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CHAPTER 2

VECTOR ANALYSIS IN
CURVED COORDINATES
AND TENSORS

In Chapter 1 we restricted ourselves almost completely to rectangular or Cartesian coordi-
nate systems. A Cartesian coordinate system offers the unique advantage that all three unit
vectors X, ¥, andz, are constant in direction as well as in magnitude. We did introduce the
radial distance, but even this was treated as a functioncofy, andz. Unfortunately, not

all physical problems are well adapted to a solution in Cartesian coordinates. For instance,
if we have a central force problerR,= f F (r), such as gravitational or electrostatic force,
Cartesian coordinates may be unusually inappropriate. Such a problem demands the use of
a coordinate system in which the radial distance is taken to be one of the coordinates, that
is, spherical polar coordinates.

The point is that the coordinate system should be chosen to fit the problem, to exploit
any constraint or symmetry present in it. Then it is likely to be more readily soluble than if
we had forced it into a Cartesian framework.

Naturally, there is a price that must be paid for the use of a non-Cartesian coordinate
system. We have not yet written expressions for gradient, divergence, or curl in any of the
non-Cartesian coordinate systems. Such expressions are developed in general form in Sec-
tion 2.2. First, we develop a system of curvilinear coordinates, a general system that may
be specialized to any of the particular systems of interest. We shall specialize to circular
cylindrical coordinates in Section 2.4 and to spherical polar coordinates in Section 2.5.

2.1 ORTHOGONAL COORDINATES IN R3

In Cartesian coordinates we deal with three mutually perpendicular families of planes:
x = constanty = constant, and = constant. Imagine that we superimpose on this system
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104 Chapter 2 Vector Analysis in Curved Coordinates and Tensors

three other families of surfaces(x, y,z), i =1, 2, 3. The surfaces of any one famidy
need not be parallel to each other and they need not be planes. If this is difficult to visualize,
the figure of a specific coordinate system, such as Fig. 2.3, may be helpful. The three new
families of surfaces need not be mutually perpendicular, but for simplicity we impose this
condition (Eq. (2.7)) because orthogonal coordinates are common in physical applications.
This orthogonality has many advantages: Orthogonal coordinates are almost like Cartesian
coordinates where infinitesimal areas and volumes are products of coordinate differentials.
In this section we develop the general formalism of orthogonal coordinates, derive from
the geometry the coordinate differentials, and use them for line, area, and volume elements
in multiple integrals and vector operators. We may describe any paint z) as the inter-
section of three planes in Cartesian coordinates or as the intersection of the three surfaces
that form our new, curvilinear coordinates. Describing the curvilinear coordinate surfaces
by g1 = constantg, = constantgs = constant, we may identify our point kiy1, g2, ¢3)
as well as by(x, y, 2):

General curvilinear coordinates Circular cylindrical coordinates

41,492,493 PP, 2
x =x(q1,92.93) —00 < X = pCOSY < 0O
y =y(q1,92,93) —00 <y =pSing < 0o (2.1)
z=12(q1, 92, 43) —00 <Z=7<00

specifyingx, y, z in terms ofq1, g2, g3 and the inverse relations

1/2
q1=4q1(x,y,2) 0§,0=(x2+y2)/ <00
q2=¢q2(x,y,2) 0 < ¢ =arctany/x) < 2w (2.2)
q3=q3(x,y,2) —00 <7 =172 < 00.

As a specific illustration of the general, abstragt g2, ¢3, the transformation equations
for circular cylindrical coordinates (Section 2.4) are included in Egs. (2.1) and (2.2). With
each family of surfaceg; = constant, we can associate a unit vedipmormal to the
surfaceg; = constant and in the direction of increasipg In general, these unit vectors
will depend on the position in space. Then a vedfanay be written

V=0q1V1+G2V2 + G3Va, (2.3)

but the coordinate or position vector is different in general,

r # 0191 + Q292 + Q3gs,

as the special cases= rf for spherical polar coordinates and= pp + zz for cylindri-
cal coordinates demonstrate. Teare normalized tc«ji2 =1 and form a right-handed
coordinate system with voluntg - (2 x §3) > 0.

Differentiation ofx in Egs. (2.1) leads to the total variation or differential

0x
dx = —dq1 + —dqz + —dgqs, (2.4)
1 3

and similarly for differentiation ofy and z. In vector notationdr =, %dq,-. From

1

the Pythagorean theorem in Cartesian coordinates the square of the distance between two
neighboring points is

ds® =dx?+ dy2 +dz°.
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2.1 Orthogonal Coordinates in R3 105

Substitutingdr shows that in our curvilinear coordinate space the square of the distance
element can be written as a quadratic form in the differendials

ar or
o dqidg;

ds?® =dr -dr =dr® = .
i7 0q; 8QJ

= g11dq? + g12dq1dg2 + g13dq1dgs3
+ g21dq2dq1 + g22dq5 + g23dq2dqs
+ g31dq3dqr + g32dq3dqz + g33dq;

= Zgij dqidgq;, (2.5)
ij
where nonzero mixed terméy; dg; with i # j signal that these coordinates are not or-
thogonal, that is, that the tangential directidpsare not mutually orthogonal. Spaces for
which Eqg. (2.5) is a legitimate expression are caltegtricor Riemannian
Writing Eq. (2.5) more explicitly, we see that

dx 0x ay dy dz 9z _ or or

= = = _Z .2 (2.6)
dq; dq;  0q; dq;  0q; dq; dq; 9q;

8ij(q1,92,q3) =

are scalar products of thangent vectorsa% to the curves for g; = const, j #i. These
coefficient functionsg;;, which we now proceed to investigate, may be viewed as speci-
fying the nature of the coordinate systém, g2, ¢3). Collectively these coefficients are
referred to as thenetric and in Section 2.10 will be shown to form a second-rank sym-
metric tensol. In general relativity the metric components are determined by the proper-
ties of matter; that is, thg;; are solutions of Einstein’s field equations with the energy—
momentum tensor as driving term; this may be articulated as “geometry is merged with
physics.”

At usual we limit ourselves to orthogonal (mutually perpendicular surfaces) coordinate
systems, which means (see Exercise 221.1)

andg; - §; = &;;. (Nonorthogonal coordinate systems are considered in some detail in
Sections 2.10 and 2.11 in the framework of tensor analysis.) Now, to simplify the notation,
we write g;; = h? > 0, SO

ds® = (h1dq1)? + (h2dq2)® + (h3dg)® =Y (h; dg;). (2.8)

1

1The tensor nature of the set of;'s follows from the quotient rule (Section 2.8). Then the tensor transformation law yields
Eq. (2.5).

2In relativistic cosmology the nondiagonal elements of the metri@re usually set equal to zero as a consequence of physical
assumptions such as no rotation, asdgrt, d6 dt.
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106 Chapter 2 Vector Analysis in Curved Coordinates and Tensors

The specific orthogonal coordinate systems are described in subsequent sections by spec-
ifying these (positive) scale factors, k2, andhs. Conversely, the scale factors may be
conveniently identified by the relation

8r_

ds; = h; dq;, o
1

hiQi (2.9)

for any givendg;, holding all otherg constant. Hereds; is a differential length along the
direction§;. Note that the three curvilinear coordinatgs g2, g3 need not be lengths. The
scale factor&; may depend og and they may have dimensions. Tgreduct %; dg; must
have a dimension of length. The differential distance vedtamay be written

dr =h1dq1 61+ hadg2 G2+ h3dgaGz =Y _hidg; §;.

1

Using this curvilinear component form, we find that a line integral becomes

/V~dr=Z/‘/,-hidqi.
i

From Egs. (2.9) we may immediately develop the area and volume elements
dojj=ds;ds; =hihjdq;dq; (2.10)
and
dt =ds1dsyds3 = hihohzdgqidgodqs. (2.11)

The expressions in Eqgs. (2.10) and (2.11) agree, of course, with the results of using
the transformation equations, Eq. (2.1), and Jacobians (described shortly; see also Exer-
cise 2.1.5).

From Eq. (2.10) an area element may be expanded:

do =dsyds3Q1 + ds3ds102 + ds1ds203
= h2h3dq2dq3 @1+ hah1dqzdqi Q2
+hih2dq1dq2Qs.

A surface integral becomes

/V-dG=/VlhzhsdQdeJ3+/Vzhshldqsdfh

+ / Vahihadqidqgo.

(Examples of such line and surface integrals appear in Sections 2.4 and 2.5.)
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2.1 Orthogonal Coordinates in RS 107

In anticipation of the new forms of equations for vectaiculus that appear in the
next section, let us emphasize that veditgebra is the same in orthogonal curvilinear
coordinates as in Cartesian coordinates. Specifically, for the dot product,

A-B=Y Aili-GBi=) A;Bidix
i i

- Z A;B; = A1B1 + A2B> + A3Bs, (2.12)

1

where the subscripts indicate curvilinear components. For the cross product,

01 G2 Qs
AxB=|A1 Ax Asj]|, (2.13)
B1 B> B3

asin Eq. (1.40).

Previously, we specialized to locally rectangular coordinates that are adapted to special
symmetries. Let us now briefly look at the more general case, where the coordinates are
not necessarily orthogonal. Surface and volume elements are part of multiple integrals,
which are common in physical applications, such as center of mass determinations and
moments of inertia. Typically, we choose coordinates according to the symmetry of the
particular problem. In Chapter 1 we used Gauss’ theorem to transform a volume integral
into a surface integral and Stokes’ theorem to transform a surface integral into a line in-
tegral. For orthogonal coordinates, the surface and volume elements are simply products
of the line element#; dg; (see Egs. (2.10) and (2.11)). For the general case, we use the
geometric meaning ofr /dg; in Eq. (2.5) as tangent vectors. We start with the Cartesian
surface elemendx dy, which becomes an infinitesimal rectangle in the new coordinates
q1, g2 formed by the two incremental vectors

ar
dri=r(q1+dq1,q2) —1(q1, q2) = —dqa,
9q1
ar
dro=r(q1, 92 +dq2) —r(q1,92) = a—qzdtn, (2.14)

whose area is the-component of their cross product, or

ax 0 ax 0
drdy=drydral, = | g0 = 2o s
' 1 1
dx  9x
3 3
=‘£ ﬁ dqidqo. (2.15)
dq1 992

The transformation coefficient in determinant form is calledXheobian
Similarly, the volume elementx dy dz becomes the triple scalar product of the three in-
finitesimal displacement vectods; = dqi% along theg; directionsdi, which, according
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108 Chapter 2 Vector Analysis in Curved Coordinates and Tensors

to Section 1.5, takes on the form

dq1  0q2 g3

— | 9y Oy
dxdydz = 51 93 93 dgidqadqs. (2.16)
9z 9z 0z
dq1  dq2  9q3

Here the determinant is also called the Jacobian, and so on in higher dimensions.

For orthogonal coordinates the Jacobians simplify to products of the orthogonal vec-
tors in Eq. (2.9). It follows that they are just products of thefor example, the volume
Jacobian becomes

hihoh3(Q1 % G2) - 63 = hihohs,

and so on.

Example 2.1.1  jacoBians FOR POLAR COORDINATES

Let us illustrate the transformation of the Cartesian two-dimensional volume elémént
to polar coordinateg, ¢, with x = p cosp, y = p Sing. (See also Section 2.4.) Here,

0x 0x .
3 90 Cco —p SIn

dxdy= |3} 3 |dpdy= Sin&p piosf dpdp =pdpdy.
% 9 ¢

Similarly, in spherical coordinates (see Section 2.5) we get, freav sind cosp, y =
rsing sing, z =r cosy, the Jacobian

ar 30 g sinfd cosy rcosdcosy —rSind sing
— |9 ¥ W|_|g i i i
J=\3 =7 5 | = Siné sing rcoselsmqa r Sin cosyp
dz ¥z 9z cosd —rsing 0
ar a0 g
r c0sH Co —r sing sin . |sinfd co —r sing sin
= cos 0Sp ) ?| 4 rsing | SN0 COSP . ¢
rcosdsing  rSsind cosyp singsing  rsind cosy

= r?(co0'sind + sin*6) = r?sing

by expanding the determinant along the third line. Hence the volume element becomes
dxdydz =r?drsind do de. The volume integral can be written as

/f(x,y,z)dxdydz:/f(x(r,Q,go),y(r,@,w),z(r,@,go))rzdrsinedédw. -

In summary, we have developed the general formalism for vector analysis in orthogonal
curvilinear coordinates ifR3. For most applications, locally orthogonal coordinates can
be chosen for which surface and volume elements in multiple integrals are products of line
elements. For the general nonorthogonal case, Jacobian determinants apply.
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2.1 Orthogonal Coordinates in R3 109
Exercises

2.1.1 Show that limiting our attention to orthogonal coordinate systems impliegthat 0
fori # j (Eq. (2.7)).
Hint. Construct a triangle with sides, ds2, andds>. Equation (2.9) must hold regard-
less of whetheg;; = 0. Then compards? from Eq. (2.5) with a calculation using the
law of cosines. Show that cég = g12/./811822-

2.1.2 In the spherical polar coordinate systega,=r, g2 = 6, g3 = ¢. The transformation
equations corresponding to Eqg. (2.1) are

X = rsind cosy, y =rsing sing, 7 =rCcosh.

(a) Calculate the spherical polar coordinate scale fackorsiy, andh,,.
(b) Check your calculated scale factors by the relatign= h; dg;.

2.1.3 Theu-, v-, z-coordinate system frequently used in electrostatics and in hydrodynamics
is defined by

xXy=u, x2—y =, z=2z.

Thisu-, v-, z-system is orthogonal.

(& In words, describe briefly the nature of each of the three families of coordinate
surfaces.

(b) Sketch the system in the-plane showing the intersections of surfaces of constant
u and surfaces of constantwith the xy-plane.

(c) Indicate the directions of the unit vectdandV in all four quadrants.

(d) Finally, is thisu-, v-, z-system right-hande@i x V = +2) or left-handed (i x ¥ =
-2)?

214 The elliptic cylindrical coordinate system consists of three families of surfaces:

x2 y2 x2 yZ

) a?cofv  a?sirfv

1 + =1;
)azcosﬁu a?sintfu

1; z=z.

Sketch the coordinate surfaces- constant and = constant as they intersect the first
gquadrant of they-plane. Show the unit vectofsandV. The range of: is 0< u < oc.
The range ob is0< v < 27.

2.15 A two-dimensional orthogonal system is described by the coordigatesdg,. Show
that the Jacobian

j< x,y)_ d(x,y) _ dx dy dax dy
q1, 492

is in agreement with Eq. (2.10).
Hint. It's easier to work with the square of each side of this equation.
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In Minkowski space we define; = x, xz = y xX3=2, andxo = ct. This is done so that
the metric interval becomess? = dxo dxl dx2 dx3 (with ¢ = velocity of light).
Show that the metric in Minkowski space is

1 0 0 0
0 -1 0 0
@i)=1o 0o -1 o
00 0 -1

We use Minkowski space in Sections 4.5 and 4.6 for describing Lorentz transformations.

2.2 DIFFERENTIAL VECTOR OPERATORS

We return to our restriction to orthogonal coordinate systems.

Gradient

The starting point for developing the gradient, divergence, and curl operators in curvilinear
coordinates is the geometric interpretation of the gradient as the vector having the mag-
nitude and direction of the maximum space rate of change (compare Section 1.6). From
this interpretation the component ®f (g1, g2, ¢3) in the direction normal to the family
of surfacesy; = constant is given
N vy 1oy
- Vy =Vy1= o5t i dqy
since this is the rate of change ¥ffor varying g1, holdingg, andgs fixed. The quantity
ds1 is a differential length in the direction of increasipg (compare Egs. (2.9)). In Sec-
tion 2.1 we introduced a unit vectép to indicate this direction. By repeating Eq. (2.17)
for g2 and again fogz and adding vectorially, we see that the gradient becomes

(2.17)

L
Vw(ql,Q2,93)=Q1—w+Q2a—w+Q3—w
52 053
Loy L lay 109y
=0 5 T 200 T B 9ga
. 1oy
= — 2.18
Iquhl_ 5 (2.18)

Exercise 2.2.4 offers a mathematical alternative independent of this physical interpretation
of the gradient. The total variation of a function,

dy =V -dr =

is consistent with Eq. (2.18), of course.

3Here the use ap to label a function is avoided because it is conventional to use this symbol to denote an azimuthal coordinate.
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2.2 Differential Vector Operators 111
Divergence

The divergence operator may be obtained from the second definition (Eq. (1.98)) of Chap-
ter 1 or equivalently from Gauss’ theorem, Section 1.11. Let us use Eq. (1.98),

. V.-d
V-V(q1,92.93) = lim / id

fdr—0 [drt (2.19)

with a differential volumei1hohzdg1dg2dgs (Fig. 2.1). Note that the positive directions
have been chosen so thdt, g, §3) form a right-handed sefj; x 2 = §3.
The difference of area integrals for the two fages= constant is given by

0
[V1h2h3 + a—ql(Vlhzhs) dcn} dgadqz — Vihohzdqrdgs
0
= 8_511(Vlh2h3) dq1dqzdgs, (2.20)

exactly as in Sections 1.7 and 14®ere, V; =V - §; is the projection oV onto the
@g;-direction. Adding in the similar results for the other two pairs of surfaces, we obtain

/V(quqz,qs) -do

0 d 0
= [—(Vlhzhs) + —(Vah3hy) + —(V3hlh2):| dqidqgzdqs.
0q1 g2 993

dsy = hy dy,

ds; = h dy,

ds, = h, dg,

FIGURE 2.1 Curvilinear volume element.

4since we take the limi#qq, dgp, dg3 — 0, the second- and higher-order derivatives will drop out.
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112 Chapter 2 Vector Analysis in Curved Coordinates and Tensors

Now, using Eg. (2.19), division by our differential volume yields

0 d 0
V-V(q1,92.93) = [—(V1h2h3) + — (Vahshy) + —(V3h1h2):|- (2.21)
9q2 9q3

o0

hihoh3

We may obtain the Laplacian by combining Egs. (2.18) and (2.21), uSing
V/(q1. 92, g3). This leads to

V- V¥(q1, 92, 93)

1 0 (hoh3 0 0 (hshy 0 0 (hihs 0
_ [_< 2 3_¢>+_<g_¢>+_(¥_¢)] (2.22)
hih2h3| dg1\ h1 0q1 dg2 \ h2 9g2 dg3\ h3 0g3

Curl

Finally, to developV x V, let us apply Stokes’ theorem (Section 1.12) and, as with the
divergence, take the limit as the surface area becomes vanishingly small. Working on one
component at a time, we consider a differential surface element in the curvilinear surface
g1 = constant. From

/V xV-do=0q1-(V xV)hohadgodqs (2.23)

N

(mean value theorem of integral calculus), Stokes’ theorem yields
Q1+ (V x V)hohzdgodqgs = f V.dr, (2.24)

with the line integral lying in the surfacag = constant. Following the loop (1, 2, 3, 4) of
Fig. 2.2,

d
7€V(Q1, q2,q3) -dr = Vohodgo + [Vshs + a—qz(Vshs) dqz} dqs
0
- [Vzhz + 8—%(V2h2)dCJ3]dCI2 — Vahadqs

= [i(h3V3) - i(thz)]dqqua- (2.25)
9q2 9q3

We pick up a positive sign when going in the positive direction on parts 1 and 2 and
a negative sign on parts 3 and 4 because here we are going in the negative direction.
(Higher-order terms in Maclaurin or Taylor expansions have been omitted. They will van-
ish in the limit as the surface becomes vanishingly sna&lp & 0, dgz — 0).)

From Eq. (2.24),

1 d 0
VxV|i1=—|—(h3V3) — — thg)i|. 2.26
I hoh3 |:36]2 36]3( (2.26)
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2.2 Differential Vector Operators 113

dsy = hydg,

FIGURE 2.2 Curvilinear surface element wigh = constant.

The remaining two components §f x V may be picked up by cyclic permutation of the
indices. As in Chapter 1, it is often convenient to write the curl in determinant form;

Gih1  G2h2  G3h3

1
VxV= A (2.27)
hih2hs | 91 dq2  dg3
h1iVi h2Vo h3V3

Remember that, because of the presence of the differential operators, this determinant must
be expanded from the top down. Note that this equatierotsdentical with the form for

the cross product of two vectors, Eq. (2.1%).is not an ordinary vector; it is a vector
operator.

Our geometric interpretation of the gradient and the use of Gauss’ and Stokes’ theorems
(or integral definitions of divergence and curl) have enabled us to obtain these quantities
without having to differentiate the unit vectors §;. There exist alternate ways to deter-
mine grad, div, and curl based on direct differentiation of§heDne approach resolves the
@; of a specific coordinate system into its Cartesian components (Exercises 2.4.1 and 2.5.1)
and differentiates this Cartesian form (Exercises 2.4.3 and 2.5.2). The point here is that the
derivatives of the Cartesiat ¥, andz vanish sinceX, ¥, andz are constant in direction
as well as in magnitude. A second approach [L. J. Kijewaki,. J. Phys33: 816 (1965)]
assumes the equality 6fr /dg; 9g; andazr/aqj dq; and develops the derivatives @fin
a general curvilinear form. Exercises 2.2.3 and 2.2.4 are based on this method.

Exercises

221 Develop arguments to show that dot and cross products (not invojrig orthogonal
curvilinear coordinates iR3 proceed, as in Cartesian coordinateish no involvement
of scale factors

222 With ¢, a unit vector in the direction of increasiigg, show that
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1 9(h2h3)

hih2hs  9q1

1 3/11 st 1 3h1i|

h3 93 h2 dq2

@ V-G1=
N 11,

(b) VxQi=— 1927,

Note that even thougf; is a unit vector, its divergence and caid not necessarily

vanish.

2.2.3 Show that the orthogonal unit vectals may be defined by

N 1 or
i a
= a0 (@)
In particular, show thafj; - §; = 1 leads to an expression fé; in agreement with
Egs. (2.9).
Equation (a) may be taken as a starting point for deriving
g . 1 oh;j L
- l
aq/ = h 8‘]1 ol
and
94, .1 oh;
b= Vi
T A
224 Derive

1 9y 1oy . 13y
v 1—— + +
L PR e T

by direct application of Eq. (1.97),

[vdo
V]/f_falilrnlo fdtr

Hint. Evaluation of the surface integral will lead to terms liei2h3) ~1(8/9g1) x
(G1h2h3). The results listed in Exercise 2.2.3 will be helpful. Cancellation of unwanted
terms occurs when the contributions of all three pairs of surfaces are added together.

2.3 SPECIAL COORDINATE SYSTEMS: INTRODUCTION

There are at least 11 coordinate systems in which the three-dimensional Helmholtz equa-
tion can be separated into three ordinary differential equations. Some of these coordinate
systems have achieved prominence in the historical development of quantum mechanics.
Other systems, such as bipolar coordinates, satisfy special needs. Partly because the needs
are rather infrequent but mostly because the development of computers and efficient pro-
gramming techniques reduce the need for these coordinate systems, the discussion in this
chapter is limited to (1) Cartesian coordinates, (2) spherical polar coordinates, and (3) cir-
cular cylindrical coordinates. Specifications and details of the other coordinate systems
will be found in the first two editions of this work and in Additional Readings at the end of

this chapter (Morse and Feshbach, Margenau and Murphy).
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2.4 Circular Cylinder Coordinates 115
2.4 CIRCULAR CYLINDER COORDINATES

In the circular cylindrical coordinate system the three curvilinear coordin@iegz, ¢3)
are relabeledp, ¢, 7). We are using for the perpendicular distance from thexis and
savingr for the distance from the origin. The limits gn ¢ andz are

0<p <o, 0< ¢ < 2n, and —00 <7< 00.

Forp =0, ¢ is not well defined. The coordinate surfaces, shown in Fig. 2.3, are:

1. Right circular cylinders having theaxis as a common axis,

p = (x> +»%)"? = constant
2. Half-planes through theg-axis,

@= tanl(z) = constant
X

3. Planes parallel to they-plane, as in the Cartesian system,

z = constant

-

FiGure 2.3  Circular cylinder coordinates.
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z

FIGURE 2.4 Circular cylindrical
coordinate unit vectors.

Inverting the preceding equations forand¢ (or going directly to Fig. 2.3), we obtain
the transformation relations

X = pCOSp, y = pSing, z=z. (2.28)

The z-axis remains unchanged. This is essentially a two-dimensional curvilinear system
with a Cartesian-axis added on to form a three-dimensional system.
According to Eg. (2.5) or from the length elemedts, the scale factors are

hi=h,=1, h2=hy,=p, hz3=h,=1. (2.29)

The unit vectorg1, G2, §z are relabeledp, ¢, 2), as in Fig. 2.4. The unit vectgris normal

to the cylindrical surface, pointing in the direction of increasing ragiughe unit vector
¢ is tangential to the cylindrical surface, perpendicular to the half pfareconstant and
pointing in the direction of increasing azimuth angleT he third unit vectorz, is the usual
Cartesian unit vector. They are mutually orthogonal,

A

po=9p-2=24=0,
and the coordinate vector and a general ve¥tare expressed as
r=pp+2z, V=pV,+@V,+2V,.
A differential displacemendr may be written
dr = pdsy, + @ds, +2dz
=pdp+ @pdy+2dz. (2.30)

Example 2.4.1  AREA LAW FOR PLANETARY MOTION

First we derive Kepler’s law in cylindrical coordinates, saying that the radius vector sweeps
out equal areas in equal time, from angular momentum conservation.
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2.4 Circular Cylinder Coordinates 117

We consider the sun at the origin as a source oférgral gravitational forcéd= = f (r)f .
Then the orbital angular momentum= mr x v of a planet of mass: and velocityv is
conserved, because the torque

dL dr dr dav f)

—=m— X —+rxm—=rxF=

dr "t T dr From dt
HenceL = const. Now we can choose theaxis to lie along the direction of the orbital
angular momentum vectdr,= Lz, and work in cylindrical coordinatas= (p, ¢, z) =
with z = 0. The planet moves in they-plane becauseandv are perpendicular tb. Thus,
we expand its velocity as follows:

rxr=0.

v=2 PP+ pd—p-
dt dt
From
N . ap . o
p = (Cosp, sing), do = (—sing, cosp) = ¢,
we find thatdt = Z—(’;E = ¢¢ using the chain rule, so= pp + p dt =pp + ppp. When

we substitute the expansions@fndyv in polar coordinates, we obtain
L=mp xV=mp(pg)(p x $) =mp?¢2 = constant

The triangular area swept by the radius vegian the timed: (area law), when inte-
grated over one revolution, is given by

A= ;/p(pd(p)——/ (pdt —/dt (2.312)

if we substitutenp?¢ = L = const. Here is the period, that is, the time for one revolution
of the planet in its orbit.

Kepler's first law says that the orbit is an ellipse. Now we derive the orbit equation
o (p) of the ellipse in polar coordinates, where in Fig. 2.5 the sun is at one focus, which is
the origin of our cylindrical coordinates. From the geometrical construction of the ellipse
we know thatp’ + p = 2a, wherea is the major half-axis; we shall show that this is
equivalent to the conventional form of the ellipse equation. The distance between both foci
is 0 < 2ae < 2a, where O< € < 1is called the eccentricity of the ellipse. For a cirele 0
because both foci coincide with the center. There is an angle, as shown in Fig. 2.5, where
the distance®’ = p = a are equal, and Pythagoras’ theorem applied to this right triangle

FIGURE 2.5 Ellipse in polar coordinates.
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givesb? + a2e2 = a2. As aresulta/1 — €2 = b/a is the ratio of the minor half-axij to
the major half-axisg.

Now consider the triangle with the sides labeled &y p, 2a¢ in Fig. 2.5 and angle
oppositep” equal tor — ¢. Then, applying the law of cosines, gives

0'% = p? + 4a®€? + Apae cosyp.
Now substitutinge’ = 22 — p, cancelinge? on both sides and dividing by4yields
p(1+ecosp) =a(l—e?) =p, (2.32)

theKepler orbit equation in polar coordinates.
Alternatively, we revert to Cartesian coordinates to find, from Eq. (2.32) with
p COSp, that

p’=x%+ y2 =(p— xe)? = p2 + x%€? — 2pxe,
so the familiar ellipse equation in Cartesian coordinates,

2.2 2

2
pPe 2 2, P€ 14
1—¢€2 = =
( 6)<x+1—62> LR g Ak pup

obtains. If we compare this result with the standard form of the ellipse,

we confirm that

Y S e S
€

1-—¢2 1-
and that the distance) between the center and focusiis as shown in Fig. 2.5. [ |

The differential operations involviny follow from Egs. (2.18), (2.21), (2.22), and
(2.27):

Oy L 10y Loy
Vy(p,0,20)=p—+@——+2—, (2.33)
ap 0 09 9z
19 19V, V.
VV=="—(pV)+ ==L+ —, 2.34
,oa,o(p ») o dp 0z ( )
19 ( oy 19%y 3%y
Viy=>—(p= )+ 55 +—5. (235
v pap(p3p>+p28¢2+3zz (&5
o po 2
1
vxv==|0 3 9] (2.36)
Plop 0d¢p 0z
V, oV, V,
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Finally, for problems such as circular wave guides and cylindrical cavity resonators the
vector LaplaciarW2V resolved in circular cylindrical coordinates is

1 2 9V,
V|, =V, - SV, — S £,
p pe ¢
1 29V
V|, = V2V, - SV, + ——2L, (2.37)
4 % pz @ ;02 a(p
V2|, = V3V,

which follow from Eq. (1.85). The basic reason for this particular form ozHeemponent
is that thez-axis is a Cartesian axis; that is,

V2(pV, + @V, +2V.) = V2BV, + ¢V,) + 2V2V,
=pf(Vy, Vi) +0g(V,y, V) + 2V2V,.

Finally, the operatoW? operating on the, ¢ unit vectors stays in tha@-plane.

Example 2.4.2 A NAVIER-STOKES TERM

The Navier—Stokes equations of hydrodynamics contain a nonlinear term
VX[VX(VXV)],

wherev is the fluid velocity. For fluid flowing through a cylindrical pipe in thelirection,

v =2v(p).
From Eq. (2.36),
o po 2
1 ad
vxv==|0 3 01 %
Plap B¢ 0z ap
0 0 v
p o
0 0 v R v
Vx(Vxv)= = pv(p)—
av a
0O — O
ap
Finally,
o P9 Z
118 a8 8
VX(VX(VXV))ZE 88,0 3(0 9z =0,
v 00
ap
so, for this particular case, the nonlinear term vanishes. |
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Resolve the circular cylindrical unit vectors into their Cartesian components (Fig. 2.6).

ANS. p = Xcosp + ¥ sing,
@ = —Xsing + y cosy,
2=12

Resolve the Cartesian unit vectors into their circular cylindrical components (Fig. 2.6).

p cosp — ¢ sing,
y = psing + ¢ cosp,
2=12

From the results of Exercise 2.4.1 show that

ap . 09 N
T T
and that all other first derivatives of the circular cylindrical unit vectors with respect to
the circular cylindrical coordinates vanish.
CompareV -V (Eq. (2.34)) with the gradient operator
V= ﬁi + @Ei + 20
ap p 0@ 0z

(Eq. (2.33)) dotted intd/. Note that the differential operators 8f differentiateboth
the unit vectors and the componentsvof
Hint. $(1/p)(3/d¢) - pV, becomesp - %%(ﬁvp) and doesiot vanish.

() Show that = pp + 2z.

Ay

=y

FIGURE 2.6 Plane polar coordinates.
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(b) Working entirely in circular cylindrical coordinates, show that
V.r=3 and Vxr=0.

2.4.6 (a) Show that the parity operation (reflection through the origin) on a gpint, z)
relative tofixed x-, y-, z-axes consists of the transformation

p—=p, p—>pxm, 7= =2z

(b) Show thatp and ¢ have odd parity (reversal of direction) and ttzahas even
parity.
Note.The Cartesian unit vectofs ¥, andz remain constant.

247 Arigid body is rotating about a fixed axis with a constant angular velegitfakew to
lie along thez-axis. Express the position vectom circular cylindrical coordinates and
using circular cylindrical coordinates,

(a) calculater =@ x r, (b) calculateV x v.

ANS. (a) V= gwp,

(b) V x v=_20.
2.4.8 Find the circular cylindrical components of the velocity and acceleration of a moving
particle,
Up=p9 apzlb_pgbZ’
Vp = P9, ap = pY + 2p¢,
v, =2, a;, =7.
Hint.

r@) = pn)p) +2z(t)
= [Rcosp (1) +¥sing(r)]p(t) + 2z(1).
Note.p =dp/dt, p = d?p/dt?, and so on.
2.4.9 Solve Laplace’s equatioV, >y = 0, in cylindrical coordinates foy = v (p).
ANS.y =kin 2.
00

2.4.10 Inright circular cylindrical coordinates a particular vector function is given by

V(p,9)=pV,(p,0) +9Vy(p, @).

Show thatV x V has only az-component. Note that this result will hold for any vector
confined to a surfacgs = constant as long as the produétsV; and h,V> are each
independent of3.

2.4.11 For the flow of an incompressible viscous fluid the Navier—Stokes equations lead to
—V x (VX (V x V) = LVZ(V x V).
£0

Heren is the viscosity angy is the density of the fluid. For axial flow in a cylindrical
pipe we take the velocity to be

vV =2v(p).
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From Example 2.4.2,
V x (Vx(VXV)):O

for this choice ofv.
Show that

V2(V xVv)=0
leads to the differential equation
1d( d*v 1 dv
Z—|p—=)]-5—=0
pdp\ dp?) p?dp
and that this is satisfied by

V=10 + az,oz.

2.4.12 A conducting wire along the-axis carries a current. The resulting magnetic vector
potential is given by

1
B=g Ll .
2mp
2.4.13 Aforce is described by
o Y N
x2+y2? ez y2

(a) Express in circular cylindrical coordinates.
Operating entirely in circular cylindrical coordinates for (b) and (c),

(b) calculate the curl of and
(c) calculate the work done Hyin travers the unit circle once counterclockwise.
(d) How do you reconcile the results of (b) and (c)?

2.4.14 A transverse electromagnetic wave (TEM) in a coaxial waveguide has an electric field
E =E(p, p)e!*:=®) and a magnetic induction field &= B(p, ¢)e!*:=©"_ Since the
wave is transverse, neithEmor B has az component. The two fields satisfy thector
Laplacian equation

VZE(p,¢) =0
V2B(p, ) = 0.

(@) ShowthaE = pEg(a/p)e*2=) andB = ¢ Bo(a/p)e' *2=“" are solutions. Here
a is the radius of the inner conductor afig and By are constant amplitudes.
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(b) Assuming a vacuum inside the waveguide, verify that Maxwell's equations are
satisfied with

Bo/Eo=k/w = nogo(w/k) =1/c.

2.4.15 A calculation of the magnetohydrodynamic pinch effect involves the evaluation of
(B - V)B. If the magnetic inductiom is taken to beB = ¢ B, (p), show that

(B-V)B=—pBZ/p.

2.4.16 The linear velocity of particles in a rigid body rotating with angular velogitis given
by

V=gpo.
Integratef v - dA around a circle in the y-plane and verify that

fv-dr
=V xv|;.
area

2.4.17 A proton of massn, charge+e, and (asymptotic) momentum = mv is incident on
a nucleus of charge Ze at an impact parametér Determine the proton’s distance of
closest approach.

2.5 SPHERICAL POLAR COORDINATES

Relabeling(q1, g2, q3) as(r, 8, ¢), we see that the spherical polar coordinate system con-
sists of the following:

1. Concentric spheres centered at the origin,

1/2

r=(x*+ y*+ %) = constant

2. Right circular cones centered on thé€polar) axis, vertices at the origin,

b4
6 = arccos = constant

(x2 + y2 + 72)1/2

3. Half-planes through the(polar) axis,

Q= arctanX = constant
X

By our arbitrary choice of definitions @f, the polar angle, and, the azimuth angle, the
z-axis is singled out for special treatment. The transformation equations corresponding to
Eqg. (2.1) are

x =rSinf cosy, y =rsing sing, z=rCcosd, (2.38)
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&
&
rsinf de

rsing
rdé

S dA of
3 Eq. (2.40)

FIGURE 2.7 Spherical polar coordinate area
elements.

measuring from the positivez-axis andy in the xy-plane from the positive-axis. The
ranges of values areQr <00, 0<0 <m,and 0< ¢ < 27. At r =0, 6 andg are
undefined. From differentiation of Eq. (2.38),

hi=h,=1,
ho=hg=r, (2.39)
ha =hy, =rsing.
This gives a line element
dr =tdr+0rdo + @rsindde,
o)
ds? =dr -dr =dr? + r?d6® + r?sir? 0 dy?,

the coordinates being obviously orthogonal. In this spherical coordinate system the area
element (forr = constant) is

dA =dog, =r?sind do dy, (2.40)

the light, unshaded area in Fig. 2.7. Integrating over the azimputke find that the area
element becomes a ring of widi®,

dAg = 27r?sing db. (2.41)

This form will appear repeatedly in problems in spherical polar coordinates with azimuthal
symmetry, such as the scattering of an unpolarized beam of particles. By definition of solid
radians, or steradians, an element of solid ad§lds given by

dA
dQ = —5 =sind d6 dg. (2.42)
r
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>

FIGURE 2.8 Spherical polar coordinates.

Integrating over the entire spherical surface, we obtain

/ dQ2 =4r.

From Eqg. (2.11) the volume element is

dt =r?drsinfdode =r?drdQ. (2.43)

The spherical polar coordinate unit vectors are shown in Fig. 2.8.

It must be emphasized thidiie unit vectorst, 6, and ¢ vary in direction as the angles
6 and ¢ vary. Specifically, the® andg derivatives of these spherical polar coordinate unit
vectors do not vanish (Exercise 2.5.2). When differentiating vectors in spherical polar (or
in any non-Cartesian system), this variation of the unit vectors with position must not be
neglected. In terms of the fixed-direction Cartesian unit ve&pysandz (cp. Eq. (2.38)),

f = Xsind cosy + ysind sing + zcosy,

» = —XSing + Y cosyp = L of
= ¢ YO =S 9g
which follow from
ar2 af af2
=—=2f —, 0=—
20 20 dp
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=2f-

A~

. . afr
0 = XcosH cosp + ¥ cosd sing — zsinh = 30" (2.44)

of
o’
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Note that Exercise 2.5.5 gives the inverse transformation and that a given vector can
now be expressed in a number of different (but equivalent) ways. For instance, the position
vectorr may be written

r=fr= f(x2 + y2 +Z2)1/2
=Xx + )7y +2z
= Xr sinf cosy + Yr sinf sing + 2r cosh. (2.45)

Select the form that is most useful for your particular problem.
From Section 2.2, relabeling the curvilinear coordinate unit vedor§», andqs asf,

A

6, andg gives

Y Alay . 1 Ay
Vi =f—— +0-—— . 2.46
V=T T8 50 T sing vy (2.46)
1 7.9 3y v,
V.V=———|sing— @YV, —(sin6V, — |, 2.47
rzsiHH[ ar V) g 9)+ra¢] (2.47)
1 P17 (. oY 1 9%y
V.V =———|sind— — — | sin6— —— |, (2.48
v rZSIHQ[ E)r(r 3r)+89< 20 ) Tsneagz | @49
For  rsingg
1
VxV=—r" |9 3 o, (2.49)
r2sing 13- 90 ag
V. rVs rsingV,

Occasionally, the vector Laplacia®?V is needed in spherical polar coordinates. It is
best obtained by using the vector identity (Eq. (1.85)) of Chapter 1. For reference

R i Sy N R R
2 rdr 92 r2sinf 06 r2902  r2sir g g2

n 20 2cos) Vo + 2 0 v
290  r2sing ) ° r2singd ag ) ¢

2 29Vy 2co9 2 9V,

2 29 92 cosd 9 1 92 1 92
V2V|,=(— )

=V, -y, - S -y ¢ 2.50
T2 T 0290 T rZsing U r2sing g (2.50)
20V, 2coy aV,

VNVjg=VVg— —— Vo 5 — — —— ¥ 2.51
lo O 2side T 1290 r2sinte de #50

1 2 9V, 2co) AV
V2|, = V2V, — Vo4 5 — + —. 2.52
ly Y r2site ¥ r2sing dg - r2sirfe de (252

These expressions for the component&8¥ are undeniably messy, but sometimes they
are needed.
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Example 2.5.1 v,V ., Vx For A CENTRAL FORCE

Using Egs. (2.46) to (2.49), we can reproduce by inspection some of the results derived in
Chapter 1 by laborious application of Cartesian coordinates.
From Eq. (2.46),

Vi) = fﬁ
FO =t (2.53)
V' = fnrn—1,
For the Coulomb potentidl = Ze/ (4 eor), the electric field i€E = —-VV = 4morzr
From Eq. (2.47),
Vot =250 +Y
DEYT (2.54)

V. tr"=m+2)r" 1

Forr > 0 the charge density of the electric field of the Coulomb potentialdsV - E =
725V - 5 =0because = -2

From Eq. (2.48),

f d*f
V2f(r) = PR (2.55)
V2" =nn+ )r" 2, (2.56)

in contrast to the ordinary radial second derivative’binvolving n — 1 instead ofr + 1.
Finally, from Eq. (2.49),

V x f f(r)=0. (2.57)
|

Example 2.5.2  MAGNETIC VECTOR POTENTIAL

The computation of the magnetic vector potential of a single current loop imytiane
uses Oersted’s law, x H = J, in conjunction withugH =B = V x A (see Examples 1.9.2
and 1.12.1), and involves the evaluation of

pod =V x [V x A, (r,0)].
In spherical polar coordinates this reduces to
Pord rsing
S a d ad
resing | 5, 99 %
0 0 rsinfA,(r,0)

nod =

1
=V x m[ —(rsinfA,) — r0—(r S|n0A¢):|
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Taking the curl a second time, we obtain

f ré rsinfd@
] 1 0 0 d
Hod = r2sing 31’ L 39 g
Zeing 30 (r SinfA,) —ma—(r SinfA,) 0
By expanding the determinant along the top row, we have
J = “182(A)+1a 1 (smeA)
HOS= "2 5,2V ) T 1296 | sing 00 v
—¢|:V2A¢(r,9) n2 Ay (r, 0)] (2.58)

Exercises

25.1 Express the spherical polar unit vectors in Cartesian unit vectors.
ANS. f = Xsinf cosy + ¥sinéd sing + 2cosY,
0 = XcosH cosp + § cosd sing — 2sind,
@ = —Xsing + Y cosp.
252 (@) From the results of Exercise 2.5.1, calculate the partial derivativesfofand

with respect to-, 6, andg.
(b) With V given by

~19 P 1 9
or " v a6 "% sing o

(greatest space rate of change), use the results of part (a) to calulsité. This
is an alternate derivation of the Laplacian.
Note.The derivatives of the left-hand operate on the unit vectors of the right-havid
before the unit vectors are dotted together.

253 A rigid body is rotating about a fixed axis with a constant angular velagitjakew to
be along the;-axis. Using spherical polar coordinates,
(a) Calculate
V=w XTI.
(b) Calculate

V x V.

ANS. (a) V= @or Sing,
(b) V x v = 26.
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254 The coordinate syste, y, z) is rotated through an angiie counterclockwise about an
axis defined by the unit vectorinto system(x’, y’, z’). In terms of the new coordinates
the radius vector becomes

r'=rcos® +r x nsin® +n(n-r)(1— cosd).

(@) Derive this expression from geometric considerations.

(b) Show that it reduces as expectedrice 2. The answer, in matrix form, appears in
Eq. (3.90).

(c) Verify thatr'? = r2.

255 Resolve the Cartesian unit vectors into their spherical polar components:
X = f sinf cosp + 6 cosd cosp — @ Sing,
§ = f sind sing + @ cosd sing + ¢ cosg,
2= cosd — @ sind.

2.5.6 The direction of one vector is given by the angfesand¢;. For a second vector the
corresponding angles afe and¢,. Show that the cosine of the included anglés
given by

COSy = C0SH1 COSHo + Sinby Sinda co @1 — ¢2).
See Fig. 12.15.

257 A certain vectorV has no radial component. Its curl has no tangential components.
What does this imply about the radial dependence of the tangential compon#gftits of

258 Modern physics lays great stress on the property of parity — whether a quantity remains
invariant or changes sign under an inversion of the coordinate system. In Cartesian
coordinates this means— —x, y - —y, andz — —z.

(a) Show that the inversion (reflection through the origin) of a p6int, ¢) relative
to fixed x-, y-, z-axes consists of the transformation

r—r, 0 —>m—0, 0 —> @t
(b) Show thaf and¢ have odd parity (reversal of direction) and thdtas even parity.
2.5.9 With A any vector,

A-Vr=A.

(a) \Verify this result in Cartesian coordinates.
(b) \Verify this result using spherical polar coordinates. (Equation (2.46) pro¥des
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2.5.10 Find the spherical coordinate components of the velocity and acceleration of a moving

particle:

V=T,

Vg = ré,

vy =rSinfg,

a =7 — r6? — rSin2t9</')2,

ag = rb + 270 — r sind cosv?,

a, = r Sinfg + 27 sinf¢ + 2r coshhg.
Hint.

r(t) =Fft@)r@)
= [Xsind (1) cosp(r) + ¥sind (1) sing (1) + 2cosH (1) |r ().
Note.Using the Lagrangian techniques of Section 17.3, we may obtain these results

somewhat more elegantly. The dotind, ¢ means time derivative; = dr/dt,é =
do/dt, 9 =de/dt. The notation was originated by Newton.

2511 A particlen moves in response to a central force according to Newton’s second law,
mi =Ff f(r).
Show thatr x f = ¢, a constant, and that the geometric interpretation of this leads to
Kepler's second law.

2512 Expressd/dx, d/dy, d/dz in spherical polar coordinates.

0 . Gl 19 sing 0
ANS. — = sinf cosp — + cosd cosp— — — —— —,
dax S@Br + Swr a0  rsind dg

0 . .9 .10 cosp 9

— =singdsing— +cos¥sing— — + ———,
dy ar radf  rsind dp
0] ad N

— =C0S9— —Sinf——.

0z or r 06

Hint. EquateV .y, andV 4.
2.5.13 From Exercise 2.5.12 show that

This is the quantum mechanical operator corresponding te-temponent of orbital
angular momentum.

2.5.14 With the quantum mechanical orbital angular momentum operator definéd=as
—i(r x V), show that

. of 0 . 0
(a) Lx+1L},=e"/’(£+zcot9@>,
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) | ad
(b) Ly,—iLy=—e""Y| — —icotd— ).
a0 17

(These are the raising and lowering operators of Section 4.3.)

Verify that L x L =iL in spherical polar coordinatek. = —i(r x V), the quantum
mechanical orbital angular momentum operator.

Hint. Use spherical polar coordinates fbrbut Cartesian components for the cross
product.

(a) From Eg. (2.46) show that

L=—i(rxV)=i(6 1 9 50
=—i =il0———-—0— |
sing 9g 26

(b) Resolving‘i andg into Cartesian components, determing L, andL. in terms
of 6, ¢, and their derivatives.
(c) FromL?=L2+ L2+ L? show that

5 1 9 (. 9 1 92
=————|SiNf— | — ———
sing 96 30 ) sirg g2

8 8
— V + N — ).
- r (r )

This latter identity is useful in relating orbital angular momentum and Legendre’s dif-
ferential equation, Exercise 9.3.8.

With L = —ir x V, verify the operator identities

rxL
r2

0
a) V=Ff——i
(@) or !

3
(b) rVZ—V(1+r8—) =iV xL.

r

Show that the following three forms (spherical coordinatesy & (r) are equivalent:

(@)

1d[ ,dy@]. 1 42 _ Ay (r)  2dy(r)
ﬁﬁ[f ar ] ® vl @+ T

The second form is particularly convenient in establishing a correspondence between
spherical polar and Cartesian descriptions of a problem.

One model of the solar corona assumes that the steady-state equation of heat flow,
V. (kVT)=0,

is satisfied. Herek, the thermal conductivity, is proportional ©2. Assuming that
the temperaturd is proportional to-", show that the heat flow equation is satisfied by
T = To(ro/r)?/".
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2.5.20 A certain force field is given by

2Pcosd AP
+ 60— sing, r>=pP/2

F=f
3 3

(in spherical polar coordinates).

(@) ExamineV x F to see if a potential exists.

(b) Calculatef F - dx for a unit circle in the plané = /2. What does this indicate
about the force being conservative or nonconservative?

(c) If you believe thaF may be described blf = —V, find 1. Otherwise simply
state that no acceptable potential exists.

2521 (a) Showthat =—¢cotd/r is a solution ofV x A =F/r2.
(b) Show that this spherical polar coordinate solution agrees with the solution given
for Exercise 1.13.6:
P _¢ Xz
rx?2+y2)  Trx?+y?)

Note that the solution diverges fér= 0, = corresponding ta, y = 0.

(c) Finally, show thaA = —égo sinf/r is a solution. Note that although this solution
does not divergér # 0), it is no longer single-valued for all possible azimuth
angles.

A=

2.5.22 A magnetic vector potential is given by
_ Mo mxr
T A4Ax 8

Show that this leads to the magnetic inducti®of a point magnetic dipole with dipole
momentm.

ANS. for m = zm,

2mcosd sing
V xA—fH0 Hom _
47 73 47 r3

Compare Eqgs. (12.133) and (12.134)

2.5.23 Atlarge distances from its source, electric dipole radiation has fields

i(kr—wt) ei(kr—a)t)
E=agsind 0, B =apsind 0.
r r
Show that Maxwell’s equations
0B oE
VXE=—— and V x B =¢gouo—
o1 OHO;
are satisfied, if we take
ag w _
— = — =c=(eop0) /%
ap k

Hint. Sincer is large, terms of order—2 may be dropped.
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The magnetic vector potential for a uniformly charged rotating spherical shell is
odtow sind
C—, r>a
A = 3 }"2
~ ao w
1o -r C0s9, r<a.

(a = radius of spherical shelly = surface charge density, and= angular velocity.)
Find the magnetic inductioB =V x A.

2uoatocw cosh

ANS. B, (r,0) = 3 3 r>a,
4 .
sing
Birn0) =22 = rea
2
B= 2%, r<a.

(@) Explain whyV? in plane polar coordinates follows froR? in circular cylindrical
coordinates witly = constant.
(b) Explain why takingv? in spherical polar coordinates and restrictihg /2 does
not lead to the plane polar form &f.
Note.

v2( )_32+1a+132
PO =502 T ap T p2ag?

2.6 TENSOR ANALYSIS

Introduction, Definitions

Tensors are important in many areas of physics, including general relativity and electrody-
namics. Scalars and vectors are special cases of tensors. In Chapter 1, a quantity that did not
change under rotations of the coordinate system in three-dimensional space, an invariant,
was labeled a scalar. gcalar is specified by one real number and igeasor of rank 0.

A quantity whose components transformed under rotations like those of the distance of a
point from a chosen origin (Eq. (1.9), Section 1.2) was called a vector. The transformation
of the components of the vector under a rotation of the coordinates preserves the vector as
a geometric entity (such as an arrow in space), independent of the orientation of the refer-
ence frame. In three-dimensional spaceeetor is specified by 3= 3! real numbers, for
example, its Cartesian components, andtisrsor of rank 1. A tensor of rank n has 3
components that transform in a definite walhis transformation philosophy is of central
importance for tensor analysis and conforms with the mathematician’s concept of vector
and vector (or linear) space and the physicist’s notion that physical observables must not
depend on the choice of coordinate frames. There is a physical basis for such a philosophy:
We describe the physical world by mathematics, but any physical predictions we make

5In N-dimensional space a tensor of rankasN" components.
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134 Chapter 2 Vector Analysis in Curved Coordinates and Tensors

must be independent of our mathematical conventions, such as a coordinate system with
its arbitrary origin and orientation of its axes.
There is a possible ambiguity in the transformation law of a vector

Al =ZaijAj, (2.59)
J

in whicha;; is the cosine of the angle between tHeaxis and thex ;-axis.
If we start with a differential distance vectdr, then, takingix; to be a function of the
unprimed variables,

ox’
dx]=3" ax' dx; (2.60)

j Ot
by partial differentiation. If we set

0x/
aij = ﬁ (2.61)

Egs. (2.59) and (2.60) are consistent. Any set of quantitiesansforming according to

12 axi/ J
Al = Z EA (2.62a)

J

is defined as aontravariant vector, whose indices we write agperscript; this includes
the Cartesian coordinate vectdr= x; from now on.

However, we have already encountered a slightly different type of vector transformation.
The gradient of a scala&f ¢, defined by

00 g L 0p
Vgﬂ:XE +yﬁ +Z$ (2.63)
(usingxt, x2, x3 for x, y, z), transforms as
a¢’ dp dx’
9T~ 2ol 9 (2.64)
J

usinge = ¢(x,y,z) = o(x’,y',7) = ¢', ¢ defined as a scalar quantity. Notice that this
differs from Eq. (2.62) in that we havéx’//dx'! instead ofdx’! /dx/. Equation (2.64)

is taken as the definition of eovariant vector, with the gradient as the prototype. The
covariant analog of Eq. (2.62a) is

J
Al =ZaLAj. (2.62b)

9x'i

Only in Cartesian coordinates is

ax/  ax’t
ax’i = m = aij (265)
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so that there no difference between contravariant and covariant transformations. In other
systems, Eq. (2.65) in general does not apply, and the distinction between contravariant
and covariant is real and must be observed. This is of prime importance in the curved
Riemannian space of general relativity.

In the remainder of this section the components of@mtravariant vector are denoted
by asuperscript, A’, whereas aubscript is used for the components ofcavariant
vectorA; .8

Definition of Tensors of Rank 2

Now we proceed to defineontravariant, mixed, and covariant tensors of rank 2by the
following equations for their components under coordinate transformations:

iy ax'l ax'J
nj __ kl
A= oA
kl

. ax’t ax!
B = Zﬁaxu‘Bkl’ (2.66)
kl

, axk ax!
Clearly, the rank goes as the number of partial derivatives (or direction cosines) in the de-
finition: O for a scalar, 1 for a vector, 2 for a second-rank tensor, and so on. Each index
(subscript or superscript) ranges over the number of dimensions of the space. The number
of indices (equal to the rank of tensor) is independent of the dimensions of the space. We
see thatA¥’ is contravariant with respect to both indic€s, is covariant with respect to
both indices, and*; transforms contravariantly with respect to the first indésut covari-
antly with respect to the second indexOnce again, if we are using Cartesian coordinates,
all three forms of the tensors of second rank contravariant, mixed, and covariant are —the
same.

As with the components of a vector, the transformation laws for the components of a
tensor, Eq. (2.66), yield entities (and properties) that are independent of the choice of ref-
erence frame. This is what makes tensor analysis important in physics. The independence
of reference frame (invariance) is ideal for expressing and investigating universal physical
laws.

The second-rank tensér(componentst¥’) may be conveniently represented by writing
out its components in a square array(3 if we are in three-dimensional space):

ALl 412 413
A=| A%l A2 A%, (2.67)
A3l A32 A33
This does not mean that any square array of numbers or functions forms a tensor. The
essential condition is that the components transform according to Eq. (2.66).

6This means that the coordinates y, z) are Written(xl, x2, x3) sincer transforms as a contravariant vector. The ambiguity of
x2 representing both squared and is the price we pay.
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In the context of matrix analysis the preceding transformation equations become (for
Cartesian coordinates) an orthogonal similarity transformation; see Section 3.3. A geomet-
rical interpretation of a second-rank tensor (the inertia tensor) is developed in Section 3.5.

In summary, tensors are systems of components organized by one or more indices that
transform according to specific rules under a set of transformations. The number of in-
dices is called the rank of the tensor. If the transformations are coordinate rotations in
three-dimensional space, then tensor analysis amounts to what we did in the sections on
curvilinear coordinates and in Cartesian coordinates in Chagitein four dimensions of
Minkowski space—time, the transformations are Lorentz transformations, and tensors of
rank 1 are called four-vectors.

Addition and Subtraction of Tensors

The addition and subtraction of tensors is defined in terms of the individual elements, just
as for vectors. If

A+B=C, (2.68)
then
AY + B =CY.

Of course A andB must be tensors of the same rank and both expressed in a space of the
same number of dimensions.

Summation Convention

In tensor analysis it is customary to adopt a summation convention to put Eq. (2.66) and
subsequent tensor equations in a more compact form. As long as we are distinguishing
between contravariance and covariance, let us agree that when an index appears on one side
of an equation, once as a superscript and once as a subscript (except for the coordinates
where both are subscripts), we automatically sum over that index. Then we may write the
second expression in Eq. (2.66) as

gt axt

with the summation of the right-hand side oweand!/ implied. This is Einstein’s summa-
tion conventior!. The indexi is superscript because it is associated with the contravariant
x’%: likewise j is subscript because it is related to the covariant gradient.

To illustrate the use of the summation convention and some of the techniques of tensor
analysis, let us show that the now-familiar Kronecker deltg, is really a mixed tensor

7In this contexix’’ /3x* might better be written asi anddx!/dx’/ asb’j.
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of rank 2,8%;.8 The question is: Does; transform according to Eq. (2.66)? This is our
criterion for calling it a tensor. We have, using the summation convention,

L ox'taxl axt axk

= 2.70
Poxk 9x/7 ~ 9xk ax'i (2.70)
by definition of the Kronecker delta. Now,
9 i 9 k ) i
=X 2.71)

Bxk 9x'J  ox'i
by direct partial differentiation of the right-hand side (chain rule). Howevérandx’/

are independent coordinates, and therefore the variation of one with respect to the other
must be zero if they are different, unity if they coincide; that is,

ax/i ri
=3 (2.72)

Hence
o ax't axl
I axk gxti

showing that thé*,; are indeed the components of a mixed second-rank tensor. Notice that
this result is independent of the number of dimensions of our space. The reason for the
upper index and lower indexj is the same as in Eq. (2.69).

The Kronecker delta has one further interesting property. It has the same components in
all of our rotated coordinate systems and is therefore cédletiopic. In Section 2.9 we
shall meet a third-rank isotropic tensor and three fourth-rank isotropic tensors. No isotropic
first-rank tensor (vector) exists.

I8

Symmetry-Antisymmetry
The order in which the indices appear in our description of a tensor is important. In general,
A™ isindependent oA"", but there are some cases of special interest. If, far @hdn,
A" = A", (2.73)
we call the tensosymmetric. If, on the other hand,
AT = — AT, (2.74)

the tensor igntisymmetric. Clearly, every (second-rank) tensor can be resolved into sym-
metric and antisymmetric parts by the identity

A %(Amn + Anm) + %(Amn — A”m), (2.75)

the first term on the right being a symmetric tensor, the second, an antisymmetric tensor.
A similar resolution of functions into symmetric and antisymmetric parts is of extreme
importance to quantum mechanics.

8]t is common practice to refer to a tensbiby specifying a typical componemn, ;. As long as the reader refrains from writing
nonsense such #= A;;, no harm is done.
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Spinors

It was once thought that the system of scalars, vectors, tensors (second-rank), and so on
formed a complete mathematical system, one that is adequate for describing a physics
independent of the choice of reference frame. But the universe and mathematical physics
are not that simple. In the realm of elementary particles, for example, spin zero particles
(r mesonsg particles) may be described with scalars, spin 1 particles (deuterons) by
vectors, and spin 2 particles (gravitons) by tensors. This listing omits the most common
particles: electrons, protons, and neutrons, all with s;biﬁ'hese particles are properly
described byspinors. A spinor is not a scalar, vector, or tensor. A brief introduction to
spinors in the context of group theoty = 1/2) appears in Section 4.3.

Exercises

26.1

2.6.2

2.6.3

2.6.4

2.6.5

Show that if all the components of any tensor of any rank vanish in one particular
coordinate system, they vanish in all coordinate systems.

Note. This point takes on special importance in the four-dimensional curved space of
general relativity. If a quantity, expressed as a tensor, exists in one coordinate system, it
exists in all coordinate systems and is not just a consequencehoi@eof a coordinate
system (as are centrifugal and Coriolis forces in Newtonian mechanics).

The components of tensér are equal to the corresponding components of teBsior
one particular coordinate system, denoted by the superscript O; that is,

0 0
Aij = Bl-j.
Show that tensoh is equal to tensoB, A;; = B;;, in all coordinate systems.
The last three components of a four-dimensional vector vanish in each of two reference
frames. If the second reference frame is not merely a rotation of the first abatg the
axis, that is, if at least one of the coefficients (i = 1, 2, 3) £ 0, show that the zeroth
component vanishes in all reference frames. Translated into relativistic mechanics this

means that if momentum is conserved in two Lorentz frames, then energy is conserved
in all Lorentz frames.

From an analysis of the behavior of a general second-rank tensor urfdan®d.80
rotations about the coordinate axes, show that an isotropic second-rank tensor in three-
dimensional space must be a multiplesgf.

The four-dimensional fourth-rank Riemann—Christoffel curvature tensor of general rel-
ativity, R;xim , satisfies the symmetry relations

Rikim = —Rikmi = — Reiim-

With the indices running from 0 to 3, show that the number of independent components
is reduced from 256 to 36 and that the condition

Rikim = Rimik

9The particle spin is intrinsic angular momentum (in unitsdfit is distinct from classical, orbital angular momentum due to

motion.
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further reduces the number of independent components to 21. Finally, if the components
satisfy an identityR;x;m + Riimk + Rimx = 0, show that the number of independent
components is reduced to 20.

Note.The final three-term identity furnishes new information only if all four indices are
different. Then it reduces the number of independent components by one-third.

2.6.6 T;uim is antisymmetric with respect to all pairs of indices. How many independent com-
ponents has it (in three-dimensional space)?

2.7 CONTRACTION, DIRECT PRODUCT

Contraction
When dealing with vectors, we formed a scalar product (Section 1.3) by summing products
of corresponding components:

A-B=A;B; (summation conventior). (2.76)

The generalization of this expression in tensor analysis is a process known as contraction.
Two indices, one covariant and the other contravariant, are set equal to each other, and then
(as implied by the summation convention) we sum over this repeated index. For example,
let us contract the second-rank mixed ten86r;,

B ax't ax! k ax!

= Bk, = — Bk 2.77
P xk gxi T k7! ( )

using Eq. (2.71), and then by Eq. (2.72)
B/[i = SlkBkl = Bkk. (2.78)

Our contracted second-rank mixed tensor is invariant and therefore a'Scalis is ex-

actly what we obtained in Section 1.3 for the dot product of two vectors and in Section 1.7
for the divergence of a vector. In general, the operation of contraction reduces the rank of
atensor by 2. An example of the use of contraction appears in Chapter 4.

Direct Product

The components of a covariant vector (first-rank tengoand those of a contravariant vec-
tor (first-rank tensorp’/ may be multiplied component by component to give the general
terma; b/ . This, by Eg. (2.66) is actually a second-rank tensor, for

Caxk ax axk ax’J
1 jo I _ 1
al-b J = ax/iak oxl b = 9x oxl (akb ) (279)
Contracting, we obtain
ab'’ =aqb*, (2.80)

101n matrix analysis this scalar is thieace of the matrix, Section 3.2.
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asin Egs. (2.77) and (2.78), to give the regular scalar product.

The operation of adjoining two vectors andb/ as in the last paragraph is known as
forming thedirect product. For the case of two vectors, the direct product is a tensor of
second rank. In this sense we may attach meanirigEowhich was not defined within
the framework of vector analysis. In general, the direct product of two tensors is a tensor
of rank equal to the sum of the two initial ranks; that is,

AT BM =T M (2.81a)
whereC’ ;¥ is a tensor of fourth rank. From Egs. (2.66),

C”'jkl _ ax'! Bx”. ax’k ax" cm . (2.81b)
dx™ dx'J dxP dx4

The direct product is a technique for creating new, higher-rank tensors.Exer-
cise 2.7.1is a form of the direct product in which the first factov isApplications appear
in Section 4.6.

When T is annth-rank Cartesian tenso(a/axi)Tjk, ..., a component ofVT, is a
Cartesian tensor of rank: 4+ 1 (Exercise 2.7.1). Howevefd/dx*)Tjy ... is not a tensor
in more general spaces. In non-Cartesian systgthis’’ will act on the partial derivatives
dx?/9x"4 and destroy the simple tensor transformation relation (see Eqg. (2.129)).

So far the distinction between a covariant transformation and a contravariant transfor-
mation has been maintained because it does exist in non-Euclidean space and because it is
of great importance in general relativity. In Sections 2.10 and 2.11 we shall develop differ-
ential relations for general tensors. Often, however, because of the simplification achieved,
we restrict ourselves to Cartesian tensors. As noted in Section 2.6, the distinction between
contravariance and covariance disappears.

Exercises

2.7.1 If 7., is a tensor of rank:, show thatd7..,;/dx/ is a tensor of rank + 1 (Cartesian
coordinates).
Note.In non-Cartesian coordinate systems the coefficieptare, in general, functions
of the coordinates, and the simple derivative of a tensor of naislnot a tensor except
in the special case of = 0. In this case the derivative does yield a covariant vector
(tensor of rank 1) by Eq. (2.64).

2.7.2 If T;j... is a tensor of rank:, show thatZl. aT,-,»k.../axf is a tensor of ranks — 1
(Cartesian coordinates). '

2.7.3 The operator
2 192
c2 312
may be written as

4
92
257
:l

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

2.8 Quotient Rule 141
usingx4 = ict. This is the four-dimensional Laplacian, sometimes called the d’Alem-

bertian and denoted Hyi2. Show that it is ascalar operator, that is, is invariant under
Lorentz transformations.

2.8 QUOTIENT RULE

If A; andB; are vectors, as seen in Section 2.7, we can easily showAfiBgtis a second-
rank tensor. Here we are concerned with a variety of inverse relations. Consider such equa-

tions as
KiAi =B (2.82a)
KijA; = B; (2.82b)
KijAjr = Bi (2.82c¢)
KijrAij = Bu (2.82d)
KijAr = Bijt. (2.82€)

Inline with our restriction to Cartesian systems, we write all indices as subscripts and,
unless specified otherwise, sum repeated indices.

In each of these expressioAsandB are known tensors of rank indicated by the number
of indices andA is arbitrary. In each cask is an unknown quantity. We wish to establish
the transformation properties &f. The quotient rule asserts that if the equation of interest
holds in all (rotated) Cartesian coordinate systekhss a tensor of the indicated rank. The
importance in physical theory is that the quotient rule can establish the tensor nature of
quantities. Exercise 2.8.1 is a simple illustration of this. The quotient rule (Eq. (2.82b))
shows that the inertia matrix appearing in the angular momentum equatofe, Sec-
tion 3.5, is a tensor.

In proving the quotient rule, we consider Eq. (2.82b) as a typical case. In our primed
coordinate system

Kl/]A/] = Bl/ = a,-kBk, (283)

using the vector transformation propertiesBf Since the equation holds in all rotated
Cartesian coordinate systems,

aik B = air (K Ap). (2.84)
Now, transformingA back into the primed coordinate syst€nfcompare Eq. (2.62)), we
have
Ki/jA/j = aikKklale/j. (2.85)
Rearranging, we obtain
(K}; —aixajiK)A'; = 0. (2.86)

11Note the order of the indices of the direction cosingin thisinversetransformation. We have

ox; ’
Ar=) 5 A =2 anA).
J J

J
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This must hold for each value of the inde&nd for every primed coordinate system. Since
the A/j is arbitrary2 we conclude
Ki/j =ajra;i Ky, (2.87)
which is our definition of second-rank tensor.
The other equations may be treated similarly, giving rise to other forms of the quotient
rule. One minor pitfall should be noted: The quotient rule does not necessarily agply if
is zero. The transformation properties of zero are indeterminate.

Example 2.8.1  EQUATIONS OF MOTION AND FIELD EQUATIONS

In classical mechanics, Newton’s equations of motioh= F tell us on the basis of the
quotient rule that, if the mass is a scalar and the force a vector, then the accelaeation
is a vector. In other words, the vector character of the force as the driving term imposes its
vector character on the acceleration, provided the scale faci®scalar.

The wave equation of electrodynamigésA* = J* involves the four-dimensional ver-
sion of the Laplaciad? = % — V2, aLorentz scalar, and the external four-vector current
J# as its driving term. From the quotient rule, we infer that the vector poteatiais a
four-vector as well. If the driving current is a four-vector, the vector potential must be of
rank 1 by the quotient rule. |

The quotient rule is a substitute for the illegal division of tensors.

Exercises

2.8.1  The double summatioR;; A; B; is invariant for any two vectord; andB;. Prove that
K;; is a second-rank tensor.
Note.In the formds? (invariant)= gij dx' dx/, this result shows that the matrg; is
atensor.

2.8.2 The equatiorK;; A jx = B;; holds for all orientations of the coordinate systerA land
B are arbitrary second-rank tensors, show #ad a second-rank tensor also.

2.8.3 The exponential in a plane wave is ¢ - r — wt)]. We recognize” = (ct, x1, X2, x3)
as a prototype vector in Minkowski spacekr — wr is a scalar under Lorentz transfor-
mations (Section 4.5), show thit = (w/c, k1, k2, k3) is a vector in Minkowski space.
Note.Multiplication by 7 yields (E /¢, p) as a vector in Minkowski space.

2.9 PSEUDOTENSORS, DUAL TENSORS

So far our coordinate transformations have been restricted to pure passive rotations. We
now consider the effect of reflections or inversions.

12\ne might, for instance, takd} =1 andAj, =0 form # 1. Then the equatioi/; = a;ay Ky, follows immediately. The
rest of Eq. (2.87) comes from other special choices of the arbiztéjary
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)

FIGURE 2.9 Inversion of Cartesian coordinates — polar vector.

If we have transformation coefficients; = —§;;, then by Eqg. (2.60)
xl=—x'l, (2.88)

which is an inversion or parity transformation. Note that this transformation changes our
initial right-handed coordinate system into a left-handed coordinate systémr proto-
type vector with componentgx?, x2, x3) transforms to

= (x/1’x/2’x/3) — (_xl’ _x2’ _XS).

This new vector’ has negative components, relative to the new transformed set of axes.
As shown in Fig. 2.9, reversing the directions of the coordinate axes and changing the
signs of the components gives=r. The vector (an arrow in space) stays exactly as it
was before the transformation was carried out. The position veaad all other vectors
whose components behave this way (reversing sign with a reversal of the coordinate axes)
are calledpolar vectorsand have odd parity.

A fundamental difference appears when we encounter a vector defined as the cross prod-
uct of two polar vectors. Le€C = A x B, where bothA andB are polar vectors. From
Eq. (1.33), the components Gfare given by

Ccl=A’B%— A%B? (2.89)

and so on. Now, when the coordinate axes are invertédy —A’, B — —B;., but from

its definitionC¥ — +C’*; that is, our cross-product vector, vec@ydoesnot behave like

a polar vector under inversion. To distinguish, we label it a pseudovector or axial vector
(see Fig. 2.10) that has even parity. The tewxtal vector is frequently used because these
cross products often arise from a description of rotation.

13This is an inversion of the coordinate system or coordinate axes, objects in the physical world remaining fixed.
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y
C 77

C’ V'

FIGURE 2.10 Inversion of Cartesian coordinates — axial vector.

Examples are

angular velocity, V=w XTI,

orbital angular momentum, L=rxp,

torque, force=F, N=r x F,
0B

magnetic induction field, =-V x E.

ot
In v=w x r, the axial vector is the angular velocigy, andr andv = dr/dt are polar
vectors. Clearly, axial vectors occur frequently in physics, although this fact is usually
not pointed out. In a right-handed coordinate system an axial v&tbas a sense of
rotation associated with it given by a right-hand rule (compare Section 1.4). In the inverted
left-handed system the sense of rotation is a left-handed rotation. This is indicated by the
curved arrows in Fig. 2.10.

The distinction between polar and axial vectors may also be illustrated by a reflection.
A polar vector reflects in a mirror like a real physical arrow, Fig. 2.11a. In Figs. 2.9 and 2.10
the coordinates are inverted; the physical world remains fixed. Here the coordinate axes
remain fixed; the world is reflected —as in a mirror in theplane. Specifically, in this
representation we keep the axes fixed and associate a change of sign with the component
of the vector. For a mirror in thez-plane, P, — —P,. We have

P= (P, Pyvpz)
P'=(Py,—Py, P) polar vector.
An axial vector such as a magnetic fidildor a magnetic moment (= currentx area
of current loop) behaves quite differently under reflection. Consider the magnetic field

H and magnetic moment to be produced by an electric charge moving in a circular path
(Exercise 5.8.4 and Example 12.5.3). Reflection reverses the sense of rotation of the charge.
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b

FIGURE 2.11  (a) Mirror in xz-plane; (b) mirror
in xz-plane.

The two current loops and the resulting magnetic moments are shown in Fig. 2.11b. We
have

IL = (/Lx’ I’Lyv /“LZ)

' = (—py, uy, —pz)  reflected axial vector.
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If we agree that the universe does not care whether we use a right- or left-handed coor-
dinate system, then it does not make sense to add an axial vector to a polar vector. In the
vector equatiorA = B, both A andB are either polar vectors or axial vectdfsSimilar
restrictions apply to scalars and pseudoscalars and, in general, to the tensors and pseudoten-
sors considered subsequently.

Usually, pseudoscalars, pseudovectors, and pseudotensors will transform as

§'=1Js, C;=Ja;;Cj, A} = Jaikaji A, (2.90)

where J is the determinad® of the array of coefficients,,,, the Jacobian of the parity
transformation. In our inversion the Jacobian is

-1 0 0
J=/0 -1 0|=-1 (2.92)
0 0o -1
For a reflection of one axis, theaxis,
-1 0 0
J=]0 1 0/ =-1, (2.92)
0O 0 1

and again the Jacobiah= —1. On the other hand, for all pure rotations, the Jacobias
always+1. Rotation matrices discussed further in Section 3.3.

In Chapter 1 the triple scalar produ§t= A x B - C was shown to be a scalar (un-
der rotations). Now by considering the parity transformation given by Eq. (2.88), we see
that S — —S, proving that the triple scalar product is actually a pseudoscalar: This be-
havior was foreshadowed by the geometrical analogy of a volume. If all three parameters
of the volume —length, depth, and height— change from positive distances to negative
distances, the product of the three will be negative.

Levi-Civita Symbol

For future use it is convenient to introduce the three-dimensional Levi-Civita sysmol
defined by

£123=¢€231=¢€312=1,
£132=¢€213=¢€321= —1, (2.93)
all othere;;x = 0.

Note thate;;; is antisymmetric with respect to all pairs of indices. Suppose now that we
have a third-rank pseudotens®y;, which in one particular coordinate system is equal to
Eijk- Then

/
8ijk = |alaipajqair€pgr (2.94)

14The big exception to this is in beta decay, weak interactions. Here the universe distinguishes between right- and left-handed
systems, and we add polar and axial vector interactions.
15peterminants are described in Section 3.1.
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by definition of pseudotensor. Now,
a1pa2403-€pgr = la| (2.95)

by direct expansion of the determinant, showing #igt = la|? = 1 = e123. Considering
the other possibilities one by one, we find

for rotations and reflections. Heneg; is a pseudotensdf. 1’ Furthermore, it is seen to
be an isotropic pseudotensor with the same components in all rotated Cartesian coordinate
systems.

Dual Tensors

With anyantisymmetric second-rank tens@ (in three-dimensional space) we may asso-
ciate a dual pseudovect6y defined by

1 )
Ci = Esijkak. (2.97)

Here the antisymmetri€ may be written

0 C12 _C31
c=|-c2 o c® . (2.98)
C3l _C23 0

We know thatC; must transform as a vector under rotations from the double contraction of
the fifth-rank (pseudo) tensey;C,,, but that it is really a pseudovector from the pseudo
nature ofe; ;. Specifically, the components Gfare given by

(C1,Ca, C3) = (€, 3L, ¢1?). (2.99)

Notice the cyclic order of the indices that comes from the cyclic order of the components
of &;jx. EQ. (2.99) means that our three-dimensional vector product may literally be taken
to be either a pseudovector or an antisymmetric second-rank tensor, depending on how we
choose to write it out.

If we take three (polar) vectois, B, andC, we may define the direct product

viik = Al B Ck, (2.100)
By an extension of the analysis of Section 218/* is a tensor of third rank. The dual
quantity
1 iy
V= Stk yiik (2.101)

16The usefulness of 4 extends far beyond this section. For instance, the matfifiesf Exercise 3.2.16 are derived from
(My) pqg = —iepqr. Much of elementary vector analysis can be written in a very compact form by &igjngnd the identity of
Exercise 2.9.4 See A. A. Evett, Permutation symbol approach to elementary vector adatysisPhys34: 503 (1966).

17The numerical value of pgr is given by the triple scalar product of coordinate unit vectors:

Kp - Rg X Rr.

From this point of view each element 8§, is a pseudoscalar, but thg,, collectively form a third-rank pseudotensor.
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is clearly a pseudoscalar. By expansion it is seen that
Al Bl !
V =|A% B? (? (2.102)
A3 B3 C3

is our familiar triple scalar product.

For use in writing Maxwell's equations in covariant form, Section 4.6, we want to extend
this dual vector analysis to four-dimensional space and, in particular, to indicate that the
four-dimensional volume elemed®dx! dx?dx3 is a pseudoscalar.

We introduce the Levi-Civita symbal;;;, the four-dimensional analog @f;;. This
quantity ¢;; is defined as totally antisymmetric in all four indices.(dfkl) is an even
permutatiod® of (0, 1, 2, 3), thene;;; is defined ast-1; if it is an odd permutation,
theneg;;i; is —1, and O if any two indices are equal. The Levi-Civifa; may be proved a
pseudotensor of rank 4 by analysis similar to that used for establishing the tensor nature of
&ijk- Introducing the direct product of four vectors as fourth-rank tensor with components

HUK = AlBickp!, (2.103)
built from the polar vectorg, B, C, andD, we may define the dual quantity

1 ..
H= Egijk,H’-/k’ , (2.104)

a pseudoscalar due to the quadruple contraction with the pseudotgnsoNow we let
A, B, C, andD be infinitesimal displacements along the four coordinate axes (Minkowski

space),
A = (dx°,0,0,0)
(2.105)
B=(0,dx1,0,0), andsoon,
and
H=dx"dxtdx?dx>. (2.106)

The four-dimensional volume element is now identified as a pseudoscalar. We use this
result in Section 4.6. This result could have been expected from the results of the special
theory of relativity. The Lorentz—Fitzgerald contractiondf! dx2dx? just balances the

time dilation ofdx°.

We slipped into this four-dimensional space as a simple mathematical extension of the
three-dimensional space and, indeed, we could just as easily have discussed 5N-6-, or
dimensional space. This is typical of the power of the component analysis. Physically, this
four-dimensional space may be taken as Minkowski space,

(xo, x1 X2, x3) =(ct,x,y,2), (2.107)

wherer is time. This is the merger of space and time achieved in special relativity. The
transformations that describe the rotations in four-dimensional space are the Lorentz trans-
formations of special relativity. We encounter these Lorentz transformations in Section 4.6.

18p permutation is odd if it involves an odd number of interchanges of adjacent indices, s(@i &3 — (02 1 3. Even

permutations arise from an even number of transpositions of adjacent indices. (Actually thadjawentis unnecessary.)
€0123=+1.
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Irreducible Tensors

For some applications, particularly in the quantum theory of angular momentum, our Carte-
sian tensors are not particularly convenient. In mathematical language our general second-
rank tensorA;; is reducible, which means that it can be decomposed into parts of lower
tensor rank. In fact, we have already done this. From Eq. (2.78),

A=Al (2.108)

is a scalar quantity, the trace af; 19
The antisymmetric portion,

Bij = 5(Aij — Aj), (2.109)
has just been shown to be equivalent to a (pseudo) vector, or
Bij = Cy cyclic permutation of, j, k. (2.110)

By subtracting the scalat and the vectoC; from our original tensor, we have an irre-
ducible, symmetric, zero-trace second-rank ten§gy,in which

with five independent components. Then, finally, our original Cartesian tensor may be writ-
ten
Ajj =%A5,-j+Ck—|—S,-j. (2.112)

The three quantitied, Cx, andsS;; form spherical tensors of rank 0, 1, and 2, respec-
tively, transforming like the spherical harmonifﬁ” (Chapter 12) forL. =0, 1, and 2.
Further details of such spherical tensors and their uses will be found in Chapter 4 and the
books by Rose and Edmonds cited there.

A specific example of the preceding reduction is furnished by the symmetric electric
quadrupole tensor

Qi = /(3x,~xj —r28i) p(x1. x2. x3)d°x.

The —r25; ; term represents a subtraction of the scalar trace (the threg terms). The
resultingQ;; has zero trace.

Exercises

29.1 An antisymmetric square array is given by

0 C3 —-C 0 ctz2 B
-C3 O 1 |=|-c2 o 28],
c, -C; O -cB ¢ ¢

19An alternate approach, using matrices, is given in Section 3.3 (see Exercise 3.3.9).
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where(C1, C», C3) form a pseudovector. Assuming that the relation
1 .
Cl' = EgijkCJk
holds in all coordinate systems, prove tiddf is a tensor. (This is another form of the
quotient theorem.)

29.2 Show that the vector product is unique to three-dimensional space; that is, only in three
dimensions can we establish a one-to-one correspondence between the components of
an antisymmetric tensor (second-rank) and the components of a vector.

2.9.3 Show that inR3

(@ 8;=3,
(b) bijeijxr =0,
() €ipg€jpg = 26ij,
(d) &ijkeijx =6.
2.9.4  Show thatinR3
€ijk€pgk = Sipbjq — Bigdp.

295 (a) Express the components of a cross-product ve&i@ = A x B, in terms ofe; jx
and the components éf andB.
(b) Use the antisymmetry af; to show thatA - A x B=0.

ANS. (@) C; =¢;jiA;By.

2.9.6 (a) Show that the inertia tensor (matrix) may be written
Lij =m(x;ixjd;ij — xixj)
for a particle of mass: at (x1, x2, x3).
(b) Show that
Iij = —M; Mj; = —méeiixXrrjmXm,

whereM;; = mY/2¢;;.x;. This is the contraction of two second-rank tensors and is
identical with the matrix product of Section 3.2.

2.9.7 Write V-V x A andV x Vg in tensor (index) notation i3 so that it becomes obvious
that each expression vanishes.

a 9
ANS.V -V x A = g;j — — A,
dxt dx/

a 9
(VxVg); = gijkWW(p'
2.9.8 Expressing cross products in terms of Levi-Civita symlgels,), derive theBAC-CAB
rule, Eq. (1.55).
Hint. The relation of Exercise 2.9.4 is helpful.
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2.9.10
29.11

2.9.12

2.9.13

29.14

2.10
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Verify that each of the following fourth-rank tensors is isotropic, that is, that it has the
same form independent of any rotation of the coordinate systems.

(@ Ajju=28ij0u,
(b)  Bjjx =8ikdji + 88k,
(©) Cijki =8ix8j1 — 8ud jk-

Show that the two-index Levi-Civita symbesj; is a second-rank pseudotensor (in two-
dimensional space). Does this contradict the uniqueness (Exercise 2.6.4)?

Represent;; by a 2x 2 matrix, and using the 2 2 rotation matrix of Section 3.3 show
thate;; is invariant under orthogonal similarity transformations.

Given Ay = %EijkBij with Bi/ = — B/ antisymmetric, show that
B — SmnkAk.
Show that the vector identity
(AxB)-(CxD)=(A-C)(B-D)—(A-D)(B-C)

(Exercise 1.5.12) follows directly from the description of a cross product ayjthand
the identity of Exercise 2.9.4.

Generalize the cross product of two vectors:tdimensional space for =4,5,....
Check the consistency of your construction and discuss concrete examples. See Exer-
cise 1.4.17 for the case= 2.

GENERAL TENSORS

The distinction between contravariant and covariant transformations was established in
Section 2.6. Then, for convenience, we restricted our attention to Cartesian coordinates
(in which the distinction disappears). Now in these two concluding sections we return to
non-Cartesian coordinates and resurrect the contravariant and covariant dependence. As in
Section 2.6, a superscript will be used for an index denoting contravariant and a subscript
for an index denoting covariant dependence. The metric tensor of Section 2.1 will be used
to relate contravariant and covariant indices.

The emphasis in this section is on differentiation, culminating in the construction of
the covariant derivative. We saw in Section 2.7 that the derivative of a vector yields a
second-rank tensor—in Cartesian coordinates. In non-Cartesian coordinate systems, it is
the covariant derivative of a vector rather than the ordinary derivative that yields a second-
rank tensor by differentiation of a vector.

Metric Tensor

Let us start with the transformation of vectors from one set of coordinates;?, ¢4°)
to anotherr = (x1, x2, x3). The new coordinates are (in generainlinear) functions
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x' (gL, 42, ¢®) of the old, such as spherical polar coordinate®, ¢). But their differ-
entials obey theinear transformation law

Coaxt .
dx' = 25 g, (2.113a)
aq’
or
dr =e;dq’ (2.113b)

. . . . 1 9.1 9.1
in vector notation. For convenience we take the basis veetprs (g%, % g%), €2,

and ez to form a right-handed set. These vectors are not necessarily orthogonal. Also, a
limitation to three-dimensional space will be required only for the discussions of cross
products and curls. Otherwise thesemay be in N-dimensional space, including the
four-dimensional space—time of special and general relativity. The basis vegtoray

be expressed by

ar
ei=—,
aq'

asin Exercise 2.2.3. Note, however, thatéhbere dmnot necessarily have unit magnitude.
From Exercise 2.2.3, the unit vectors are

(2.114)

1 or .
g =—— (no summation)
hi 9g;
and therefore
e =hig (no summation) (2.115)

Thee; are related to the unit vectoesby the scale factors; of Section 2.2. The; have no
dimensions; the; have the dimensions @f;. In spherical polar coordinates, as a specific
example,

e, =e =T, g9 =rey =7, e, =rsinfde, =rsinfg. (2.116)

In Euclidean spaces, or in Minkowski space of special relativity, the partial derivatives in
Eq. (2.113) are constants that define the new coordinates in terms of the old ones. We used
them to define the transformation laws of vectors in Eq. (2.59) and (2.62) and tensors in
Eq. (2.66). Generalizing, we definecantravariant vector V! undergeneral coordinate
transformations if its components transform according to

Coaxt
vi=2yi (2.117a)
aq’
or
V' =Vie; (2.117b)
in vector notation. Forovariant vectors we inspect the transformation of the gradient
operator
3 g’ B
2% 2 (2.118)
ax!  dx! aq/
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using the chain rule. From
dx? aqj _
dgl axk
itis clear that Eq. (2.118) is related to tiiwersetransformation of Eq. (2.113),

8k (2.119)

o 9gd .
dg’ = aii dx' (2.120)
Hence we define aovariant vectorV; if
g/
V= %vj (2.121a)
holds or, in vector notation,
V' =Vel, (2.121b)

wheree/ are the contravariant vectogd'e; = &/.
Second-rank tensors are defined as in Eq. (2.66),

; .
. ox' ax) 4,

Al = a_qka_qlA , (2.122)

and tensors of higher rank similarly.
As in Section 2.1, we construct the square of a differential displacement

(ds)?=dr -dt = (e;dg')* =¢&; -&,;dq' dq’. (2.123)
Comparing this with(ds)? of Section 2.1, Eq. (2.5), we identif; - e as the covariant
metric tensor
€ -&j=gij. (2.124)

Clearly, g;; is symmetric. The tensor nature gf; follows from the quotient rule, Exer-
cise 2.8.1. We take the relation

gikgkj = 51’]_ (2.125)

to define the corresponding contravariant tengér Contravariantg’* enters as the in-
versé? of covariantg,;. We use this contravariat® to raise indices, converting a co-
variantindex into a contravariant index, as shown subsequently. Likewise the cogafiant
will be used to lower indices. The choicegf andg; for this raising—lowering operation
is arbitrary. Any second-rank tensor (and its inverse) would do. Specifically, we have

gie;=¢ relating covariant and
y i contravariant basis vectors, (2.126)
gYF;=F relating covariant and

contravariant vector components.

20if the tensorgy; is written as a matrix, the tensgfX is given by the inverse matrix.
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Then

g,;,ef =g as the corresponding index

gijF/ =F;  lowering relations. (2.127)

It should be emphasized again that theande/ do not have unit magnitude. This may
be seen in Egs. (2.116) and in the metric tengpffor spherical polar coordinates and its

inverseg'/:
1 0 0
10 0 - 1
(gij)=|(0 r? 0 (") = 0 0
0 0 r?sirfe 0 o 1
r2sirf 6
Christoffel Symbols
Let us form the differential of a scalar,
9 .
dyr = qul_ (2.128)
aq’

Since thedq’ are the components of a contravariant vector, the partial derivatives
dy/dq' must form a covariant vector — by the quotient rule. The gradient of a scalar be-

comes
LV
Vi = Ikel. (2.129)
aq’
Note thatdy /9’ are not the gradient components of Section 2.2 —becalsee; of
Section 2.2.

Moving on to the derivatives of a vector, we find that the situation is much more compli-
cated because the basis vectgrare in general not constant. Remember, we are no longer
restricting ourselves to Cartesian coordinates and the nice, convénigrit! Direct dif-
ferentiation of Eq. (2.117a) yields

vk axkavi 92k

= — e 2.130a
daq’ daqt dq’ + dq’aq’ ( )

or, in vector notation,
v/ avi ; 0€;
- = —&; \% .
aq’ aq’t aq’
The right side of Eq. (2.130a) differs from the transformation law for a second-rank mixed
tensor by the second term, which contains second derivatives of the coordifiafése
latter are nonzero for nonlinear coordinate transformations.
Now, de; /dg’ will be some linear combination of theg, with the coefficient depending
on the indices and j from the partial derivative and index from the base vector. We
write

(2.130b)

a .
% = e (2.131a)
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Multiplying by ™ and usinge™ - ¢, = 6] from Exercise 2.10.2, we have
m m

Be,-
Fij =€ - -,
aq’

(2.131b)

The Ffj is a Christoffel symbol of theecond kind It is also called aoefficient of con-

nection Thesel“f. are not third-rank tensors and th@V’/dqg’ of Eq. (2.130a) are not
second-rank tensors. Equations (2.131) should be compared with the results quoted in Ex-
ercise 2.2.3 (remembering that in genera¥ €;). In Cartesian coordinateEfj =0 for all
values of the indices, j, andk. These Christoffel three-index symbols may be computed
by the techniques of Section 2.2. This is the topic of Exercise 2.10.8. Equation (2.138)
offers an easier method. Using Eq. (2.114), we obtain

de; 3°r de

S T kg (2.132)

dq/  03qJ/9q' g ]

Hence these Christoffel symbols are symmetric in the two lower indices:

rk=rk. (2.133)

Christoffel Symbols as Derivatives of the Metric Tensor

Itis often convenient to have an explicit expression for the Christoffel symbols in terms of
derivatives of the metric tensor. As an initial step, we define the Christoffel symbol of the
firstkind [ij, k] by

lij, k1= gmiT}}, (2.134)

from which the symmetryij, k] = [ji, k] follows. Again, this[ij, k] is not a third-rank
tensor. From Eq. (2.131b),

0€;
lij. k] = gmie™ - 5
a .
— e 5 (2.135)
aq/
Now we differentiateg;; = &; - €, Eq. (2.124):
dgij 0&; e
dgk ~ agt ST gk
= lik, jl1+ [jk,i] (2.136)
by Eq. (2.135). Then
1(og; 0gi 0gii
[ij k=) 8k | 28k B804 (2.137)
2| 9q/  9q'  dq*k
and
; ks .
F;j :g b[ljvk]
_ Lok |08 | 08k 0sij (2.138)
2 dg/  dqt  agk ]’ '
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These Christoffel symbols are applied in the next section.

Covariant Derivative

With the Christoffel symbols, Eq. (2.130b) may be rewritten

v’ Vi
= ——&; + V'T}jer. (2.139)
aq’t 8q/
Now, i andk in the last term are dummy indices. Interchangirandk (in this one term),
we have
v’ avt ‘

The quantity in parenthesis is labeledavariant derivative, V_ij. We have

vkri 2.141
=t 2.141)
The; j subscript indicates differentiation with respecyta The differentialdV’ becomes

oV’
dg/

dVv' =

dg’ = [V’ dq’le;. (2.142)

A comparison with Eq. (2.113) or (2.122) shows that the quantity in square brackets is
theith contravariant component of a vector. Siakze is the jth contravariant component
of a vector (again, Eq. (2. 113)\)” must be the jth component of a (mixed) second-rank
tensor (quotient rule). The covanant derivatives of the contravariant components of a vector
form a mixed second-rank tenséft’ ..

Since the Christoffel symbols vanish in Cartesian coordinates, the covariant derivative
and the ordinary partial derivative coincide:

Vi

307 = V’j (Cartesian coordinates). (2.143)
q ;

The covariant derivative of a covariant vectgris given by (Exercise 2.10.9)

— ViTf;. (2.144)

Like V’] ;.j Is a second-rank tensor.

The physical importance of the covariant derivative is that “A consistent replacement
of regular partial derivatives by covariant derivatives carries the laws of physics (in com-
ponent form) from flat space—time into the curved (Riemannian) space—time of general
relativity. Indeed, this substitution may be taken as a mathematical statement of Einstein’s
principle of equivalence?!

21c. w. Misner, K. S. Thorne, and J. A. Wheel€ravitation San Francisco: W. H. Freeman (1973), p. 387.
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Geodesics, Parallel Transport

The covariant derivative of vectors, tensors, and the Christoffel symbols may also be ap-
proached from geodesics. A geodesic in Euclidean space is a straight line. In general, it is
the curve of shortest length between two points and the curve along which a freely falling
particle moves. The ellipses of planets are geodesics around the sun, and the moon is in
free fall around the Earth on a geodesic. Since we can throw a particle in any direction, a
geodesic can have any direction through a given point. Hence the geodesic equation can
be obtained from Fermat's variational principle of optics (see Chapter 17 for Euler’'s equa-

tion),
des =0, (2.145)
whereds? is the metric, Eq. (2.123), of our space. Using the variatiodsdf
2ds8ds =dq'dq’ 8 gij + gijdq' $dq’ + gijdq’ 8dq’ (2.146)
in Eq. (2.145) yields
1 dq' dg’ dq' d dq’ d ;
= —38g — —3d&dq’ ———&8dq' |ds =0, 2.147
2/|:ds g 08 8o odda’ + gy bdg! | ds (2.147)

whereds measures the length on the geodesic. Expressing the variations

0gij

k _ - k
ngq = (drgij)ddq

8gij =
in terms of theindependent variations § dg*, shifting their derivatives in the other two
terms of Eq. (2.147) upon integrating by parts, and renaming dummy summation indices,
we obtain

dq' dg’ d dq’ dq’
2/[ ds kgij — ds <g1kd + 8kj—— s >]8dq ds =0. (2.148)

The integrand of Eq. (2.148), set equal to zero, is the geodesic equation. It is the Euler
equation of our variational problem. Upon expanding

dgik dq’ dgi; dq'
5; =(0 i8 lk) 1 dsj (0 k]) dq (2149)
along the geodesic we find
1dq' dg’ d?q’
Ed—ii(akgq 0;8ik — 0i8kj) — gikd—:z =0. (2.150)

Multiplying Eq. (2.150) withg"’ and using Eq. (2.125), we find tlgeodesiceequation
d%¢!  dq'dg’ 1
ds? ds ds 2

where the coefficient of the velocities is the Christoffel synibplof Eq. (2.138).
Geodesics are curves that are independent of the choice of coordinates. They can be
drawn through any point in space in various directions. Since the lelsgtieasured along

g (i grj + 3, gik — dgij) =0, (2.151)
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the geodesic is a scalar, the velocitigé /ds (of a freely falling particle along the geodesic,

for example) form a contravariant vector. Henéedq* /ds is a well-defined scalar on

any geodesic, which we can differentiate in order to define the covariant derivative of any
covariant vectoV,. Using Eqg. (2.151) we obtain from the scalar

d dq* dVy dg* d?q*
d(ydaty _dvdd’ |, &g
ds ds ds ds ds

Vi dq' dg* i dq' dg’

= — - — 2.152
dq' ds ds Kiitas Tds ( )
dq' dg* [ 3V,

=S8 (2% oy,
ds ds \ 9¢"

When the quotient theorem is applied to Eq. (2.152) it tells us that
Viei = a—qi - Vi (2.153)

is a covariant tensor that defines the covariant derivativg ponsistent with Eq. (2.144).
Similarly, higher-order tensors may be derived.
The second term in Eq. (2.153) defines glagallel transport or displacement,

8V =T Vidq', (2.154)

of the covariant vecto¥; from the point with coordinateg’ to ¢’ + 8¢4'. The parallel
transportsU*, of a contravariant vectdy* may be found from the invariance of the scalar
productU* v, under parallel transport,

s(U V) =sU*v, + U*sv, =0, (2.155)

in conjunction with the quotient theorem.

In summary, when we shift a vector to a neighboring point, parallel transport prevents it
from sticking out of our space. This can be clearly seen on the surface of a sphere in spher-
ical geometry, where a tangent vector is supposed to remain a tangent upon translating it
along some path on the sphere. This explains why the covariant derivative of a vector or
tensor is naturally defined by translating it along a geodesic in the desired direction.

Exercises

2.10.1 Equations (2.115) and (2.116) use the scale fagtoriting Exercise 2.2.3. In Sec-
tion 2.2 we had restricted ourselves to orthogonal coordinate systems, yet Eq. (2.115)
holds for nonorthogonal systems. Justify the use of Eq. (2.115) for nonorthogonal sys-
tems.

2102 (a) Showthat'-e;=3".
(b) From the result of part (a) show that

Fi=F.¢& and F,=F-¢;.
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CHAPTER 4

GROUP THEORY

Disciplined judgment, about what is neat
and symmetrical and elegant has time and
time again proved an excellent guide to
how nature works

MURRAY GELL-MANN

4.1 INTRODUCTION TO GROUP THEORY

In classical mechanics theymmetry of a physical system leads tmnservation laws
Conservation of angular momentum is a direct consequence of rotational symmetry, which
meansnvariance under spatial rotations. In the first third of the 20th century, Wigner and
others realized that invariance was a key concept in understanding the new quantum phe-
nomena and in developing appropriate theories. Thus, in quantum mechanics the concept
of angular momentum and spin has become even more central. Its generalizatispis,

in nuclear physics and thigavor symmetry in particle physics, are indispensable tools

in building and solving theories. Generalizations of the concefaoige invarianceof
classical electrodynamics to the isospin symmetry lead to the electroweak gauge theory.

In each case the set of these symmetry operations forms a group. Group theory is the
mathematical tool to treat invariants and symmetries. It brings unification and formalization
of principles, such as spatial reflections, or parity, angular momentum, and geometry, that
are widely used by physicists.

In geometry the fundamental role of group theory was recognized more than a cen-
tury ago by mathematicians (e.g., Felix Klein's Erlanger Program). In Euclidean geometry
the distance between two points, the scalar product of two vectors or metric, does not
change under rotations or translations. These symmetries are characteristic of this geom-
etry. In special relativity the metric, or scalar product of four-vectors, differs from that of

241
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242 Chapter 4 Group Theory

Euclidean geometry in that it is no longer positive definite and is invariant under Lorentz
transformations.

For a crystal the symmetry group contains only a finite number of rotations at discrete
values of angles or reflections. The theory of sdittrete or finite groups, developed
originally as a branch of pure mathematics, now is a useful tool for the development of
crystallography and condensed matter physics. A brief introduction to this area appears in
Section 4.7. When the rotations depend on continuously varying angles (the Euler angles
of Section 3.3) the rotation groups have an infinite number of elements. Such continuous
(or Liel) groups are the topic of Sections 4.2—4.6. In Section 4.8 we give an introduction
to differential forms, with applications to Maxwell's equations and topics of Chapters 1
and 2, which allows seeing these topics from a different perspective.

Definition of a Group

A group G may be defined as a set of objects or operations, rotations, transformations,
called the elements af, that may be combined, or “multiplied,” to form a well-defined
product inG, denoted by a *, that satisfies the following four conditions.

1. If a andb are any two elements @, then the product * b is also an element af,
whereb acts befores; or (a, b) — a * b associates (or maps) an elementb of G
with the pair(a, b) of elements ofG. This property is known asG is closed under
multiplication of its own elements.”

2. This multiplication is associativéu * b) x ¢ = a * (b * ¢).

3. Thereis a unit elemeht in G such that  a = a x 1 = a for every element in G.
The unitis unique: E1'x1=1".

4. There is an inverse, or reciprocal, of each element G, labeleda—1, such that
axa l=a"lxa=1. Theinverse is unique: H~1 anda’~1 are both inverses af,

thena’ 1=da1x@xad H=wW1xa)xal=a"1

Since the * for multiplication is tedious to write, it is customary to drop it and simply let it
be understood. From now on, we writé instead ofz x b .

e If asubsetG’ of G is closed under multiplication, it is a group and calleslibgroup
of G; that is,G’ is closed under the multiplication @f. The unit ofG always forms a
subgroup ofG.

e If gg'g1is an element of5’ for any g of G andg’ of G’, thenG’ is called anin-
variant subgroup of G. The subgroup consisting of the unit is invariant. If the group
elements are square matrices, thefiy ! corresponds to a similarity transformation
(see Eq. (3.100)).

e If ab=ba for all a, b of G, the group is calledbelian, that is, the order in products
does not matter; commutative multiplication is often denotedbys&gn. Examples are
vector spaces whose unit is the zero vector aads the inverse of: for all elements
ainG.

LAfter the Norwegian mathematician Sophus Lie.
2FoIIowing E. Wigner, the unit element of a group is often labetedrom the Germarkinheit, that is, unit, or just 1, of for
identity.
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4.1 Introduction to Group Theory 243
Example 4.1.1  ORTHOGONAL AND UNITARY GROUPS

Orthogonal x n matrices fprm the grouP(n), andSO(n) if their determinants are-1
(S stands for “special”). IfO; = Olfl for i =1 and 2 (see Section 3.3 for orthogonal
matrices) are elements 6f(n), then the product

0102 =0,0; = 0510;1 = (0,071
is also an orthogonal matrix i®(n), thus proving closure under (matrix) multiplication.
The inverse is the transpose (orthogonal) matrix. The unit of the grouprisdireensional
unit matrix 1,. A real orthogonah x n matrix hasn(n — 1)/2 independent parameters.
Forn = 2, there is only one parameter: one angle. f-er 3, there are three independent
parameters: the three Euler angles of Section 3.3.

If O; = Ol.‘1 (fori =1 and 2) are elements &0(n), then closure requires proving in
addition that their product has determina#it, which follows from the product theorem in
Chapter 3.

Likewise, unitaryn x n matrices form the groupl(n), andSU(n) if their determinants
are+1. If U;r = Ui_l (see Section 3.4 for unitary matrices) are elementd(af, then

(U1Up)T = Ujul = usturt = uup) 4,

so the product is unitary and an elementgh), thus proving closure under multiplication.
Each unitary matrix has an inverse (its Hermitian adjoint), which again is unitary.

If UlT = Ul.‘1 are elements ddU(n), then closure requires us to prove that their product
also has determinantl, which follows from the product theorem in Chapter3. R

e Orthogonal groups are calléde groups; that is, they depend on continuously varying
parameters (the Euler angles and their generalization for higher dimensions); they are
compactbecause the angles vary over closed, finite intervals (containing the limit of
any converging sequence of angles). Unitary groups are also compact. Translations
form a noncompact group because the limit of translations with distdreexc is not
part of the group. The Lorentz group is not compact either.

Homomorphism, Isomorphism

There may be a correspondence between the elements of two groups: one-to-one, two-to-
one, or many-to-one. If this correspondence preserves the group multiplication, we say
that the two groups areomomorphic. A most important homomorphic correspondence
between the rotation grolpO(3) and the unitary grougU(2) is developed in Section 4.2.

If the correspondence is one-to-one, still preserving the group multiplicitiben the
groups aresomorphic.

e IfagroupG is homomorphic to a group of matric€g, thenG’ is called arepresen-
tation of G. If G andG’ are isomorphic, the representation is calfaithful . There
are many representations of groups; they are not unique.

3Suppose the elements of one group are labglethe elements of a second grolup Theng; <> h; is a one-to-one correspon-
dence for all values of. If g;g; = gx andh; 1 j = hy, theng; andi; must be the corresponding group elements.
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Example 4.1.2  ROTATIONS

Another instructive example for a group is the set of counterclockwise coordinate rotations
of three-dimensional Euclidean space aboui-igis. From Chapter 3 we know that such a
rotation is described by a linear transformation of the coordinates involving 8 Batrix

made up of three rotations depending on the Euler angles. H-thés is fixed, the linear
transformation is through an angfeof the xy-coordinate system to a new orientation in
Eq. (1.8), Fig. 1.6, and Section 3.3:

x x cosp sing O x
Y |=Ri@)|y]|]=]|—-sing cosp O y (4.2)
7 z 0 0o 1 z

involves only one angle of the rotation about thaxis. As shown in Chapter 3, the linear
transformation of two successive rotations involves the product of the matrices correspond-
ing to the sum of the angles. The product corresponds to two rotalRo0s; )R (¢2), and

is defined by rotating first by the ang{® and then byp;. According to Eg. (3.29), this
corresponds to the product of the orthogonal 2 submatrices,

cospy  Sing COSy2  Singo
—sing; CoSp1 —singy COoSp2
B ( coSp1+¢2)  Sin(p1+ ¢2) )

~ \ —sin(p1 4+ ¢2) coger + ¢2)

using the addition formulas for the trigopnometric functions. The unity in the lower right-
hand corner of the matrix in Eq. (4.1) is also reproduced upon multiplication. The productis
clearly a rotation, represented by the orthogonal matrix with apgley,. The associative
group multiplication corresponds to the associative matrix multiplication.dbimmuta-

tive, orabelian, because the order in which these rotations are performed does not matter.
The inverse of the rotation with anggeis that with angle—¢. The unit corresponds to the
anglegp = 0. Striking off the coordinate vectors in Eq. (4.1), we can associate the matrix
of the linear transformation with each rotation, which is a group multiplication preserving
one-to-one mapping, an isomorphism: The matrices form a faithful representation of the
rotation group. The unity in the right-hand corner is superfluous as well, like the coordinate
vectors, and may be deleted. This defines another isomorphism and representation by the
2 x 2 submatrices:

(4.2)

cosp sing O

R:(¢)=| —sing cosp O —>R(¢)=<
0 0 1

COSy Singo) | 4.3)

—sing cosp

The group’s name iSO(2), if the angleyp varies continuously from 0 to/2 SO(2) has
infinitely many elements and is compact.

The group of rotation®; is obviously isomorphic to the group of rotations in Eq. (4.3).
The unity with anglep = 0 and the rotation witlp = 7 form a finite subgroup. The finite
subgroups with angles@n/n, n an integer aneh =0, 1, ..., n — 1 arecyclic; that is, the
rotationsR(2rm/n) = R(2w /n)™. |
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4.1 Introduction to Group Theory 245

In the following we shall discuss only the rotation grop®(n) and unitary groups
SU(n) among the classical Lie groups. (More examples of finite groups will be given in
Section 4.7.)

Representations — Reducible and Irreducible

The representation of group elements by matrices is a very powerful technique and has
been almost universally adopted by physicists. The use of matrices imposes no significant
restriction. It can be shown that the elements of any finite group and of the continuous
groups of Sections 4.2—4.4 may be represented by matrices. Examples are the rotations
described in Eq. (4.3).

To illustrate how matrix representations arise from a symmetry, consider the station-
ary Schrodinger equation (or some other eigenvalue equation, such=ad;v; for the
principal moments of inertia of a rigid body in classical mechanics, say),

Hy = Ev. (4.4)
Let us assume that the Hamiltoni&hstays invariant under a group of transformations
R in G (coordinate rotations, for example, for a central poteritial) in the Hamiltonian
H); that is,
Hr =RHR'=H, RH = HR. (4.5)
Now take a solution/ of Eqg. (4.4) and “rotate” ity — Ry. ThenRy has thesame
energy Ebecause multiplying Eq. (4.4) By and using Eg. (4.5) yields

RHY = E(Ry) = (RHR )Ry = H(RY). (4.6)

In other words, all rotated solutioi&y)r aredegeneratein energy or form what physicists

call amultiplet. For example, the spin-up and -down states of a bound electron in the
ground state of hydrogen form a doublet, and the states with projection quantum numbers
m=—1l,—1+1,...,1 of orbital angular momenturhform a multiplet with 2 + 1 basis

states.
Let us assume that this vector spdég of transformed solutions has a finite dimen-
sionn. Let yr1, Y2, ..., ¥, be a basis. SincRy; is a member of the multiplet, we can

expand it in terms of its basis,

Ry, =) rjcin. (4.7)
k

Thus, with eactR in G we can associate a matrix;;). Just as in Example 4.1.2, two
successive rotations correspond to the product of their matrices, so thR mag- ;) is a
representation of;. It is necessary for a representation toifseducible that we can take
any element ofV,, and, by rotating withall elementsR of G, transform it intoall other
elements ofVy,. If not all elements oV, are reached, theW, splits into a direct sum of
two or more vector subspacelg, = V1 @ V> @ ---, which are mapped into themselves
by rotating their elements. For example, thes?ate and 2 states of principal quantum
numbem = 2 of the hydrogen atom have the same energy (that is, are degenerate) and form
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a reducible representation, because thetate cannot be rotated into the 8tates, and

vice versa (angular momentum is conserved under rotations). In this case the representation
is calledreducible. Then we can find a basis iy, (that is, there is a unitary matrid) so

that

ri O
Urpuf=]0 12 -~ (4.8)

for all R of G, andall matrices(r;;) havesimilar block-diagonal shape. Herg, ro, ...
are matrices of lower dimension thary, ) that are lined up along the diagonal and e
are matrices made up of zeros. We may say that the representation has been decomposed
intory+ro+--- alongwithVy, =vVi@ Vo @ ---.

The irreducible representations play a role in group theory that is roughly analogous to
the unit vectors of vector analysis. They are the simplest representations; all others can be
built from them. (See Section 4.4 on Clebsch—Gordan coefficients and Young tableaux.)

Exercises

41.1

41.2

4.1.3

4.1.4

4.1.5

Show that am x n orthogonal matrix has(n — 1)/2 independent parameters.
Hint. The orthogonality condition, Eq. (3.71), provides constraints.

Show that am x n unitary matrix has:® — 1 independent parameters.
Hint. Each element may be complex, doubling the number of possible parameters. Some
of the constraint equations are likewise complex and count as two constraints.

The special linear groufL(2) consists of all 2 2 matrices (with complex elements)
having a determinant 6f1. Show that such matrices form a group.

Note TheSL(2) group can be related to the full Lorentz group in Section 4.4, much as
theSU(2) group is related t&O(3).

Show that the rotations about theaxis form a subgroup o8O(3). Is it an invariant
subgroup?

Show that ifR, S, T are elements of a grou@ so thatRS =T andR — (ri), S —
(six) is a representation according to Eq. (4.7), then

(rin) (sik) = <tik = Zrmsnk>,

n

that is, group multiplication translates into matrix multiplication for any group repre-
sentation.

4.2 GENERATORS OF CONTINUOUS GROUPS

A characteristic property of continuous groups known as Lie groups is that the parameters
of a product element are analytic functifrf the parameters of the factors. The analytic

4Analytic here means having derivatives of all orders.
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4.2 Generators of Continuous Groups 247

nature of the functions (differentiability) allows us to develop the concept of generator and
to reduce the study of the whole group to a study of the group elements in the neighborhood
of the identity element.

Lie's essential idea was to study elemeRtén a groupG that are infinitesimally close
to the unity of G. Let us consider th&0(2) group as a simple example. Thex2 ro-
tation matrices in Eg. (4.2) can be written in exponential form using the Euler identity,
Eq. (3.170a), as

cosp  sing i

R(p) = _ =1,c0sp + io2Sing = exp(io2y). (4.9)
—sing cosp

From the exponential form it is obvious that multiplication of these matrices is equivalent

to addition of the arguments

R(¢2)R(¢1) = explioagz) expliozg1) = explioa(¢1 + ¢2)) = R(p1 + ¢2).

Rotations close to 1 have small angle: 0.
This suggests that we look for an exponential representation

R=expieS) =1+ieS+0(s?), -0, (4.10)

for group element® in G close to the unity 1. The infinitesimal transformations &®e
and theS are called generators @. They form a linear space because multiplication
of the group elementR translates into addition of generatafs The dimension of this
vector space (over the complex humbers) isdtaer of G, that is, the number of linearly
independent generators of the group.

If R is a rotation, it does not change the volume element of the coordinate space that it
rotates, that is, déR) = 1, and we may use Eq. (3.171) to see that

det(R) = exp(traceInR)) = exp(i¢ traceS)) = 1

impliese tracgS) = 0 and, upon dividing by the small but nonzero parametéhatgen-
erators are traceless

traceS) = 0. (4.11)

This is the case not only for the rotation gro®(n) but also for unitary groupSU(n).
If R of G in Eq. (4.10) is unitary, thes™ = § is Hermitian, which is also the case for
SO(n) andSU(n). This explains why the extrahas been inserted in Eq. (4.10).
Next we go around the unity in four steps, similar to parallel transport in differential
geometry. We expand the group elements
R; =exp(ie;S;) =1+i¢S; — %Sizsiz +---,
Ri_l =exp(—ig;S;))=1—igS; — %81-28? +---,
to second order in the small group parametebecause the linear terms and several
guadratic terms all cancel in the product (Fig. 4.1)

R;leflRiR,- =1+¢¢j[S;,Sil+-,

(4.12)

=1+8i8j2c]]‘»i5k+"~, (4.13)
k

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

248 Chapter 4 Group Theory

FIGURE 4.1 lllustration of Eq. (4.13).

when Eg. (4.12) is substituted into Eq. (4.13). The last line holds because the product in
Eq. (4.13) is again a group elemeR;;, close to the unity in the groug. Hence its
exponent must be a linear combination of the genereédgrsand its infinitesimal group
parameter has to be proportional to the prodiiej. Comparing both lines in Eq. (4.13)

we find theclosurerelation of the generators of the Lie groGh

[Si.Sj1=) ciSk. (4.14)
k

The coefficients:l’?. are the structure constants of the grasipSince the commutator in
Eq. (4.14) is antisymmetric inand j, so are the structure constants in the lower indices,
chy=—ch;. (4.15)

If the commutator in Eq. (4.14) is taken as a multiplication law of generators, we see
that the vector space of generators becomes an algebidethyebra G of the groupG.
An algebrahas two group structures, a commutative product denotecibgyambol (this
is the addition of infinitesimal generators of a Lie group) and a multiplication (the commu-
tator of generators). Often an algebra is a vector space with a multiplication, such as a ring
of square matrices. F@U(/ + 1) the Lie algebra is calledl;, for SO(2/ +1) itis 5;, and
for SO(2]) itis Dy, wherel =1, 2, ... is a positive integer, later called th@nk of the Lie
groupG or of its algebraj.

Finally, theJacobi identity holds for all double commutators

[Si, ;1. S¢] + [1S;, Skl Si] + [(Sk. Si1, S;] =0, (4.16)

which is easily verified using the definition of any commutdtor B]= AB — BA. When
Eq. (4.14) is substituted into Eqg. (4.16) we find another constraint on structure constants,

> Al 1Sm. Sl + 7 [Sm. Sil + ci[Sm. Sj1} =0. (4.17)

m

Upon inserting Eq. (4.14) again, Eq. (4.17) implies that

Z{cﬁc;’nksn + i ComiSn + i€y S }=0, (4.18)

ki“mj=n
mn
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where the common fact@,, (and the sum over) may be dropped because the generators
are linearly independent. Hence

Z{CZ!CZk'FCTkCZn +C1’3'C;’;zj} =0. (4.19)
m
The relations (4.14), (4.15), and (4.19) form the basis of Lie algebras from which finite
elements of the Lie group near its unity can be reconstructed.
Returning to Eq. (4.5), the inverse Bfis R~1 = exp(—ieS). We expand{ according
to the Baker—Hausdorff formula, Eq. (3.172),

H = Hg = expieS)H exp(—ieS) = H +ie[S, H] — 3¢[S[S, H]]+---  (4.20)

We drop H from Eq. (4.20), divide by the small (but nonzere),and lete — 0. Then
Eq. (4.20) implies that the commutator

[S, H]=0. (4.21)

If SandH are Hermitian matrices, Eq. (4.21) implies tlaand H can be simultaneously
diagonalized and have common eigenvectors (for matrices, see Section 3.5; for operators,
see Schur’s lemma in Section 4.3).3fand H are differential operators like the Hamil-
tonian and orbital angular momentum in quantum mechanics, then Eq. (4.21) implies that
S and H have common eigenfunctions and that the degenerate eigenvaliesaf be
distinguished by the eigenvalues of the genera®r¥hese eigenfunctions and eigenval-
ues,s, are solutions of separate differential equatiddg, = sy, SO group theory (that
is, symmetries) leads to a separation of variables for a partial differential equation that is
invariant under the transformations of the group.
For example, let us take the single-particle Hamiltonian
219 ,9 n?
“amiZar o stV
that is invariant undeBO(3) and, therefore, a function of the radial distancéhe radial
gradient, and the rotationally invariant operakdr of SO(3). Upon replacing the orbital
angular momentum operatbf by its eigenvalué(/ 4+ 1) we obtain the radial Schrédinger
equation (ODE),
2 1d ,d  RAI+D)
) = [‘%—zd—r’ art Tom
whereR,(r) is the radial wave function.
For cylindrical symmetry, the invariance &f under rotations about theaxis would
requireH to be independent of the rotation angleleading to the ODE

HR;(z, p) = EnRiu(z, p),

with m the eigenvalue of. , = —id/d¢, thez-component of the orbital angular momentum
operator. For more examples, see the separation of variables method for partial differen-
tial equations in Section 9.3 and special functions in Chapter 12. This is by far the most
important application of group theory in quantum mechanics.

In the next subsections we shall study orthogonal and unitary groups as examples to
understand better the general concepts of this section.

+ V(V)] Ri(r) = E1R;(r),
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Rotation Groups SO(2) and SO(3)

ForSO(2) as defined by Eq. (4.3) there is only one linearly independent generatand
the order ofSO(2) is 1. We geb from Eq. (4.9) by differentiation at the unity &0O(2),

thatis,p =0,
T (4.22)
= — = 02. .
oo \-1 0) 77

For the rotation®R, (¢) about thez-axis described by Eq. (4.1), the generator is given

] [ —sing  cosp
—idR(p)/dply=0= —i ( )

—CoSp —sSing

by
0 —i O
—idR;(¢)/dply=0=S;=|i 0 O, (4.23)
0 0 O

where the factor is inserted to mak8&, Hermitian. The rotatioiR, (§¢) through an infin-
itesimal angleSg may then be expanded to first order in the smalbs

R;(6¢) =13+ id¢S;. (4.24)
A finite rotationR(¢) may be compounded of successive infinitesimal rotations
R.(8¢1+ 8¢2) = (1+i8¢1S;)(1 4+ i8¢2S;). (4.25)
LetSp = ¢/N for N rotations, withN — co. Then

R.(¢) =Nli_r)noo[1+ (ip/N)S;]" = expigS,). (4.26)

This form identifiesS, as the generator of the grodp, an abelian subgroup &O(3),
the group of rotations in three dimensions with determinght Each 3x 3 matrix R, (¢)
is orthogonal, hence unitary, and tr&8e) = 0, in accord with Eq. (4.11).

By differentiation of the coordinate rotations

1 0 0 cosy 0 -—sind
Ry(y)=10 cosy siny |, R,(0) = 0 1 0 , (4.27)
0 —siny cosy sind 0 co¥

we get the generators

0 0 0 i
s;c=|0 0 -i|]. s,=[0 00 (4.28)
i 0 i 00

of R, (Ry), the subgroup of rotations about the(y-)axis.
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Rotation of Functions and Orbital Angular Momentum

In the foregoing discussion the group elements are matrices that rotate the coordinates.
Any physical system being described is held fixed. Now let us hold the coordinates fixed
and rotate a function (x, y, z) relative to our fixed coordinates. WitR to rotate the
coordinates,

X' =RX, (4.29)
we defineR on ¢ by
Ry (x,y,2) =¢'(x,y,2) =¥ (X). (4.30)

In words, R operates on the functiott, creating anew function v’ that is numerically
equal toy (x'), wherex’ are the coordinates rotated B If R rotates the coordinates
counterclockwise, the effect & is to rotate the pattern of the functignclockwise.

Returning to Egs. (4.30) and (4.1), consider an infinitesimal rotation agai,d¢p.
Then, usindR; Eq. (4.1), we obtain

R:Gp)¥(x,y,2) =¥ (x + ydp,y — x3¢, 2). (4.31)
The right side may be expanded to first order in the sialio give
R.(8@) ¥ (x, y,2) = ¥ (x, y,2) — 8{xdy/dy — ydyr/dx} + O (89)°
=A—-idpL)¥(x,y,2), (4.32)

the differential expression in curly brackets being the orbital angular mometurex-
ercise 1.8.7). Since a rotation of figgiand thenSg about thez-axis is given by

R:(¢ +80)¥ =R:(6p)R:(9) = (1 —idpL )R (9) ¥, (4.33)
we have (as an operator equation)
ARz _ jim Re@ 99 "R _ ) g 0. (4.34)
dp  8¢p—0 1Y%

In this form Eq. (4.34) integrates immediately to
R;(p) =exp(—ipL,). (4.35)

Note thatR, () rotates functions (clockwise) relative to fixed coordinates andihas
the z component of the orbital angular momentiumThe constant of integration is fixed
by the boundary conditioR,(0) = 1.

As suggested by Eqg. (4.32), is connected t&, by

a/0x ; 5
Ly=(x,y,2)S;| 9/dy | = —i<x3— - y—), (4.36)
y dax
0/0z

soL,, Ly, andL, satisfy the same commutation relations,

[Li,L;jl=isijxLg, (4.37)

asS;, S, andS; and yield the same structure constaiatg, of SO(3).
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SU(2) — SO(3) Homomorphism

Since unitary 2x 2 matrices transform complex two-dimensional vectors preserving their
norm, they represent the most general transformations of (a basis in the Hilbert space of)
spin% wave functions in nonrelativistic quantum mechanics. The basis states of this system
are conventionally chosen to be

m=(5) w=(3).

corresponding to spir% up and down states, respectively. We can show thaspleeial
unitary group SU(2) of unitary 2x 2 matrices with determinantl has all three Pauli
matriceso; as generators (while the rotations of Eq. (4.3) form a one-dimensional abelian
subgroup). S&U(2) is of order 3 and depends on three real continuous paranjetgrs,

which are often called th€ayley—Klein parameters. To construct its general element, we
start with the observation that orthogonak2 matrices are real unitary matrices, so they
form a subgroup o8U(2). We also see that

is unitary for real angle with determinang-1. So these simple and manifestly unitary ma-
trices form another subgroup 8U(2) from which we can obtain all elements 8U(2),

that is, the general 2 unitary matrix of determinant1. For a two-component spi%l
wave function of quantum mechanics this diagonal unitary matrix corresponds to multipli-
cation of the spin-up wave function with a phase faetérand the spin-down component
with the inverse phase factor. Using the real angiastead ofy for the rotation matrix

and then multiplying by the diagonal unitary matrices, we construck & 2initary matrix

that depends on three parameters and clearly is a more general eler8elnf

v 0 cosy sinp\ [P 0
0 e )\ —sinp cospy 0 ¢
e'* cosy e siny e'h 0

—e~i%siny e cosy 0 ¢

< e!@+P) cosy e @=P siny )

_e—i(a—ﬂ) Sinn e—i(ﬂl+ﬁ) cosn

Defininga + 8 =&, o — B = ¢, we have in fact constructed the general eleme&df2):

'€ cosy e siny a b
UE.n.0)= =\ e ) (4.38)

—e~ising e € cosy a

To see this, we write the gener8U(2) element adJ = (g Z) with complex numbers
a,b,c,d so that detU) = 1. Writing unitarity, UT = U~1, and using Eq. (3.50) for the
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a* c* d —b
b* da*] \—c a )’
implying ¢ = —b*, d = a*, as shown in Eq. (4.38). It is easy to check that the determinant

detU) =1 and thatU™U = 1 = UU" hold.
To get the generators, we differentiate (and drop irrelevant overall factors):

inverse we obtain

1 0

—10U/0&1g—0,n=0 = <0 _1> =03, (4.39a)
0 —i

—19U/0ny=0,;=0 = (i 0 ) = 09. (4.39b)

To avoid a factor 1sinn for n — 0 upon differentiating with respect to, we use in-
stead the right-hand side of Eq. (4.38) farfor pure imaginaryb = ig with 8 — 0, so
a=+/1— g2 from |a|? + |b|? = a® + B2 = 1. Differentiating such &, we get the third
generator,

o (VIR i ‘ (= ‘ 0 1
—]— = —1 = =01.
B\ ip V1-2) =0 —i %ﬂz po \L 0}

(4.39c)

The Pauli matrices are all traceless and Hermitian.
With the Pauli matrices as generators, the elementd),, Uz of SU(2) may be gener-
ated by
U1 =exp(iaio1/2), Uo = exp(iazoz/2), Uz = exp(iazos/2). (4.40)

The three parametets are real. The extra factor/2 is present in the exponents to make
S; = 0; /2 satisfy the same commutation relations,

[Si,Sj1=i¢ijrSk, (4.41)

as the angular momentum in Eq. (4.37).

To connect and compare our results, Eq. (4.3) gives a rotation operator for rotat-
ing the Cartesian coordinates in the three-sgaéeUsing the angular momentum ma-
trix Sz, we have as the corresponding rotation operator in two-dimensional (complex)
spaceR, (¢) = exp(ipos/2). For rotating the two-component vector wave function (spinor)
or a spin }2 particle relative to fixed coordinates, the corresponding rotation operator is
R, (p) = exp(—igo3/2) according to Eq. (4.35).

More generally, using in Eq. (4.40) the Euler identity, Eg. (3.170a), we obtain

a\ . fa;
U; = co{é) +io; sm(?’). (4.42)

Here the parameter; appears as an angle, the coefficient of an angular momentum matrix-
like ¢ in Eq. (4.26). The selection of Pauli matrices corresponds to the Euler angle rotations
described in Section 3.3.
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FIGURE 4.2 lllustration of
M = UMU" in Eq. (4.43).

As just seen, the elements 8fJ(2) describe rotations in a two-dimensional complex
space that leavig1 |2 + |z2|2 invariant. The determinant is1. There are three independent
real parameters. Our real orthogonal gr&@(3) clearly describes rotations in ordinary
three-dimensional space with the important characteristic of leaing y2 + z2 invari-
ant. Also, there are three independent real parameters. The rotation interpretations and the
equality of numbers of parameters suggest the existence of some correspondence between
the groupsSU(2) andSO(3). Here we develop this correspondence.

The operation 08U(2) on a matrix is given by a unitary transformation, Eq. (4.5), with
R =U and Fig. 4.2:

M =umu’. (4.43)

Taking M to be a 2x 2 matrix, we note that any 2 2 matrix may be written as a linear
combination of the unit matrix and the three Pauli matrices of Section 3.4VilLlet the
zero-trace matrix,

z X —1iy
M= xo1+ yoo2 + zo3 = ) , (4.44)

X +1iy —Z
the unit matrix not entering. Since the trace is invariant under a unitary similarity transfor-
mation (Exercise 3.3.9M’ must have the same form,

/ / L
Z X —1
M =x'01+y'op 4+ 7 03= ;o Y . (4.45)
x + ly/ _Z/

The determinant is also invariant under a unitary transformation (Exercise 3.3.10). There-
fore

_(x2+y2+22)=_(x/2+y/2+z/2)’ (446)

or x? + y? + z? is invariant under this operation 8U(2), just as withSO(3). Operations
of SU(2) on M must produce rotations of the coordinates, z appearing therein. This
suggests thaBU(2) andSO(3) may be isomorphic or at least homomaorphic.
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We approach the problem of what this operatioSbf(2) corresponds to by considering
special cases. Returning to Eq. (4.38) det ¢¢ andb =0, or

= (¢ ° (4.47)
3= 0 i) .

In anticipation of Eq. (4.51), thi§ is given a subscript 3.
Carrying out a unitary similarity transformation, Eq. (4.43), on each of the three Pauli
o’s of SU(2), we have

[ 0\ [0 1\ (e 0
Vao1ls = 0 e 1 0 0 ¢

0 o2t
(5 ) (4.48)

We reexpress this result in terms of the Paulias in Eq. (4.44), to obtain

Ugxo1UL = xo1c0s Z — xopsin 2. (4.49)
Similarly,

U3y02U§ = yo1SiNnZ% + yo,COS Z,

UszasUl = zo3. (4.50)

From these double angle expressions we see that we should start with a
halfangle: ¢ = «/2. Then, adding Egs. (4.49) and (4.50) and comparing with Eqgs. (4.44)
and (4.45), we obtain

x" = x cosa + y sina

y = —x sina + y cosu (4.51)

I =Z.

The 2x 2 unitary transformation usings(«) is equivalent to the rotation operatBy«)
of Eq. (4.3).
The correspondence of

(4.52)

cosB/2 sng/2
—sing/2 cosB/2

U2(B) = (
andR,(B) and of

o= )
andR1(p) follow similarly. Note thatU, (/) has the general form

Ur(¢) =12c08¢ /2 + iox Sinyr/ 2, (4.54)
wherek =1, 2, 3.
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The correspondence
)2 0 cosey sina O
e
U3((x)=( 0 ia/2><—> —sine cose O | =R;(a) (4.55)
e
0 0 1

is not a simple one-to-one correspondence. Specifically, iasR, ranges from 0 to 2,
the parameter itV3, «/2, goes from 0 tor. We find

R.(a +27) = R, (@)

_eia/2 0
Us(a + 27) = ) = —Us(@). (4.56)
0 _e—la/Z

Thereforeboth Us(«) andUs(a + 27) = —U3(a) correspond tdR, («). The correspon-
dence is 2 to 1, 08U(2) andSO(3) arehomomorphic. This establishment of the corre-
spondence between the representatior® f2) and those c80(3) means that the known
representations &U(2) automatically provide us with the representationSof3).
Combining the various rotations, we find that a unitary transformation using

U(e, B, y) = Us(y)U2(B8)Us() (4.57)
corresponds to the general Euler rotatiy(y)R, ()R, («). By direct multiplication,

U B ez 0 cosB/2 snB/2\ (% 0
@EV=\o i —sing/2 cosp/2)\ 0 e i@/2

vt/ 2cos8/2 & V=®/2sing/2
= . _ . . (4.58)
—e~ir=®/2ging/2 ¢~ r+®)/2cosp)2

This is our alternate general form, Eq. (4.38), with
E=(v+w/2.  n=p/2, =F-wa)/2 (4.59)
Thus, from Eqg. (4.58) we may identify the parameters of Eq. (4.38) as
a=eVt)/2¢c0s8/2

b= ""92ging/2. (4.60)

SU(2)-Isospin and SU(3)-Flavor Symmetry

The application of group theory to “elementary” particles has been labeled by Wigner
the third stage of group theory and physics. The first stage was the search for the 32
crystallographic point groups and the 230 space groups giving crystal symmetries —
Section 4.7. The second stage was a search for representations sucB@&3pfand
SU(2) — Section 4.2. Now in this stage, physicists are back to a search for groups.

In the 1930s to 1960s the study of strongly interacting particles of nuclear and high-
energy physics led to tH&U(2) isospin group and the8U(3) flavor symmetry. In the 1930s,
after the neutron was discovered, Heisenberg proposed that the nuclear forces were charge
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Table 4.1 Baryons with Spin% Even Parity

Mass (MeV) Y 1 I3
Ch 1321.32 -1
= 1 1
= 2
=0 1314.9 +3
- 1197.43 -1
by »0 1192.55 0 1 0
=+ 1189.37 +1
A A 1115.63 0 0 0
n 939.566 -1
N 1 3
p 938.272 +3

independent. The neutron mass differs from that of the proton by only 1.6%. If this tiny
mass difference is ignored, the neutron and proton may be considered as two charge (or
isospin) states of a doublet, called thecleon The isospinl hasz-projectioniz = 1/2

for the proton andiz = —1/2 for the neutron. Isospin has nothing to do with spin (the
particle’s intrinsic angular momentum), but the two-component isospin state obeys the
same mathematical relations as the spi@ 4tate. For the nucleoh= 7 /2 are the usual

Pauli matrices and th21/2 isospin states are eigenvectors of the Pauli magrix (é 72).

Similarly, the three charge states of the pian (2, 7 ~) form a triplet. The pion is the
lightest of all strongly interacting particles and is the carrier of the nuclear force at long
distances, much like the photon is that of the electromagnetic force. The strong interaction
treats alike members of these particle families, or multiplets, and conserves isospin. The
symmetry is theSU(2) isospin group.

By the 1960s particles produced as resonances by accelerators had proliferated. The
eight shown in Table 4.1 attracted particular attenfidthe relevant conserved quantum
numbers that are analogs and generalizations.aindL? from SO(3) are/s and 12 for
isospin and’ for hypercharge Particles may be grouped into charge or isospin multiplets.
Then the hypercharge may be taken as twice the average charge of the multiplet. For the
nucleon, that is, the neutron—proton doublét= 2 - %(0 + 1) = 1. The hypercharge and
isospin values are listed in Table 4.1 for baryons like the nucleon and its (approximately
degenerate) partners. They form an octet, as shown in Fig. 4.3, after which the corre-
sponding symmetry is called theghtfold way. In 1961 Gell-Mann, and independently
Ne’eman, suggested that the strong interaction should be (approximately) invariant under
a three-dimensional special unitary grogdJ(3), that is, hasU(3) flavor symmetry.

The choice ofSU(3) was based first on the two conserved and independent quantum
numbersH; = I3 and Ho = Y (thatis, generators withiz, Y] = 0, not Casimir invariants;
see the summary in Section 4.3) that call for a group of rank 2. Second, the group had
to have an eight-dimensional representation to account for the nearly degenerate baryons
and four similar octets for the mesons. In a sei®d(3) is the simplest generalization of
SU(2) isospin. Three of its generators are zero-trace Hermitiar3 3natrices that contain

5All masses are given in energy units, 1 MeML0® eV.
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FIGURE 4.3 Baryon octet weight
diagram forSU(3).

the 2x 2 isospin Pauli matrices in the upper left corner,

Ti 0
A = o, i=123 (4.61a)
0 0O

Thus, theSU(2)-isospin group is a subgroup 8tJ(3)-flavor with I3 = A3/2. Four other
generators have the off-diagonal 1'swmf and—i, i of t2 in all other possible locations to
form zero-trace Hermitian 8 3 matrices,

00 1 0 0 —i

am=|0 0 o], ax=[0 0 0],

100 i 0 0
(4.61b)

000 00 O

w=|0 0 1|, i=]0 0 —i

010 0i O

The second diagonal generator has the two-dimensional unit matiix the upper left
corner, which makes it clearly independent of 8ld(2)-isospin subgroup because of its
nonzero trace in that subspace, arlin the third diagonal place to make it traceless,

1 1 0 O
a=—|0 1 0 ]. 4.61c
8= 73 ( )
0O 0 -2
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strong Hstrong Hsn'ong

+H + H

medium medium

Helec[romugnelic

FIGURE 4.4 Baryon mass splitting.

Altogether there are3— 1 = 8 generators foBU(3), which has order 8. From the com-
mutators of these generators the structure constari@b/(8) can easily be obtained.

Returning to theSU(3) flavor symmetry, we imagine the Hamiltonian for our eight
baryons to be composed of three parts:

H= Hstrong+ Hmedium+ Helectromagnetic (4-62)

The first part, Hswong has theSU(3) symmetry and leads to the eightfold degeneracy.
Introduction of the symmetry-breaking termimegium removes part of the degeneracy,
giving the four isospin multiplet$=—, £°), (£—, £% 1), A, andN = (p, n) different
masses. These are still multiplets becaggium hasSU(2)-isospin symmetry. Finally,

the presence of charge-dependent forces splits the isospin multiplets and removes the last
degeneracy. This imagined sequence is shown in Fig. 4.4.

The octet representation is not the simpl8kk(3) representation. The simplest repre-
sentations are the triangular ones shown in Fig. 4.5, from which all others can be generated
by generalized angular momentum coupling (see Section 4.4 on Young tableaux). The
fundamental representationin Fig. 4.5a contains the (up), d (down), ands (strange)
quarks, and Fig. 4.5b contains the corresponding antiquarks. Since the meson octets can
be obtained from the quark representationg@swith 3> = 8 + 1 states, this suggests
that mesons contain quarks (and antiquarks) as their constituents (see Exercise 4.4.3). The
resulting quark model gives a successful description of hadronic spectroscopy. The reso-
lution of its problem with the Pauli exclusion principle eventually led to $t43)-color
gauge theory of thetrong interaction calledquantum chromodynamics(QCD).

To keep group theory and its very real accomplishment in proper perspective, we should
emphasize that group theory identifies and formalizes symmetries. It classifies (and some-
times predicts) particles. But aside from saying that one part of the Hamiltonie3l {23

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

260 Chapter 4 Group Theory

Y Y
A 3
g 1/3 u
‘\ /' Sm 23
t + » ]
-1 12 ?

-1/
s ® -2/3
u

=9 14—
IS

v

';\-4

-1/3

a b

FIGURE 4.5  (a) Fundamental representationSi(3), the weight diagram for
theu, d, s quarks; (b) weight diagram for the antiquaikst, s.

symmetry and another part has)(3) symmetry, group theory says nothing about the par-
ticle interaction. Remember that the statement that the atomic potential is spherically sym-
metric tells us nothing about the radial dependence of the potential or of the wave function.
In contrast, in a gauge theory the interaction is mediated by vector bosons (like the photon
in quantum electrodynamics) and uniquely determined by the gauge covariant derivative
(see Section 1.13).

Exercises

42.1 (i) Show that the Pauli matrices are the generatorS{2) without using the para-
meterization of the general unitary>22 matrix in Eq. (4.38). (ii) Derive the eight
independent generatoks of SU(3) similarly. Normalize them so that(#; 1 ;) = 25;;.
Then determine the structure constantSof(3).

Hint. TheA; are traceless and Hermitian<33 matrices.
(iii) Construct the quadratic Casimir invariant80(3).
Hint. Work by analogy withr? + 0% + o2 of SU(2) or L2 of SO(3).

422 Prove that the general form of a2 unitary, unimodular matrix is

a b
U= —b* a*
with a*a + b*b = 1.

4.2.3 Determine thre&U(2) subgroups o8U(3).
4.2.4 A translation operatorT (a) convertsy (x) to ¥ (x + a),

T(@yx) =y (x+a).
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In terms of the (quantum mechanical) linear momentum opegates —id/dx, show
thatT (a) = expliapy), thatis, p, is the generator of translations.
Hint. Expandy (x + a) as a Taylor series.

4.2.5 Consider the gener&U(2) element Eq. (4.38) to be built up of three Euler rotations:
(i) a rotation ofa/2 about thez-axis, (ii) a rotation ofv/2 about the new-axis, and
(iii) a rotation of ¢/2 about the newg-axis. (All rotations are counterclockwise.) Using
the Paulic generators, show that these rotation angles are determined by

a=f-¢+T=a+}
b=2n =p
c=E+i-5=v—7%.

Note The angles: andb here are not the andb of Eq. (4.38).

4.2.6 Rotate a nonrelativistic wave functioh = (¥, ¥)) of spin 1/2 about thez-axis by
a small angle/6. Find the corresponding generator.

4.3 ORBITAL ANGULAR MOMENTUM

The classical concept of angular momenturgass=r x p, is presented in Section 1.4

to introduce the cross product. Following the usual Schrodinger representation of quantum
mechanics, the classical linear momentuia replaced by the operateti V. The quantum
mechanical orbital angular momentwperator become$

LQM=—ir X V. (4.63)

This is used repeatedly in Sections 1.8, 1.9, and 2.4 to illustrate vector differential oper-
ators. From Exercise 1.8.8 the angular momentum components satisfy the commutation
relations

[Li,Ljl=1ieijxLk. (4.64)

Thee;ji is the Levi-Civita symbol of Section 2.9. A summation over the inklésunder-
stood.
The differential operator corresponding to the square of the angular momentum

L2=L-L=Li+L5+1L2 (4.65)
may be determined from
L-L=(xp)-(rxp), (4.66)

which is the subject of Exercises 1.9.9 and 2.5.17(b). Sirfcas a scalar product is in-
variant under rotations, that is, a rotational scalar, we exhectZ; ] = 0, which can also
be verified directly.

Equation (4.64) presents the basic commutation relations of the components of the quan-
tum mechanical angular momentum. Indeed, within the framework of quantum mechanics
and group theory, these commutation relations define an angular momentum operator. We
shall use them now to construct the angular momentum eigenstates and find the eigenval-
ues. For the orbital angular momentum these are the spherical harmonics of Section 12.6.

SFor simplicity, 71 is set equal to 1. This means that the angular momentum is measured in units of
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Ladder Operator Approach

Let us start with a general approach, where the angular momehigrconsider may rep-

resent an orbital angular momentlima spine /2, or a total angular momentuin+ o /2,

etc. We assume that

1. Jis an Hermitian operator whose components satisfy the commutation relations
i, J1=iijx i, [, 5] =0. (4.67)

Otherwisel is arbitrary. (See Exercise 4.3.1.)
2. |AM) is simultaneously a normalized eigenfunction (or eigenvectoy) @fith eigen-
value M and an eigenfunctidrof J2,

JAM) = M|AM), J2IAM) = A |AM), (AM|AM) = 1. (4.68)
We shall show that = J(J + 1) and then find other properties of theM). The treat-
ment will illustrate the generality and power of operator technigues, particularly the use of

ladder operator8.
Theladder operators are defined as

Jy=Jx+ily, Jo=Jy—ily. (4.69)
In terms of these operatodd may be rewritten as
=L+ I+ J2 (4.70)

From the commutation relations, Eq. (4.67), we find

(LI d=~+Ty, [0 1=—J_, [Js,J_1=2J. (4.71)

SinceJ;. commutes with)? (Exercise 4.3.1),
F(IpaM)) = J4 (BP1AM)) = A(J41AM)). (4.72)

Therefore,J|AM) is still an eigenfunction ofl? with eigenvaluex, and similarly for
J_|AM). But from Eq. (4.71),

JoJy=Jp (U + 1), (4.73)
or

J(J4IAM)) = T (J; + DIAM) = (M + 1) JL|AM). (4.74)

"That|AM) can be an eigenfunction @ioth J, andJ? follows from [J;, J2] = 0 in Eq. (4.67). FoiSU(2), (AM|AM) is the

scalar product (of the bra and ket vector or spinors) in the bra-ket notation introduced in Section B3Q(BpriAM) is a

functionY (8, ¢) and|AM’) is a functionY’ (6, ¢) and the matrix elemeri M |AM') = f(pzlo JioY*0,0)Y' (0, 9)sin0do dy

is their overlap. However, in our algebraic approach only the norm in Eq. (4.68) is used and matrix elements of the angular
momentum operators are reduced to the norm by means of the eigenvalue equakioiépr(4.68), and Eqgs. (4.83) and (4.84).
8Ladder operators can be developed for other mathematical functions. Compare the next subsection, on other Lie groups, and
Section 13.1, for Hermite polynomials.
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Therefore,J|A M) is still an eigenfunction of, but with eigenvalué/ + 1. J, has raised
the eigenvalue by 1 and so is callerhésing operator. Similarly, J_ lowers the eigenvalue
by 1 and is called éowering operator.

Taking expectation values and usimﬁ: Jy, JyT =J,, we get

(AM|32 = J2M) = (AM|JZ + JZAM) = | T MY [P+ [Ty M) [P
and see that — M2 > 0, soM is bounded. Let/ be thelargest M. ThenJ,|1J) =0,
which impliesJ_J|1J) = 0. Hence, combining Egs. (4.70) and (4.71) to get

P=J J+J.(J+1), (4.75)
we find from Eq. (4.75) that

0=J_JiaJ)= (P = J2 = L)IAJ) = (A = J? = J)|AJ).
Therefore
A=J(J +1)>0, (4.76)

with nonnegativeJ. We now relabel the statgaM) = |JM). Similarly, let J’ be the
smallestM. ThenJ_|JJ’) = 0. From

P=JJ +J., -1, (4.77)
we see that
0= JpJ_|JJ )= (PP + I, = JAII )= (A + T = J'?)1J). (4.78)
Hence
A=JU+D=J U -D)=(N)(-J-1.
SoJ' = —J,andM runs ininteger stepsfrom —J to +J,
—J<M<]. (4.79)

Starting from|J J) and applying/_ repeatedly, we reach all other stat¢d/). Hence the
|J M) form an irreducible representation 80(3) or SU(2); M varies and/ is fixed.
Then using Eqs. (4.67), (4.75), and (4.77) we obtain

J_J M) =[J(J+1D) —MM+D]|IM) = —M)(J +M+1)|J M),

(4.80)
JeJ_|IM)y=[J(J+D) = MM - D]|IM) = +M)(J — M+ )| M).
Because/, andJ_ are Hermitian conjugates,
=0, 1=y, (4.81)

the eigenvalues in Eq. (4.80) must be positive or Z8rBxamples of Eq. (4.81) are pro-
vided by the matrices of Exercise 3.2.13 (spji2)} 3.2.15 (spin 1), and 3.2.18 (spifi23.

9The Hermitian conjugation or adjoint operation is defined for matrices in Section 3.5, and for operators in general in Sec-
tion 10.1.

10For an excellent discussion of adjoint operators and Hilbert space see A. Ma3s&ftum MechanicsNew York: Wiley
1961, Chapter 7.
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For the orbital angular momentum ladder operatars, andL _, explicit forms are given
in Exercises 2.5.14 and 12.6.7. You can now show (see also Exercise 12.7.2) that

(TMIJ_(J4|TM)) = (J41TM) T 1T m). (4.82)

Since J; raises the eigenvalugf to M + 1, we relabel the resultant eigenfunction
|J M + 1). The normalization is given by Eq. (4.80) as

JelIMYy=/(J =MYJ + M +D|IM+1)=/J(J +1) — MM +1)|JM +1),
(4.83)
taking the positive square root and not introducing any phase factor. By the same argu-
ments,

J_IMy=JJ+MJ-M+D|IM -1 =/JJ+1) —MM—-1)|JM—1).
(4.84)

Applying J; to Eq. (4.84), we obtain the second line of Eq. (4.80) and verify that Eq. (4.84)
is consistent with Eq. (4.83).

Finally, sinceM ranges from-J to +J in unit steps, 2 must be an integet] is either
an integer or half of an odd integer. As seen lated, ig an orbital angular momentuln,
the set|LM) for all M is a basis defining a representationSD(3) and L will then be
integral. In spherical polar coordinatgsy, the functiong L M) become the spherical har-
monichi”(e, @) of Section 12.6. The sets af M) states with half-integral define rep-
resentations dBU(2) that are not representations3®(3); we get/ = 1/2,3/2,5/2,....
Our angular momentum is quantized, essentially as a result of the commutation relations.
All these representations are irreducible, as an application of the raising and lowering op-
erators suggests.

Summary of Lie Groups and Lie Algebras

The general commutation relations, Eq. (4.14) in Section 4.2, for a classical Lie group
[SO(m) andSU(n) in particular] can be simplified to look more like Eq. (4.71) 80(3)
andSU(2) in this section. Here we merely review and, as a rule, do not provide proofs for
various theorems that we explain.

First we choose linearly independent and mutually commuting generdtavhich are
generalizations af, for SO(3) andSU(2). Let/ be the maximum number of suéh with

[H;, H]=0. (4.85)

Thenl is called therank of the Lie groupG or its Lie algebra;. The rank and dimension,
or order, of some Lie groups are given in Table 4.2. All other gener@igisan be shown
to be raising and lowering operators with respect to alliheso

[Hi,El=Ey, i=12..,1 (4.86)

The set of so-calletbot vectors (a1, az, ..., o) form theroot diagram of G.

When theH; commute, they can be simultaneously diagonalized (for symmetric (or
Hermitian) matrices see Chapter 3; for operators see Chapter 10H,Tiw®vide us with
a set of eigenvaluesy, mo, ..., m; [projection or additive quantum numbers generalizing
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Table 4.2 Rank and Order of Unitary and Rotational

Groups

Lie algebra A B; Dy
Lie group SU(l +1) SO(2 +1) SO(2)
Rank / / /
Order 10+2) 12 +1) 12 — 1)

M of J, in SO(3) andSU(2)]. The set of so-calledeight vectors (m1, mo, ..., m;) for
an irreducible representation (multiplet) formvaight diagram.

There arel invariant operators”;, called Casimir operators, that commute with all
generators and are generalizationdaf

[C;,Hj1=0,  [Ci,Eq]=0, i=12...,1 (4.87)

The first one(1, is a quadratic function of the generators; the others are more complicated.
Since theC; commute with allH;, they can be simultaneously diagonalized with the

Their eigenvaluess, ca, ..., ¢; characterize irreducible representations and stay constant
while the weight vector varies over any particular irreducible representation. Thus the gen-
eral eigenfunction may be written as

|(cl, c2,...,c))my1,mo, ..., m1>, (4.88)

generalizing the multiplgt/ M) of SO(3) andSU(2). Their eigenvalue equations are
Hi}(cl, c2,...,c)my1, mo, ..., m1> =m,-|(cl, c2,...,c)m1, mo, ..., m;) (4.89a)
C; |(cl, c2,...,c1)my, mo, ..., ml) =¢; |(c1, C2,...,C1)M1, Mo, ..., ml). (4.89b)

We can now show thatEy|(c1,c2,...,c)m1, mo,...,m;) has the weight vector
(m1 + a1, m2 + a2, ..., m; + o) using the commutation relations, Eq. (4.86), in con-
junction with Egs. (4.89a) and (4.89b):

HiEa|(cl, c2,.. .,cl)ml,mz,...,ml)
= (EqH; + [H;, Eo)|(c1, 2, ....com1, ma, ... my)
=(m; +a;)E, |(c1, €2,...,c1)m1, ma, ..., m1>. (4.90)
Therefore
Ea’(cl,cz, .., C)my, my, ...,m;) ~ ’(cl, coemitan, ..., my +(x1),

the generalization of Egs. (4.83) and (4.84) fr8@(3). These changes of eigenvalues by
the operatoi&,, are called itselection rulesin quantum mechanics. They are displayed in
the root diagram of a Lie algebra.

Examples of root diagrams are given in Fig. 4.6 &J(2) andSU(3). If we attach the
roots denoted by arrows in Fig. 4.6b to a weight in Figs. 4.3 or 4.5a, b, we can reach any
other state (represented by a dot in the weight diagram).

Here Schur’s lemmaapplies: An operatoH that commutes with all group operators,
and therefore with all generatofg of a (classical) Lie grous in particular, has as eigen-
vectors all states of a multiplet and is degenerate with the multiplet. As a consequence,
such an operator commutes with all Casimir invariaptg,C;] = 0.
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B o-+p

a b

FIGURE 4.6 Root diagram for (apU(2) and
(b) SU(3).

The last result is clear because the Casimir invariants are constructed from the generators
and raising and lowering operators of the group. To prove the regt, betan eigenvector,
H+v = Ev. Then, for any rotatiorR of G, we haveH Ry = E Ry, which says thaRys
is an eigenstate with the same eigenvatualong withy. Since[H, C;] = 0, all Casimir
invariants can be diagonalized simultaneously witland an eigenstate @f is an eigen-
state of all theC;. Since[H;, C;] = 0, the rotated eigenstatés) are eigenstates af;,
along withyr belonging to the same multiplet characterized by the eigenva)usC;.

Finally, such an operatdd cannot induce transitions between different multiplets of the
group because

((c/l, Chy ooy cpymy, my, .. .,m”H|(c1, €2, ...,cl)my, mo, ..., m1> =0.
Using[H, C;]1=0 (for anyj) we have
0= <(c’l, Chyvvvy MY, MYy, . ..,mﬂ[H, Cj]|(cl, Co,...,Ccl)my, ma, . ..,m;)
=(cj— c})((c/l, Chy ooy cpymy, my, .. .,m”H|(c1, Co,...,cl)m1, ma, ..., m1>.

If c;- # ¢; for somej, then the previous equation follows.

Exercises

431  Showthat (a]J;,J%]=0, (b)[J_,J?]=0.

4.3.2 Derive the root diagram dU(3) in Fig. 4.6b from the generatoks in Eq. (4.61).
Hint. Work out first theSU(2) case in Fig. 4.6a from the Pauli matrices.

4.4 ANGULAR MOMENTUM COUPLING

In many-body systems of classical mechanics, the total angular momentum is the sum
L =), L; of the individual orbital angular momenta. Any isolated particle has conserved
angular momentum. In quantum mechanics, conserved angular momentum arises when
particles move in a central potential, such as the Coulomb potential in atomic physics,
a shell model potential in nuclear physics, or a confinement potential of a quark model in
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particle physics. In the relativistic Dirac equation, orbital angular momentum is no longer
conserved, bul = L + Sis conserved, the total angular momentum of a particle consisting
of its orbital and intrinsic angular momentum, called sia o /2, in units of#.

It is readily shown that the sum of angular momentum operators obeys the same com-
mutation relations in Eq. (4.37) or (4.41) as the individual angular momentum operators,
provided those from different particles commute.

Clebsch—Gordan Coefficients: SU(2)-SO(3)

Clearly, combining two commuting angular momeatdo form their sum
J=J1+J2, [Ju, J2i1=0, (4.91)
occurs often in applications, addsatisfies the angular momentum commutation relations
i, Sl =[J1j + J25, Jue + Ja] = [J1j, Jul + [z, Jal =ieju(Juy + J2) =igjp Ji.
For a single particle with spin/2, for example, an electron or a quark, the total angular
momentum is a sum of orbital angular momentum and spin. For two spinless particles
their total orbital angular momentum= L 1 + L. ForJ? andJ, of Eq. (4.91) to be both
diagonal,[J2, J.] = 0 has to hold. To show this we use the obvious commutation relations
[Jiz, 351 =0, and
P=024034201-30=024+05+ J1 Jo + J1_Joy +2J1, 00, (4.97)
in conjunction with Eq. (4.71), for botby, to obtain
(92, 1) = Joy + Jre Jo, Jic + J2:]
= [J1-, Ji o4 + J1-[J24, J2r 1 + iy, J1]J2— + J14 12—, J2]
=J1-Joy — N1-Joy — J14+J2— + J14J2- =0.

Similarly [J2, J,.Z] =0 is proved. Hence the eigenvalues]ész, J, can be used to label
the total angular momentum statdsJoJ M).
The product statels/im1)|Jom2) obviously satisfy the eigenvalue equations

J | Jima)|Jomo) = (J1; + J2p) | Jima)|Jomp) = (m1 + m2)|Jim1)|Jomo)
= M|Jim1)|Jom3), (4.92)
J2|ima) | Jama) = Ji(J; + 1)|Jama)|Jama),

but will not have diagonall? except for the maximally stretched states with =
+(J1+ J2) andJ = J1 + J» (see Fig. 4.7a). To see this we use Eq. (4.@fain in con-
junction with Egs. (4.83) and (4.84) in

P Jima) Joma) = {J1(J1+ 1) + Jo(J2 + 1) + 2myma}| Jymy) | Jomo)
{11+ D) — miima+ DY a2 + 1) — maGmz — D) ?
x |Jim1 + | Jomz — 1) + {J1(J1 + 1) — mam1 — D)2

x {J2(J2 + 1) — ma(ma + D} Y2 Jimy — 1) Jamz + 1). (4.93)
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A A

J, &

a b c

FIGURE 4.7 Coupling of two angular momenta:
(a) parallel stretched, (b) antiparallel, (c) general
case.

The last two terms in Eq. (4.93) vanish only when = J; andmy = J, orm; = —J; and
mo = —Jo. In both caseg = J1 + J; follows from the first line of Eq. (4.93). In general,
therefore, we have to form appropriate linear combinations of product states

|J1J2d My =" C(JaJat|mimaM)|Jim1)|Jama), (4.94)

miy,m2

so thatJ? has eigenvalud (J + 1). The quantitie (J1J2J |m1maM) in Eq. (4.94) are
calledClebsch—Gordan coefficientsFrom Eq. (4.92) we see that they vanish unléss:
m1 + m2, reducing the double sum to a single sum. Applyihgto |J M) shows that the
eigenvaluesV of J, satisfy the usual inequalities/ <M < J.

Clearly, the maximalimax= J1 + J2 (see Fig. 4.7a). In this case Eq. (4.93) reduces to a
pure product state

|J1J2J = J1+ oM = J1 + J2) = |J1J1)|J2J2), (4.953)
so the Clebsch—Gordan coefficient
C(J1rJ2d = J1+ Jo|J1J2Jd1+ J2) = 1. (4.95b)

The minimalJ = J1 — J» (if J1 > J2, see Fig. 4.7b) and = J, — J1 for J> > J; follow if
we keep in mind that there are just as many product statesMs states; that is,

Jmax

> (@741 = (Jmax— Jmin + D (max+ Jmin + 1)
J=Jmin

= (/14 12+ 1). (4.96)

This condition holds because tha JoJ M) states merely rearrange all product states into
irreducible representations of total angular momentum. It is equivalent todhgle rule:

A(J1J2)) =1, if |Jo—Jo| <J <J1+Jo;

(4.97)
A(J1J2J) =0, else
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This indicates that one complete multiplet of eatlvalue from Jmin to Jmax accounts

for all the states and that all thé M) states are necessarily orthogonal. In other words,
Eq. (4.94) defines a unitary transformation from the orthogonal basis set of products of
single-particle stateg/im1; Jomo) = |Jim1)|Jomo) to the two-particle statelg/; JoJ M).

The Clebsch—Gordan coefficients are just the overlap matrix elements

C(JrJodJ | imimoM) = (J1JoJ M| J1my; Jomo). (4.98)

The explicit construction in what follows shows that they are all real. The states in
Eq. (4.94) are orthonormalized, provided that the constraints

> C(J1J2J \mimaM)C(J1J2J |mimaM’)
m1,mp, mi+mo=M (4993)
== (Jl]2]M|J1]2J/M/> = (SJJ/(SMM/

> C(Jad lmimaM)C(J1J2d [mymyM)
M (4.99b)
= (Juma|Jamy) (Jom2|J2m5) = 8,11 8pm,

hold.

Now we are ready to construct more directly the total angular momentum states starting
from |Jmax= J1 + J2 M = J1 + J2) in EqQ. (4.95a) and using the lowering operafar=
J1— + Jo— repeatedly. In the first step we use Eq. (4.84) for

1/2
T30y = (i Ui + D) = 3 (s = D210 0; = 1) = @IpDY210;0; - 1),
which we substitute int@qJ;— + Jo—)|J1J1)|J2J2). Normalizing the resulting state with
M = J1+ Jo — 1 properly to 1, we obtain
1/2
|J1J2J1+ J2J1+ Jo — 1) = {J1/(J1+ J2)} P2 = 1)1J20)

+{Jo/ (1 + I} 2 ) | Jad2 — 1), (4.100)

Equation (4.100) yields the Clebsch—Gordan coefficients

C(J1J2J1+ JolJ1—1 T2 Ji+ Jo— 1) ={J1/(1 + JZ)}l/Z’ (4.101)

1/2
CULhJi+ JolJ1 Jo—LJi+ Jo—1) = {Jo/(J1 + )} 2.

Then we apply/_ again and normalize the states obtained until we r¢éach J1 + JoM)
with M = —(J1 + J2). The Clebsch—Gordan coefficient§J1J2J1 + Jo|mimoM) may
thus be calculated step by step, and they are all real.

The next step is to realize that the only other state wWitk= J1 + J> — 1 is the top of the
next lower tower ofJ1 + J> — 1M) states. Sincg/1 + Jo — 1 J1 + Jo — 1) is orthogonal to
|J1+ J2J1+ J2 — 1) in EqQ. (4.100), it must be the other linear combination with a relative
minus sign,

1/2
i+ Jo— L+ Jo— 1) = ={Ja/(J1 + )} 210001 — D12 d2)

{1/ + Y )2l — 1), (4.102)

up to an overall sign.
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Hence we have determined the Clebsch—Gordan coefficientg fer/1)
1/2
C(hhlo i+ =11 —1JJ1+J2—1) = —{Jz/(J1+ Jz)} / ,

2 (4.103)

C(hl2 i+ 2= Jo—1J1+ J2— 1) ={J1/(J1+ J2)}

Again we continue using_ until we reachM = —(J; + J> — 1), and we keep normalizing
the resulting statelg; + Jo, — 1M) of the J = J1 + Jo — 1 tower.

In order to get to the top of the next towédy + Jo — 2M) with M = J1 + Jo, — 2, we
remember that we have already constructed two states withWthd&oth |J1 + JoJ1 +
Jo — 2y and|J1 + Jo — 1 J1 + Jo — 2) are known linear combinations of the three product
states|J1J1)|JoJo — 2), |J1J1 — 1) x |JaJo — 1), and|J1J1 — 2)|J2J2). The third linear
combination is easy to find from orthogonality to these two states, up to an overall phase,
which is chosen by th€ondon-Shortley phase conventiorld so that the coefficient
C(J1J2 J1+ J2—2|J1 Jo — 2 J1+ J2 — 2) of the last product state is positive fol J2 J1 +
Jo — 2 J1+ J2 — 2). Itis straightforward, though a bit tedious, to determine the rest of the
Clebsch—Gordan coefficients.

Numerous recursion relations can be derived from matrix elements of various angular
momentum operators, for which we refer to the literattfre.

The symmetry properties of Clebsch—Gordan coefficients are best displayed in the more
symmetric Wigner’s 3-symbols, which are tabulatéd:

J1J2J3 (=1)J1—J2—ms3
o ] WC(thJsImlmz, —m3), (4.104a)
1mam3
obeying the symmetry relations
J1J2J: JieJiJ,
< 1273 >=(_1)11+f2+13< kA ) (4.104b)
mimoms mjimniy

for (k,1,n) an odd permutation ofl, 2, 3). One of the most important places where
Clebsch—Gordan coefficients occur is in matrix elements of tensor operators, which are
governed by the Wigner—Eckart theorem discussed in the next section, on spherical ten-
sors. Another is coupling of operators or state vectors to total angular momentum, such
as spin-orbit coupling. Recoupling of operators and states in matrix elements legds to 6
and 9j-symbols!? Clebsch-Gordan coefficients can and have been calculated for other
Lie groups, such aSU(3).

11, u. condon and G. H. Shortleyheory of Atomic Spectr&ambridge, UK: Cambridge University Press (1935).

12There is a rich literature on this subject, e.g., A. R. Edmodmgular Momentum in Quantum Mechani€sinceton, NJ:
Princeton University Press (1957); M. E. RoB&mentary Theory of Angular MomentuiRew York: Wiley (1957); A. de-Shalit

and I. Talmi,Nuclear Shell ModelNew York: Academic Press (1963); Dover (2005). Clebsch—Gordan coefficients are tabulated
in M. Rotenberg, R. Bivins, N. Metropolis, and J. K. Wooten, The 3j- and 6j-SymbaolsCambridge, MA: Massachusetts
Institute of Technology Press (1959).
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Spherical Tensors

In Chapter 2 the properties of Cartesian tensors are defined using the group of nonsin-
gular general linear transformations, which contains the three-dimensional rotations as a
subgroup. A tensor of a given rank that is irreducible with respect to the full group may
well become reducible for the rotation gro@®(3). To explain this point, consider the
second-rank tensor with componeflg = x; y; for j, k =1, 2, 3. It contains the symmet-

ric tensorS ;. = (xjyx + xxy;)/2 and the antisymmetric tensdr, = (x; yx — x1y;)/2, SO

Tjr = Sjx + Aji. This reduced’j; in SO(3). However, under rotations the scalar product

X -y is invariant and is therefore irreducible 80(3). Thus,S;; can be reduced by sub-
traction of the multiple ok - y that makes it traceless. This leads to 8@(3)-irreducible

tensor

S =3 (X vk +xky5) — 3% Y8k

Tensors of higher rank may be treated similarly. When we form tensors from products of
the components of the coordinate vectathen, in polar coordinates that are tailored to
SO(3) symmetry, we end up with the spherical harmonics of Chapter 12.

The form of the ladder operators f&O(3) in Section 4.3 leads us to introduce the
spherical componentgnote the different normalization and signs, though, prescribed by
theY;,,) of a vectorA:

A+1=—%(Ax+iAy), A_1=%2(Ax—my), Ag=A,. (4.105)

Then we have for the coordinate vectan polar coordinates,
ry1= —%r sinfe’? =r,/ %”Yn, r_1= %r sinfe™% =r./ %”Yl,_l,

f’ozr\/%”Ym,

whereY;,, (0, ¢) are the spherical harmonics of Chapter 12. Again, the spheic@om-
ponents of tensorg;,, of higher rankj may be introduced similarly.

An irreduciblespherical tensor operatorT;,, of rank j has 2/ + 1 components, just
as for spherical harmonics, andruns from—j to 4. Under a rotatiorR(«), wherea
stands for the Euler angles, tlig, transform as

(4.106)

Yim ()= Yy () D}, (R). (4.107a)

m

wheref’ = (', ¢) are obtained fronfi = (9, ¢) by the rotatiorR and are the angles of the
same point in the rotated frame, and

Dil,m (a, B, y) = (Jm|expliaJ;) expipJy) expiy J;)|Jm')

are the rotation matrices. So, for the operdtgy, we define

RTjwR™ =Y TjwD, (). (4.107b)

m
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For an infinitesimal rotation (see Eq. (4.20) in Section 4.2 on generators) the left side of
Eq. (4.107b) simplifies to a commutator and the right side to the matrix elemeitshef
infinitesimal generator of the rotatid®:

Uns Tim) =Y Tj (| Jul jm). (4.108)

m/

If we substitute Egs. (4.83) and (4.84) for the matrix elementk,ofve obtain the alterna-
tive transformation laws of a tensor operator,

1/2

[Jo. Tjml =mTjm, s, Tjml = Tjmz2{(j —m)(j £m + 1)} (4.109)

We can use the Clebsch—Gordan coefficients of the previous subsection to couple two
tensors of given rank to another rank. An example is the cross or vector product of two
vectorsa andb from Chapter 1. Let us write both vectors in spherical componeptand
b,,. Then we verify that the tensat,, of rank 1 defined as

V2

SinceC,, is a spherical tensor of rank 1 that is linear in the componerdsaoflb, it must
be proportional to the cross produ€t,, = N(a x b),,. The constan¥ can be determined
from a special cas@ = X, b =¥, essentially writingk x § = Z in spherical components as
follows. Using

Cn= ) CALUmimom)am,bm, = —=(@x b (4.110)

mim

@o=1L  ni=-1/vV2, ®1=1V2

OMi=—i/v2,  1=-i/V2
Eq. (4.110) form = 0 becomes

C(1111, -1,0[®1(9)-1 — ®)-1(N1] = N(@o) =N
1 1 i 1 i i

Al )
where we have use@(111j101) = % from Eq. (4.103) forJ1 = 1 = Jp, which implies
C(11111, -1,0) = % using Egs. (4.104a,b):

S P CTC PEET Y S S i) WL WO L PR,
10 1) BHEN=5= 1 1 o) T RO

A bit simpler is the usual scalar product of two vectors in Chapter 1, in wai@hdb
are coupled to zero angular momentum:

a-b=—(abjov3=—-+3)  C(110m, —m, Q)amb . (4.111)
m
Again, the rank zero of our tensor product implesb = n(ab)p. The constankz can

be determined from a special case, essentially writthg- 1 in spherical components:

52 1 __ — _n
22 =1=nC (110000 = —2.
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Another often-used application of tensors is theoupling that involvessj-symbolsfor
three operators andj%or four operators? An example is the following scalar product,
for which it can be showdt that

1
0‘1-r0’2-r=§r20‘1-0‘2+(0'10‘2)2-(l’l’)2, (4.112)
but which can also be rearranged by elementary means. Here the tensor operators are de-
fined as
(©102)2n = Y C(A12Amimam)oim,02m,, (4.113)
mimy
(rr) —ZC(llZ]m MMy I —,/8—”r2Y () (4.114)
2m = - 1m2 m1l'moy = 15 2m s .

and the scalar product of tensors of rank 2 as

(0102)2- (M)2= Y _(=1)"(0102)2n ()2 _m =5((6102)2(1)2),.  (4.115)
m
One of the most important applications of spherical tensor operators M/idyeer—
Eckart theorem. It says that a matrix element of a spherical tensor opefatpof rankk
between states of angular momentjand j’ factorizes into a Clebsch—Gordan coefficient
and a so-callededuced matrix element denoted by double bars, that no longer has any
dependence on the projection quantum numberg’, n:

(' | Tl jm) = Ckjj' lnmm") (—=DX I G T ) V(25 + D). (4.116)

In other words, such a matrix element factors into a dynamic part, the reduced matrix
element, and a geometric part, the Clebsch—Gordan coefficient that contains the rotational
properties (expressed by the projection quantum numbers) fro®@{&) invariance. To

see this we coupl&, with the initial state to total angular momentyih

lj'm'Yo=_ Ckjj' lnmm’) Ty, | jm). (4.117)
nm
Under rotations the statg’m’)g transforms just like j'm’). Thus, the overlap matrix ele-
ment(;j'm’|j'm’)q is a rotational scalar that has nd dependence, so we can average over
the projections,

518 ntm
(JM|j'm')o= 2’,+"11 Z J'uli’mo (4.118)

Next we substitute our definition, Eq. (4.117), into Eq. (4.118) and invert the relation
Eq. (4.117) using orthogonality, Eq. (4.99b), to find that

(M Tl jm) = 3 €k ) 222202 (JMIJM)O, (4.119)

_] 'm’

2]+1

which proves the Wigner—Eckart theorem, Eq. (4.146).

13The extra facto(—l)k‘f*‘f//\/(Zj’ +1) in Eq. (4.116) is just a convention that varies in the literature.
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As an application, we can write the Pauli matrix elements in terms of Clebsch—Gordan
coefficients. We apply the Wigner—Eckart theorem to

(37 |ow|38) = (0a)ys = = 5C(133]eBy) (3] o] 3) (4.120)
Since(3 3lo0l23) = 1 with op = 03 andC (133 | 03 3) = —1/+/3, we find
(ze]2)= 6. (4.121)
which, substituted into Eq. (4.120), yields
(0a)yp = —v/3C(133|aBy). (4.122)

Note that thex = £1, 0 denote the spherical components of the Pauli matrices.

Young Tableaux for SU(n)

Young tableaux (YT) provide a powerful and elegant method for decomposing products
of SU(n) group representations into sums of irreducible representations. The YT provide
the dimensions and symmetry types of the irreducible representations in this so-called
Clebsch—Gordan seriesthough not the Clebsch—Gordan coefficients by which the prod-
uct states are coupled to the quantum numbers of each irreducible representation of the
series (see Eq. (4.94)).

Products of representations correspond to multiparticle states. In this context, permuta-
tions of particles are important when we deal with several identical particles. Permutations
of n identical objects form theymmetric group S,,. A close connection between irre-
ducible representations ¢f,, which are the YT, and those &U(n) is provided by this
theorem: Every N-particle state of, that is made up of single-particle states of the fun-
damentak-dimensionalSU(n) multiplet belongs to an irreducib®U(n) representation.

A proof is in Chapter 22 of Wybourn¥,

For SU(2) the fundamental representation is a box that stands for thel-s})(lmp) and
—% (down) states and has dimension 2. Bal(3) the box comprises the three quark states
in the triangle of Fig. 4.5a; it has dimension 3.

An array of boxes shown in Fig. 4.8 witky boxes in the first rowA, boxes in the
second row, .., andi,_1 boxes in the last row is called a Young tableau (YT), denoted
by [A1, ..., Ay—1], @and represents an irreducible representatio®ldfn) if and only if

A =A== Ayt (4.123)

Boxes in the same row are symmetric representations; those in the same column are anti-
symmetric. A YT consisting of one row is totally symmetric. A YT consisting of a single
column is totally antisymmetric.

There are at most — 1 rows forSU(n) YT because a column of boxes is the totally
antisymmetric §later determinant of single-particle states) singlet representation that
may be struck from the YT.

An array of N boxes is anV-particle state whose boxes may be labeled by positive
integers so that the (particle labels or) numbers in one row of the YT do not decrease from

148, G. WybourneClassical Groups for Physicistdlew York: Wiley (1974).
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S

FIGURE 4.8 Young tableau (YT) foSU(n).

left to right and those in any one column increase from top to bottom. In contrast to the
possible repetitions of row numbers, the numbers in any column must be different because
of the antisymmetry of these states.

The product of a YT with a single box1], is the sum of YT formed when the box is
put at the end of each row of the YT, provided the resulting YT is legitimate, that is, obeys
Eq. (4.123). FoSU(2) the product of two boxes, spinf2 representations of dimension 2,
generates

11 ®[1]=[2] [1,1], (4.124)

the symmetric spin 1 representation of dimension 3 and the antisymmetric singlet of di-
mension 1 mentioned earlier.

The column ofz — 1 boxes is the conjugate representation of the fundamental represen-
tation; its product with a single box contains the columm dfoxes, which is the singlet.
For SU(3) the conjugate representation of the single akor fundamental quark repre-
sentation, is the inverted triangle in Fig. 4.5b, 1], which represents the three antiquarks
it,d, s, obviously of dimension 3 as well.

The dimension of a YT is given by the ratio

dimYT = %. (4.125)

The numeratowV is obtained by writing am in all boxes of the YT along the diagonal,
(n+ 1) in all boxes immediately above the diagonal;— 1) immediately below the diago-

nal, etc.N is the product of all the numbers in the YT. An example is shown in Fig. 4.9a for
the octet representation 81J(3), whereN =2-3-4=24. There is a closed formula that

is equivalent to Eq. (4.125F The denominatoD is the product of alhooks® A hook is
drawn through each box of the YT by starting a horizontal line from the right to the box in
question and then continuing it vertically out of the YT. The number of boxes encountered
by the hook-line is the hook-number of the bdx.is the product of all hook-numbers of

15see, for example, M. Hamermedghroup Theory and Its Application to Physical ProblerReading, MA: Addison-Wesley
(1962).
16F. Close Introduction to Quarks and Partonslew York: Academic Press (1979).
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3 4 N=234=24
2
(a)
v
1
A\
by 3

FIGURE 4.9 lllustration
of (@) N and (b)D in

Eq. (4.125) for the octet

Young tableau oSU(3).

the YT. An example is shown in Fig. 4.9b for the octetS#(3), whose hook-number is
D =1-.3.-1= 3. Hence the dimension of tl&J(3) octet is 243 = 8, whence its name.

Now we can calculate the dimensions of the YT in Eq. (4.124). $0(2) they are
2x2=3+1=4.ForSU@)theyare 33=3-4/(1-2+3-2/(2-1)=6+3=9. For
the product of the quark times antiquark YT®(3) we get

[1,1I®[1]=121]&I[1,1,1], (4.126)

that is, octet and singlet, which are precisely the meson multiplets considered in the sub-
section on the eightfold way, tH#&J(3) flavor symmetry, which suggest mesons are bound
states of a quark and an antiquaglj, configurations. For the product of three quarks we
get

(1) @1 =(21®[1 1) ® [1]=[31® 22,11 &1, 1, 1], (4.127)

that is, decuplet, octet, and singlet, which are the observed multiplets for the baryons,
which suggests they are bound states of three quatkspnfigurations.

As we have seen, YT describe the decomposition of a prodsict(af irreducible repre-
sentations into irreducible representations3ifl(n), which is called the Clebsch—Gordan
series, while the Clebsch—Gordan coefficients considered earlier allow construction of the
individual states in this series.
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Exercises

441 Derive recursion relations for Clebsch—Gordan coefficients. Use them to calculate
C (A1) |mimaM) for J =0, 1, 2.
Hint. Use the known matrix elements &f = Jy, + Joy, Ji, andJ? = (J1 + J»)2, etc.

4.4.2 Show that(YlX){w = ZC(Z%J|m1msM)Y1m,Xm$, where x+1/> are the spin up and
down eigenfunctions of3 = o, transforms like a spherical tensor of rahk

4.4.3 When the spin of quarks is taken into account,$t&3) flavor symmetry is replaced by
the SU(6) symmetry. Why? Obtain the Young tableau for the antiquark configuration
g. Then decompose the produgi. Which SU(3) representations are contained in the
nontrivial SU(6) representation for mesons?
Hint. Determine the dimensions of all YT.

4.4.4 Forl =1, Eq. (4.107a) becomes

1
YO @)=Y DB Y ©. ).

m'=—1

Rewrite these spherical harmonics in Cartesian form. Show that the resulting Cartesian
coordinate equations are equivalent to the Euler rotation matex s, v), Eq. (3.94),
rotating the coordinates.

4.4.5 Assuming thatD/ («, B, ) is unitary, show that

I
> ¥ (01, 91 Y (02, 92)

m=—I

is a scalar quantity (invariant under rotations). This is a spherical tensor analog of a
scalar product of vectors.

4.4.6 (@ Show that the: andy dependence db/ («, 8, y) may be factored out such that
D/ (e, B, y) = Al (@)d/ (B)C/ ().

(b) Show tha‘Af (@) andCf(y) are diagonal. Find the explicit forms.
(c) Show thad’/(g) =D/’(0, 8, 0).

447 The angular momentum—exponential form of the Euler angle rotation operators is
R=Ry(y)Ry(BR:(x)
= exp(—iy J) eXp(—iBJy) exp—ia ;).
Show that in terms of the original axes
R =expliaJ;) exp(—ifJy) exp—iy J,).

Hint. The R operators transform as matrices. The rotation aboutytfexis (second
Euler rotation) may be referred to the originabxis by

exp(—ifJy) = exp(—ia ) exp(—iBJy) explialy).
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4.4.8 Using the Wigner—Eckart theorem, prove the decomposition theorem for a spherical

: . jm'|3-T11j
vector operatol j'm’| Ty, | jm) = %@,.
4.4.9 Using the Wigner—Eckart theorem, prove the factorization
(j'm'|Ind - Taljm) = (jm'| Iy jm)8;;(jm|d - Ta|jm).

4.5 HOMOGENEOUS LORENTZ GROUP

Generalizing the approach to vectors of Section 1.2, in special relativity we demand that
our physical laws be covaridrdtunder

a. space and time translations,
b. rotations in real, three-dimensional space, and
c. Lorentz transformations.

The demand for covariance under translations is based on the homogeneity of space and
time. Covariance under rotations is an assertion of the isotropy of space. The requirement
of Lorentz covariance follows from special relativity. All three of these transformations
together form the inhomogeneous Lorentz group or the Poincaré group. When we exclude
translations, the space rotations and the Lorentz transformations together form a group —
the homogeneous Lorentz group.

We first generate a subgroup, the Lorentz transformations in which the relative velocity
v is along thex = x!-axis. The generator may be determined by considering space—time
reference frames moving with a relative velodsty, an infinitesimal® The relations are
similar to those for rotations in real space, Sections 1.2, 2.6, and 3.3, except that here the
angle of rotation is pure imaginary (compare Section 4.6).

Lorentz transformations are linear not only in the space coordinatest in the timer
as well. They originate from Maxwell’s equations of electrodynamics, which are invariant
under Lorentz transformations, as we shall see later. Lorentz transformations leave the
quadratic forme?¢2 — x2 — x2 — x2 = x3 — x? — x3 — x3 invariant, wherexg = ct. We
see this if we switch on a light source at the origin of the coordinate system. Atrtime

light has traveled the distanee=,/}" x?, soc?? — x? — x5 — x2 = 0. Special relativity

requires that in all (inertial) frames that move with veloaity ¢ in any direction relative
to thex;-system and have the same origin at time 0, ¢?'2 — x{2 — x,? — x}2 = 0 holds
also. Four-dimensional space—time with the metrie = x2 = x3 — x2 — x2 — x2 is called
Minkowski space, with the scalar product of two four-vectors defined &s= agpho— a- b.
Using the metric tensor

1. 0 0 O
; 0 -1 0 0

() =(g"") = o 0 -1 o (4.128)
0 0 0 -1

17To be covariant means to have the same form in different coordinate systems so that there is no preferred reference system
(compare Sections 1.2 and 2.6).
18This derivation, with a slightly different metric, appears in an article by J. L. Stre8kerJ. Phys35: 12 (1967).
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we can raise and lower the indices of a four-vector, such as the coordirfate$xg, X),
so thatr,, = guwx” = (xo, —X) andx*g,,x" = x2 — x2, Einstein’s summation convention
being understood. For the gradiet, = (3/dxg, —V) = d/dx, andd,, = (3/dxo, V), SO
32 =019, = (3/dx0)2 — V2 is a Lorentz scalar, just like the metnié = x3 — x2.

Forv « ¢, inthe nonrelativistic limit, a Lorentz transformation must be Galilean. Hence,
to derive the form of a Lorentz transformation along theaxis, we start with a Galilean

transformation for infinitesimal relative velocisy:
x't=xt—svr =x1 — x958. (4.129)
Here, = v/c. By symmetry we also write
x'0=x0+ aspxt, (4.129)
with the parametez chosen so that? — x2 is invariant,
xp2 —xp2=xg —x%. (4.130)

Rememberx* = (x0, x) is the prototype four-dimensional vector in Minkowski space.
Thus Eq. (4.130) is simply a statement of the invariance of the square of the magnitude of
the “distance” vector under Lorentz transformation in Minkowski space. Here is where the
special relativity is brought into our transformation. Squaring and subtracting Egs. (4.129)
and (4.129 and discarding terms of ordésg)?, we finda = —1. Equations (4.129) and
(4.129) may be combined as a matrix equation,

x/O xO

o1 happens to be the Pauli matrix;, and the parametég represents an infinitesimal
change. Using the same techniques as in Section 4.2, we repeat the transfoNriaties
to develop a finite transformation with the velocity parameter N6S. Then

/0 N 0
<i1> - (12 - %) (;) . (4.132)

N
. 001
Im {1, — — ] =exp(— . 4.133
Jm (12 2%) = exp-poy (4139

In the limit asN — oo,

As in Section 4.2, the exponential is interpreted by a Maclaurin expansion,
1 2 1 3
exp(—po1) = 1o — po1 + E(,O(Tl) - g(,oal) oo (4.134)

Noting that(o1)? = 15,
exp(—po1) = 1o coshp — a1 sinhp. (4.135)

Hence our finite Lorentz transformation is
x'0 cosho —sinh x9
[ p . (4.136)
x'1 —sinhp  coshp x1
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o1 has generated the representations of this pure Lorentz transformation. The quantities
coshp and sintp may be identified by considering the origin of the primed coordinate
systemx’! =0, orx! = vz. Substituting into Eq. (4.136), we have

0=x!coshp — x%sinhp. (4.137)

With x1 = vt andx® = ¢,
tanhp =8 = v
C

Note that theapidity o # v/c, except in the limit a® — 0. The rapidity is the additive
parameter for pure Lorentz transformations (“boosts”) along the same axis that corresponds
to angles for rotations about the same axis. Usirgtantf p = (costf p)~1,

coshp = (1 - ﬁz)_l/z =y, sinhp = By. (4.138)
The group of Lorentz transformations is not compact, because the limit of a sequence of
rapidities going to infinity is no longer an element of the group.

The preceding special case of the velocity parallel to one space axis is easy, but it illus-
trates the infinitesimal velocity-exponentiation-generator technique. Now, this exact tech-
nique may be applied to derive the Lorentz transformation for the relative velociof
parallel to any space axis. The matrices given by Eq. (4.136) for the case &b, form
a subgroup. The matrices in the general case do not. The product of two Lorentz transfor-
mation matrice$.(v1) andL(v2) yields a third Lorentz matrix,.(v3), if the two velocities
v1 andv, are parallel. The resultant velocitys, is related tov, andv; by the Einstein
velocity addition law, Exercise 4.5.3.V¥f andv2 are not parallel, no such simple relation
exists. Specifically, consider three reference frase®, andS”, with S andS’ related by
L(vq1) andS’ andS” related byl (v7). If the velocity of S” relative to the original systeifi
is vz, §” is not obtained fron$ by L(v3) = L(v2)L(v1). Rather, we find that

L(v3) = RL(v2)L(v1), (4.139)

whereR is a 3x 3 space rotation matrix embedded in our four-dimensional space—time.
With v1 and vz not parallel, the final systen$”, is rotated relative toS. This rotation

is the origin of the Thomas precession involved in spin-orbit coupling terms in atomic
and nuclear physics. Because of its presence, the pure Lorentz transfornhatiproy
themselves do not form a group.

Kinematics and Dynamics in Minkowski Space-Time

We have seen that the propagation of light determines the metric
222 0=r2_ %2

wherex* = (ct, r) is the coordinate four-vector. For a particle moving with velogitthe
Lorentz invariant infinitesimal version

cdt =./dxtdx, = \/czdt2 —dr? =dt\/c2 — V2

defines the invariant proper timeon its track. Because of time dilation in moving frames,
a proper-time clock rides with the particle (in its rest frame) and runs at the slowest possible
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rate compared to any other inertial frame (of an observer, for example). The four-velocity
of the particle can now be defined properly as
dx* M c \
—=Uu = N N
dt V22 S22

sou? = 1, and the four-momentup¥* = cmu' = (%, p) yields Einstein’s famous energy
relation

mc2

E=7=mc2+%vzﬂ:~~.

V1-v2/c2

A consequence af? = 1 and its physical significance is that the particle is on its mass
shell p? = m?c2.

Now we formulate Newton’s equation fosingle particle of massn in special relativity
as%“ = K*, with K* denoting the force four-vector, so its vector part of the equation

coincides with the usual form. Fer= 1, 2, 3 we usedt = dt/1 — v2/c? and find
1 dp F _K
J1=v2/2dt J1-v2ie2

determiningK in terms of the usual forcE. We need to findk °. We proceed by analogy
with the derivation of energy conservation, multiplying the force equation into the four-
velocity
du’  mdu?
mu, —

it ~2dr

becausa? = 1 = const. The other side of Newton’s equation yields

1 KO F-v/c
O=-u-K= — 5
c V1=v2/cz /1 \2/c2
S0k = —E¥¢ s related to the rate of work done by the force on the particle.
1-v2/c2

Now we turn to two-body collisions, in which energy—momentum conservation takes
the formp1 + p2 = p3 + pa, Wherepf‘ are the particle four-momenta. Because the scalar
product of any four-vector with itself is an invariant under Lorentz transformations, it is
convenient to define the Lorentz invariant energy squared(pi + p2)? = P2, where
PH is the total four-momentum, and to use units where the velocity of lightl. The
laboratory system (lab) is defined as the rest frame of the particle with four-momentum
p‘z‘ = (m2, 0) and the center of momentum frame (cms) by the total four-mome®ttis=
(E1+ E»,0). When the incident lab energ‘;“/f is given, then

s =pi+p5+2p1- p2=m]+m5+2moEf
is determined. Now, the cms energies of the four particles are obtained from scalar products

p1- P =E1(E1+ E2) = E14/s,
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o]
2 2 2
Eq= p1-(p1+p2) mi+pi-p2 mj—mz;+s
Vs Vs 25
£y P21t p2) mi+pi-p2  m3—mi+s
Vs Vs 2s
g PR (P3tpa) _ m3+ p3-pa _m3—mi+s
Vs Vs 2s
gy Pa(p3tpa) mi+p3-ps _mi—m5+s
) NG NG PN
by substituting
2p1-p2=s—m%—m%, 2p3'p4=s—m%—m§.
Thus, all cms energieg; depend only on the incident energy but not on the scattering
angle. For elastic scatteringys = m1, mgq = mp, S0 E3 = E1, E4 = E2. The Lorentz
invariant momentum transfer squared
t=(p1— p3)?=mi+m5—2p1-ps
depends linearly on the cosine of the scattering angle.
Example 4.5.1  KaoN DECAY AND PION PHOTOPRODUCTION THRESHOLD

Find the kinetic energies of the muon of mass 106 MeV and massless neutrino into which
a K meson of mass 494 MeV decays in its rest frame.

Conservation of energy and momentum gives = E,, + E, = \/s. Applying the rela-
tivistic kinematics described previously yields

Ey

2
:pu'(pu‘i‘pv):mp.'i'pu'Pv

mg

v putpy) P py

E,

mg mg

9

mg

Combining both results we obta;inl% = mﬁ +2pyu - pv, SO

m%—i—mi
2 2
m% —m
E,=T,= KZm—KM — 2356 MeV.

As another example, in the production of a neutral pion by an incident photon according to
y + p — 79+ p’ at threshold, the neutral pion and proton are created at rest in the cms.

Therefore,

s=(py +p)? =m5+2m,EL = (pr + p)° = (mz +mp)>,
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SOEL =m, + my = 1447 MeV. []
y T T 2mp,

Exercises

45.1 Two Lorentz transformations are carried out in successigralong thex-axis, then
vz along they-axis. Show that the resultant transformation (given by the product of
these two successive transformationahnot be put in the form of a single Lorentz
transformation.
Note The discrepancy corresponds to a rotation.

4.5.2  Rederive the Lorentz transformation, working entirely in the real speect, x2, x3)
with x0 = xg = cr. Show that the Lorentz transformation may be writletv) =
exp(po), with

0O —A —pu —v
-~ 0 0 O
- 0 0 O
-v 0 0 O

anda, u, v the direction cosines of the velocity

45.3 Using the matrix relation, Eq. (4.136), let the rapidity relate the Lorentz reference
frames(x’?, x’1) and (x%, x1). Let p relate (x”9, x”1) and (x'°, x’1). Finally, let p
relate(x”9, x”1) and (x%, x1). From p = p1 + p>» derive the Einstein velocity addition
law

v1 + v2
v=—"—.
1+ vlvg/c2

4.6 LORENTZ COVARIANCE OF MAXWELL'S EQUATIONS

If a physical law is to hold for all orientations of our (real) coordinates (that is, to be in-
variant under rotations), the terms of the equation must be covariant under rotations (Sec-
tions 1.2 and 2.6). This means that we write the physical laws in the mathematical form
scalar= scalar, vectog= vector, second-rank tensersecond-rank tensor, and so on. Sim-
ilarly, if a physical law is to hold for all inertial systems, the terms of the equation must be
covariant under Lorentz transformations.

Using Minkowski spacect = x%; x = x1, y = x2, z = x%), we have a four-dimensional
space with the metrig,,, (Eq. (4.128), Section 4.5). The Lorentz transformations are linear
in space and time in this four-dimensional real sp&ce.

19 group theoretic derivation of the Lorentz transformation in Minkowski space appears in Section 4.5. See also H. Goldstein,
Classical MechanicsCambridge, MA: Addison-Wesley (1951), Chapter 6. The metric equaion x2 = 0, independent of
reference frame, leads to the Lorentz transformations.
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Here we consider Maxwell's equations,

V x E:-%, (4.140a)
VxH= % + pv, (4.140b)
V.D=p, (4.140c)
V.B=0, (4.140d)
and the relations
D = o, B = uoH. (4.141)

The symbols have their usual meanings as given in Section 1.9. For simplicity we assume
vacuum ¢ = gg, 1L = (o).

We assume that Maxwell’s equations hold in all inertial systems; that is, Maxwell's
equations are consistent with special relativity. (The covariance of Maxwell's equations
under Lorentz transformations was actually shown by Lorentz and Poincaré before Ein-
stein proposed his theory of special relativity.) Our immediate goal is to rewrite Maxwell’s
equations as tensor equations in Minkowski space. This will make the Lorentz covariance
explicit, or manifest.

In terms of scalarg, and magnetic vector potentials, we may solvé® Eq. (4.140d)
and then (4.140a) by

B=V xA
IA
E=-7"~Vo. (4.142)

Equation (4.142) specifies the curl Af the divergence oA is still undefined (compare
Section 1.16). We may, and for future convenience we do, impose a further gauge restric-
tion on the vector potentia.:

V.-A+ Souoz—f =0. (4.143)
This is the Lorentz gauge relation. It will serve the purpose of uncoupling the differential
equations forA andg that follow. The potential®\ and¢ are not yet completely fixed.
The freedom remaining is the topic of Exercise 4.6.4.
Now we rewrite the Maxwell equations in terms of the potentiédlaand ¢. From
Egs. (4.140c) foiv - D, (4.141) and (4.142),

A
vigyv. AP (4.144)
ot £0
whereas Egs. (4.140b) f& x H and (4.142) and Eqg. (1.86c) of Chapter 1 yield
32A k1) 1 2 pV
— — 4+ —1{VV.-A—-V°Al=—. 4.145
ar2 Jat + Eo,lLo{ } €0 ( )

20Ccompare Section 1.13, especially Exercise 1.13.10.
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Using the Lorentz relation, Eq. (4.143), and the relatigng = 1/¢2, we obtain

1 92
v 2 5= oo

c2 912
1 92 0
Ry 4.146
|: 2 3t2j|(p £0 ( )
Now, the differential operator (see also Exercise 2.7.3)
1 92
2 2
—=-—-=-0°=-9"0
c2 912

is a four-dimensional Laplacian, usually called the d’Alembertian and also sometimes de-
noted byd. It is a scalar by construction (see Exercise 2.7.3).
For convenience we define

A A
Al= 25 =cgpA,,  A%= % =ceoA,,

Hoc Hoc (4.147)
A2=ﬁ—ch Ap=egp = A°
= e 0Ay, 0=¢éop =A".

If we further define a four-vector current density

oV . pv R PV . . .
Cx E]l, Ty 5]2, TZ E]S, /OEJO:]O, (4148)

then Eq. (4.146) may be written in the form
32AH = jH (4.149)

The wave equation (4.149) looks like a four-vector equation, but looks do not constitute
proof. To prove that it is a four-vector equation, we start by investigating the transformation
properties of the generalized curreit.

Since an electric charge elemefetis an invariant quantity, we have

de = pdxtdx?dx3, invariant (4.150)

We saw in Section 2.9 that the four-dimensional volume elemie?/x* dx? dx was also
invariant, a pseudoscalar. Comparing this result, Eq. (2.106), with Eq. (4.150), we see that
the charge density must transform the same way @s°, the zeroth component of a four-
dimensional vectaix*. We putp = j°, with j° now established as the zeroth component

of a four-vector. The other parts of Eq. (4.148) may be expanded as

1

.1 PUx P dxt .0 dx
¢ cdt =/ dx0’
Since we have just shown thift transforms agx?, this means that! transforms agx?.
With similar results forj2 and j3, We have;* transforming asix*, proving that;* is a
four-vector in Minkowski space.

Equation (4.149), which follows directly from Maxwell’'s equations, Eqgs. (4.140), is
assumed to hold in all Cartesian systems (all Lorentz frames). Then, by the quotient rule,
Section 2.8 A* is also a vector and Eq. (4.149) is a legitimate tensor equation.

(4.151)
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Now, working backward, Eg. (4.142) may be written

80Ej=—%—a—A(.), j=1,2,3,
ox=  ox/ (4.152)
I i, j, k) = cyclic (1,2, 3
Toc i ™ PR (i, j, k) =cyclic (1, 2, 3).
We define a new tensor,
dA*  DAM

HA* — A = — —

=F" =—F*  (u,1=0,1,23),
0x,  0xy

an antisymmetric second-rank tensor, sidéeis a vector. Written out explicitly,

0 E. E, E 0 —-E. —-E, -—E

Fu —E, 0 —c¢B; c¢B FHA E, 0 —cB; c¢B

€0 —E, ¢B, 0 —cB. |’ co |E, ¢B, 0 —cB,
—-E, —cB, c¢B, 0 E, —cBy, cBy 0

(4.153)

Notice that in our four-dimensional Minkowski spagendB are no longer vectors but to-
gether form a second-rank tensor. With this tensor we may write the two nonhomogeneous
Maxwell equations ((4.140b) and (4.140c)) combined as a tensor equation,
IFu
dx,

Ja- (4.154)

The left-hand side of Eq. (4.154) is a four-dimensional divergence of a tensor and therefore
a vector. This, of course, is equivalent to contracting a third-rank tehgbdt /dx, (com-

pare Exercises 2.7.1 and 2.7.2). The two homogeneous Maxwell equations — (4.140a) for
V x E and (4.140d) fovV - B— may be expressed in the tensor form

oF; aF: oF
28 031, of12

0 (4.155)
0x1 0x2 0x3
for EqQ. (4.140d) and three equations of the form
dF: d F JdF:
_EN SR, B (4.156)

dx2 0x3 d0xg
for Eq. (4.140a). (A second equation permutes 120, a third permutes 130.) Since

Y = —3Fl“‘ = (MY
8)()L
is a tensor (of third rank), Egs. (4.140a) and (4.140d) are given by the tensor equation
(Y Mk, (4.157)

From Eqs. (4.155) and (4.156) you will understand that the indicesandv are supposed
to be different. Actually Eq. (4.157) automatically reduces te O if any two indices
coincide. An alternate form of Eq. (4.157) appears in Exercise 4.6.14.
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Lorentz Transformation of E and B

The construction of the tensor equations ((4.154) and (4.157)) completes our initial goal of
rewriting Maxwell’s equations in tensor forAt.Now we exploit the tensor properties of
our four vectors and the tenssy,, .
For the Lorentz transformation corresponding to motion along: the)-axis with ve-
locity v, the “direction cosines” are given &y

0=y (x0 = pxd)

Py (s pr0). (4.158)
where
B=-
and
y=(1-p3)""2 (4.159)

Using the tensor transformation properties, we may calculate the electric and magnetic
fields in the moving system in terms of the values in the original reference frame. From
Egs. (2.66), (4.153), and (4.158) we obtain

E—_t (g _Yp
x 1_‘32 X CZY’

1 v
! - .
E, = N (Ey + Bx>, (4.160)
E.=E,
and
B—_ Y (p+2E
e J1- B2 x 2 )
1 v
/ — —_— —
B= i <By . Ex), (4.161)
B, =B,.

This coupling ofE andB is to be expected. Consider, for instance, the case of zero electric
field in the unprimed system

E.=E,=E,=0.

21Modern theories of quantum electrodynamics and elementary particles are often written in this “manifestly covariant” form
to guarantee consistency with special relativity. Conversely, the insistence on such tensor form has been a useful guide in the
construction of these theories.

225 group theoretic derivation of the Lorentz transformation appears in Section 4.5. See also Gdtstein, Chapter 6.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

288 Chapter 4 Group Theory

Clearly, there will be no force on a stationary charged particle. When the particle is in
motion with a small velocitw along thez-axis?3 an observer on the particle sees fields
(exerting a force on his charged particle) given by

whereB is a magnetic induction field in the unprimed system. These equations may be put
in vector form,

E'=vxB
or (4.162)
F=g¢gv x B,

which is usually taken as the operational definition of the magnetic induBtion

Electromagnetic Invariants

Finally, the tensor (or vector) properties allow us to construct a multitude of invariant
gquantities. A more important one is the scalar product of the two four-dimensional vectors
or four-vectors4, andj,. We have

v v v
Aty = —080Axp—x - ce?oAyu - csoAzu + eopp
C C C
=ego(pp —A-J), invariant (4.163)

with A the usual magnetic vector potential ahdhe ordinary current density. The first
term, pg, is the ordinary static electric coupling, with dimensions of energy per unit vol-
ume. Hence our newly constructed scalar invariant is an energy density. The dynamic in-
teraction of field and current is given by the prodActJ. This invariantA” j, appears in

the electromagnetic Lagrangians of Exercises 17.3.6 and 17.5.1.

Other possible electromagnetic invariants appear in Exercises 4.6.9 and 4.6.11.

The Lorentz group is the symmetry group of electrodynamics, of the electroweak gauge
theory, and of the strong interactions described by quantum chromodynamics: It governs
special relativity. The metric of Minkowski space—time is Lorentz invariant and expresses
the propagation of light; that is, the velocity of light is the same in all inertial frames.
Newton’s equations of motion are straightforward to extend to special relativity. The kine-
matics of two-body collisions are important applications of vector algebra in Minkowski
space—time.

23if the velocity is not small, a relativistic transformation of force is needed.
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Exercises

46.1 (&) Show that every four-vector in Minkowski space may be decomposed into an or-
dinary three-space vector and a three-space scalar. Exanylas;, (o, pv/c),
(e0@, ceoA), (E/c,p), (w/c, K).
Hint. Consider a rotation of the three-space coordinates with time fixed.
(b) Show that the converse of (a)rist true — every three-vector plus scalar does
form a Minkowski four-vector.

4.6.2 (&) Show that
9j
Mj,=9-j=—"=0.
Ju J 0xy
(b) Show how the previous tensor equation may be interpreted as a statement of con-
tinuity of charge and current in ordinary three-dimensional space and time.
(c) If this equation is known to hold in all Lorentz reference frames, why can we not

conclude thay, is a vector?

4.6.3 Write the Lorentz gauge condition (Eq. (4.143)) as a tensor equation in Minkowski
space.

46.4 A gauge transformation consists of varying the scalar poteptiahd the vector poten-
tial A1 according to the relation

dx
=p1+ -,
Y2 =¢1 ey
Ar=A1—Vyx.
The new functiony is required to satisfy the homogeneous wave equation
1 9%y
VZy - S —% =0.
X c2 912

Show the following:

(a) The Lorentz gauge relation is unchanged.

(b) The new potentials satisfy the same inhomogeneous wave equations as did the
original potentials.

(c) The fieldsE andB are unaltered.

The invariance of our electromagnetic theory under this transformation is callegk
invariance.
4.6.5 A charged particle, chargg massn, obeys the Lorentz covariant equation
dp" g
dt  egmc

F"p,,

where p” is the four-momentum vectaiE /c; pt, p2, p®), t is the proper timedr =
dt/1—v2/c2, a Lorentz scalar. Show that the explicit space—time forms are
dE dp

— =¢qV-E; — =q(E+vxB).
q g7 —4E+VxB)
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4.6.6 From the Lorentz transformation matrix elements (Eq. (4.158)) derive the Einstein ve-
locity addition law

, u—v or u' +v
= uzi’
1— (uv/c?) 14 (u'v/c?)

whereu = cdx3/dx% andu’ = cdx’3/dx'°.

Hint. If L12(v) is the matrix transforming system 1 into systenl2;3(x’) the matrix
transforming system 2 into systemL3;3(«) the matrix transforming system 1 directly
into system 3, theth13(x) = Los(u')L12(v). From this matrix relation extract the Ein-
stein velocity addition law.

u

4.6.7 The dual of a four-dimensional second-rank terBanay be defined b, where the
elements of the dual tensor are given by

1
B — Egl.lkl Bkl-
Show thatB transforms as

(@) asecond-rank tensor under rotations,
(b) a pseudotensor under inversions.
Note The tilde here doesot mean transpose.
4.6.8 Construct, the dual ofF, whereF is the electromagnetic tensor given by Eq. (4.153).
0 —c¢By —cBy —cB;

. ¢B, O E, -—E,
ANS. F*Y = gg
¢cBy, —E; 0 E,
¢B, E, —E, 0
This corresponds to
cB — —E,
E — ¢B.

This transformation, sometimes calledw@al transformation, leaves Maxwell’s equa-
tions in vacuum(p = 0) invariant.

4.6.9 Because the quadruple contraction of a fourth-rank pseudotensor and two second-rank
tensorse .o F* FY9 is clearly a pseudoscalar, evaluate it.

ANS. —8¢3cB - E.

4.6.10 (a) Ifan electromagnetic field is purely electric (or purely magnetic) in one particular
Lorentz frame, show thd& andB will be orthogonal in other Lorentz reference
systems.

(b) Conversely, iE andB are orthogonal in one particular Lorentz frame, there exists
a Lorentz reference system in whiEHor B) vanishes. Find that reference system.
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Show that?B2 — E2 is a Lorentz scalar.

Since (dx°, dx', dx?, dx3) is a four-vectordx, dx* is a scalar. Evaluate this scalar
for a moving particle in two different coordinate systems: (a) a coordinate system fixed
relative to you (lab system), and (b) a coordinate system moving with a moving particle
(velocity v relative to you). With the time increment labeléd in the particle system
anddt in the lab system, show that

dr =dt,/1—v2/c2.

T is the proper time of the particle, a Lorentz invariant quantity.

Expand the scalar expression
1 1
. F, F* L — i AHK
4e my + £0 Ju

in terms of the fields and potentials. The resulting expression is the Lagrangian density
used in Exercise 17.5.1.
Show that Eqg. (4.157) may be written

gFeb
Bxy

=0.

EaBys

4.7 DISCRETE GROUPS

Here we consider groups with a finite number of elements. In physics, groups usually ap-
pear as a set of operations that leave a system unchanged, invariant. This is an expression
of symmetry. Indeed, a symmetry may be defined as the invariance of the Hamiltonian of a
system under a group of transformations. Symmetry in this sense is important in classical
mechanics, but it becomes even more important and more profound in quantum mechan-
ics. In this section we investigate the symmetry properties of sets of objects (atoms in a
molecule or crystal). This provides additional illustrations of the group concepts of Sec-
tion 4.1 and leads directly to dihedral groups. The dihedral groups in turn open up the study
of the 32 crystallographic point groups and 230 space groups that are of such importance
in crystallography and solid-state physics. It might be noted that it was through the study
of crystal symmetries that the concepts of symmetry and group theory entered physics. In
physics, the abstract group conditions often take on direct physical meaning in terms of
transformations of vectors, spinors, and tensors.

As a simple, but not trivial, example of a finite group, consider the set#, ¢ that
combine according to the group multiplication tefi¢see Fig. 4.10). Clearly, the four
conditions of the definition of “group” are satisfied. The elements, ¢, and 1 are ab-
stract mathematical entities, completely unrestricted except for the multiplication table of
Fig. 4.10.

Now, for a specific representation of these group elements, let

1—-1, a—1i, b— —1, c— —Ii, (4.164)

24The order of the factors is row—columab = ¢ in the indicated previous example.
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1 a E b E c

Al aibie
aja b el
b | b c 1 a
c c 1 a b

FIGURE 4.10 Group
multiplication table.

combining by ordinary multiplication. Again, the four group conditions are satisfied, and
these four elements form a group. We label this grap Since the multiplication of
the group elements is commutative, the group is labetedmutative, or abelian. Our
group is also ayclic group, in that the elements may be written as successive powers of
one element, in this casé,n =0, 1, 2, 3. Note that in writing out Eq. (4.164) we have
selected a specific faithful representation for this group of four objéuts,

We recognize that the group elements, 11, —i may be interpreted as successivé 90
rotations in the complex plane. Then, from Eq. (3.74), we create the set of foRm2atri-
ces (replacing by —¢ in Eq. (3.74) to rotate a vector rather than rotate the coordinates):

COSp —Sing
R(p) = ( . ) )
sing  cosp
and forp =0, /2, 7, and 3r/2 we have

S
(20) ()

This set of four matrices forms a group, with the law of combination being matrix multipli-
cation. Here is a second faithful representation. By matrix multiplication one verifies that
this representation is also abelian and cyclic. Clearly, there is a one-to-one correspondence
of the two representations

lolsl a<i<A b<—-1<B c< —i < C. (4.166)

(4.165)

In the groupC4 the two representationd, i, —1, —i) and(1, A, B, C) are isomorphic.
In contrast to this, there is no such correspondence between either of these representa-
tions of groupC4 and another group of four objects, the vierergruppe (Exercise 3.2.7). The

Table 4.3

1 Vi Vo V3
1 1 Vi Vo V3
Vi| v 1 V3 Vs
Vo | Vo V3 1 \Z
Va | V3 Vo Vi 1
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vierergruppe has the multiplication table shown in Table 4.3. Confirming the lack of cor-
respondence between the group represented by—1, —i) or the matriceg1, A, B, C)

of Eq. (4.165), note that although the vierergruppe is abelian, it is not cyclic. The cyclic
groupCy4 and the vierergruppe are not isomorphic.

Classes and Character

Consider a group elementtransformed into a group elemenby a similarity transform
with respect tqg;, an element of the group

gixg T =)y. (4.167)

The group element is conjugateto x. A classis a set of mutually conjugate group ele-
ments. In general, this set of elements forming a class does not satisfy the group postulates
and is not a group. Indeed, the unit element 1, which is always in a class by itself, is the
only class that is also a subgroup. All members of a given class are equivalent, in the sense
that any one element is a similarity transform of any other element. Clearly, if a group is
abelian, every element is a class by itself. We find that

1. Every element of the original group belongs to one and only one class.
2. The number of elements in a class is a factor of the order of the group.

We get a possible physical interpretation of the concept of class by noting ke
similarity transform ofx. If g; represents a rotation of the coordinate system, thisrthe
same operation asbut relative to the new, related coordinates.

In Section 3.3 we saw that a real matrix transforms under rotation of the coordinates
by an orthogonal similarity transformation. Depending on the choice of reference frame,
essentially the same matrix may take on an infinity of different forms. Likewise, our group
representations may be put in an infinity of different forms by using unitary transforma-
tions. But each such transformed representation is isomorphic with the original. From Ex-
ercise 3.3.9 the trace of each element (each matrix of our representation) is invariant under
unitary transformations. Just because it is invariant, the trace (relabeleldatecter) as-
sumes a role of some importance in group theory, particularly in applications to solid-state
physics. Clearly, all members of a given class (in a given representation) have the same
character. Elements of different classes may have the same character, but elements with
different characters cannot be in the same class.

The concept of class is important (1) because of the trace or character and (2) because
the number of nonequivalent irreducible representations of a group is equal to the
number of classes.

Subgroups and Cosets

Frequently a subset of the group elements (including the unit eleientll by itself
satisfy the four group requirements and therefore is a group. Such a subset is calted a
group. Every group has two trivial subgroups: the unit element alone and the group itself.
The elements 1 and of the four-element groug, discussed earlier form a nontrivial

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

294 Chapter 4 Group Theory

subgroup. In Section 4.1 we consid&D(3), the (continuous) group of all rotations in or-
dinary space. The rotations about any single axis form a subgro8®¢38). Numerous
other examples of subgroups appear in the following sections.

Consider a subgroufl with elementg:; and a group elementnot in H. Thenxh; and
h;x are not in subgroupi. The sets generated by

xh;, i=12,... and hix, i=12,...

are calleccosets respectively the left and right cosets of subgrdiipvith respect tox. It

can be shown (assume the contrary and prove a contradiction) that the coset of a subgroup
has the same number of distinct elements as the subgroup. Extending this result we may
express the original grou@ as the sum off and cosets:

G=H+x1H+x2H+---.

Then the order of any subgroup is a divisor of the order of the group It is this result
that makes the concept of coset significant. In the next section the six-elementiggoup
(order 6) has subgroups of order 1, 2, and3.cannot (and does not) have subgroups of
order 4 or 5.

The similarity transform of a subgrou by a fixed group element notin H, x Hx ™1,
yields a subgroup — Exercise 4.7.8. If this new subgroup is identical ifbr all x, that
is,

xHx_le,

then H is called aninvariant, normal, or self-conjugate subgroup Such subgroups are
involved in the analysis of multiplets of atomic and nuclear spectra and the particles dis-
cussed in Section 4.2. All subgroups of a commutative (abelian) group are automatically
invariant.

Two Objects — Twofold Symmetry Axis

Consider first the two-dimensional system of two identical atoms incthelane at (1,
0) and (1, 0), Fig. 4.11. What rotatioR% can be carried out (keeping both atoms in the
xy-plane) that will leave this system invariant? The first candidate is, of course, the unit
operator 1. A rotation o radians about the-axis completes the list. So we have a rather
uninteresting group of two members (&1). Thez-axis is labeled a twofold symmetry
axis — corresponding to the two rotation angles, 0 anthat leave the system invariant.

Our system becomes more interesting in three dimensions. Now imagine a molecule
(or part of a crystal) with atoms of elemekit at +a on thex-axis, atoms of elemerk
at +£b on they-axis, and atoms of elemeftt at +¢ on thez-axis, as show in Fig. 4.12.
Clearly, each axis is now a twofold symmetry axis. UsRygr) to designate a rotation of
7 radians about the-axis, we may

25Here we deliberately exclude reflections and inversions. They must be brought in to develop the full set of 32 crystallographic
point groups.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

4.7 Discrete Groups 295

FIGURE 4.11 Diatomic molecules H, N2, O,
Cly.

Az

c

o ®
\ 4

~b

—C

FIGURE 4.12 Do symmetry.

set up a matrix representation of the rotations as in Section 3.3:

1 0 0 -1 0 0
R(m)=|0 -1 o0 |, Rym=[0 1 0],
0 0 -1 0 0 -1
(4.168)
-1 0 O 100
R(m)=| 0 -1 o], 1={0 1 0
0 0 1 00 1

These four elementfd, R, (), R, (), R; (;r)] form an abelian group, with the group mul-
tiplication table shown in Table 4.4.

The products shown in Table 4.4 can be obtained in either of two distinct ways:
(1) We may analyze the operations themselves —a rotatian about thex-axis fol-
lowed by a rotation ofr about they-axis is equivalent to a rotation af about thez-axis:

R, (m)Ry () =R (). (2) Alternatively, once a faithful representation is established, we
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Table 4.4
1 Rx () Ry(ﬂ) Rz ()
1 1 Ry Ry Ry
Ry () Rx 1 R; Ry
Ry(rr) Ry R; 1 Ry
R;(m) R; Ry Ry 1

can obtain the products by matrix multiplication. This is where the power of mathematics
is shown —when the system is too complex for a direct physical interpretation.
Comparison with Exercises 3.2.7, 4.7.2, and 4.7.3 shows that this group is the vier-
ergruppe. The matrices of Eq. (4.168) are isomorphic with those of Exercise 3.2.7. Also,
they are reducible, being diagonal. The subgroupghrR,), (1, Ry), and(1,R;). They
are invariant. It should be noted that a rotationmoébout they-axis and a rotation of
about thez-axis is equivalent to a rotation af about thex-axis: R, ()R, () = Ry (7).
In symmetry terms, ify andz are twofold symmetry axes, is automatically a twofold
symmetry axis.
This symmetry group® the vierergruppe, is often labeldab, the D signifying a dihe-
dral group and the subscript 2 signifying a twofold symmetry axis (and no higher symmetry
axis).

Three Objects — Threefold Symmetry Axis

Consider now three identical atoms at the vertices of an equilateral triangle, Fig. 4.13.
Rotations of thdriangle of 0, 27 /3, and 4r/3 leave the triangle invariant. In matrix form,
we havé’

10
1=Rz(o)= (0 1)

cos2r/3 —sin2n/3>_<—1/2 —ﬁ/z)

A=R,(27/3) = (

sin2r/3  cosZ/3 V3/2 -1)2
B=R.(41/3) = (:\ZZ fi z) . (4.169)

The z-axis is a threefold symmetry axi€l, A, B) form a cyclic group, a subgroup of the
complete six-element group that follows.

In the xy-plane there are three additional axes of symmetry —each atom (vertex) and
the geometric center defining an axis. Each of these is a twofold symmetry axis. These rota-
tions may most easily be described within our two-dimensional framework by introducing

267 symmetry group is a group of symmetry-preserving operations, that is, rotations, reflections, and inversignsnétric
group is the group of permutations efistinct objects — of ordes!.
27Note that here we are rotating ttreangle counterclockwise relative to fixed coordinates.
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4y

FIGURE 4.13 Symmetry operations on an
equilateral triangle.

reflections. The rotation of about theC- (or y-) axis, which means the interchanging of
(structureless) atomsandc, is just a reflection of the-axis:

Cerery= |+ ° 4.170
=Rc(n) = o 1) (4.170)

We may replace the rotation about tieaxis by a rotation of #/3 (about ourz-axis)
followed by a reflection of the-axis (x — —x) (Fig. 4.14):

D=Rp(7)=CB
-1 0\ /[ -1/2 /32
:( 0 1) <_J§/z —1/2>
_( 1/2 —J§/2>

4.171
V32 —1/2 ( )

D~ax1s

A A A
VAR AR

FIGURE 4.14 The triangle on the right is the triangle on
the left rotated 18Dabout theD-axis.D = CB.
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In a similar manner, the rotation af about theFE-axis, interchanging andb, is replaced
by a rotation of 2 /3(A) and then a reflectidf of the x-axis:

E=Rg(r)=CA
-1 0\ /-1/2 —-.3/2
=<o 1>(¢§/2 —1/2)
1/2  /3/2
:<J§/2 —1/2)'

The complete group multiplication table is

(4.172)

moOm®@> Rk
oOomePR @ > >
OmMmoO>»F W@
WrX>FEMmMOOO
>R, TmOMOO0
P m>00MmmMm

mooOmw>»r

Notice that each element of the group appears only once in each row and in each column, as
required by the rearrangement theorem, Exercise 4.7.4. Also, from the multiplication table
the group is not abelian. We have constructed a six-element group ararBeducible

matrix representation of it. The only other distinct six-element group is the cyclic group
[1,R,R? R R4 R5], with

(4.173)

R = eZn’i/G or R= 677-”.02/3 = ( 1/2 B \/§/2> .

V3/2 1/2

Our group[1, A, B, C, D, E] is labeledDs3 in crystallography, the dihedral group with a
threefold axis of symmetry. The three ax€s 0, and E) in the xy-plane automatically
become twofold symmetry axes. As a consequentel), (1, D), and (1, E) all form
two-element subgroups. None of these two-element subgrouRs isfinvariant.

A general and most important result for finite group& @flements is that

> nf=h, (4.174)
i

wheren; is the dimension of the matrices of thth irreducible representation. This equal-
ity, sometimes called thdimensionality theorem is very useful in establishing the irre-
ducible representations of a group. Here fay we have £ + 12 + 22 = 6 for our three
representations. No other irreducible representations of this symmetry group of three ob-
jects exist. (The other representations are the identitydahddepending upon whether a
reflection was involved.)

28Note that, as a consequence of these reflectiongCilet detD) = det(E) = —1. The rotationA andB, of course, have a
determinant oft-1.
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FIGURE 4.15 Ruthenocene.

Dihedral Groups, D,

A dihedral groupD,, with ann-fold symmetry axis impliea axes with angular separation

of 2 /n radiansy is a positive integer, but otherwise unrestricted. If we apply the symme-
try arguments tarystal lattices, thenn is limited to 1, 2, 3, 4, and 6. The requirement of
invariance of the crystal lattice under translations in the plane perpendicular tefoiek

axis excludes: =5, 7, and higher values. Try to cover a plane completely with identical
regular pentagons and with no overlappfidror individual molecules, this constraint does
not exist, although the examples with> 6 are raren =5 is a real possibility. As an ex-
ample, the symmetry group for ruthenoce(@s Hs)2Ru, illustrated in Fig. 4.15, i©5.30

Crystallographic Point and Space Groups

The dihedral groups just considered are examples of the crystallographic point groups.
A point group is composed of combinations of rotations and reflections (including inver-
sions) that will leave some crystal lattice unchanged. Limiting the operations to rotations
and reflections (including inversions) means that one point— the origin — rerfiegus

hence the ternpoint group. Including the cyclic groups, two cubic groups (tetrahedron
and octahedron symmetries), and the improper forms (involving reflections), we come to a
total of 32 crystallographic point groups.

29For Dg imagine a plane covered with regular hexagons and the axis of rotation through the geometric center of one of them.
30Actua||y the full technical label i9sy,, with & indicating invariance underraflection of the fivefold axis.
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If, to the rotation and reflection operations that produced the point groups, we add the
possibility of translations and still demand that some crystal lattice remain invariant, we
come to the space groups. There are 230 distinct space groups, a number that is appalling
except, possibly, to specialists in the field. For details (which can cover hundreds of pages)
see the Additional Readings.

Exercises

4.7.1 Show that the matricek, A, B, andC of Eq. (4.165) are reducible. Reduce them.
Note This means transformingy andC to diagonal form (by the same unitary transfor-
mation).

Hint. A andC are anti-Hermitian. Their eigenvectors will be orthogonal.

4.7.2 Possible operations on a crystal lattice inclugge(rotation byr), m (reflection), and
(inversion). These three operations combine as

2 2_ .2
AL =m =i“=1,
Ap-m=1, m-i=Ay,, and i Ay =m.
Show that the groupl, A, m, i) is isomorphic with the vierergruppe.

4.7.3 Four possible operations in the-plane are:

X —> X

1. nochang
y—=y

X —> —X

2. inversion
y— =y

X —> —X

3. reflection
y—>y

X —>X

4. reflection
y—= -y

(&) Show that these four operations form a group.
(b) Show that this group is isomorphic with the vierergruppe.
(c) Setupa Z 2 matrix representation.

4.7.4 Rearrangement theorem: Given a group of n distinct elen@nis b, c, ..., n), show

that the set of product&: ], a2, ab, ac . ..an) reproduces the distinct elements in a
new order.

4.7.5 Using the 2x 2 matrix representation of Exercise 3.2.7 for the vierergruppe,

(&) Show that there are four classes, each with one element.
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(b) Calculate the character (trace) of each class. Note that two different classes may
have the same character.

(c) Show that there are three two-element subgroups. (The unit element by itself al-
ways forms a subgroup.)

(d) For any one of the two-element subgroups show that the subgroup and a single
coset reproduce the original vierergruppe.

Note that subgroups, classes, and cosets are entirely different.
4.7.6 Using the 2x 2 matrix representation, Eq. (4.165),©4,

(a) Show that there are four classes, each with one element.

(b) Calculate the character (trace) of each class.

(c) Show that there is one two-element subgroup.
(d) Show that the subgroup and a single coset reproduce the original group.

4.7.7 Prove that the number of distinct elements in a coset of a subgroup is the same as the
number of elements in the subgroup.

4.7.8 A subgroupH has elements;. Let x be a fixed element of the original group and
not a member off. The transform

xhix_l, i=12,...

generates aonjugate subgroupx Hx~1. Show that this conjugate subgroup satisfies
each of the four group postulates and therefore is a group.

4.7.9 (a) A particular group is abelian. A second group is created by replagihy glfl
for each element in the original group. Show that the two groups are isomorphic.
Note This means showing thatdfb; = ¢;, thena; b1 = ¢; .
(b) Continuing part (a), if the two groups are isomorphic, show that each must be
abelian.

4.7.10 (a) Once you have a matrix representation of any group, a one-dimensional represen-
tation can be obtained by taking the determinants of the matrices. Show that the
multiplicative relations are preserved in this determinant representation.

(b) Use determinants to obtain a one-dimensional representativg. of

4.7.11 Explain how the relation
anz =h
i

applies to the vierergrupp@ = 4) and to the dihedral groups with 7 = 6.
4.7.12 Show that the subgrou@, A, B) of D3 is an invariant subgroup.

4.7.13 The groupD3 may be discussed agparmutation group of three objects. Matrii, for
instance, rotates vertex(originally in location 1) to the position formerly occupied by
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(location 3). Vertexx moves from location 2 to location 1, and so on. As a permutation
(abc) — (bca). In three dimensions

010 a b
0 0 1 bl=]c
1 0 O c a

(@) Develop analogous:3 3 representations for the other element®agf
(b) Reduce your X 3 representation to the2 2 representation of this section.

(This 3x 3 representation must be reducible or Eq. (4.174) would be violated.)
Note The actual reduction of a reducible representation may be awkward. It is often
easier to develop directly a new representation of the required dimension.

4.7.14 (a) The permutation group of four objed®s has 4 = 24 elements. Treating the four
elements of the cyclic grou@4 as permutations, set up ax44 matrix representa-
tion of C4. C4 that becomes a subgroup Bj.

(b) How do you know that this 4 4 matrix representation @4 must be reducible?
Note C4 is abelian and every abelian group/obbjects has only: one-dimensional
irreducible representations.

4.7.15 (a) Theobjectsabcd) are permuted t@dach). Write out a 4x 4 matrix representation
of this one permutation.
(b) Is the permutatioabdc) — (dacb) odd or even?
(c) Is this permutation a possible member of egroup? Why or why not?

4.7.16 The elements of the dihedral grodlp, may be written in the form
S*R4(27/n), 1=0,1
nw=01...,n—1,

whereR_ (2w /n) represents a rotation offZ n about the:-fold symmetry axis, whereas

S represents a rotation af about an axis through the center of the regular polygon and
one of its vertices.

For S = E show that this form may describe the matriége®8, C, andD of Ds.

Note The element®, andS are called the generators of this finite group. Similarly,
i is the generator of the group given by Eq. (4.164).

4.7.17 Show that the cyclic group ofi objects, C,,, may be represented by",m =
0,1,2,...,n— 1. Herer is a generator given by
r=exp(2ris/n).
The parameter takes on the values=1, 2, 3, ..., n, each value of yielding a differ-
ent one-dimensional (irreducible) representatio' pf

4.7.18 Develop theirreducible 2 matrix representation of the group of operations (rotations
and reflections) that transform a square into itself. Give the group multiplication table.
Note This is the symmetry group of a square and also the dihedral ghaufSee
Fig. 4.16.)
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AZ
B e R R »
ol -« ;
X
FIGURE 4.16
Square.
A

FIGURE 4.17 Hexagon.

4.7.19 The permutation group of four objects contaihs24 elements. From Exercise 4.7.18,
D4, the symmetry group for a square, has far fewer than 24 elements. Explain the rela-
tion betweenD,4 and the permutation group of four objects.

4.7.20 Aplane is covered with regular hexagons, as shown in Fig. 4.17.

(a) Determine the dihedral symmetry of an axis perpendicular to the plane through the
common vertex of three hexagond). That is, if the axis haga-fold symmetry,
show (with careful explanation) whatis. Write out the 2x 2 matrix describing
the minimum (nonzero) positive rotation of the array of hexagons that is a member
of your D,, group.

(b) Repeat part (a) for an axis perpendicular to the plane through the geometric center
of one hexagoriB).

4.7.21 In asimple cubic crystal, we might have identical atomsat(la, ma, na), with [, m,
andr taking on all integral values.

(&) Show that each Cartesian axis is a fourfold symmetry axis.

(b) The cubic group will consist of all operations (rotations, reflections, inversion) that
leave the simple cubic crystal invariant. From a consideration of the permutation

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

304 Chapter 4 Group Theory

X
¥ 1 A- -
1 1 | - -
A A A -
FIGURE 4.18

Multiplication table.

of the positive and negative coordinate axes, predict how many elements this cubic
group will contain.

4.7.22 (a) FromtheD3 multiplication table of Fig. 4.18 construct a similarity transform table
showingxyx~1, wherex andy each range over all six elementsj:
(b) Divide the elements ob3 into classes. Using the 2 2 matrix representation of
Egs. (4.169)—(4.172) note the trace (character) of each class.

4.8 DIFFERENTIAL FORMS

In Chapters 1 and 2 we adopted the view that, dimensions, a vector is antuple of real
numbers and that its components transform properly under changes of the coordinates. In
this section we start from the alternative view, in which a vector is thought of as a directed
line segment, an arrow. The point of the idea is this: Although the concept of a vector as
a line segment does not generalize to curved space—time (manifolds of differential geom-
etry), except by working in the flat tangent space requiring embedding in auxiliary extra
dimensions, Elie Cartan’s differential forms are natural in curved space—time and a very
powerful tool. Calculus can be based on differential forms, as Edwards has shown by his
classic textbook (see the Additional Readings). Cartan’s calculus leads to a remarkable
unification of concepts and theorems of vector analysis that is worth pursuing. In differ-
ential geometry and advanced analysis (on manifolds) the use of differential forms is now
widespread.

Cartan’s notion of vector is based on the one-to-one correspondence between the linear
spaces of displacement vectors and directional differential operators (components of the
gradient form a basis). A crucial advantage of the latter is that they can be generalized to
curved space—time. Moreover, describing vectors in terms of directional derivatives along
curves uniquely specifies the vector at a given point without the need to invoke coordinates.
Ultimately, since coordinates are needed to specify points, the Cartan formalism, though
an elegant mathematical tool for the efficient derivation of theorems on tensor analysis, has
in principle no advantage over the component formalism.

1-Forms
We definedx, dy, dz in three-dimensional Euclidean space as functions assigning to a

directed line segmenk Q from the pointP to the pointQ the corresponding change in
x,y,z. The symboldx represents “oriented length of the projection of a curve on the
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x-axis,” etc. Note thati/x, dy, dz can be, but need not be, infinitesimally small, dhely
must not be confused with the ordinary differentials that we associate with integrals
and differential quotients. A function of the type

Adx+ Bdy+Cdz, A, B, C real numbers (4.175)

is defined as aonstant 1-form.

Example 4.8.1  CONSTANT 1-FORM

For a constant forc& = (A, B, C), the work done along the displacement fratn=
(3,2,1) to Q = (4, 5, 6) is therefore given by

W=A(4—-3)+B5-2+C(6-1)=A+3B+5C.

If Fis a force field, then its rectangular componeAts, y, z), B(x, y,2),C(x, y,2)
will depend on the location and the (nonconstanfprin dW = F - dr corresponds to
the concept of work done against the force fiEl@l) alongdr on a space curve. A finite
amount of work

W = / [A(x,y,2)dx + B(x,y,2)dy + C(x,y,2)dz] (4.176)
c

involves the familiar line integral along an oriented cu@ewhere the 1-formdW de-
scribes the amount of work for small displacements (segments on thé€ pdththis light,
the integrandf (x) dx of an integralfab f(x)dx consisting of the functiory’ and of the
measuredx as the oriented length is here considered to be a 1-form. The value of the
integral is obtained from the ordinary line integral. [ |

2-Forms

Consider a unit flow of mass in thedirection, that is, a flow in the direction of increasing
z so that a unit mass crosses a unit square ofrthlane in unit time. The orientation
symbolized by the sequence of points in Fig. 4.19,

0,000~ (1,000~ (1,1,00~ (0,1,00 — (0,0,0),

will be calledcounterclockwise as usual. A unit flow in the-direction is defined by the
functiondx dy®! assigning to oriented rectangles in space the oriented area of their projec-
tions on thexy-plane. Similarly, a unit flow in the-direction is described byy dz and a

unit flow in the y-direction bydz dx. The reverse ordet]z dx, is dictated by the orienta-

tion convention, andz dx = —dx dz by definition. This antisymmetry is consistent with

the cross product of two vectors representing oriented areas in Euclidean space. This no-
tion generalizes to polygons and curved differentiable surfaces approximated by polygons
and volumes.

3lMany authors denote this wedge productdasa dy with dy A dx = —dx A dy. Note that the produaix dy = dy dx for
ordinary differentials.
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1 - (1,1,0)
Y A
0 > >
1 x
z
FIGURE 4.19
Counterclockwise-oriented
rectangle.

Example 4.8.2  MAGNETIC FLUX ACROSS AN ORIENTED SURFACE

If B=(A, B, C) is a constant magnetic induction, then the consafiorm
Adydz+ Bdzdx +Cdxdy

describes the magnetic flux across an oriented rectandaslf magnetic induction field
varying across a surfacg then the flux

<I>=/[Bx(r)dydz+By(r)dzdx+BZ(r)dxdy] (4.177)
S

across the oriented surfagenvolves the familiar (Riemann) integration over approximat-
ing small oriented rectangles from whiéhis pieced together. |

The definition offa) relies on decomposing =  _; w;, where the differential forms;
are each nonzero only in a small patch of the surfatieat covers the surface. Then it can
be shown tha} ", [ w; converges, as the patches become smaller and more numerous, to
the limit [ w, which is independent of these decompositions. For more details and proofs,
we refer the reader to Edwards in the Additional Readings.

3-Forms

A 3-form dx dy dz represents an oriented volume. For example, the determinant of three
vectors in Euclidean space changes sign if we reverse the order of two vectors. The
determinant measures the oriented volume spanned by the three vectors. In particular,
[y p(x.y.2)dxdydz represents the total charge inside the voluvé p is the charge
density. Higher-dimensional differential forms in higher-dimensional spaces are defined
similarly and are called-forms, withk =0, 1, 2,....

If a 3-form

o = A(x1, x2, x3)dx1dxodx3 = A’ (x1, x5, x3) dx] dxydxg (4.178)
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on a 3-dimensional manifold is expressed in terms of new coordinates, then there is a one-
to-one, differentiable map, = x/(x1, x2, x3) between these coordinates with Jacobian

d(x7, X5, X3)
©9(x1, x2,x3)
andA = A’J = A’ so that

/w:/ Adxldxzdx3=/ A'dx}dx5dxs. (4.179)
14 v v/

This statement spells out the parameter independence of integrals over differential forms,
since parameterizations are essentially arbitrary. The rules governing integration of differ-
ential forms are defined on manifolds. These are continuous if we can move continuously
(actually we assume them differentiable) from point to point, oriented if the orientation of
curves generalizes to surfaces and volumes up to the dimension of the whole manifold. The
rules on differential forms are:

o If w=aw1+d v}, witha,a’ real numbers, theficw = a [(w1+4d’ [}, whereS is
a compact, oriented, continuous manifold with boundary.

o Ifthe orientation is reversed, then the integfal» changes sign.

Exterior Derivative

We now introduce thexterior derivative d of a functionf, a O-form:

f——fd +—fd +—fd _%d Xi, (4.180)
0z 0x;
generating a 1-fornw; = df, the d|fferent|al of f (or exterior derivative), the gradient
in standard vector analysis. Upon summing over the coordinates, we have used and will
continue to use Einstein’s summation convention. Applying the exterior derivatigea
1-form we define

d(Adx + Bdy+ Cdz)=dAdx +dBdy+dCdz (4.181)

with functionsA, B, C. This definition in conjunction withlf as just given ties vectors
to differential operators; = a . Similarly, we extend! to k-forms. However, applying
d twice gives zeroddf =0, because

d(df) =d fd —i—dafd

2 2 52 2
=<udx+ % dy)dx—i—( fdx—l—udy)d

9x2 dx dy 3yd dy2
32 32

_ (LT geay—o. (4.182)
dydx  dxay

This follows from the fact that in mixed partial derivatives their order does not matter
provided all functions are sufficiently differentiable. Similarly we can slki@i, = O for
a 1l-formwy, etc.
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The rules governing differential forms, withy, denoting a-form, that we have used so
far are
e dxdx=0=dydy=dzdz,dx?=0;
o dxdy=—dydx,dx;jdx;j=—dxjdx;, i #j,
e dxidxz---dxy is totally antisymmetric in thex;,i =1, 2, ..., k.
o df=qgldx;
o d(wr + Q) =dwy +d2, linearity;
e ddw, =0.

Now we apply the exterior derivativé to products of differential forms, starting with
functions (0-forms). We have

d 0 d
are) = "I gy = <f% + %g) dx=fdg+dfs.  (4183)

If w1 = g_)idxi is a 1-form andf is a function, then

atrop =a(ryan) =a( 73 ) ax

0x;
2(f o af 9 92
— ( dxl)dxj dxi — (_‘f_g + g )dx] dxl'
axj' 3)6./' 3)6,' 8)6,' 3)Cj
=dfw1+ fdws, (4.184)

as expected. But b = aanjde is another 1-form, then

b 8 dg 8
d(w10) = d<—gdx,~ —fdxj> - d(—g —f> dx; dx;

ax,- ax]' Bxi ax]'
b(35)
= #dxk dx;dx;
3xk ’
82 3 3 82
= £ dxy dx; —fdxj — —gdxi 7fdxk dx;
0X; 0Xx 0x; 0x; 0xj dxy
=dwiw] — w1dw]. (4.185)

This proof is valid for more general 1-forms = f; dx; with functions f;. In general,
therefore, we define far-forms:

d(opwy) = (dop) o), + (=D wr(dw)). (4.186)

In general, the exterior derivative ofkaform is a(k + 1)-form.
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Example 4.8.3  POTENTIAL ENERGY

As an application in two dimensions (for simplicity), consider the potemtia), a O-form,
anddV, its exterior derivative. Integrating along an oriented pat fromr tory gives

V(ra) — V() = de /(—d +—d> /VV~dr, (4.187)

where the last integral is the standard formula for the potential energy difference that forms
part of the energy conservation theorem. The path and parameterization independence are
manifest in this special case. |

Pullbacks

If a linear mapL; from theuv-plane to thexy-plane has the form
x=au+bv+c, y=eu+ fv+g, (4.188)

oriented polygons in thev-plane are mapped onto similar polygons in theplane, pro-
vided the determinantf — be of the mapL; is nonzero. The 2-form

dxdy = (adu+bdv)(edu + fdv) = (af —be)dudv (4.189)

can be pulled back from they- to theuv-plane. That is to say, an integral over a simply
connected surfacg& becomes

/ dxdy = (af — be) / dudv, (4.190)
L2(8) S

and(af — be) du dv is the pullback oflx dy, opposite to the direction of the mdp from
theuv-plane to thery-plane. Of course, the determinant — be of the mapL; is simply
the Jacobian, generated without effort by the differential forms in Eq. (4.189).
Similarly, a linear mapCs from theu1uous-space to the1xoxz-space
Xi =ajjuj+ b;, i=123 (4.191)
automatically generates its Jacobian from the 3-form
3

3 3
dxi1dxydx3 = (Zalf duj> <Za2j duj> <Za3j duj)
j=1 j=1

j=1
= (a11a22a33 — ai2a21a33 % - - - )dui duz dug
ai1 aiz ais
=det| a1 azr az3 | duiduzdus. (4.192)
as1 az2 ass

Thus, differential forms generate the rules governing determinants.

Given two linear maps in a row, it is straightforward to prove that the pullback under
a composed map is the pullback of the pullback. This theorem is the differential-forms
analog of matrix multiplication.
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Let us now consider a curv€ defined by a parameterin contrast to a curve defined
by an equation. For example, the cirgi@ost, sint); 0 < ¢t < 2z} is a parameterization
by ¢, whereas the circlé(x, y); x2 + y2 = 1} is a definition by an equation. Then the line
integral

T dx dy
/[A(x,y)dx+B(x,y)dy]=/ |:A—+B i|dt (4.193)
C t dt dt
for continuous functiond\, B, dx/dt, dy/dr becomes a one-dimensional integral over the
oriented interval; <t <ty. Clearly, the 1—forrT[Aj’l—’; + B%]dl on thez-line is obtained
from the 1-formAdx 4+ Bdy on thexy-plane via the map = x(¢), y = y(¢) from the
t-line to the curveC in thexy-plane. The 1-formiA G dx 4 Z—);]dl is called the pullback of
the 1-formA dx + B dy under the map = x(¢), y = y(t) Using pullbacks we can show
that integrals over 1-forms are independent of the parameterization of the path.

In this sense, the differential quotieﬁt can be considered as the coefficien/ofin the
pullback ofdy under the functiory = f(x), ordy = f/(x) dx. This concept of pullback
readily generalizes to maps in three or more dimensions akdfdoms withk > 1. In
particular, the chain rule can be seen to be a pullback: If

vi = fi(x1,x2,...,%,), i=12,...,] and

2 =¢&;(y1, ¥2, ..., YD), j=12....m (4.194)

are differentiable maps froR” — R/ andR! — R”, then the composed m&' — R™
is differentiable and the pullback of artyform under the composed map is equal to the
pullback of the pullback. This theorem is useful for establishing that integralafmns
are parameter independent.

Similarly, we define the differentialf as the pullback of the 1-formiz under the func-
tionz = f(x, y):

) 9
dz=df = %d +a—fd (4.195)

Example 4.8.4  stoxes’ THEOREM
As another application let us first sketch the standard derivation of the simplest version

of Stokes’ theorem for a rectangbe= [a < x < b, ¢ <y < d] oriented counterclockwise,
with 4.5 its boundary

b d a c
(Adx—i—de):/ A(x,c)dx—i—/ B(b,y)dy—i—/ A(x,d)dx—i—/ B(a, y)dy
BN a c b d
d b
=/ [B(b y) — B(a,y)]dy—f [A(x,d)—A(x,c)]dx

b daA
//—dxdy /‘/Edydx
c

oB 0A
- <_ - _> dxdy. (4.196)
S 0x 8y

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

4.8 Differential Forms 311

which holds for any simply connected surfag¢hat can be pieced together by rectangles.
Now we demonstrate the use of differential forms to obtain the same theorem (again in
two dimensions for simplicity):

d(Adx + Bdy)=dAdx +dBdy
0A 0A oB 0B aB 0A
=|—dx+ —dy|dx+| —dx+ —dy|dy=|—— — )dxdy,
dy ax dy ax Ay
(4.197)

using the rules highlighted earlier. Integrating over a surfa@ed its boundary s, re-

spectively, we obtain
dB 0A
<— — —) dxdy. (4.198)
ax ay

Here contributions to the left-hand integral from inner boundaries cancel as usual because
they are oriented in opposite directions on adjacent rectangles. For each oriented inner
rectangle that makes up the simply connected suave have used,

/ ddx =/ dx =0. (4.199)
R aR

Note that the exterior derivative automatically generateg tt@mponent of the curl.
In three dimensions, Stokes’ theorem derives from the differential-form identity involv-
ing the vector potentiah and magnetic inductioB =V x A,

d(Axdx +Aydy+ A, dz) =dAxdx +dAydy +dA;dz

(Adx—i—de):/d(Adx—i—de):/
as S s

dA dA dA
= Tdx + —dy+ —dz )dx +---
ox ay 0z
0A dA, A d0A dA, 0A
=(— - =2 )dydz+ T 2 )dzdx + | —2 — —= ) dxdy,
ay 0z 0z ox ax ay

(4.200)

generating all components of the curl in three-dimensional space. This identity is integrated
over each oriented rectangle that makes up the simply connected séirffabéch has no

holes, that is, where every curve contracts to a point of the surface) and then is summed
over all adjacent rectangles to yield the magnetic flux acspss

D= /[Bxdydz—i—Bydzdx—i—Bzdxdy]
S

= | [Avdx+A,dy+A.dz], (4.201)
aS

or, in the standard notation of vector analysis (Stokes’ theorem, Chapter 1),

/B-da:/(VxA)~da=/ A-dr. (4.202)
S S as
|
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Example 4.8.5 Gauss’ THEOREM

Consider Gauss’ law, Section 1.14. We integrate the electric depsiiy%V - E over
the volume of a single parallelepipdti=[a <x <b,c <y <d,e <z < f] oriented by
dx dydz (right-handed), the side = b of V is oriented bydy dz (counterclockwise, as
seen fromy > b), and so on. Using

IE,

b
Ex(b,y,z)—Ex(a,y,z)zf —dXx, (4.203)
a 0x

we have, in the notation of differential forms, summing over all adjacent parallelepipeds
that make up the volumg,

oE
/ E.dydz= / “dxdydz. (4.204)
oV v ox
Integrating the electric flux (2-form) identity
d(Eydydz+ Eydzdx + E;dxdy) =dExdydz+dE,dzdx +dE dxdy

dE, JE, JE,
( ax + ay + 0z
across the simply connected surfadéwe have Gauss’ theorem,
dE, JE, JE,

— + — )dxdyd 4.206
ox 8y+8z)xyz’( )

) dxdydz (4.205)

/ (Exdde+Evdzdx+Ezdxdy):/<
3V i V

or, in standard notation of vector analysis,

/ E-da:/V.Ed?’r:i. (4.207)
vV % €0

These examples are different cases of a single theorem on differential forms. To explain
why, let us begin with some terminology, a preliminatgfinition of a differentiable
manifold M: It is a collection of pointsifi-tuples of real numbers) that are smoothly (that
is, differentiably) connected with each other so that the neighborhood of each point looks
like a simply connected piece of andimensional Cartesian space “close enough” around
the point and containing it. Heres, which stays constant from point to point, is called the
dimension of the manifold. Examples are thedimensional Euclidean spa¥* and the
m-dimensional sphere

m+1
Sm=|:(x1,...,xm+1); Z(xl)2=11|.

i=1
Any surface with sharp edges, corners, or kinks is not a manifold in our sense, that
is, is not differentiable. In differential geometry, all movements, such as translation and
parallel displacement, are local, that is, are defined infinitesimally. If we apply the exterior

derivatived to a functionf(xl, ...,x™) onM, we generate basic 1-forms:
af
df = —
f d

Xi

dx’, (4.208)
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wherex! (P) are coordinate functions. As before we hai(df) = 0 because

9 . 92 o
ddf)=d —f dx' = 4de dx'
dxt ox/J oxt
92 92 o
=Z< A .f.>dxfdx’=0 (4.209)
I dxJ ox? dxt dx/J

because the order of derivatives does not matter. Any 1-form is a linear combination
> wi dx" with functionsw; .

Generalized Stokes’ Theorem on Differential Forms

Let w be a continuougk — 1)-form in x1x2 - - - x,,-space defined everywhere on a compact,
oriented, differentiablé-dimensional manifold with boundaryd S in x1x> - - - x,,-space.

Then
/ a):/da). (4.210)
as S

do=d(Adx1dxy---dxp_1+---)=dAdx1dxa---dxp_1+---. (4.211)

Here

The potential energy in Example 4.8.3 given this theorem for the potential/, a 0-form;
Stokes’ theorem in Example 4.8.4 is this theorem for the vector potential 1X0rry dx;
(for Euclidean spaca#sx’ = dx;); and Gauss’ theorem in Example 4.8.5 is Stokes’ theorem
for the electric flux 2-form in three-dimensional Euclidean space.

The method of integration by parts can be generalized to differential forms using

Eq. (4.186):
/da)]_ wr = / wiwr — (—:I.)k1 / w1dws. (4.212)
s as s
This is proved by integrating the identity
d(wiw) = dwi wz + (—D)F w1 dwy, (4.213)

with the integrated termig d (w1w2) = ;¢ w102.
Our next goal is to cast Sections 2.10 and 2.11 in the language of differential forms. So
far we have worked in two- or three-dimensional Euclidean space.

Example 4.8.6  RIEMANN MANIFOLD

Let us look at the curved Riemann space—time of Sections 2.10-2.11 and reformulate
some of this tensor analysis in curved spaces in the language of differential forms. Re-
call that dishinguishing between upper and lower indices is important here. The getric

in Eqg. (2.123) can be written in terms of tangent vectors, Eq. (2.114), as follows:

ax! 9x

= a7 50T (4.214)

8ij
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where the sum over the indéxdenotes the inner product of the tangent vectors. (Here
we continue to use Einstein’s summation convention over repeated indices. As before, the
metric tensor is used to raise and lower indices.) The key concept of connection involves
the Christoffel symbols, which we address first. The exterior derivative of a tangent vector
can be expanded in terms of the basis of tangent vectors (compare Eq. (2.131a)),

ax! ax!
d(a—qi> =Tk 7" —dq’, (4.215)
thus introducing the Christoffel symbols of the second kind. Applyirig Eq. (4.214) we
obtain
3gij axi\ ax;  oax! [
dgii dq" =d - | — -d| — 4.216
8ij = agm (8q’ g +-3ql g7 ( )

ax; x! ax! ax;
_ < k. I Lk — Jdq" = (Timgrj + T jmgin)dq™.

ok agi | " agi agk

Comparing the coefficients afy™ yields

3 ..
3f]’,{1 =%k + T it (4.217)
Using the Christoffel symbol of the first kind,
[ij, m] = gemT"ij, (4.218)
we can rewrite Eq. (4.217) as
ad
i im, j1+ Ljm, i1, (4.219)
ag™
which corresponds to Eq. (2.136) and implies Eq. (2.137). We check that
1/0g; ag; agij
[ij,m] = ( Bm . Z8im _ 280 (4.220)
2\ 9q/ aq’ ag™

is the unique solution of Eq. (4.219) and that
gim  0&jm 381';)

dqJ g g™
follows. [ |

1
Iy =g" ij, m = Sg"* < (4.221)

Hodge * Operator

The differentialsdx’, i = 1,2,...,m, form a basis of a vector space that is (seen to be)
dual to the derivatives; = Bi, :

{(a1, a2, a3)} is dual to the vector space of planes (linear functigh three-dimensional
Euclidean spac®* = { f = ayx1 + axx2 + aszx3z — d = 0}. The gradient

Vi <3f af of

dx1’ 0x2 dx3

) = (a1, az, a3) (4.222)
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provides a one-to-one, differentiable map frothto V. Such dual relationships are gener-
alized by the Hodgé operator, based on the Levi-Civita symbol of Section 2.9.

Let the unit vector; be an oriented orthonormal basis of three-dimensional Euclidean
space. Then the Hoddeof scalars is defined by the basis element

1 ..
x1= 55”"9(,-?( iR = KaRoRa, (4.223)

which corresponds t@&1 x X2) - X3 in standard vector notation. HekeX ;X is the totally
antisymmetric exterior product of the unit vectors that corresponds;te X;) - Xi in
standard vector notation. For vectatss defined for the basis of unit vectors as

N 1 e
W Esikajxk. (4.224)
In particular,
*)A(]_ = )?2)A(3, *)A(z = )A(3)A(1, *§(3 = )A(l)?z. (4.225)

For oriented area$,is defined on basis area elements as

*()’Zl)A(j) = Ekij)’\(k, (4226)
S0
oo\ _ 3 o _ o oo .2 o o
*(X1X2) = £712X3 = X3, *(X1X3) = £13%X2 = —Xo,
*(XoX3) = 81235(1 =X1. (4.227)
For volumes? is defined as
*(X1X2X3) = e123= 1. (4.228)

Example 4.8.7  Cross ProbUCT OF VECTORS

The exterior product of two vectors
3 3
a=>) d'%, b= b (4.229)
i=1 i=1

is given by
3 3 . o
ab= (Zalf(i)<2b’f<j) =Y (a'b —a/b)%%;, (4.230)
i=1 j=1 i<j
whereas Eq. (4.224) implies that
x(@b)=axb. (4.231)
|

Next, let us analyze Sections 2.1-2.2 on curvilinear coordinates in the language of dif-
ferential forms.
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Example 4.8.8  LAPLACIAN IN ORTHOGONAL COORDINATES

Consider orthogonal coordinates where the metric (Eqg. (2.5)) leads to length elements
dsi = h;dq;, not summed (4.232)
Here thedg; are ordinary differentials. The 1-forms associated with the directipase
e = hidg;, not summed (4.233)
Then the gradient is defined by the 1-form

df—% ql—<1 af)s . (4.234)
agi hi 9q;

We apply the hodge star operatordg, generating the 2-form
19 ; 19 19 19
*df:( f)*s’ < f)s 3 +<——f>8381+<——f>8182
hi 9gi h19q1 h2 9g2 h3 9g3

hohsz 9 hihz hiho 9
( 273 f>dqqu3 <ﬁ—f)dqsdq1+<¥—f>dq1dqz

h1 g1 hy 9q2 hz dq
(4.235)
Applying another exterior derivatiwé, we get the Laplacian
0 [ hoh3 0 0 (hih3 0
d(xdf) = ( / )dqldqqu3+—(——f) da>dq1dgrdgs
3(11 h1 aq 3(1 ho 3(12
3 [ hiho af)
— dgzdqgrdgrdgs
aC[s( h3z dq 3144244
_ 1 [ 0 <h2h3 af ) n d <h1h3 af ) n d (hlhz af >i|
hihoh3 | dg1\ hi 9dq1 dg2 \ h2 0q2 dg3\ h3 0g3
222 =V2fdgidgrdgs. (4.236)

Dividing by the volume element gives Eq. (2.22). Recall that the volume elertentsd
andels2¢3 must be equal becauseanddx, dy, dz are orthonormal 1-forms and the map
from thexyz to theg; coordinates is one-to-one. |

Example 4.8.9  MAXWELLS EQUATIONS

We now work in four-dimensional Minkowski space, the homogeneous, flat space—time of
special relativity, to discuss classical electrodynamics in terms of differential forms. We
start by introducing the electromagnetic field 2-form (field tensor in standard relativistic
notation):

F=—E.dtdx — Eydtdy — E;dtdz+ Bydydz+ Bydzdx + B;dxdy

1
= EFMV dx™* dxv, (4.237)
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which contains the electric 1-for8 = E, dx + E,dy + E;dz and the magnetic flux
2-form. Here, terms with 1-forms in opposite order have been combined. (For Eq. (4.237)
to be valid, the magnetic induction is in unitsqfthat is, B; — ¢ B;, with ¢ the velocity of
light; or we work in units where = 1. Also, F is in units of J/gq, the dielectric constant
of the vacuum. Moreover, the vector potential is definedigs= so¢, with the nonstatic
electric potentialp andAl = Ac . see Section 4.6 for more details.) The field 2-form
F encompasses Faraday’s induction law that a moving charge is acted on by magnetic
forces.

Applying the exterior derivative generates Maxwell's homogeneous equations auto-
matically fromF;

IE, aE dE IE
dF = ( el )dtdx - (—ydx + —ydz) dtdy
9z 0x 0z

dy
O v+ 2By Y araz + (2B dyd
— X
ox 3y T\ yaz
dB, B, B, B,
dzd : dz ) dxd
+<a 3y )Zx+<az oz )xy
dE, OE, 9 E, 0E. 0B,
=(- — 4 = \drdxd drdxd
(8y+8x+8> y+< L a) T
_9E, 0E. 0B,
+ £ dtdydz =0 (4.238)
0z ay at

which, in standard notation of vector analysis, takes the familiar vector form of Maxwell's
homogeneous equations,

9B
VxE+-=0. (4.239)

Sinced F =0, that is, there is no driving term so théitis closed, there must be a 1-form
w=A,dx" sothatF = dw. Now,

do=10,A,dx"dx", (4.240)

which, in standard notation, leads to the conventional relativistic form of the electromag-
netic field tensor,

Fup=0,A, — 3,A,. (4.241)
Maxwell's homogeneous equatior&l’ = 0, are thus equivalent @&’ F,, = 0.
In order to derive similarly the inhomogeneous Maxwell's equations, we introduce the
dual electromagnetic field tensor
~ 1
FHY = Eglmﬂ Fup, (4.242)

and, in terms of differential forms,

1
*F = #(Fydx"dx") = Fy, * (dx" dx") = > Fuve!” ap dx* dxP. (4.243)
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Applying the exterior derivative yields
1
d(xF) = ngaﬂ(ay Fu)dx? dx® dxP, (4.244)

the left-hand side of Maxwell's inhomogeneous equations, a 3-form. Its driving term is the
dual of the electric current density, a 3-form:
) = Jo (%dx®) = Jue® yop dx" dx” dx*
=pdxdydz — Jydtdydz — Jydtdzdx — J;dtdx dy. (4.245)
Altogether Maxwell’s inhomogeneous equations take the elegant form
d(xF)=xJ. (4.246)
|

The differential-form framework has brought considerable unification to vector algebra
and to tensor analysis on manifolds more generally, such as uniting Stokes’ and Gauss
theorems and providing an elegant reformulation of Maxwell's equations and an efficient
derivation of the Laplacian in curved orthogonal coordinates, among others.

Exercises
4.8.1 Evaluate the 1-forma dx + 2bdy + 4c dz on the line segmen® Q, with P = (3,5, 7),
0=(7,53).

4.8.2 If the force field is constant and moving a particle from the originZd, 0) requiresa
units of work, from(—1, —1, 0) to (—1, 1, 0) takesb units of work, and from(0, 0, 4)
to (0, 0, 5) ¢ units of work, find the 1-form of the work.

4.8.3 Evaluate the flow described by the 2-fothndy + 2dy dz + 3dz dx across the oriented
triangle P Q R with corners at

P=(3a 114)a Q:(_Z’ 114)’ R=(114s 1)'
4.8.4 Are the points, in this order,
0,1, 1), (3,-1,-2), 4,2,-2), (-1,0,1)

coplanar, or do they form an oriented volume (right-handed or left-handed)?

/ H-dr:/VxH-da~1,
as N

in differential form notation.

485 Write Oersted’s law,

4.8.6 Describe the electric field by the 1-forBy dx + E> dy + E3dz and the magnetic induc-
tion by the 2-formBy dy dz + B2 dz dx + Bzdx dy. Then formulate Faraday’s induction
law in terms of these forms.
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4.8.7 Evaluate the 1-form
xdy ydx
x24y2  x24y2
on the unit circle about the origin oriented counterclockwise.

4.8.8 Find the pullback oflx dz underx =ucosv, y =u — v, z = uSinv.

4.8.9 Find the pullback of the 2-formdy dz + dz dx + dx dy under the map = sinf cosgp,
y =siné sing, z = cosh.

4.8.10 Parameterize the surface obtained by rotating the circle2)? + z2 =1, y = 0, about
thez-axis in a counterclockwise orientation, as seen from outside.

4.8.11 A 1-form Adx + Bdy is defined aslosedif % = 28 Itis calledexactif there is a
function f so thatg—f; =A andg—f = B. Determine which of the following 1-forms are
closed, or exact, and find the corresponding functigrier those that are exact:

vdx +xdy
x2+y?
ydx xdy
x2 + y2 x2 + yZ ’

ydx +xdy, . [Iny) + 1]dx + Zay,
y

f(@dzwithz =x +iy.

4.8.12  Show that}"_; x2 = a2 defines a differentiable manifold of dimensiéh=n — 1 if
a#0andD =0if a=0.

4.8.13 Show that the set of orthogonal>22 matrices form a differentiable manifold, and
determine its dimension.

4.8.14 Determine the value of the 2-formdydz + Bdzdx + Cdxdy on a parallelogram
with sidesa, b.

4.8.15 Prove Lorentz invariance of Maxwell's equations in the language of differential forms.

Additional Readings

Buerger, M. J.Elementary CrystallographyNew York: Wiley (1956). A comprehensive discussion of crystal
symmetries. Buerger develops all 32 point groups and all 230 space groups. Related books by this author in-
cludeContemporary Crystallographyew York: McGraw-Hill (1970)Crystal Structure AnalysidNew York:

Krieger (1979) (reprint, 1960); ankhtroduction to Crystal GeometryNew York: Krieger (1977) (reprint,
1971).

Burns, G., and A. M. GlazeSpace Groups for Solid-State Scientidiew York: Academic Press (1978). A well-
organized, readable treatment of groups and their application to the solid state.

de-Shalit, A., and I. TalmiNuclear Shell ModelNew York: Academic Press (1963). We adopt the Condon—
Shortley phase conventions of this text.

Edmonds, A. R.Angular Momentum in Quantum Mechani€sinceton, NJ: Princeton University Press (1957).
Edwards, H. M.Advanced Calculus: A Differential Forms Approa@oston: Birkhauser (1994).

Falicov, L. M., Group Theory and Its Physical Applicatiandotes compiled by A. Luehrmann. Chicago: Uni-
versity of Chicago Press (1966). Group theory, with an emphasis on applications to crystal symmetries and
solid-state physics.
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Gell-Mann, M., and Y. Ne’emariThe Eightfold WayNew York: Benjamin (1965). A collection of reprints of
significant papers o8U(3) and the particles of high-energy physics. Several introductory sections by Gell-
Mann and Ne'eman are especially helpful.

Greiner, W., and B. MiillerQuantum Mechanics Symmetri&erlin: Springer (1989). We refer to this textbook
for more details and numerous exercises that are worked out in detail.

Hamermesh, MGroup Theory and Its Application to Physical ProblelRgading, MA: Addison-Wesley (1962).
A detailed, rigorous account of both finite and continuous groups. The 32 point groups are developed. The
continuous groups are treated, with Lie algebra included. A wealth of applications to atomic and nuclear
physics.

Hassani, S Foundations of Mathematical Physid3oston: Allyn and Bacon (1991).

Heitler, W., The Quantum Theory of RadiatioPnd ed. Oxford: Oxford University Press (1947). Reprinted, New
York: Dover (1983).

Higman, B.,Applied Group-Theoretic and Matrix Methad3xford: Clarendon Press (1955). A rather complete
and unusually intelligible development of matrix analysis and group theory.

Jackson, J. DClassical Electrodynami¢8rd ed. New York: Wiley (1998).

Messiah, A.Quantum Mechanic¢d/ol. Il. Amsterdam: North-Holland (1961).

Panofsky, W. K. H., and M. PhillipsClassical Electricity and Magnetisrind ed. Reading, MA: Addison-Wesley
(1962). The Lorentz covariance of Maxwell's equations is developed for both vacuum and material media.
Panofsky and Phillips use contravariant and covariant tensors.

Park, D., Resource letter SP-1 on symmetry in phygios. J. Phys36: 577-584 (1968). Includes a large selection
of basic references on group theory and its applications to physics: atoms, molecules, nuclei, solids, and
elementary particles.

Ram, B., Physics of th&U(3) symmetry modelAm. J. Phys35: 16 (1967). An excellent discussion of the
applications ofSU(3) to the strongly interacting particles (baryons). For a sequel to this see R. D. Young,
Physics of the quark modehm. J. Phys41: 472 (1973).

Rose, M. E.Elementary Theory of Angular Momentultew York: Wiley (1957). Reprinted. New York: Dover

(1995). As part of the development of the quantum theory of angular momentum, Rose includes a detailed and
readable account of the rotation group.

Wigner, E. P..Group Theory and Its Application to the Quantum Mechanics of Atomic Spgrarsslated by
J. J. Griffin). New York: Academic Press (1959). This is the classic reference on group theory for the physicist.
The rotation group is treated in considerable detail. There is a wealth of applications to atomic physics.
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CHAPTER 5

INFINITE SERIES

5.1 FUNDAMENTAL CONCEPTS

Infinite series, literally summations of an infinite number of terms, occur frequently in both
pure and applied mathematics. They may be used by the pure mathematician to define func-
tions as a fundamental approach to the theory of functions, as well as for calculating ac-
curate values of transcendental constants and transcendental functions. In the mathematics
of science and engineering infinite series are ubiquitous, for they appear in the evaluation
of integrals (Sections 5.6 and 5.7), in the solution of differential equations (Sections 9.5
and 9.6), and as Fourier series (Chapter 14) and compete with integral representations for
the description of a host of special functions (Chapters 11, 12, and 13). In Section 16.3 the
Neumann series solution for integral equations provides one more example of the occur-
rence and use of infinite series.

Right at the start we face the problem of attaching meaning to the sum of an infinite
number of terms. The usual approach is by partial sums. If we have an infinite sequence of

termsus, u2, us, ug, us, ..., we define theth partial sum as
i
Si=Y . (5.1)
n=1

This is a finite summation and offers no difficulties. If the partial sumsonverge to a
(finite) limit asi — oo,

lim s; =8, (5.2)

1—> 00
the infinite series - ; u, is said to beconvergentand to have the valug. Note that we
reasonably, plausibly, but still arbitrarijefine the infinite series as equal thand that a
necessary condition for this convergence to a limit is that limy u,, = 0. This condition,
however, is not sufficient to guarantee convergence. Equation (5.2) is usually written in
formal mathematical notation:

321
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322 Chapter 5 Infinite Series

The condition for the existence of a limft is that for eache > 0, there is a fixed
N = N(¢) such that

IS —si| <e, fori > N.

This condition is often derived from the Cauchy criterion applied to the partial sums
The Cauchy criterion is:

A necessary and sufficient condition that a sequésioeconverge is that for each> 0
there is a fixed numbe¥ such that

Isj —sil <e, foralli, j > N.

This means that the individual partial sums must cluster together as we move far out in
the sequence.

The Cauchy criterion may easily be extended to sequences of functions. We see it in this
form in Section 5.5 in the definition of uniform convergence and in Section 10.4 in the
development of Hilbert space. Our partial sussnay not converge to a single limit but
may oscillate, as in the case

o
Dup=1-141-141+4 = (=D"+--.
n=1

Clearly,s; = 1 for i odd buts; = 0 for i even. There is no convergence to a limit, and
series such as this one are labetetillatory. Whenever the sequence of partial sums
diverges (approachesoo), the infinite series is said wiverge. Often the terndivergent

is extended to include oscillatory series as well. Because we evaluate the partial sums
by ordinary arithmetic, the convergent series, defined in terms of a limit of the partial
sums, assumes a position of supreme importance. Two examples may clarify the nature of
convergence or divergence of a series and will also serve as a basis for a further detailed
investigation in the next section.

Example 5.1.1  THE GEOMETRIC SERIES

The geometrical sequence, starting witAnd with a ratio- (= a,,4-1/a, independent o),

is given by
atar+ar’+ard+- a4
Thenth partial sum is given by
1-—r"
Sh=da 1_r . (53)

Taking the limit as: — oo,

lim s, = ——, for|r|<1. (5.4)

n—00 1—7r

IMultiply and divides, = Y% ar™ by 1—r.
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Hence, by definition, the infinite geometric series convergeg-for 1 and is given by

> a
Zar"fl =15 (5.5)
n=1 -r

On the other hand, if-| > 1, the necessary conditiatjy — 0 is not satisfied and the infinite
series diverges. [ ]

Example 5.1.2  THE HARMONIC SERIES

As a second and more involved example, we consider the harmonic series

o0

1 1 1 1 1
Z_=1+_+_+_+...+_+.... (5.6)
—n 2 3 4 n

We have the lim_, - u,, = lim,_, - 1/n = 0, but this is not sufficient to guarantee conver-
gence. If we group the terms (no change in order) as

1,¢1.1 1.,1,1.,1 1 1
45+(G+2)+(GE+s+i+g)+(G++1)+ (5.7)
each pair of parentheses encloggerms of the form
1 1 1 p 1

S S S 5.8
P+1+P+2+ +P+P>2P 2 (8)

Forming partial sums by adding the parenthetical groups one by one, we obtain

5
= ]_7 —’
§1 S4 > 2
3 6
s2=1, $5> 500 (5.9)
4 n+1
53 > > Sy > 5
The harmonic series considered in this way is certainly divergamtalternate and inde-
pendent demonstration of its divergence appears in Section 5.2. |

If the u,, > 0 are monotonically decreasing to zero, thatig, > u,+1 for all n, then
>, un 1s converging tas if, and only if,s, — nu, converges t&. As the partial sums,
converge taS, this theorem implies thaiu, — 0, forn — oco.

To prove thigheorem, we start by concluding from @ u, 1 < u, and

Sp+1 — (n+ 1)un+l =S8p —NUp+1 =Sy —NUp + n(u, — un-i—l) > 8n — nup

thats, — nu, increases as — oco. As a consequence Gf, — nu, < s, < S, s, — nuy,
converges to a value< S. Deleting the tail of positive termsg; — u,, fromi =v + 1 ton,

2The (finite) harmonic series appears in an interesting note on the maximum stable displacement of a stack of coins. P. R. John-
son, The Leaning Tower of Lirddm. J. Phys23: 240 (1955).
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we infer froms,, — nu, > ug+ (u1 —u,) +-- -+ (uy, — u,) = s, — vu, thats,, — nu,, > s,
for n — oo. Hence also > S, sos = S andnu, — 0.

When this theorem is applied to tharmonic series) , % with n% =1 it implies that
it does not converge; it diverges teoo.

Addition, Subtraction of Series

If we have two convergent serigs, u, — s and)_, v, — S, their sum and difference
will also converge ta + S because their partial sums satisfy
lsj£Sj—(si £S)|=|sj —si £(S; =S| <Isj —si| +15; — Si| < 2¢
using the triangle inequality
la| — b < la+b| < |a| + 1b|

fOFCI:Sj —Si,bZSj - 5.
A convergent serie " u, — S may be multiplied termwise by a real numherThe
new series will converge @S because

lasj —as;| = |a(sj —s,-)| = |alls; — si| < lale.

This multiplication by a constant can be generalized to a multiplication by teyno$ a
bounded sequence of numbers.

If 3", u, converges te§ and0 < ¢, < M are bounded, the}", u,c, is convergent. If
>, uy is divergentana, > M > 0, then)_ u,c, diverges.

To prove thigheoremwe takei, j sufficiently large so thafs; — s;| < €. Then

J J
Zuncn §MZun=M|sj —5i| < Me.
i+1 i+1

The divergent case follows from
Zuncn > MZun — 0.
n n

Using the binomial theorefr(Section 5.6), we may expand the functidn+ x)~1:

1
=1l—x4+x2—x34 ()" (5.10)
1+x
If we let x — 1, this series becomes
1-14+1-141-21+4---, (5.11)

a series that we labeled oscillatory earlier in this section. Although it does not converge

in the usual sense, meaning can be attached to this series. Euler, for example, assigned a
value of 1/2 to this oscillatory sequence on the basis of the correspondence between this
series and the well-defined functigfh + x) 1. Unfortunately, such correspondence be-
tween series and function is not unique, and this approach must be refined. Other methods

3Actual|y Eq. (5.10) may be verified by multiplying both sides by k.
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of assigning a meaning to a divergent or oscillatory series, methods of defining a sum,
have been developed. See G. H. Hafdiyergent SeriesChelsea Publishing Co. 2nd ed.
(1992). In general, however, this aspect of infinite series is of relatively little interest to the
scientist or the engineer. An exception to this statement, the very important asymptotic or
semiconvergent series, is considered in Section 5.10.

Exercises

511 Show that

= 1 1
;(Zn—l)(ZnJrl)_E'

Hint. Show (by mathematical induction) thgt = m/(2m + 1).
5.1.2 Show that

(.¢]
1
IR
nn—+1)
n=1
Find the partial suns,, and verify its correctness by mathematical induction.
Note The method of expansion in partial fractions, Section 15.8, offers an alternative
way of solving Exercises 5.1.1 and 5.1.2.

5.2 (CONVERGENCE TESTS

Although nonconvergent series may be useful in certain special cases (compare Sec-
tion 5.10), we usually insist, as a matter of convenience if not necessity, that our series be
convergent. It therefore becomes a matter of extreme importance to be able to tell whether
a given series is convergent. We shall develop a number of possible tests, starting with the
simple and relatively insensitive tests and working up to the more complicated but quite
sensitive tests. For the present let us consideris of positive termsz, > 0, postponing
negative terms until the next section.

Comparison Test

If term by term a series of terms<Qu,, < a,, in which thea, form a convergent series,
the seriesy, u, is also convergent. i, <a, forall n, then)_, u, <>, a, and)_, u,
therefore isconvergent If term by term a series of termg > b,,, in which theb,,, form a
divergent series, the serids, v, is alsodivergent. Note that comparisons af, with b,
or v, with g, yield no information. Ifv, > b, for all n, then}_, v, > )", b, and)_, v,
therefore is divergent.

For the convergent serieg we already have the geometric series, whereas the harmonic
series will serve as the divergent comparison sdsiesAs other series are identified as
either convergent or divergent, they may be used for the known series in this comparison
test. All tests developed in this section are essentially comparison tests. Figure 5.1 exhibits
these tests and the interrelationships.
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Cromman ) (Ctati

(Comparison with (Comparison
geometric series) with integral)

A\ Y

D’Alembert
Cauchy ratio aabe

(Also by comparison
with geometric series)

Gauss

FIGURE 5.1 Comparison tests.
Example 5.2.1 A DIRICHLET SERIES

Test) >, n~", p=0.999, for convergence. Sinee %% > n~1 andb, = n~* forms the
divergent harmonic series, the comparison test showsSthat—9is divergent. Gener-
alizing, >, n~7 is seen to be divergent for gil < 1 but convergent fop > 1 (see Exam-
ple 5.2.3). |

Cauchy Root Test

If (a,)" <r < 1 for all sufficiently largen, with r independent of:, then >, an is
convergent. Ifia,)Y/" > 1 for all sufficiently largen, then)_, a, is divergent.

The first part of this test is verified easily by raisiag,)'/” < r to thenth power. We
get

a, <r" <1

Sincer” is just thenth term in a convergent geometric seri@s, a, is convergent by the
comparison test. Conversely,(if, )Y/ > 1, thena, > 1 and the series must diverge. This
root test is particularly useful in establishing the properties of power series (Section 5.7).

D’Alembert (or Cauchy) Ratio Test

convergent. I, 1/a, > 1 for all sufficiently largen, then) ", a, is divergent.
Convergence is proved by direct comparison with the geometric g@ries+r2+---).
In the second party,+1 > a, and divergence should be reasonably obvious. Although not

If ay,+1/a, <r <1 for all sufficiently largen andr is independent of, then)_, a, is
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quite so sensitive as the Cauchy root test, this D’Alembert ratio test is one of the easiest to
apply and is widely used. An alternate statement of the ratio test is in the form of a limit: If

an+1

lim <1, convergence

n—oo  ay
>1, divergence (5.12)
=1, indeterminate

Because of this final indeterminate possibility, the ratio test is likely to fail at crucial points,
and more delicate, sensitive tests are necessary. The alert reader may wonder how this
indeterminacy arose. Actually it was concealed in the first stateragpt/a, <r < 1.

We might encountes,,1/a, < 1 for all finite n but be unable to choose an< 1 and
independent of nsuch thaty,11/a, < r for all sufficiently large:. An example is provided

by the harmonic series

an+l 1

<1 (5.13)
an n+1
Since
lim &t _q (5.14)
n—oo ay,

no fixed ratior < 1 exists and the ratio test fails.

Example 5.2.2  D’ALEMBERT RATIO TEST

Test) ", n/2" for convergence.

/it o1 1
ant1 _ (n+1)/ _1ntl (5.15)
ap n/2n 2 n
Since
3
Dl o2 forn>2, (5.16)
a, 4
we have convergence. Alternatively,
. 1
lim 9t _ = (5.17)
n—o0 @, 2
and again — convergence. [ |

Cauchy (or Maclaurin) Integral Test

This is another sort of comparison test, in which we compare a series with an integral.
Geometrically, we compare the area of a series of unit-width rectangles with the area under
acurve.
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A

S fy=a, fix) fih=aqa,

FIGURE 5.2 (a) Comparison of integral and sum-blocks leading.
(b) Comparison of integral and sum-blocks lagging.

Let f(x) be a continuougnonotonic decreasing functionin which f(n) = a,. Then
>, an converges iffl<>Q f(x)dx is finite and diverges if the integral is infinite. For thé

partial sum,
s,-:Zan:Zf(n). (5.18)
n=1 n=1
But
i+1
s; > / fx)dx (5.19)
1
from Fig. 5.2a,f (x) being monotonic decreasing. On the other hand, from Fig. 5.2b,
§i—ai < / fx)dx, (5.20)
1
in which the series is represented by the inscribed rectangles. Taking the limit a®,
we have
00 Sl 00
/ fx)dx < Zan 5/ f(x)dx + az. (5.22)
1 —1 1

Hence the infinite series converges or diverges as the corresponding integral converges or
diverges. This integral test is particularly useful in setting upper and lower bounds on the
remainder of a series after some number of initial terms have been summed. That is,

0o N o]
Zan Zzan + Z an,

n=1 n=1 n=N+1
where

/ Sx)dx < Z anf/ fx)dx +an+1.
N+l N+l

n=N+1
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To free the integral test from the quite restrictive requirement that the interpolating func-
tion f(x) be positive and monotonic, we show for any functifx) with a continuous
derivative that

Ny Ny Ny
> f(n):/N. f(x)dx—i—/N. (x = [x]) £/ (x) dx (5.22)

n=N;+1

holds. Herdx] denotes the largest integer belowsox — [x] varies sawtoothlike between
0 and 1. To derive Eq. (5.22) we observe that

Ny Ny

[ arwas=nrwp =N - [ rwas 629

using integration by parts. Next we evaluate the integral

Ny Ne=1 o a1 Ny—1

[Twrwar= 0 [ rwdr= Y s+ - ro)
i n=N; " n=N;
Ny
=— Y fO)=Nif(N))+Npf(Np). (5.24)
n=N;+1

Subtracting Eq. (5.24) from (5.23) we arrive at Eq. (5.22). Note fha?) may go up or

down and even change sign, so Eq. (5.22) applies to alternating series (see Section 5.3) as
well. Usually f/(x) falls faster thanf (x) for x — oo, so the remainder term in Eq. (5.22)
converges better. Itis easy to improve Eq. (5.22) by replaciagx] by x — [x] — % which

varies betweer-3 and 3:

Ny Ny
> = [ swdst [ e—tx- 3w

Ni<n<Nyg

+3{rwvpy) - rn). (5.25)

Then thef’(x)-integral becomes even smaller fif(x) does not change sign too often. For
an application of this integral test to an alternating series see Example 5.3.1.

Example 5.2.3  RIEMANN ZETA FUNCTION

The Riemann zeta function is defined by

t(p)y=>y_n", (5.26)
n=1

provided the series converges. We may t@ke) = x 7, and then

o] x—p+1 00
x Pdx = , p#1
/1 -p+1i
=Inx |32, p=1 (5.27)
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The integral and therefore the series are divergenpfarl, convergent fop > 1. Hence
Eq. (5.26) should carry the conditign> 1. This, incidentally, is an independent proof
that the harmonic serie@ = 1) diverges logarithmically. The sum of the first million
termsy 1000000, -1 i only 14.392 726. .. |

This integral comparison may also be used to set an upper limit to the Euler—Mascheroni
constant defined by

y = Iimoo<Zm_1— |nn). (5.28)
m=1

Returning to partial sums, Eq. (5.20) yields

n 1 n oy
sp= mt—Inn< ) 7—|nn+1. (5.29)
m=1

Evaluating the integral on the right,, < 1 for all n and thereforey < 1. Exer-
cise 5.2.12 leads to more restrictive bounds. Actually the Euler—Mascheroni constant is
0.57721566. ..

Kummer’s Test

This is the first of three tests that are somewhat more difficult to apply than the preceding
tests. Their importance lies in their power and sensitivity. Frequently, at least one of the
three will work when the simpler, easier tests are indecisive. It must be remembered, how-
ever, that these tests, like those previously discussed, are ultimately based on comparisons.
It can be shown that there is no most slowly converging series and no most slowly diverg-
ing series. This means that all convergence tests given here, including Kummer’s, may fail
sometime.

We consider a series of positive termsand a sequence of finite positive constants
If

Up

an

—ay11>C>0 (5.30)
Up+1

foralln > N, whereN is some fixed numbérthen °, u; converges If
Un

a —ay+1 <0 (5.31)
Up+1

and Y72, o diverges, thery 2 u; diverges

4This is the notation of National Bureau of Standatdandbook of Mathematical Function8pplied Mathematics Series-55
(AMS-55). New York: Dover (1972).

SWith u,, finite, the partial suns,y will always be finite forn finite. The convergence or divergence of a series depends on the
behavior of the last infinity of terms, not on the firgtterms.
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The proof of this powerful test is remarkably simple. From Eq. (5.30), Witeome
positive constant,

Cunyyl<ayuy —an+1un+1
Cuyy2 <aN{1UNT1 — ANG2UN42 (5.32)

Adding and dividing byC (and recalling tha€ = 0), we obtain

n

Yo = T (5.33)
i=N+1

Hence for the partial sumy,,

N
aNun dnplty
Sp = § uj + -
i=1

C C
N
< Zu,- + aNCuN , a constant, independent of (5.34)
i=1

The partial sums therefore have an upper bound. With zero as an obvious lower bound, the
seriesy_ u; must converge.
Divergence is shown as follows. From Eq. (5.31) Q51 > O,

AnUp > Ap—1Up—1> -+ > ANUN, n>N. (5.35)
Thus, fora, > 0,
Uy > VN (5.36)
an
and
o0 o0
Z Ui > aNun Z al._l. (5.37)
i=N+1 i=N+1

If Z?ilafl diverges, then by the comparison st u; diverges. Equations (5.30) and
(5.31) are often given in a limit form:

lim <a,, hn —a,H_l) —C. (5.38)
n—00 Up+1

Thus forC > 0 we have convergence, whereas@bx 0 (and)_; ai_l divergent) we have
divergence. It is perhaps useful to show the close relation of Eq. (5.38) and Egs. (5.30) and
(5.31) and to show why indeterminacy creeps in when the limit 0. From the definition

of limit,

Up

an —ap+1—C
Up+1

<e¢ (5.39)
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forall » > N and alle > 0, no matter how small may be. When the absolute value signs
are removed,

C—¢<ay —apt1 < C+e. (5.40)

Un+1

Now, if C > 0, Eqg. (5.30) follows frone sufficiently small. On the other hand,df < O,
Eq. (5.31) follows. However, i€ = 0, the center termu, (u,, /u,+1) — a,+1, may be either
positive or negative and the proof fails. The primary use of Kummer’s test is to prove other
tests, such as Raabe’s (compare also Exercise 5.2.3).

If the positive constants, of Kummer’s test are choser) = n, we have Raabe’s test.

Raabe’s Test

If u, >0andif
Up
n(——l>2P>1 (5.41)
Up+1

foralln > N, whereN is a positive integer independentgfthen ), u; convergesHere,
P = C + 1 of Kummer's test. If

n( tn_ _ 1) <1 (5.42)
Un+1
thenY", u; diverges (a$", n~* diverges). The limit form of Raabe’s test is
. Un
lim n( — 1) =P. (5.43)
n—o00 Upt+1

We have convergence faP > 1, divergence forP < 1, and no conclusion foP = 1,
exactly as with the Kummer test. This indeterminacy is pointed up by Exercise 5.2.4, which
presents a convergent series and a divergent series, with both series yiRldirgin
Eq. (5.43).

Raabe’s test is more sensitive than the d’Alembert ratio test (Exercise 5.2.3) because
> . n~! diverges more slowly thap"°® , 1. We obtain a more sensitive test (and one
that is still fairly easy to apply) by choosing = nInn. This is Gauss’ test.

Gauss’ Test

If u, > 0 for all finiten and

h B
n =1+—+@, (5.44)
Upi1l n n

in which B(n) is a bounded function of for n — oo, then); u; converges fof: > 1 and
diverges forh < 1: There is no indeterminate case here.
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The Gauss test is an extremely sensitive test of series convergence. It will work for all
series the physicist is likely to encounter. Foe 1 or & < 1 the proof follows directly
from Raabe’s test

lim n|:1+ h B _ 1} — lim [h + B(”)} —h. (5.45)
n

n—00 n2 n— 00 n

If h =1, Raabe’s test fails. However, if we return to Kummer's test andiyisen Inn,
Eq. (5.38) leads to

lim {nlnn[1+ } + i;l)] — (n+1)|n(n+1)}
n n

:nleoo[nlnn . ntl — (n+1)|n(n+l)i|
. 1
= lim (n+1)[|nn—|nn—ln<1+—>]. (5.46)
n—oo n

Borrowing a result from Section 5.6 (which is not dependent on Gauss’ test), we have
. 1 . 1 1 1
=-1<0. (5.47)
Hence we have divergence for= 1. This is an example of a successful application of

Kummer's test when Raabe’s test had failed.

Example 5.2.4  LEGENDRE SERIES

The recurrence relation for the series solution of Legendre’s equation (Exercise 9.5.5) may
be put in the form

azit2  2j2j+1) —1(+1)
azj 2j+D@2j+2

(5.48)
Foru; = ap; and B(j) = 0(1/j%) — 0 (that is,|B(j)j? < C, C > 0, a constant) as
j — oo in Gauss’ test we apply Eq. (5.45). Then, o> 1,6

; 2 +1D)2j+2 2j+2 1
up @+bej+2 _2j+2_, 1 (5.49)
Uji1 2j(2j+1) 2j J

By Eg. (5.44) the series is divergent. |

5The! dependence entej) but does not affedt in Eq. (5.45).
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Improvement of Convergence

This section so far has been concerned with establishing convergence as an abstract math-
ematical property. In practice, tmate of convergence may be of considerable importance.
Here we present one method of improving the rate of convergence of a convergent series.
Other techniques are given in Sections 5.4 and 5.9.

The basic principle of this method, due to Kummer, is to form a linear combination of
our slowly converging series and one or more series whose sum is known. For the known
series the collection

1
n(n+1)

=
=
Il

iMe i P”ﬂg M2

1 1

n(n +1D(n+2) 4

1 1
nn+1)(n+2(n+3) 18

a3 =

> 1 1
oy = =
P ngln(n+l)-"(n+p) p-p!

is particularly useful. The series are combined term by term and the coefficients in the
linear combination chosen to cancel the most slowly converging terms.

Example 5.2.5  RiemanN ZeTa FUNCTION, ¢(3)

Let the series to be summed P& , n~3. In Section 5.9 this is identified as the Riemann
zeta function¢ (3). We form a linear combination

o o
Zn_s + arap = Zn_3 + 4
n=1 n=1

a1 is not included since it converges more slowly tligB). Combining terms, we obtain
on the left-hand side

(1 az . > n?(A+a)) +3n+2
Z{F+n(n+1)(n+2)}_;l B+ Dn+2

n=1
If we choosen, = —1, the preceding equations yield
o
3n+2
3) — -3_ 5.50
G ;” Z 3+ D(n+2) (5:50)

"These series sums may be verified by expanding the forms by partial fractions, writing out the initial terms, and inspecting the
pattern of cancellation of positive and negative terms.
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The resulting series may not be beautiful but it does converge &sfaster tham 3.

A more convenient form comes from Exercise 5.2.21. There, the symmetry leads to con-

vergence as>. [

The method can be extended, includimgrs to get convergence as >, a4 to get
convergence as ©, and so on. Eventually, you have to reach a compromise between how
much algebra you do and how much arithmetic the computer does. As computers get faster,
the balance is steadily shifting to less algebra for you and more arithmetic for them.

Exercises

5.2.1 (@) Prove thatif

lim n’u, =A < oo, p>1
n— 00

the serie -2 ; u, converges.
(b) Prove thatif

lim nu,=A>0,

n—oo

the series diverges. (The test fails fo=0.)
These two tests, known &mit tests, are often convenient for establishing the conver-
gence of a series. They may be treated as comparison tests, comparing with

Zn_", l<g<p.
n

52.2 If

. b
lim = =K,

n—oo ay,

a constant with &< K < oo, show that) ", b, converges or diverges with’ a,,.
Hint. If 3" a, converges, usk, = 5=b,. If Y, a, diverges, usé) = 2b,.

5.2.3 Show that the complete d’Alembert ratio test follows directly from Kummer’s test with
a; = 1.

5.2.4 Show that Raabe’s test is indecisive = 1 by establishing thaP = 1 for the series

1
(&) u, = ——— and that this series diverges.
ninn

(b) un,=

1 . .
——— and that this series converges.
n(inn)?2
Note By direct additionZ%oQOOO[n(ln n)2]~1 = 2.02288. The remainder of the series

n > 10° yields 0.08686 by the integral comparison test. The total, then, & tds
2.1097.
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5.2.5 Gauss' test is often given in the form of a test of the ratio

Up n? +ain +ap
Upr1r n2+bin+bg

For what values of the parametersandb; is there convergence? divergence?

ANS. Convergent foti; — b1 > 1,
divergent fora; — b1 < 1.

5.2.6 Test for convergence

@ dnn)~? (@)Y [n+ 1] Y2
n=2 n=1
| ad 1
(b)Z_;lm (e)X_(:)Zn—i-l'
> 1
© 2 2n(2n + 1)

5.2.7 Test for convergence

> 1 > 1
(a),;”(” D (d)’;In(l+ ;>

X1 1
(b)ngznlnn (e)ngln.nl/n'
©Y =

n=1

5.2.8  Forwhat values of andq will the following series converge¥ 2, -

1, allg, . 1, allg,
p= 4 divergent for p= 4

ANS. Convergent fo
r=1 g>1 p=1 g<1

5.2.9 Determine the range of convergence for Gaulsgfsergeometric series

ﬁx ala+1)B(B+ 1)x2
1y 2y(y +1)

Hint. Gauss developed his test for the specific purpose of establishing the convergence
of this series.

F(o,B,y;x) =1+

ANS. Convergentfo-1<x <landx =41if y > o + 8.
5.2.10 A pocket calculator yields

100
Zn—3 =1.202 007
n=1
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5.2.14

5.2.15
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Show that

00
1.202 056< Zn_?’ <1.202 057
n=1

Hint. Use integrals to set upper and lower bound@j‘fzwln‘3.

Note A more exact value for summation ¢f3) = Z;ﬁl”% is 1.202 056 903..;

£ (3) is known to be an irrational number, but it is not linked to known constants such as
e,m,y,In2.

1000000, -1 assuming that

Set upper and lower bounds 31

(@) the Euler—-Mascheroni constant is known.

1,000,000
ANS. 14392 726< Z n~!<14392727.
n=1

(b) The Euler—Mascheroni constant is unknown.

Given Zi‘fgon‘l = 7.485470.. set upper and lower bounds on the Euler-Mascheroni
constant.

ANS. 05767< y <0.5778.

(From Olbers’ paradox.) Assume a static universe in which the stars are uniformly
distributed. Divide all space into shells of constant thickness; the stars in any one shell
by themselves subtend a solid anglesf Allowing for the blocking out of distant

stars by nearer stars show that the total net solid angle subtended by all stars, shells
extending to infinity, isexactly 4. [Therefore the night sky should be ablaze with
light. For more details, see E. Harrisdbarkness at Night: A Riddle of the Universe
Cambridge, MA: Harvard University Press (1987).]

Test for convergence

i[1-3-5~--(2n—1):|2_:_L 9 25

2462 | 4 e 256

n=1

The Legendre seri€s, ; o,eq1j (x) satisfies the recurrence relations

G+DHG+2 -1+ 1)x2
(G+20G+3
in which the index; is even and is some constant (but, in this problemgt a non-

negative odd integer). Find the range of values dbr which this Legendre series is
convergent. Test the endpoints.

uj2(x) = uj(x),

ANS. -1<x <1
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5.2.16 A series solution (Section 9.5) of the Chebyshev equation leads to successive terms
having the ratio

ujp2) _ k+P-n?
uj(x)  k+j+Dk+j+2)

with k = 0 andk = 1. Test for convergence at=+1.

’

ANS. Convergent.

5.2.17 A series solution for the ultraspherical (Gegenbauer) fundiip(x) leads to the recur-
rence
k+ jH)k+j+20) —nn+20)
ajy2=aj - -
k+j+Dk+j+2

Investigate the convergence of each of these series=at-1 as a function of the para-
metera.

ANS. Convergent fox < 1,
divergent fora > 1.

5.2.18 A series expansion of the incomplete beta function (Section 8.4) yields

1—qx A-92—-9)

1
B.(p,q) =xP1=
(P =x {P+P+1 2(p+2) A
+(1_@(2'_4)”'(”_‘I)X’ur...}'
nl(p +n)

GiventhatO< x <1, p > 0, andg > 0, test this series for convergence. What happens
atx =17

5.2.19 Show that the following series is convergent.

i (2s — D!

SN2+
Note (2s — !l = (2s—1)(2s —3)---3-1with (=)' =1; 25)!! = (25)(25—2)---4-2
with O!! = 1. The series appears as a series expansion of@nand equalsr/2, and
sin~1x = arcsinx # (sinx) 1.

5.2.20 Show how to combineé(2) = Z;‘len‘2 with o1 andas to obtain a series converging
asn—4.
Note z(2) is known:z(2) = 72/6 (see Section 5.9).

5.2.21 The convergence improvement of Example 5.2.5 may be carried out more expediently
(in this special case) by putting into a more symmetric form: Replacimgby n — 1,
we have

ad 1 1
I = _ = -,
O‘2_”2__:2(11—1)n(n+1) 4
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(@) Combine;(3) anda, to obtain convergence as®.
(b) Letay beas with n — n — 2. Combine; (3), a5, anda, to obtain convergence as
-7
n .
(c) If z(3) is to be calculated to six decimal= place accuracy (error$10-'), how
many terms are required fg(3) alone? combined as in part (a)? combined as in

part (b)?

Note The error may be estimated using the corresponding integral.
5 1
ANS. =-—-) ——.
@@ =7 ; PP

5.2.22 Catalan’s constani8(2) of M. Abramowitz and I. A. Stegun, Handbook of Mathemati-

cal Functions with Formulas, Graphs, and Mathematical Tables (AMS-55), Wash, D. C.

National Bureau of Standards (1972); reprinted Dover (1974), Chapter 23) is defined

by

o0
1 1 1
PR =Y (V@D =Gt
k=0

CalculateB(2) to six-digit accuracy.
Hint. The rate of convergence is enhanced by pairing the terms:

16k
G —1)2—(4h+1) = —F—.
=72 = e+ D72 = e
If you have carried enough digits in your series summatjoR.; v 16k /(16k2 — 1)2,
additional significant figures may be obtained by setting upper and lower bounds on the
tail of the seriesz,‘:‘;NH. These bounds may be set by comparison with integrals, as
in the Maclaurin integral test.

ANS. 8(2) =0.9159 6559 4177...

5.3 ALTERNATING SERIES

In Section 5.2 we limited ourselves to series of positive terms. Now, in contrast, we con-
sider infinite series in which the signs alternate. The partial cancellation due to alternating
signs makes convergence more rapid and much easier to identify. We shall prove the Leib-
niz criterion, a general condition for the convergence of an alternating series. For series
with more irregular sign changes, like Fourier series of Chapter 14 (see Example 5.3.1),
the integral test of Eq. (5.25) is often helpful.

Leibniz Criterion

Consider the serie} > ;(—1)"*1a, with a, > 0. If a,, is monotonically decreasing(for
sufficiently largen) and lim,_, » a,, = 0, then the series converges. To prove this theorem,
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we examine the even partial sums

S2p  =air—az+az—---—azy,
5.51
S2n2 = 82 + (A2n+1 — A2442). ( )

Sinceag,+1 > az,+2, We have
$2n42 > S25. (5.52)
On the other hand,
Son42 =a1 — (a2 —az) — (ag — as) — - - - — Az, 42 (5.53)
Hence, with each pair of terms, — az, 41 > 0,
Son2 < aj. (5.54)

With the even partial sums bounded, < s2,12 < a1 and the termss, decreasing
monotonically and approaching zero, this alternating series converges.

One further important result can be extracted from the partial sums of the same alternat-

ing series. From the difference between the series lfnaihd the partial sum,,
S—sp=apy1—any2+ant3 —apya+---
= ap+1 — (@n+2 — @n+3) — (An+a — Ani5) — -, (5.55)
or

S —sp < a1 (5.56)

Equation (5.56) says that the error in cutting off an alternating series whose terms are

monotonically decreasing afterterms is less than, . 1, the first term dropped. A knowl-
edge of the error obtained this way may be of great practical importance.

Absolute Convergence

Given a series of terms, in whichu,, may vary in sign, i |u, | converges, thed_ u,, is
said to be absolutely convergentMf u,, converges bu} |u, | diverges, the convergence
is calledconditional.

The alternating harmonic series is a simple example of this conditional convergence. We

have

o0 1
1 _ 1 1 1 (="
B S e S e e 557
§ (=1D)" n stz—zgt o t— —+t (5.57)
convergent by the Leibniz criterion; but
§ plo14 5+ 3 L + = L
3 4

has been shown to be divergent in Sections 5.1 and 5.2.
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Note that most tests developed in Section 5.2 assume a series of positive terms. Therefore
these tests in that section guarantee absolute convergence.

Example 5.3.1  SERIES WITH IRREGULAR SIGN CHANGES

For O< x < 27 the Fourier series (see Chapter 14.1)

o0

3 Cosfl”x) - —In<23in%) (5.58)

n=1

converges, having coefficients that change sign often, but not so that the Leibniz conver-
gence criterion applies easily. Let us apply the integral test of Eq. (5.22). Using integration
by parts we see immediately that

/OO Cos(nx)dn _ |:Sin(nx)i| +}/oo sin(nx)dn
1

n nx |y xJu=1 n?

converges, and the integral on the right-hand side even converges absolutely. The derivative
term in Eq. (5.22) has the form

/1 (n — [n]){—% sin(nx) — COZZx) } dn,

where the second term converges absolutely and need not be considered further. Next we
observe thag(N) = le(n—[n])Sin(nx)dn is bounded fov — oo, just ast sin(nx) dn

is bounded because of the periodic nature ofrsiin and its regular sign changes. Using
integration by parts again,

[T [T [T,
1 n n n=1 1 n

we see that the second term is absolutely convergent and that the first goes to zero at the
upper limit. Hence the series in Eqg. (5.58) converges, which is hard to see from other
convergence tests.

Alternatively, we may apply the = 1 case of the Euler—Maclaurin integration formula
in Eq. (5.168b),

. " 1 1
Y fw= /1 f@dx+3{f 0+ fD}+ S - f'D)

v=1
1 L 1 n—1
_ 5/0 (xz—x—i—(—s)Zf"(x—i—v)dx,
v=1
which is straightforward but more tedious because of the second derivative. |
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Exercises

5.3.1 (a) From the electrostatic two-hemisphere problem (Exercise 12.3.20) we obtain the
series

( 1)”

Z( 1)* (4s +3)(2 o

s=0

Test it for convergence.
(b) The corresponding series for the surface charge density is

( j_)H

Z( D' (s +3) =550

s=0

Test it for convergence.
The!! notation is explained in Section 8.1 and Exercise 5.2.19.

5.3.2 Show by direct numerical computation that the sum of the first 10 terms of

o0
H _ _ _1yn—1 -1
linlln(ler)_an_;( 1" 1y

differs from In 2 by less than the eleventh term: ia2.69314 71806. ..

5.3.3 In Exercise 5.2.9 the hypergeometric series is shown convergentfot-1, if y >
a + B. Show that there is conditional convergence fore —1 for y down toy >
a+p—1.
Hint. The asymptotic behavior of the factorial function is given by Stirling’s series,
Section 8.3.

5.4 ALGEBRA OF SERIES

The establishment of absolute convergence is important because it can be proved that ab-
solutely convergent series may be reordered according to the familiar rules of algebra or
arithmetic.

e If aninfinite series is absolutely convergent, the series sum is independent of the order
in which the terms are added.

e The series may be multiplied with another absolutely convergent series. The limit of the
product will be the product of the individual series limits. The product series, a double
series, will also converge absolutely.

No such guarantees can be given for conditionally convergent series. Again consider the
alternating harmonic series. If we write

1-gg-jeo=i-(- -

gl

)—ee, (5.59)

ENT
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dYoEnrht<n (5.60)
n=1

However, if we rearrange the terms slightly, we may make the alternating harmonic series
converge to%. We regroup the terms of Eq. (5.59), taking

(RERY
T E R

1

il

1
8

)

)_|_....

) =@+ G +st+ititis)

Dt (et )~ 561

Treating the terms grouped in parentheses as single terms for convenience, we obtain the

partial sums

s1=15333 s,=10333
s3=15218  s4=12718
55=15143  s5= 13476
s7=15103  sg=1.3853
s9=15078  s10= 14078

From this tabulation of,, and the plot ofs, versusr in Fig. 5.3, the convergence to
g is fairly clear. We have rearranged the terms, taking positive terms until the partial sum

was equal to or greater

tha}1and then adding in negative terms until the partial sum just

fell below% and so on. As the series extends to infinity, all original terms will eventually
appear, but the partial sums of this rearranged alternating harmonic series conv%rge to

By a suitable rearran

gement of terms, a conditionally convergent series may be made

to converge to any desired value or even to diverge. This statement is sometimes given

1.500

1.400

n

1.300

Partial sum, s

1.200

1.10()1

\

Number of terms in sum, »n

FIGURE 5.3 Alternating harmonic series —terms
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rearranged to give convergence to 1.5.
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asRiemann’s theorem Obviously, conditionally convergent series must be treated with
caution.

Absolutely convergent series can be multiplied without problems. This follows as a
special case from the rearrangement of double series. However, conditionally convergent
series cannot always be multiplied to yield convergent series, as the following example
shows.

Example 5.4.1  SQUARE OF A CONDITIONALLY CONVERGENT SERIES MAY DIVERGE

. _1n—1 0. . .
The serie 2 ; ( 1)2 converges, by the Leibniz criterion. Its square,

has the general term in brackets consisting ef1 additive terms, each of which is greater

1 . . _
than NS so the produ.ct term in brackets |s.greater tlﬁ@ﬁl and does not go to
zero. Hence this product oscillates and therefore diverges. [ |

Hence for a product of two series to converge, we have to demand as a sufficient con-
dition that at least one of them converge absolutely. To proveptioiduct convergence
theoremthat if ), u, converges absolutely i@, » ", v, converges td/, then

n
E Cn, Cn = E UnmVn—m
n m=0

converges td/ V, it is sufficient to show that the difference term =co+c1+--- +
con — U, V, — 0 forn — oo, whereU,,, V, are the partial sums of our series. As a result,
the partial sum differences

Dy, = ugvo + (uov1 + u1vg) + - - - + (uov2y + u1v2y—1 + - - - + U2, V0)
—(wotur+---Fuy)(vo+vi+---+vn)
=uo(Wpt1+ -+ v2) Fur(Upgr+ -+ v2-1) + - Upp1Ung1

+ vpt1(vo+ -+ vp—1) + - + U200,
so for all sufficiently largex,
|Dy| < €(uol + -+ lun—1l) + M(luns1l + -+ luza|) < €(a+ M),

becausév, 11+ vy12+ - -+ vam| < € for sufficiently largen and all positive integers
as) v, converges, and the partial suvis< B of ), v, are bounded by, because the
sum converges. Finally we cal’, |u,| =a, as)_ u, converges absolutely.
Two series can be multiplied, provided one of them converges absolutely. Addition and
subtraction of series is also valid termwise if one series converges absolutely.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

5.4 Algebra of Series 345

Improvement of Convergence,
Rational Approximations

The series

© n
In@+0= 0t 1<x<1, (5.61a)
n=1 n
converges very slowly as approaches+1. Therate of convergence may be improved
substantially by multiplying both sides of Eq. (5.61a) by a polynomial and adjusting the
polynomial coefficients to cancel the more slowly converging portions of the series. Con-
sider the simplest possibility: Multiply 1 + x) by 1+ a1x:
- n—lxn - n—lxn+1
(1+a10)In(L+x) = ;<—1> — +a1;<—1> —

Combining the two series on the right, term by term, we obtain

L4+ax)In(l+x)=x+ Z(_l)”—l(} _ % )x"

o n n-—1
o
_1n(l—ap)-1
— 1" 1" n
x+;( ) P T

Clearly, if we takea; = 1, then in the numerator disappears and our combined series
converges as 2.

Continuing this process, we find thet+ 2x + x?) In(1 + x) vanishes aa~3 and that
(14 3x + 3x2 + x3)In(1 + x) vanishes aa—*. In effect we are shifting from a simple
series expansion of Eq. (5.61a) to a rational fraction representation in which the function
In(1+ x) is represented by the ratio of a series and a polynomial:

X+ Z;’liz(—l)"x”/[n(n —1)]
1+x '
Such rational approximations may be both compact and accurate.

Inl+x) =

Rearrangement of Double Series

Another aspect of the rearrangement of series appears in the treatment of double series
(Fig. 5.4):

Let us substitute
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FIGURE 5.4 Double
series — summation over
indicated by vertical dashed

lines.

This results in the identity

o0 oo p
DD =) agpq- (5.62)

m=0n=0 p=0¢g=0
The summation ovep andq of Eq. (5.62) is illustrated in Fig. 5.5. The substitution

n=s>0, m=r—2s>0 (sf%)
leads to
00 00 oo [r/2]
Z Zan,m = Z Z As.r—2s, (563)
m=0n=0 r=0 s=0
p=0 1 2 3

3 a

FIGURE 5.5 Double series
—again, the first summation
is represented by vertical
dashed lines, but these
vertical lines correspond to
diagonals in Fig. 5.4.
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r=0 1 2 3 4

5=0| ay ) G %3 Yo
. . .

! Ao 4y 4p

2 ly

FIGURE 5.6 Double series. The
summation oves corresponds to a
summation along the almost-horizontal
dashed lines in Fig. 5.4.

with [r/2] = r/2 for r even and(r — 1)/2 for r odd. The summation over ands of
Eq. (5.63) is shown in Fig. 5.6. Equations (5.62) and (5.63) are clearly rearrangements of
the array of coefficients,,,, rearrangements that are valid as long as we have absolute

convergence.
The combination of Eqgs. (5.62) and (5.63),
o p oo [r/2]
Z Zanl’—q = Z Z s r—2s, (564)
p=0g=0 r=0 s=0

is used in Section 12.1 in the determination of the series form of the Legendre polynomials.

Exercises

54.1 Given the series (derived in Section 5.6)

x? X% X

In(l—i—x):x—?—i—?—zn-, —1l<x<1,
show that . .
1+x X X
| =2 — 4+ — 4 -1 1.
n(l—x) (x+3+5+ ), <x <

The original series, (1 + x), appears in an analysis of binding energy in crystals. It
is % the Madelung constar2In2) for a chain of atoms. The second series is useful
in normalizing the Legendre polynomials (Section 12.3) and in developing a second
solution for Legendre’s differential equation (Section 12.10).

542 Determine the values of the coefficientg,,ar, and az that will make
(1 + a1x + azx? + a3x®) In(1+ x) converge as —*. Find the resulting series.

543 Show that

@Y [cm-1]=1  ®Y 1"[cm-1]=4,
n=2

n=2
where¢ (n) is the Riemann zeta function.
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544 Write a program that will rearrange the terms of the alternating harmonic series to make
the series converge to 1.5. Group your terms as indicated in Eq. (5.61). List the first 100
successive partial sums that just climb above 1.5 or just drop below 1.5, and list the new
terms included in each such partial sum.

n|] 1 | 2 | 3 | 4 | 5
" s, | 1.5333| 1.0333| 1.5218] 1.2718| 1.5143

ANS

5.5 SERIES OF FUNCTIONS

We extend our concept of infinite series to include the possibility that each4emay be
a function of some variable,, = u, (x). Numerous illustrations of such series of functions
appear in Chapters 11-14. The partial sums become functions of the varjable

$p(X) = u1(x) +u2(x) + -+ un(x), (5.65)
as does the series sum, defined as the limit of the partial sums:

o0
Y un(x)=S(x) = lim s, (x). (5.66)
n—oo
n=1
So far we have concerned ourselves with the behavior of the partial sums as a function
of n. Now we consider how the foregoing quantities depend.ofhe key concept here is
that of uniform convergence.

Uniform Convergence

If for any smalle > 0 there exists a numbe¥, independent ofx in the intervalla, b] (that
is,a < x < b) such that

|S(x) —sp(x)| <&,  forall n>=N, (5.67)

then the series is said to be uniformly convergent in the intdenal]. This says that for

our series to be uniformly convergent, it must be possible to find a fWise that the tail

of the infinite series; Z§N+lui(x)|, will be less than an arbitrarily smadlfor all x in

the given interval.

This condition, Eq. (5.67), which defines uniform convergence, is illustrated in Fig. 5.7.

The point is that no matter how smalis taken to be, we can always choasiarge enough

so that the absolute magnitude of the difference betwsgen ands, (x) is less thare for

all x, a < x < b. Ifthis cannot be done, then «, (x) is not uniformly convergent ifu, b].

Example 5.5.1 NONUNIFORM CONVERGENCE

0]

S X
;un(x) S T e TprecrE (5.68)

n=1
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Sx)+¢
S(x)

S(x)—¢

D

FIGURE 5.7 Uniform convergence.

The partial suns, (x) = nx(nx +1)~1, as may be verified bynathematical induction.
By inspection this expression fey (x) holds forn = 1, 2. We assume it holds fer terms
and then prove it holds for + 1 terms:

Spt1(x) =sp(x) +

X
[nx + 1[(n + Dx + 1]

_ nx X

T x4+ 1] + [nx + 1[(n + Dx + 1]
(n+1x

- n+Dx+1

completing the proof.
Letting n approach infinity, we obtain

S(0) = lim s,(0) =0,
S #0) = lim s,(x#0) =1

We have a discontinuity in our series limitaat= 0. However,s, (x) is a continuous func-
tion of x,0 < x <1, for all finite n. No matter how smalt may be, Eq. (5.67) will be
violated for all sufficiently smalk. Our series does not converge uniformly. [ |

Weierstrass M (Majorant) Test

The most commonly encountered test for uniform convergence is the Weierktraess.
If we can construct a series of numbe&r§” M;, in which M; > |u; (x)| for all x in the

interval [a, b] andzio M; is convergent, our serieg (x) will be uniformly convergent
in [a, b].
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The proof of this Weierstras¥ test is direct and simple. Singe; M; converges, some
numberN exists such that fot +1> N,

o]

> Mi<e. (5.69)

i=n+1

This follows from our definition of convergence. Then, wjth(x)| < M; for all x in the
intervala < x < b,

Z ’ui(x)| <e. (5.70)
i=n+1
Hence
S() —sa @) =| Y wilx)| <e, (5.71)
i=n+1

and by definition) ;2 u; (x) is uniformly convergent ifia, b]. Since we have specified
absolute values in the statement of the Weierstidsest, the seried 2, u; (x) is also
seen to bebsolutelyconvergent.

Note that uniform convergence and absolute convergence are independent properties.
Neither implies the other. For specific examples,

[e.]

_1 n
Z %, — <X <00, (572)
n X
n=1
and
o0 )Cn
Yyt =Ind+x), 0<x<1, (5.73)
n

n=1

converge uniformly in the indicated intervals but do not converge absolutely. On the other
hand,

o0
Z(l—x)x”:l, 0<x<1
n=0

=0, x=1, (5.74)

converges absolutely but does not converge uniform[@jd].
From the definition of uniform convergence we may show that any series

o
FO) =) un(x) (5.75)
n=1
cannot converge uniformly in any interval that includes a discontinuitg@f if all u,, (x)
are continuous.
Since the Weierstras|l test establishes both uniform and absolute convergence, it will
necessarily fail for series that are uniformly but conditionally convergent.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

5.5 Series of Functions 351
Abel’s Test

A somewhat more delicate test for uniform convergence has been given by Abel. If
up(x) = an fn(x),

Zan = A, convergent

and the functiongf, (x) are monotoniq f,,+1(x) < f,(x)] and bounded, & f,(x) < M,
for all x in [a, b], then)_, u,(x) converges uniformlyin [a, b].

This test is especially useful in analyzing power series (compare Section 5.7). Details of
the proof of Abel’s test and other tests for uniform convergence are given in the Additional
Readings listed at the end of this chapter.

Uniformly convergent series have three particularly useful properties.

1. If the individual termsy,, (x) are continuous, the series sum

e¢]

F)= unx) (5.76)

n=1

is also continuous.
2. If the individual termsu, (x) are continuous, the series may be integrated term by
term. The sum of the integrals is equal to the integral of the sum.

b Sl b
/ Fx)dx = Z/ un(x)dx. (5.77)
a }’l:l a

3. The derivative of the series sufitx) equals the sum of the individual term deriva-
tives:

o0

d d
0= —un (), (5.78)

n=1
provided the following conditions are satisfied:
duy(x)
X

a2 (x) and
Un(x) 4

are continuous ifa, b].

>\ dup (x)

Z ; is uniformly convergent ifia, b].
X

n=1

Term-by-term integration of a uniformly convergent setigjuires only continuity of
the individual terms. This condition is almost always satisfied in physical applications.
Term-by-term differentiation of a series is often not valid because more restrictive condi-
tions must be satisfied. Indeed, we shall encounter Fourier series in Chapter 14 in which
term-by-term differentiation of a uniformly convergent series leads to a divergent series.

8Term-by-term integration may also be valid in the absence of uniform convergence.
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Exercises

5.5.1 Find the range ofiniform convergence of the Dirichlet series

00 a1 )
@Y Tr . miw=) -
n=1

nx
n=1

ANS.(a) O<s<x <o0.
(b) l<s=<x<oo.

5.5.2 For what range of is the geometric seri€s .- ,x" uniformly convergent?
ANS. -1 < -—-s<x<s <l
553 For what range of positive values ofis Y2 ;1/(1+ x")
(a) convergent? (b) uniformly convergent?

5.5.4 If the series of the coefficienfs’ a, and)_ b, are absolutely convergent, show that the
Fourier series

Z(a,, cosnx + by sinnx)

is uniformly convergent for-oco < x < co.

5.6 TAYLOR’S EXPANSION

This is an expansion of a function into an infinite series of powers of a variabtento
a finite series plus a remainder term. The coefficients of the successive terms of the series
involve the successive derivatives of the function. We have already used Taylor’'s expansion
in the establishment of a physical interpretation of divergence (Section 1.7) and in other
sections of Chapters 1 and 2. Now we derive the Taylor expansion.

We assume that our functiofi(x) has a continuousth derivativé in the intervala <
x < b. Then, integrating thisth derivativen times,

/ " PO di = O B e R A )

a

/ " dxs / P e ey = / Cdxa[F7 () — FO D (@)] (5.79)

=20 — f"2 @) - (x —a) " V().
Continuing, we obtain

/X dxg/X3 dx2 /xz dxlf(n)(xl) = f(n73)(x) _ f(n73)(a) —(x— a)f(n72)(a)

(x —a)?

e ARG (5.80)

9Tay|or’s expansion may be derived under slightly less restrictive conditions; compare H. Jeffreys and B. S. Mdtiayds
of Mathematical Physic8rd ed. Cambridge: Cambridge University Press (1956), Section 1.133.
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Finally, on integrating for theth time,

x x2 (x —a)?
/ dxn--~/ dx1f™(x1) = f(x) — f(a) — 2! (a
_ -1
e SO 1@, &80

Note that this expression is exact. No terms have been dropped, no approximations made.
Now, solving for f (x), we have

fx) = f@+ & —a)f'(a)

—_ )2 _ \n—1
+— (x ) —— @)+ +lf(”‘l>(a)+Rn.
(n — 1!

The remainderR,,, is given by thex-fold integral
X X2
R, = / dxp - / dx1 f™ (xp). (5.83)
a a

This remainder, Eq. (5.83), may be put into a perhaps more practical form by using the
mean value theoremof integral calculus:

(5.82)

f g(x)dx =(x —a)g(§), (5.84)
a
with a < £ < x. By integrating: times we get the Lagrangian fotfhof the remainder:
Ry =2 ) (5.85)
n.

With Taylor's expansion in this form we are not concerned with any questions of infinite
series convergence. This series is finite, and the only questions concern the magnitude of
the remainder.
When the functionf (x) is such that
lim R, =0, (5.86)

n—oo

Eq. (5.82) becomes Taylor’s series:

(x — )2
f@)=f@+&—a)f' @+ @) + -
(x
= Z <">( )11 (5.87)
10an alternate form derived by Cauchy is
=" e —a)
R=—— /O,

witha <¢ <x.
11Note that 0= 1 (compare Section 8.1).
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Our Taylor series specifies the value of a function at one pejrit) terms of the value
of the function and its derivatives at a reference poirit is an expansion in powers of the
changein the variable Ax = x — a in this case. The notation may be varied at the user’s
convenience. With the substitution— x + # anda — x we have an alternate form,

o0 h”
Fatm =3 — "),
n=0 "

When we use theperator D = d/dx, the Taylor expansion becomes

oo nnn

flatm=) ——f@=e"fw).

n=0

(The transition to the exponential form anticipates Eq. (5.90), which follows.) An equiva-
lent operator form of this Taylor expansion appears in Exercise 4.2.4. A derivation of the
Taylor expansion in the context of complex variable theory appears in Section 6.5.

Maclaurin Theorem

If we expand about the origim = 0), Eqg. (5.87) is known as Maclaurin’s series:

o]

2 n
FO = fO+xf O+ 5 O+ =Y = ") (5.88)

n=0 "

An immediate application of the Maclaurin series (or the Taylor series) is in the expan-
sion of various transcendental functions into infinite (power) series.

Example 5.6.1  ExpoNenTIAL FUNCTION
Let f(x) = ¢*. Differentiating, we have
F™o) =1 (5.89)
foralln,n=1,2,3,.... Then, with Eq. (5.88), we have

x2 X8 "
: ’ n:On.

This is the series expansion of the exponential function. Some authors use this series to
define the exponential function.
Although this series is clearly convergent foraliwe should check the remainder term,
R,. By Eq. (5.85) we have
x!

Ri="fW@E) ="ef, 0<|t|<x. (5.91)
n! n!
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5.6 Taylor’s Expansion 355

Therefore
n_,x
Rl <=2 (5.92)
n!
and
lim R, =0 (5.93)
n— oo
for all finite values ofx, which indicates that this Maclaurin expansionedfconverges
absolutely over the rangeoco < x < oo. [ |

Example 5.6.2 LoGARITHM

Let f(x) =In(1+ x). By differentiating, we obtain
flo=a+x7"
FPx) =Dt - )1+ x)7". (5.94)

The Maclaurin expansion (Eg. (5.88)) yields
$2 3 4

In(l—i-x):x—?—i-%—%-i-“'-i-Rn
n xp
p=1

In this case our remainder is given by
xn

Ry=—f"E), 0<&<x

n!
< O<é<x=<1l (5.96)
n

Now, the remainder approaches zermads increased indefinitely, provided9x < 1.12
As an infinite series,

IN(1+x) = Z(—l)"—“;—n (5.97)
n=1

converges fo-1 < x < 1. Therange-1 < x < 1 is easily established by the d’Alembert
ratio test (Section 5.2). Convergence at 1 follows by the Leibniz criterion (Section 5.3).
In particular, atr = 1 we have

1 1 1 1 >
N2=1—-4+-"_Z4+ - _...= _1"_1 -1 5.98
n stz ats G ST (5.98)
n=1
the conditionally convergent alternating harmonic series. [ |

12This range can easily be extended < x < 1 but not tox = —1.
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356 Chapter 5 Infinite Series
Binomial Theorem

A second, extremely important application of the Taylor and Maclaurin expansions is the
derivation of the binomial theorem for negative and/or nonintegral powers.

Let f(x) = (14 x)™, in whichm may be negative and is not limited to integral values.
Direct application of Eq. (5.88) gives

-1
(1+x)m=1+mx+%x2+-~-+Rn. (5.99)
For this function the remainder is
n
Rn:x—'(1+§)m_"m(m—1)--~(m—n—|—1) (5.100)
n:

andé¢ lies between 0 and,0 <& < x. Now, forn > m, (1 +&)"" is a maximum for
& = 0. Therefore

n

Rng%m(m—l)..-(m—n+1). (5.101)

Note that then dependent factors do not yield a zero unkesis a nonnegative integeR,,
tends to zero as — oo if x is restricted to the range9x < 1. The binomial expansion
therefore is shown to be

m(m _1)x2~|— m(m — 1)(m —2)x3+”-

A+x)"=14+mx+ o 3 (5.102)
In other, equivalent notation,
o0 | oo
@a+x)" =Zﬁx" =z;)<lz>x". (5.103)

The quantity(”"), which equalsn!/[n!(m — n)!], is called abinomial coefficient Al-
though we have only shown that the remainder vanishes,

lim R, =0,

n—oo

for 0 < x < 1, the series in Eq. (5.102) actually may be shown to be convergent for the
extended range 1 < x < 1. Form an integer(m — n)! = +o0 if n > m (Section 8.1) and
the series automatically terminatesiat m.

Example 5.6.3  RELATIVISTIC ENERGY

The total relativistic energy of a particle of massand velocityv is

v2

—1/2
E=mc2<1— —2) . (5.104)
C

Compare this expression with the classical kinetic enengy, 2.
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By Eq. (5.102) withx = —v?/c? andm = —1/2 we have

1/ v2\  (=1/2(=3/2) [ v?\?
e

— — — 2\3
L L3/ 5/2><_v_) +]

3! 2
or
1 3 v 5 v2\?
E=mc2+§mv2+§mv2~§+1—6mv2- <C—2> +ee (5.105)

The first termnc?, is identified as the rest mass energy. Then

1, 312 5/v?)\?
E' PR 1 - | — BRI 5106
kinetic va |: + 42 + 8(c2> + ( )
For particle velocityy « ¢, the velocity of light, the expression in the brackets reduces
to unity and we see that the kinetic portion of the total relativistic energy agrees with the
classical result. |

For polynomials we can generalize the binomial expansion to

n __ n! ny _nz nm
(a1 +az+---+ap) —Zm
where the summation includes all different combinations mf ny, ..., n, with
Y 't in; =n. Heren; andn are all integral. This generalization finds considerable use
in statistical mechanics.
Maclaurin series may sometimes appear indirectly rather than by direct use of Eq. (5.88).
For instance, the most convenient way to obtain the series expansion

00 2n+1 3 5
L1 @2n-"  x X 3x
sin = . = — 4, 5.106a
x Z;) 2o am+n “teta " ( )

is to make use of the relation (from sin= x, getdy/dx = 1/+/1 — x2)

sin‘lx—/‘xL
o -2

We expand1 — 2)~1/2 (binomial theorem) and then integrate term by term. This term-
by-term integration is discussed in Section 5.7. The result is Eq. (5.106a). Finally, we may
take the limit asc — 1. The series converges by Gauss’ test, Exercise 5.2.5.
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358 Chapter 5 Infinite Series

Taylor Expansion — More Than One Variable

If the function f has more than one independent variable, ga¥ f(x, y), the Taylor
expansion becomes

0
fx,y) = f(a, b)+(x—a)—f+( —b)—f

2
1[(x—a>2 f+2(x—a><y b)—f+( — b)? f}

1 303f a3f
+§[(x— =3 +30c —)*(y = b %3y

83 3
+3(x—a><y—b)28xaf2 (v —b)° f} (5.107)

with all derivatives evaluated at the poi@t, b). Usinge jt = x; — x;0, we may write the
Taylor expansion fom independent variables in the symbolic form

e X)) = ; ey Xm 5.108
FOL o x) = Z (Za ) for| (5.108)
A convenient vector form fom = 3 is
o0
v(r+a) = Z—(a V)" (r). (5.109)
n=0

Exercises

5.6.1 Show that

(241
(@) sinx = Z( 1) BTV

o2
(b) cost = Z( 1) o

In Section 6.1¢™* is defined by a series expansion such that
¢'* = cosx + i sinx.

This is the basis for the polar representation of complex quantities. As a special case we
find, with x = 7, the intriguing relation

et =—1.
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