 Ja1[]

D 4

SN BRNEFSBaRUB.com 68 Uploaded By: BioedA2i0Lfs

O Disk Scheduling

Disk Requests — Track/Sector
o Seek
o Latency
o Transfer
Minimize Seek Time
Seek Time >> Seek Distance
A number of different algorithms exists
FCFS
SSTF
SCAN
LOOK
C-SCAN
C-LOOK

] |

0O O QO O 0

Example
Assume HD has 200 tracks (o - 199) given the queue of HD requests as follows:

98, 183, 37, 122, 14, 124, 65, 67

Assum the R/W head is currently serving a job at track 53 & just finished serving a track job at
track g40.

(1) FCFS

37 53 65 67 98 122 124

199

(183-53)+4+(183-37)+(122—-37)+(122—14)+(124—65)+(67—65)
8

Average Head Movement =

SN BRNEFSBaRUB.com 69 Uploaded By: BioedA2i0Lfs

(2) Shortest Seek time First (SSTF)

14 37 53 65 67 Qg 122 124 183
199

O

AHM = 29 traks/job
SSTF gives the optimal/minimum solution

A Problem: Starvation

(3) SCAN (Elevator)

37 53 65 67 gz 122 124

AHM = g1 track/job

(4) C-SCAN (Circular Scan)

37 63 65 6% Q8 122 124 183
e

AHM = 47 tracks/job

SN BRNEFSBaRUB.com 70 Uploaded By: BioedA2i0Lfs

(5) Look

14 3% 53 65 67 a8 122 124 183

e

4 <
O

AHM = 37 track/job

(6) C-Look

14 37 53 65 6% a8 122 124 183

M

AHM = 42 tracks/job

SN BRNEFSBaRUB.com 71 Uploaded By: BioedA2i0Lfs

Formulas

Chapter 5: CPU Scheduling
e Turnaround Time = Finish Time — Arrival Time
o This is the total time it takes for a process to complete, from submission to finish.
e Waiting Time = Turnaround Time — Service (CPU) Time

o This is the time a process spends in the READY queue, waiting for the CPU.

Turnaround Time

e Weighted Turnaround Time = Service (CPU) Time

o This is a ratio of turnaround time to service time.
e Yy =wsT, + Y, x(1-w)
o This formula is for estimating the length of the next CPU burst, where:
* Y, is the estimated length of the (n+1)th CPU burst
= T,is the actual length of the nth CPU burst
= Y, is the estimated length of the nth CPU burst
= wis aconstant betweenOand 1
o EAT = h(m+t)+ (1-h)(2m + 1)
o This formula is used to calculate the Effective Access Time with associative registers
= EAT = Effective Access Time
= h = Hit Ratio
= m=Memory Access Time
= t=Search time in associative register
Chapter 8: Memory Management
e PA=LA + Base Register
e P=LA/PageSize

e d=LA % Page Size

Chapter 9: Virtual Memory Management
e Page fault overhead = Swap;, + (Maybe Swap,,;) + m
e EA=(1-P)*m+P* page fault overhead
o This formula calculates the Effective Access time with demand paging
= EA = Effective Access time
= P =Page fault rate
= m=memory access time

= page fault overhead = time to swap pages in and out.

STUDENTS-HUB.com Uploaded By: anonymous

Chapter 11 + 12

o b=k+s*(j+i

*t}

o This formula is for transforming a 3-dimensional disk address to a 1-dimensional block address,

where:

b is the block number

k is the sector number

j is the surface number

i is the track/cylinder number

s is the number of sectors per surface

t is the number of surfaces (tracks per cylinder)

STUDENTS-HUB.com

Uploaded By: anonymous

