= Computer Lab Assignment

21. While the integral (12) can be graphed in the same manner discussed on page 758 to obtain
Figure 15.3.5, it can also be expressed in terms of a special function that is built into a CAS.

(a) Use a trigonometric identity to show that an alternative form of the Fourier integral
representation (12) of the function f'in Example 2 (witha =1) is
™ sine(x + 1) — sinal(x — 1)

Jix) :% | 5 da.

(b) As a consequence of part (a), f(x) = fix) = limF,(x), Where
b

_ 1 [® sina(x + 1) — sinaix — 1)
Fylx) =— | dex.
T o

Show that the last integral can be written as

1
Fy(x) = —[Si(b(x + 1)) — Si(b(x — 1],

where Si(x) is the sine integral function. See Problem 51 in Exercises 2.3.
(c) Use a CAS and the sine integral form obtained 1n part (b) to graphFi,(x) on the interval [-3,
3] for b=4, 6, and 15. Then graph Fy(x) for larger values of b > 0.

15.4 Fourier Transforms

= Introduction Up to now we have studied and used only one integral transform: the Laplace
transform. But in Section 15.3 we saw that the Fourier integral had three alternative forms: the cosine
integral, the sine integral, and the complex or exponential form. In the present section we shall take
these three forms of the Fourier integral and develop them into three new integral transforms naturally
called Fourier transforms. In addition, we shall expand on the concept of a transform pair; that is, an
integral transform and its inverse. We shall also see that the inverse of an integral transform is itself
another integral transform.

[] Transform Pairs The Laplace transform F(s) of a function f{¢) is defined by an integral, but up to

now we have been using the symbolic representation f{¢) = ¥ ' {F(s)} to denote the inverse Laplace
transform of F(s). Actually, the inverse Laplace transform is also an integral transform. If

™ o

E{fin} = | e "f(t) dt = F(3), (1)
A0

then the inverse Laplace transform is

¥t oo

1 ;
EYF6)} = 5= | e"F(s) ds = f(1). (2)
Py

ty —ifoo

The last integral is called a contour integral; its evaluation requires the use of complex variables
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transform pairs. If f(x) is transformed into F(a) by an integral transform

I.b

Fla) = | f(x) K(e, x) dx, (3)

then the function f can be recovered by another integral transform

b

= | Fla) Hla, x) da, (4)

called the inverse transform. The functions K and H in the integrands of (3) and (4) are called the
kernels of their respective transforms. We identify K(s, 1) =e ! as the kernel of the Laplace
transform and H(s, t) = ¢*'/2xi as the kernel of the inverse Laplace transform.

[J  Fourier Transform Pairs The Fourier integral is the source of three new integral transforms.
From (8) and (9), (10) and (11), and (18) and (19) of the preceding section, we are prompted to
define the following Fourier transform pairs.

Definition 15.4.1 Fourier Transform Pairs

(7) Fourier transform:

o

F{fx)} = | f(x)e"* dx = Flao) (5)

J=oa

Inverse Fourier transform:

s i I ; - - '
F~YFla)} = - | Flaye™™ da = f(x) (6)

=T

(i7) Fourier sine transform:

O

F A0 = | fix)sinax dx = Fla) 7

Inverse Fourier sine transform:

} " Ol
F U Fa)} =— | Fla)sin ax dee = fix) (8)

Ty
(iii) Fourier cosine transform:

(oD

Ffl0} = | flx)cos ax dx = Fla) (9)
U

Inverse Fourier cosine transform:

F ' {Fla)} = E | Fila) cos ax da = f(x) (10)

i
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[J Existence The conditions under which (5), (7), and (9) exist are more stringent than those for the
Laplace transform. For example, you should verify thatg{1},5,{1}, and .{l} do not exist.

Sufficient conditions for existence are that f be absolutely integrable on the appropriate interval and
that f'and f° be piecewise continuous on every finite interval.

[J Operational Properties Since our immediate goal is to apply these new transforms to boundary-
value problems, we need to examine the transforms of derivatives.

Fourier Transform
Suppose thatf is continuous and absolutely integrable on the interval (—oo, ) and /' 1s piecewise
continuous on every finite interval. If f{(x) — 0 as x — *oo, then integration by parts gives

el

F{fx)} = | F(x)1e"* dx

 — oD
o ]

= j’:‘_‘r]c?"“’“w — o | f(x)e™™ dx

oo

e
= —!'nf| flxye'™ dx;

(=]

that 1s

F{f(0)} = —iaF(a). (11)

Similarly, under the added assumptions that /' is continuous on (—oo, o), f"(x) is piecewise continuous
on every finite interval, and f'(x) — 0 as x — +o0, we have

F{M(x)) = (—ia) FLf(x)) = —a’Fla). (12)

In general, under conditions analogous to those leading to (12), we have
F (M0} = (—ia) F(f(X)} = (—ia)Fla),

wheren=1, 2, 3,....
It is important to be aware that the sine and cosine transforms are not suitable for transforming the
first derivative (or, for that matter, any derivative of odd order). It is readily shown that

F.(f ()} = —aF (fx)] and F A (0} =aP, ] f(x)} —f(0).

The difficulty is apparent; the transform of f'(x) 1s not expressed in terms of the original integral
transform.

Fourier Sine Transform
Suppose thatf and /' are continuous, / is absolutely integrable on the interval [0, 00), and /" is
piecewise continuous on every finite interval. If f — 0 and /' — 0 as x — oo, then
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f* O

F Ay = | f7(x)sin aex dx

f
A0

o k]

f(x)sin mw - .:1| fix)cos ax dx
] A0

oy ("o

= —a| flx)cos ax ] + c1'| fix) sin aex dx
| ; Iy
= af(0) — *F {f(X)}:
that 1s,
F 1 f"(x)) = —a’Fla) + af(0). (13)

Fourier Cosine Transform
Under the same assumptions that lead to (9), we find the Fourier cosine transform of /”(x) to be

F 1 f(x)} = —a’Fla) — f(0). ha

A natural question is “How do we know which transform to use on a given boundary-value
problem?”” Clearly, to use a Fourier transform, the domain of the variable to be eliminated must be the
interval (—oo, ). To utilize a sine or cosine transform, the domain of at least one of the variables in
the problem must be [0, ). But the determining factor in choosing between the sine transform and the
cosine transform is the type of boundary condition specified at zero.

4 How do we know which transform to use?

In the examples that follow, we shall assume without further mention that both # and du/0x (or
Ox/0y) approach zero as x — +oo. This is not a major restriction since these conditions hold in most
applications.

EXAMPLE 1| Using the Fourier Transform

dPu  ou
. > =, o<Xx<ool>0 .
Solve the heat equation ~ ax*  ar , subject to

Wiy |.'|.-| < 1

wx, ) = f(x), where fix] = {
i s 0, |x>1.

SOLUTION The problem can be interpreted as finding the temperature u(x, ¢) in an infinite rod.
Since the domain of x is the infinite interval (—oo, ©0), we use the Fourier transform (5) and define

| o

F{ux,n} = | u(x, He™ dx = Ula, 1).

=0

Transforming the partial differential equation and using (12),

ofu)-of2)
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yields

du AU
it 01 dt o U, 1) = U,

—ka Ula, 1) =

Solving the last equation gives U(a, £) = ce ¥**. The initial temperature u(x, 0) = f(x) in the rod is
shown in FIGURE 15.4.1 and its Fourier transform is

iy

-1 1

FIGURE 15.4.1 Initial temperature /'in Example 1

e -l
5[."{”{_1'.‘ [}]} = | _.Ir'{_-,.-}{_.e'm; dr = | ”.]{_":“r dy = ug
b

o

i {,— e

i

This result is the same as 1, o) = 24, sine - Applying this condition to the solution U(a, #) gives U(a,
(@, i

0) = c = (2ug sin a)/a, and so

sine o

Ulee, 1) = 2u, €

It then follows from the inversion integral (6) that

U [T sina
Hex, 1 =—
T ] o

- (=]

& ket o ie o

The last expression can be simplified somewhat by Euler’s formulae ™ = cos ax —i sinax and

(== =
sinee. _, -

=

: ¢ : : : : :

noting that /-.. @ sin ax da = 0 since the integrand is an odd function of a. Hence we finally
have

Hy |-x SN @ COS ax

e 5" dex. (15)

CE 44 =

wix, r) =

It is left to the reader to show that the solution (15) can be expressed in terms of the error function.
See Problem 23 in Exercises 15.4.

EXAMPLE 2| Using the Cosine Transform

The steady-state temperature in a semi-infinite plate is determined from
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. n?
dif o il

— = O<x<a, ¥y>0
ax” av-

w0, vy = 0, uimw,v) = e, y=0
du

== =0, 0<x=<a.

o¥ ly=0

Solve for u(x, y).

SOLUTION The domain of the variable y and the prescribed condition at y = 0 indicate that the
Fourier cosine transform is suitable for the problem. We define

]

F fulx, ) = | i (x,¥) cos ay dy = U(x, ).
20
In view of (14),
_ | % [ &P )
or——=p =% {0
({-:U."'} ({ﬂ}r?} A0}
becomes
U, $PU
{ — — Q"L"f_'l," 1’_1'} == I{.",[_l't ﬂ} - [} or — i a.-L. o 'D.
ax- - dx?

Since the domain ofx is a finite interval, we choose to write the solution of the ordinary differential
equation as

Uix, o) = ¢, cosh ax + ¢,sinh ax. (16)

Now g.{u(0, )} =5.{0} and g {u(z, y)} = g.{e?} are in turn equivalent to

U0, e)y=0 and Um, a) =

-

l + o

When we apply these latter conditions, the solution (16) givesc; = 0 and ¢, = 1/[1 + a?) sinh ax].

Therefore

sinh aex

Uix, o) = - = ;
(1 + a )sinh am

and so from (10) we arrive at

" Ol

sinh oy

ol
uix,y) = j! cos ay da. (17)
il

Jo (1 + &®)sinh aw

Had u(x, 0) been given in Example 2 rather thanu,(x, 0), then the sine transform would have been

appropriate.

T \J
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In Problems 1-18, use an appropriate Fourier integral transform to solve the given boundary-value
problem. Make assumptions about boundedness where necessary.

1.

#Pu  du
- = 3 — 00 < X = CC, Ir = ﬂ
ax- al
ulx,d = ('.’_lrlr —o0 ¥ oo
2. . .
d-id all
k_ﬁ = A i 4 <X = 0o, = ﬂ
ax- af
ﬂs X = _|_
x. 0) =100y —1 <x=<0
uix, 0) =
' 100, 0<x<1
0, r=1

3. Find the temperature u(x, ¢) in a semi-infinite rod 1f u(0, ) = u,, t > 0 and u(x, 0) =0, x > 0.

4. Use the result |_x sinax 7 . to show that the solution in Problem 3 can be written as
- Iy

Jo =

i [ sinax o
f) .

k1) = g~

ar | al

5. Find the temperature u(x, ) in a semi-infinite rod if u(0, £) =0, t > 0, and

e = {l. [ a2 ol
o 0, 30T

6. Solve Problem 3 if the condition at the left boundary is

alid

dX

= —A, =0

X =0

7. Solve Problem 5 if the end x = 0 1s 1nsulated.
Find the temperature u(x, ¢) in a semi-infinite rod ifu(0, ) =1, >0, and u(x, 0) =e™*, x > 0.

(a) , 0°u dit : : _
4 —s=-—soooxX=<oa >0
ax” af

: - au | _ |
ux,0) = fx), —| = gx),—w<x<oo

|r=0
(b) Ifg(x) = 0, show that the solution of part (a) can be written as u(x, 1) = L[f(x +at) + f{x -
at)].
10. Find the displacement u(x, ¢) of a semi-infinite string if

w0, n=0  t=0
_,du
ux,0) =xe™, — =0 x>0.
ot =0

11. Solve the problem in Example 2 if the boundary conditions at x = 0 and x = & are reversed:

STUDENTS-HUB.com u(0, y) = e, 1z y) = 0,y > 0, Uploaded By: anonymous



12.
13.

14.
15.

16.

Solve the problem in Example 2 if the boundary conditionat y =0 1is u(x, 0) =1, 0 <x <.

Find the steady-state temperature u(x, y) in a plate defined by x > 0, y > 0 if the boundary x = 0
is insulated and, at y =0,

u(x, 0) = {5‘1 0<x<l
gk Lo Tt i’ S [}‘I X = ].

Solve Problem 13 if the boundary condition at x = 0 1s (0, y) =0, y > 0.

u
—+—=0,x>0,0<y<2
= dy-

wiD.vi=10, 0<y<2

wlx, ) =f(x), wix,2)=0, x=0

du du

-+ — = 0.0 < ¥y =<,¥ =0
ar = dy-

i did _
(0, y) = f(y), — 2l 'D._‘I' =0
ox K=

di -
P =0,0<x<mw
C-I_‘}’I v =i

In Problems 17 and 18, find the steady-state temperature u(x, y) in the plate given in the figure. [ Hint:
One way of proceeding is to express Problems 17 and 18 as two and three boundary-value problems,
respectively. Use the superposition principle (see Section 13.5).]

17.

¥

. x

=gt

FIGURE 15.4.2 Infinite plate in Problem 17

18.

.1:
H= []"""'u\
f” =e¥
l |
= mn”{— x
0 f = '
u=jix)

FIGURE 15.4.3 Semi-infinite plate in Problem 18

19.

Use the result g [e~iie) = = t0 solve the boundary-value problem

2\ mpe
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wx,0) =€, —oo < x < o0.

20. Ifg{f(x)} =F(a) and g{g(x)} = G(a), then the convolution theorem for the Fourier transform
is given by

|I fimelx — Ty dr = F7{Fla)G(a)).
Use this result and the transformg {e*/#"} given in Problem 19 to show that a solution of the
boundary-value problem
du du

Sl T
ax* ot

u(x,0) = f(x), —oo < x < 00
is

I I S
“I[.'l.'__ |ril - . | f[,.l..}{, ix—rr 4k ﬂrT.
1\"1" k?l_lr J =

21. Use the transformg}{e‘xz/4p2} given in Problem 19 to find the steady-state temperature u(x, ) in
the infinite strip shown in FIGURE 15.4.4.

=%

D07 7

insulated

FIGURE 15.4.4 Infinite plate in Problem 21

22. The solution of Problem 14 can be integrated. Use entries 42 and 43 of the table in Appendix I
to show that

100 x 1 x4 1 1 g |
WX, ¥) = T :u'ctmlT - ;EII'CI&H - :H.I'C’[El[]
; , ,

23. Use Problem 20, the change of variables, - - - /2% and Problem 11 in Exercises 15.1, to
show that the solution of Example 1 can be expressed as

_ ty | X+ 1 x—1
ulx, ) = —|erf — )~ erf =
21 vk \2V kt

24. The steady-state temperatures in a semi-infinite cylinder are described by the boundary-value

problem
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u lou  u
o o s=0; BZr<l, =0
dre rdar o
wl,z)=0, z>=0
wr,0)=u, 0<r<1.
Use an appropriate Fourier transformto find u(r, z). [Hint: See Example 3 in Section 14.2.]

25. Find the steady-state temperatures u(7, z) in the semi-infinite cylinder in Problem 24 if the base
of the cylinder is insulated and
: T .'-f.]. ﬂ < I = |
Wi = {D. z 2 1

= Computer Lab Assignment
26. Assume uy = 100 and k& = 1 in the solution of Problem 23. Use a CAS to graphu(x, #) over the

rectangular region 4 <x <4, 0 <¢<6. Use a 2D plot to superimpose the graphs ofu(x, ¢) for ¢
=0.05, 0.125, 0.5, 1, 2, 4, 6, and 15 for -4 <x < 4. Use the graphs to conjecture the values of
limt—oo u(x, ¢) and lim,_,, u(x, ¢). Then prove these results analytically using the properties of

erf(x).

= Discussion Problem

27. (a) Suppose

| fix) cos ax dx = Fla),

where

l—a O0=a=1
F =
@) {ﬂ. o = 1.

Find f(x).
(b) Use part (a) to show that

15.5 Fast Fourier Transform

= Introduction Consider a functionf that is defined and continuous on the interval [0, 2p]. Ifx(, x;,
X5,..., X .. are equally spaced points in the interval, then the corresponding function values f, 11, /5,
ees Jpp--- shown in FIGURE 15.5.1are said to represent a discrete sampling of the functionf. The

notion of discrete samplings of a function is important in the analysis of continuous signals.
In this section, the complex or exponential form of a Fourier series plays an important role in the
discussion. A review of Section 12.4 is recommended.
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