
   Computer Lab Assignment
21.   While the integral (12) can be graphed in the same manner discussed on page 758 to obtain

Figure 15.3.5, it can also be expressed in terms of a special function that is built into a CAS.
(a)   Use a trigonometric identity to show that an alternative form of the Fourier integral

representation (12) of the function f in Example 2 (with a = 1) is

(b)   As a consequence of part (a), f(x) = , where

Show that the last integral can be written as

where Si(x) is the sine integral function. See Problem 51 in Exercises 2.3.
(c)   Use a CAS and the sine integral form obtained in part (b) to graph Fb(x) on the interval [–3,

3] for b = 4, 6, and 15. Then graph Fb(x) for larger values of b > 0.

15.4 Fourier Transforms

   Introduction Up to now we have studied and used only one integral transform: the Laplace
transform. But in Section 15.3 we saw that the Fourier integral had three alternative forms: the cosine
integral, the sine integral, and the complex or exponential form. In the present section we shall take
these three forms of the Fourier integral and develop them into three new integral transforms naturally
called Fourier transforms. In addition, we shall expand on the concept of a transform pair; that is, an
integral transform and its inverse. We shall also see that the inverse of an integral transform is itself
another integral transform.

   Transform Pairs The Laplace transform F(s) of a function f(t) is defined by an integral, but up to
now we have been using the symbolic representation f(t) = –1{F(s)} to denote the inverse Laplace
transform of F(s). Actually, the inverse Laplace transform is also an integral transform. If

then the inverse Laplace transform is

The last integral is called a contour integral; its evaluation requires the use of complex variables
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transform pairs. If f(x) is transformed into F(α) by an integral transform

then the function f can be recovered by another integral transform

called the inverse transform. The functions K and H in the integrands of (3) and (4) are called the
kernels of their respective transforms. We identify K(s, t) = e–st as the kernel of the Laplace
transform and H(s, t) = est/2πi as the kernel of the inverse Laplace transform.

   Fourier Transform Pairs The Fourier integral is the source of three new integral transforms.
From (8) and (9), (10) and (11), and (18) and (19) of the preceding section, we are prompted to
define the following Fourier transform pairs.

Definition 15.4.1 Fourier Transform Pairs
(i) Fourier transform:

Inverse Fourier transform:

(ii) Fourier sine transform:

Inverse Fourier sine transform:

(iii) Fourier cosine transform:

Inverse Fourier cosine transform:
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   Existence The conditions under which (5), (7), and (9) exist are more stringent than those for the
Laplace transform. For example, you should verify that {1}, s{1}, and c{1} do not exist.
Sufficient conditions for existence are that f be absolutely integrable on the appropriate interval and
that f and f’ be piecewise continuous on every finite interval.

   Operational Properties Since our immediate goal is to apply these new transforms to boundary-
value problems, we need to examine the transforms of derivatives.

Fourier Transform
Suppose that f is continuous and absolutely integrable on the interval (–∞, ∞) and f′ is piecewise
continuous on every finite interval. If f(x) → 0 as x → ±∞, then integration by parts gives

that is

Similarly, under the added assumptions that f′ is continuous on (–∞, ∞), f″(x) is piecewise continuous
on every finite interval, and f′(x) → 0 as x → ±∞, we have

In general, under conditions analogous to those leading to (12), we have

where n = 1, 2, 3,.…
It is important to be aware that the sine and cosine transforms are not suitable for transforming the

first derivative (or, for that matter, any derivative of odd order). It is readily shown that

The difficulty is apparent; the transform of f′(x) is not expressed in terms of the original integral
transform.

Fourier Sine Transform
Suppose that f and f′ are continuous, f is absolutely integrable on the interval [0, 00), and f″ is
piecewise continuous on every finite interval. If f → 0 and f′ → 0 as x → ∞, then
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that is,

Fourier Cosine Transform
Under the same assumptions that lead to (9), we find the Fourier cosine transform of f″(x) to be

A natural question is “How do we know which transform to use on a given boundary-value
problem?” Clearly, to use a Fourier transform, the domain of the variable to be eliminated must be the
interval (–∞, ∞). To utilize a sine or cosine transform, the domain of at least one of the variables in
the problem must be [0, ∞). But the determining factor in choosing between the sine transform and the
cosine transform is the type of boundary condition specified at zero.

   How do we know which transform to use?

In the examples that follow, we shall assume without further mention that both u and ∂u/∂x (or
∂x/∂y) approach zero as x → ±∞. This is not a major restriction since these conditions hold in most
applications.

EXAMPLE 1  Using the Fourier Transform

Solve the heat equation , subject to

SOLUTION  The problem can be interpreted as finding the temperature u(x, t) in an infinite rod.
Since the domain of x is the infinite interval (–∞, ∞), we use the Fourier transform (5) and define

Transforming the partial differential equation and using (12),
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yields

Solving the last equation gives U(α, t) = ce–kα2t. The initial temperature u(x, 0) = f(x) in the rod is
shown in FIGURE 15.4.1 and its Fourier transform is

FIGURE 15.4.1 Initial temperature f in Example 1

This result is the same as . Applying this condition to the solution U(α, t) gives U(α,
0) = c = (2u0 sin α)/α, and so

It then follows from the inversion integral (6) that

The last expression can be simplified somewhat by Euler’s formula e–iax = cos αx – i sin αx and

noting that  sin αx dα = 0 since the integrand is an odd function of α. Hence we finally
have

It is left to the reader to show that the solution (15) can be expressed in terms of the error function.
See Problem 23 in Exercises 15.4.

EXAMPLE 2  Using the Cosine Transform

The steady-state temperature in a semi-infinite plate is determined from
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Solve for u(x, y).

SOLUTION  The domain of the variable y and the prescribed condition at y = 0 indicate that the
Fourier cosine transform is suitable for the problem. We define

In view of (14),

becomes

Since the domain of x is a finite interval, we choose to write the solution of the ordinary differential
equation as

Now c{u(0, y)} = c{0} and c{u(π, y)} = c{e-y} are in turn equivalent to

When we apply these latter conditions, the solution (16) gives c1 = 0 and c2 = 1/[1 + α2) sinh απ].
Therefore

and so from (10) we arrive at

Had u(x, 0) been given in Example 2 rather than uy(x, 0), then the sine transform would have been
appropriate.
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In Problems 1–18, use an appropriate Fourier integral transform to solve the given boundary-value
problem. Make assumptions about boundedness where necessary.
1.   

2.   

3.   Find the temperature u(x, t) in a semi-infinite rod if u(0, t) = u0, t > 0 and u(x, 0) = 0, x > 0.

4.   Use the result , to show that the solution in Problem 3 can be written as

5.   Find the temperature u(x, t) in a semi-infinite rod if u(0, t) = 0, t > 0, and

6.   Solve Problem 3 if the condition at the left boundary is

7.   Solve Problem 5 if the end x = 0 is insulated.
8.   Find the temperature u(x, t) in a semi-infinite rod if u(0, t) = 1, t > 0, and u(x, 0) = e–x, x > 0.
9.   (a)   

(b)   If g(x) = 0, show that the solution of part (a) can be written as u(x, t) = [f(x + at) + f(x –
at)].

10.   Find the displacement u(x, t) of a semi-infinite string if

11.   Solve the problem in Example 2 if the boundary conditions at x = 0 and x = π are reversed:

u(0, y) = e–y, u(π, y) = 0, y > 0. Uploaded By: anonymousSTUDENTS-HUB.com



12.   Solve the problem in Example 2 if the boundary condition at y = 0 is u(x, 0) = 1, 0 < x < π.
13.   Find the steady-state temperature u(x, y) in a plate defined by x ≥ 0, y ≥ 0 if the boundary x = 0

is insulated and, at y = 0,

14.   Solve Problem 13 if the boundary condition at x = 0 is u(0, y) = 0, y > 0.
15.   

16.   

In Problems 17 and 18, find the steady-state temperature u(x, y) in the plate given in the figure. [Hint:
One way of proceeding is to express Problems 17 and 18 as two and three boundary-value problems,
respectively. Use the superposition principle (see Section 13.5).]
17.   

FIGURE 15.4.2 Infinite plate in Problem 17

18.   

FIGURE 15.4.3 Semi-infinite plate in Problem 18

19.   Use the result  to solve the boundary-value problem
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20.   If {f(x)} = F(α) and {g(x)} = G(α), then the convolution theorem for the Fourier transform
is given by

Use this result and the transform {e–x2/4p2} given in Problem 19 to show that a solution of the
boundary-value problem

is

21.   Use the transform {e–x2/4p2} given in Problem 19 to find the steady-state temperature u(x, y) in
the infinite strip shown in FIGURE 15.4.4.

FIGURE 15.4.4 Infinite plate in Problem 21

22.   The solution of Problem 14 can be integrated. Use entries 42 and 43 of the table in Appendix III
to show that

23.   Use Problem 20, the change of variables  and Problem 11 in Exercises 15.1, to
show that the solution of Example 1 can be expressed as

24.   The steady-state temperatures in a semi-infinite cylinder are described by the boundary-value
problem
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Use an appropriate Fourier transform to find u(r, z). [Hint: See Example 3 in Section 14.2.]
25.   Find the steady-state temperatures u(r, z) in the semi-infinite cylinder in Problem 24 if the base

of the cylinder is insulated and

   Computer Lab Assignment
26.   Assume u0 = 100 and k = 1 in the solution of Problem 23. Use a CAS to graph u(x, t) over the

rectangular region –4 ≤ x ≤ 4, 0 ≤ t ≤ 6. Use a 2D plot to superimpose the graphs of u(x, t) for t
= 0.05, 0.125, 0.5, 1, 2, 4, 6, and 15 for –4 ≤ x ≤ 4. Use the graphs to conjecture the values of
limt→∞ u(x, t) and limx→∞ u(x, t). Then prove these results analytically using the properties of
erf(x).

   Discussion Problem
27.   (a)   Suppose

where

Find f(x).
(b)   Use part (a) to show that

15.5 Fast Fourier Transform

   Introduction Consider a function f that is defined and continuous on the interval [0, 2p]. If x0, x1,
x2,…, xn,… are equally spaced points in the interval, then the corresponding function values f0, f1, f2,
…, fn,… shown in FIGURE 15.5.1 are said to represent a discrete sampling of the function f. The
notion of discrete samplings of a function is important in the analysis of continuous signals.

In this section, the complex or exponential form of a Fourier series plays an important role in the
discussion. A review of Section 12.4 is recommended.
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