
Comp 1330/ First Semester 2024/2025

Introduction to
Computers &
Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Uploaded By: anonymousSTUDENTS-HUB.com

Chapter 02
Overview of C

Uploaded By: anonymousSTUDENTS-HUB.com

ABOUT C
1. High-level programming language developed in 1972.
2. Was designed as a language to write the UNIX Operating System
3. Originally used primarily for systems programming
4. Become popular due to the power and flexibility of C, together with the

availability of C-Compilers.

Uploaded By: anonymousSTUDENTS-HUB.com

1. Preprocessor Directives
➢ Begins with a number symbol (#), i.e. #include, #define.
➢ Each library has a standard header file whose name ends with (.h).
➢ Descriptions of common mathematical functions are found in the header file math.h
➢ Constant macros, i.e. #KMS_PER_MILE
Figure 2.1 , 47

2. Comments
Give meaning to code, they are ignored by the C preprocessor and compiler

2.1 C LANGUAGE ELEMENTS

Uploaded By: anonymousSTUDENTS-HUB.com

3. Function Main
Where program execution begins.
Comprised of declarations & executable statements

4. Reserved Words

Identifiers from standard libraries and names for memory cells.
Lower-cased.
Have special meaning in C
Table 2.1, p.50

C LANGUAGE ELEMENTS

Uploaded By: anonymousSTUDENTS-HUB.com

5. Standard Identifiers
Have special meanings in C i.e. printf(), scanf()

6. User-Defined Identifiers
To name memory cells that will hold data and program results and to name
operations that we define. (Ch03). i.e main, KMS_PER_MILE.
1- Only letters, digits, and underscores.
2- Cannot begin with a digit.
3- Cannot be a C reserved word.
4- C- defined identifier should not be redefined.

C LANGUAGE ELEMENTS

Uploaded By: anonymousSTUDENTS-HUB.com

letter_1, letter_2, inches,
cent, CENT_PER_INCH, Hello,
variable

VALID IDENTIFIERS

1Letter double
int TWO*FOUR
joe's

INVALID IDENTIFIERS

Uploaded By: anonymousSTUDENTS-HUB.com

➢ Viewed as different identifiers by compiler,
i.e. Student != student != STUDENT

➢ Maintain consistency as it improves program reading
➢ All reserved words in C and the names of all standard library

functions use only lowercase letters.
➢ Uses all uppercase letters in the names of constant macros.

UPPERCASE AND LOWERCASE LETTERS

Uploaded By: anonymousSTUDENTS-HUB.com

1. Pick a meaningful name for a user-defined identifier, so its use is easy to
understand, i.e. salary,

2. underscore between two words, i.e. student_name
3. Choose identifiers long enough to convey your meaning, but avoid

excessively long names, i.e. km_per_hr instead of kilometer_per_hour
4. Do not choose names that are similar to each other, mistyping not

detected if you accidentally type another word.
• Avoid using same word in uppercase and also lowercase, i.e. PC and pc.
• Also try not to use two names that differ only in the presence or absence of

an underscore (personal_computer and personalcomputer).

PROGRAM STYLE Choosing Identifier Names

Uploaded By: anonymousSTUDENTS-HUB.com

1. Variable Declarations
Variables: The memory cells used for storing a program’s input data and its
computational results.
variable declarations:
➢ communicate to the C compiler the names of all variables used in a program.
➢ They also tell the compiler what kind of information will be stored in each variable.

double miles; /* input - distance in miles. */
double kms; /* output - distance in kilometers */

2.2 VARIABLE DECLERATIONS AND DATA TYPES

identifier

Uploaded By: anonymousSTUDENTS-HUB.com

2. Data Types
A data type is a set of values and a set of operations on those values: ANSI

1. Integers (whole numbers): range of int must include at least the values −32767 through
32767. Store an integer in int variable and perform the common arithmetic operations,
and compare two integers

2. Double: A real number has an integral part and a fractional part that are separated by a
decimal point, perform arithmetic operations and compare.

from 10-37 -> 1037 (for positive values)

We can use scientific notation to represent real numbers:
Normal Scientific Notation: 1.23 X 105 = 23000.0
C Scientific Notation: 1.23e5 or 1.23E5 (read e: “times 10 to the power”)

Uploaded By: anonymousSTUDENTS-HUB.com

2. Data Types

Uploaded By: anonymousSTUDENTS-HUB.com

Differences between Numeric Types
• Double can be used to represent all numbers, but operations involving integers are

faster (less storage).
• Operations with integers are always precise, whereas some loss of accuracy or round-

off error may occur when dealing with type double numbers.
• This differences result from the way numbers are represented in memory.
• The binary string stored for type int value of some number is not the same as the binary

string stored for the type double for the same number.
• The actual internal representation is computer dependent, and type double numbers

usually require more bytes of computer memory than type int.

• real number = mantissa X 2exponent

Figure 2.2 Uploaded By: anonymousSTUDENTS-HUB.com

Table 2.5

short <= int <= long

Uploaded By: anonymousSTUDENTS-HUB.com

Table 2.6

Values of type float must have at least six decimal digits of precision;
both type double and long double values must have at least ten decimal digits

Uploaded By: anonymousSTUDENTS-HUB.com

2. Data Types
3. char: Data type char represents an individual character value—a letter, a digit, or a
special symbol. Each type char value is enclosed in apostrophes (single quotes) as
shown here.

'A' ,'z' ,'2' ,'9' ,'*‘, ':' ,'"' , ' '
• A character is represented in memory as an integer. The value stored is determined by

the code used by your C compiler. The ASCII code (American Standard Code for
Information Interchange) is the most common.

Printable characters vs non-printable characters

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

The digit characters '0' through '9' have code values of 48 through 57 (decimal).

In ASCII, uppercase letters have the decimal code values 65 through 90.

Lowercase letters have the consecutive decimal code values 97 through 122

Uploaded By: anonymousSTUDENTS-HUB.com

C statements used to write or code the algorithm and its refinements.

2.3 EXECUTABLE STATEMENTS

Programs in memory

Figure 2.3

Uploaded By: anonymousSTUDENTS-HUB.com

Assignment Statements
kms = KMS_PER_MILE * miles;

Figure 2.4

Uploaded By: anonymousSTUDENTS-HUB.com

FORM: variable = expression;
EXAMPLEs:

x = y + z + 2.0;
sum = sum + item; (not an algebraic equation)
new_x = x;
new_x = -x;

Assignment to char variable:
next_letter = 'A';

Uploaded By: anonymousSTUDENTS-HUB.com

Input/Output Operations and Functions
All input/output operations in C are performed by special program units called

input/output functions .

To store data in memory:
1. By assignment to a variable
2. By copying the data from an input device into a variable using a function like

scanf (input operation)

➢ Program results can be displayed to the program user by an output operation
.

➢ Most common input/output functions provided by #include <stdio.h>
(input\output library)

Uploaded By: anonymousSTUDENTS-HUB.com

The Printf Function

Result: That equals 16.090000 kilometers.
--newline

Uploaded By: anonymousSTUDENTS-HUB.com

Placeholders

Uploaded By: anonymousSTUDENTS-HUB.com

Multiple Placeholders
printf("Hi %c%c%c - your age is %d\n", letter_1, letter_2, letter_3, age);

Result: Hi ABC - your age is 35
--newline

Uploaded By: anonymousSTUDENTS-HUB.com

New line character “\n”

Uploaded By: anonymousSTUDENTS-HUB.com

Prompting Message (prompts)
printf("Enter the distance in miles> ");
scanf("%lf", &miles);

• The & is the C address-of operator: find each variable in which to
store a new value.

• When scanf executes, the program pauses until the required data are
entered and the <return> or <enter> key is pressed.

.

No Print List

Uploaded By: anonymousSTUDENTS-HUB.com

scanf("%c%c%c", &letter_1, &letter_2, &letter_3);

.

Uploaded By: anonymousSTUDENTS-HUB.com

Scanf() rules
• The number of input characters consumed by the scanf function

depends on the current format placeholder, which should reflect
the type of the variable in which the data will be stored.

• Only one input character is used for a %c (type char variable).

• For a %lf or %d (type double or int variable), the program first
skips any spaces and then scans characters until it reaches a
character that cannot be part of the number. Usually the program
user indicates the end of a number by pressing the space bar or
by pressing the <return> or <enter> key.

Uploaded By: anonymousSTUDENTS-HUB.com

Scanf() rules
• If you would like scanf to skip spaces before scanning a character,

put a blank in the format string before the %c placeholder.

• If you type more data characters on a line than are needed by the
current call to scanf , the extra characters will be processed by the
next call to scanf .

• You must enter data in the same order as the variables in the
input list.

• You should insert one or more blank characters or carriage
returns between numeric items.

Uploaded By: anonymousSTUDENTS-HUB.com

Return statement
• return (0);

• The return statement transfers control from a function back to the
activator of the function.

• For function main , control is transferred back to the operating
system.

• The value in parentheses,0, is considered the result of function
main ’s execution.

• It indicates that your program executed without error.

Uploaded By: anonymousSTUDENTS-HUB.com

preprocessor directives
main function heading
{
declarations
executable statements
}

2.4 GENERAL FORM OF A C PROGRAM

You can write more than one statement on a line. For example, the line:

printf("Enter distance in miles> "); scanf("%lf", &miles);

Uploaded By: anonymousSTUDENTS-HUB.com

Program Style
• Spaces: for readability (required between consecutive words in a program line.)
• Comments: Comments are part of the program documentation because they

help others read and understand the program (ignored by the compiler).

Each program should begin with a header section that consists of a series of
comments specifying:

■ the programmer’s name
■ the date of the current version
■ a brief description of what the program does

Uploaded By: anonymousSTUDENTS-HUB.com

• To manipulate type int and double data

2.5 ARITHMETIC EXPRESSIONS

Uploaded By: anonymousSTUDENTS-HUB.com

Operator /
• 7.0 / 2.0 is 3.5 , but the value of 7 / 2 is 3.
• 299.0 / 100.0 is 2.99 , but the value of 299 / 100 is
• If the / operator is used with a negative and a positive integer, the

result may vary from one C implementation to another. For this
reason, you should avoid using division with negative integers.

• The / operation is undefined when the divisor (the second operand)
is 0 .

Uploaded By: anonymousSTUDENTS-HUB.com

Operator %
• The remainder operator (%) returns the integer remainder of the

result of dividing its first operand by its second.

Uploaded By: anonymousSTUDENTS-HUB.com

Operator %
• The magnitude of m % n must always be less than the divisor n, so if m is positive, the

value of m % 100 must be between 0 and 99 .
• The % operation is undefined when n is zero and varies from one implementation to

another if n is negative.

The formula: m equals (m / n)* n (m % n)

7 equals (7 / 2) * 2 + (7 % 2)
equals 3 * 2 + 1

Uploaded By: anonymousSTUDENTS-HUB.com

Data Type of an Expression
➢ The data type of an expression depends on the type(s) of its

operands.

➢ X + y = > integer if both are integers, otherwise it is of type double

➢ An expression that has operands of both type int and double is a mixed-type
expression

Uploaded By: anonymousSTUDENTS-HUB.com

Mixed-Type Assignment Statement
• When an assignment statement is executed, the expression is first

evaluated; then the result is assigned to the variable listed to the left
of the assignment operator (=).

• Either a type double or a type int expression may be assigned to a
type double variable,

• m = 3; n = 2; (integers) x ,y (doubles)

1. y = m / n;

2. x = 9 * 0.5; => 4.5
3. n = 9 * 0.5; => 4

(m / n = 1 => y = 1.0)

Uploaded By: anonymousSTUDENTS-HUB.com

Type Conversion through Casts
• n = (int)(9 * 0.5);

Uploaded By: anonymousSTUDENTS-HUB.com

• 'A' + 1 = B

• The expression 'A' + 1 adds 1 to the code for 'A' and its value is the
next character after 'A‘ which is 'B' in ASCII

Arithmetic operations on characters

Uploaded By: anonymousSTUDENTS-HUB.com

• Unary operators take only one operand: x = -y;
• Binary operators require two operands: x = y + z;

• What about multiple operators?

x + y / z x / y * z

To understand and write expressions with multiple operators, we must know the
C rules for evaluating expressions

Expressions with Multiple Operators

Uploaded By: anonymousSTUDENTS-HUB.com

• Rules for Evaluating Expressions:
1. Parentheses rule.
2. Operator precedence rule:

3. Associativity rule
• Right-to-Left Associativity (Unary Operators):

int x = -+5;

• Left-to-Right Associativity (Binary Operators):
int result = 5 - 3 + 2;

Expressions with Multiple Operators

Uploaded By: anonymousSTUDENTS-HUB.com

• Rules for Evaluating Expressions:

For example, the expression

x * y * z + a / b - c * d
can be written:

(x * y * z) + (a / b) - (c * d)

Expressions with Multiple Operators

Uploaded By: anonymousSTUDENTS-HUB.com

Example 1

Step-by-step
evaluation

Uploaded By: anonymousSTUDENTS-HUB.com

Writing Mathematical Formulas in C

Uploaded By: anonymousSTUDENTS-HUB.com

Numerical Inaccuracies
• The representational error (sometimes called round-off

error) will depend on the number of bits used in the
mantissa: the more bits, the smaller the error.

• cancellation error: When you add a large number and a
small number, the larger number may “cancel out” the
smaller number.

• For example: 1000.0 + 0.0000001234 is equal to 1000.0
on some computers.

Uploaded By: anonymousSTUDENTS-HUB.com

Numerical Inaccuracies
• arithmetic underflow: If two very small numbers are

multiplied, the result may be too small to be represented
accurately, so it will be represented as zero

• Arithmetic overflow: Similarly, if two very large numbers are
multiplied, the result may be too large to be represented.

Uploaded By: anonymousSTUDENTS-HUB.com

CASE STUDY (Homework)
P.82

Uploaded By: anonymousSTUDENTS-HUB.com

• Formatting Values of Type int:

❑ add a number between the % and the d of the %d placeholder in the printf format string.
❑ This number specifies the field width (the number of columns to use for the display of the

value.)

printf("Results: %3d meters = %4d ft. %2d in.\n“, meters, feet, inches);

If meters is 21 , feet is 68 , and inches is 11 , the program output will be:

Results: 21 meters = 68 ft. 11 in.

2.6 FORMATTING NUMBERS IN PROGRAM OUTPUT

1 extra space 2 extra spaces

Uploaded By: anonymousSTUDENTS-HUB.com

• Formatting Values of Type int:

Uploaded By: anonymousSTUDENTS-HUB.com

• Formatting Values of Type double:

• To describe the format specification for a type double value, we must indicate
both the total field width needed and the number of decimal places desired.

• The total field width should be large enough to accommodate all digits before
and after the decimal point.

• There will be at least one digit before the decimal point because a zero is printed
as the whole-number part of fractions that are less than 1.0 and greater than −1.0.

Uploaded By: anonymousSTUDENTS-HUB.com

• Formatting Values of Type double:

• We should also include a display column for the decimal point and for the minus
sign if the number can be negative.

• The form of the format string placeholder is %n.mfwhere n is a number
representing the total field width, and m is the desired number of decimal places.

• If x is a type double variable whose value will be between −99.99 and 999.99 , we
could use the placeholder %6.2f to display the value of x to an accuracy of two
decimal places

Uploaded By: anonymousSTUDENTS-HUB.com

• Formatting Values of Type double:

Rounding

Uploaded By: anonymousSTUDENTS-HUB.com

• Formatting Values of Type double:

Total field width omitted Uploaded By: anonymousSTUDENTS-HUB.com

• Formatting Values of Type double:

• Remarks:

❑ a value whose whole-number part requires fewer display columns than are
specified by the format field width is displayed with leading blanks.

❑ To eliminate extra leading blanks, omit the field width from the format string
placeholder.

❑ The simple placeholder %d will cause an integer value to be displayed with no
leading blanks.

❑ A placeholder of the form % .mf has the same effect for values of type double ,
and this placeholder still allows you to choose the number of decimal places you
wish.

Uploaded By: anonymousSTUDENTS-HUB.com

• two basic modes of computer operation:

1. Interactive mode: the program user interacts with the program and types in data
while it is running.

2. batch mode: the program scans its data from a data file prepared beforehand
instead of interacting with its user.

2.7 INTERACTIVE MODE, BATCH MODE, AND DATA FILES

Uploaded By: anonymousSTUDENTS-HUB.com

• Batch Mode:

o Input Redirection:

o We assume here that the standard input device is associated with a
batch data file instead of with the keyboard. (figure 2.14 p.92)

o i.e: myprog <mydata.txt

o Whenever you convert an interactive program to a batch program make
sure you replace each prompt with an echo print that follows the call to
scanf: printf(“Enter the distance in miles> ”);

scanf("%lf", &miles);

printf("The distance in miles is %.2f.\n", miles);
Uploaded By: anonymousSTUDENTS-HUB.com

• Batch Mode:

o Output Redirection

o You can also redirect program output to a disk file instead of to the screen.
Then you can send the output file to the printer

o redirect output from the screen to file myoutput.txt:
myprog >myoutput.txt => myprog <mydata.txt >myoutput.txt

Uploaded By: anonymousSTUDENTS-HUB.com

• Errors are so common that they have their own special name— bugs —and the
process of correcting them is called “debugging” a program.

• When the compiler detects an error, the computer displays an error message,
which indicates that you have made a mistake and what the likely cause of the
error might be.

• Unfortunately, error messages are often difficult to interpret and are sometimes
misleading.

• Three kinds of errors—syntax errors, run-time errors, and logic errors

2.8 COMMON PROGRAMMING ERRORS

Uploaded By: anonymousSTUDENTS-HUB.com

• occurs when your code violates one or more grammar rules of C and is detected
by the compiler as it attempts to translate your program.

• Figure 2.15 p. 95.

• The compiler attempts to correct errors wherever it can. Look at line 271.

• We see several cases in this listing where one mistake of the programmer leads
to the generation of multiple error messages (the missing declaration for
variable miles).

• It is often a good idea to concentrate on correcting the errors in the declaration
part of a program first. Then recompile the program before you attempt to fix
other errors.

• Syntax errors are often caused by the improper use of quotation marks with
format strings.

1. syntax errors

Uploaded By: anonymousSTUDENTS-HUB.com

• Detected and displayed by the computer during the execution of a program.

• A run-time error occurs when the program directs the computer to perform an
illegal operation, such as dividing a number by zero.

• When a run-time error occurs, the computer will stop executing your program
and will display a diagnostic message that indicates the line where the error was
detected.

• Figure 2.16 p.96

2. Run-Time Errors

Uploaded By: anonymousSTUDENTS-HUB.com

• occur when a program follows a faulty algorithm.

• Because logic errors usually do not cause run-time errors and do not display
error messages, they are very difficult to detect.

• The only sign of a logic error may be incorrect program output.

• You can detect logic errors by testing the program thoroughly, comparing its
output to calculated results.

• You can prevent logic errors by carefully desk checking the algorithm and the
program before you type it in.

3. Logic Errors

Uploaded By: anonymousSTUDENTS-HUB.com

• Errors that may not prevent a C program from running to completion, but they
may simply lead to incorrect results.

• Therefore, it is essential that you predict the results your program should
produce and verify that the actual output is correct.

• A very common source of incorrect results in C programs is the input of a
mixture of character and numeric data.

• Errors can be avoided if the programmer always keeps in mind scanf ’s different
treatment of the %c placeholder on the one hand and of the %d and %lf
placeholders on the other.

• Figure 2.17 p.97.
• Figure 2.18 p.99

Undetected Errors

Uploaded By: anonymousSTUDENTS-HUB.com

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and
Elliot B. Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

