
Objectives
■■ To describe what a recursive method is and the benefits of using recur-

sion (§18.1).

■■ To develop recursive methods for recursive mathematical functions
(§§18.2 and 18.3).

■■ To explain how recursive method calls are handled in a call stack
(§§18.2 and 18.3).

■■ To solve problems using recursion (§18.4).

■■ To use an overloaded helper method to design a recursive method
(§18.5).

■■ To implement a selection sort using recursion (§18.5.1).

■■ To implement a binary search using recursion (§18.5.2).

■■ To get the directory size using recursion (§18.6).

■■ To solve the Tower of Hanoi problem using recursion (§18.7).

■■ To draw fractals using recursion (§18.8).

■■ To discover the relationship and difference between recursion and
iteration (§18.9).

■■ To know tail-recursive methods and why they are desirable (§18.10).

Recursion

CHAPTER

18

M18_LIAN9966_12_SE_C18.indd 719 16/09/19 7:37 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

720 Chapter 18   Recursion

18.1  Introduction
Recursion is a technique that leads to elegant solutions to problems that are difficult
to program using simple loops.

Suppose you want to find all the files under a directory that contains a particular word. How
do you solve this problem? There are several ways to do so. An intuitive and effective solution
is to use recursion by searching the files in the subdirectories recursively.

H-trees, depicted in Figure 18.1, are used in a very large-scale integration (VLSI) design as a
clock distribution network for routing timing signals to all parts of a chip with equal propagation
delays. How do you write a program to display H-trees? A good approach is to use recursion.

Point
Key

search word problem
H-tree problem

To use recursion is to program using recursive methods—that is, to use methods that invoke
themselves. Recursion is a useful programming technique. In some cases, it enables you to
develop a natural, straightforward, simple solution to an otherwise difficult problem. This
chapter introduces the concepts and techniques of recursive programming and illustrates with
examples of how to “think recursively.”

18.2  Case Study: Computing Factorials
A recursive method is one that invokes itself directly or indirectly.

Many mathematical functions are defined using recursion. Let’s begin with a simple example.
The factorial of a number n can be recursively defined as follows:

0! = 1;
n! = n × (n − 1)!; n > 0

How do you find n! for a given n? To find 1! is easy because you know that 0! is 1 and 1!
is 1 × 0!. Assuming that you know (n − 1)!, you can obtain n! immediately by using
n × (n − 1)!. Thus, the problem of computing n! is reduced to computing (n − 1)!. When
computing (n − 1)!, you can apply the same idea recursively until n is reduced to 0.

Let factorial(n) be the method for computing n!. If you call the method with n = 0,
it immediately returns the result. The method knows how to solve the simplest case, which is
referred to as the base case or the stopping condition. If you call the method with n > 0, it
reduces the problem into a subproblem for computing the factorial of n − 1. The subproblem
is essentially the same as the original problem, but it is simpler or smaller. Because the sub-
problem has the same property as the original problem, you can call the method with a different
argument, which is referred to as a recursive call.

The recursive algorithm for computing factorial(n) can be simply described as follows:

if (n == 0)
 return 1;

recursive method

Point
Key

base case or stopping
condition

recursive call

Figure 18.1  An H-tree can be displayed using recursion. Source: Copyright © 1995–2016 Oracle and/or its affiliates.
All rights reserved. Used with permission.

(a) (b) (c) (d)

M18_LIAN9966_12_SE_C18.indd 720 16/09/19 7:37 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

18.2  Case Study: Computing Factorials 721

else
 return n * factorial(n − 1);

A recursive call can result in many more recursive calls because the method keeps on dividing
a subproblem into new subproblems. For a recursive method to terminate, the problem must
eventually be reduced to a stopping case, at which point the method returns a result to its caller.
The caller then performs a computation and returns the result to its own caller. This process
continues until the result is passed back to the original caller. The original problem can now
be solved by multiplying n by the result of factorial(n − 1).

Listing 18.1 gives a complete program that prompts the user to enter a nonnegative integer
and displays the factorial for the number.

Listing 18.1  ComputeFactorial.java
 1 import java.util.Scanner;
 2
 3 public class ComputeFactorial {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 // Create a Scanner
 7 Scanner input = new Scanner(System.in);
 8 System.out.print("Enter a nonnegative integer: ");
 9 int n = input.nextInt();
10
11 // Display factorial
12 System.out.println("Factorial of " + n + " is " + factorial(n));
13 }
14
15 /** Return the factorial for the specified number */
16 public static long factorial(int n) {
17 if (n == 0) // Base case
18 return 1;
19 else
20 return n * factorial(n − 1); // Recursive call
21 }
22 }

recursion

base case

The factorial method (lines 16–21) is essentially a direct translation of the recursive
mathematical definition for the factorial into Java code. The call to factorial is recursive
because it calls itself. The parameter passed to factorial is decremented until it reaches the
base case of 0.

You see how to write a recursive method. How does recursion work behind the scenes?
Figure 18.2 illustrates the execution of the recursive calls, starting with n = 4. The use of
stack space for recursive calls is shown in Figure 18.3.

how does it work?

Enter a nonnegative integer: 4
Factorial of 4 is 24

Enter a nonnegative integer: 10
Factorial of 10 is 3628800

M18_LIAN9966_12_SE_C18.indd 721 16/09/19 7:37 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

722 Chapter 18   Recursion

Figure 18.3  When factorial(4) is being executed, the factorial method is called recursively, causing the stack
space to dynamically change.

Space required
for factorial(4)

n: 4

1 Space required
for factorial(4)

n: 4

2 Space required
for factorial(3)

n: 3

Space required
for factorial(4)

n: 4

3

Space required
for factorial(3)

n: 3

Space required
for factorial(2)

n: 2

Space required
for factorial(4)

n: 4

4

Space required
for factorial(3)

n: 3

Space required
for factorial(2)

n: 2

Space required
for factorial(1)

n: 1

Space required
for factorial(4)

n: 4

5

Space required
for factorial(3)

n: 3

Space required
for factorial(2)

n: 2

Space required
for factorial(1)

n: 1

Space required
for factorial(0)

n: 0

Space required
for factorial(4)

n: 4

6

Space required
for factorial(3)

n: 3

Space required
for factorial(2)

n: 2

Space required
for factorial(1)

n: 1

Space required
for factorial(4)

n: 4

7

Space required
for factorial(3)

n: 3

Space required
for factorial(2)

n: 2

Space required
for factorial(4)

n: 4

8 Space required
for factorial(3)

n: 3

Space required
for factorial(4)

n: 4

9

Figure 18.2  Invoking factorial(4) spawns recursive calls to factorial.

return 1

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

factorial(4)

return 3 * factorial(2)

return 4 * factorial(3)

M18_LIAN9966_12_SE_C18.indd 722 16/09/19 7:37 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

18.3  Case Study: Computing Fibonacci Numbers 723

Pedagogical Note
It is simpler and more efficient to implement the factorial method using a loop.
However, we use the recursive factorial method here to demonstrate the concept
of recursion. Later in this chapter, we will present some problems that are inherently
recursive and are difficult to solve without using recursion.

Note
If recursion does not reduce the problem in a manner that allows it to eventually converge
into the base case or a base case is not specified, infinite recursion can occur. For exam-
ple, suppose you mistakenly write the factorial method as follows:

 public static long factorial(int n) {
 return n * factorial(n − 1);
 }

The method runs infinitely and causes a StackOverflowError.

The example discussed in this section shows a recursive method that invokes itself. This is
known as direct recursion. It is also possible to create indirect recursion. This occurs when
method A invokes method B, which in turn directly or indirectly invokes method A.

	18.2.1	 What is a recursive method? What is an infinite recursion?

	18.2.2	 How many times is the factorial method in Listing 18.1 invoked for factorial(6)?

	18.2.3	 Show the output of the following programs and identify base cases and recursive calls.

infinite recursion

direct recursion
indirect recursion

Point
Check

	18.2.4	 Write a recursive mathematical definition for computing 2n for a positive integer n.

	18.2.5	 Write a recursive mathematical definition for computing xn for a positive integer n
and a real number x.

	18.2.6	 Write a recursive mathematical definition for computing 1 + 2 + 3 + g + n
for a positive integer n.

18.3  Case Study: Computing Fibonacci Numbers
In some cases, recursion enables you to create an intuitive, straightforward, simple
solution to a problem.

The factorial method in the preceding section could easily be rewritten without using
recursion. In this section, we show an example for creating an intuitive solution to a problem
using recursion. Consider the well-known Fibonacci-series problem:

The series: 0 1 1 2 3 5 8 13 21 34 55 89 . . .
indexes: 0 1 2 3 4 5 6 7 8 9 10 11

Point
Key

public class Test {
 public static void main(String[] args) {
 System.out.println(
 "Sum is " + xMethod(5));
 }

 public static int xMethod(int n) {
 if (n == 1)
 return 1;
 else
 return n + xMethod(n − 1);
 }
}

public class Test {
 public static void main(String[] args) {
 xMethod(1234567);
 }

 public static void xMethod(int n) {
 if (n > 0) {
 System.out.print(n % 10);
 xMethod(n / 10);
 }
 }
}

M18_LIAN9966_12_SE_C18.indd 723 16/09/19 7:37 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

724 Chapter 18   Recursion

The Fibonacci series begins with 0 and 1, and each subsequent number is the sum of the pre-
ceding two. The series can be recursively defined as

fib(0) = 0;
fib(1) = 1;
fib(index) = fib(index − 2) + fib(index − 1); index >= 2

The Fibonacci series was named for Leonardo Fibonacci, a medieval mathematician, who
originated it to model the growth of the rabbit population. It can be applied in numeric opti-
mization and in various other areas.

How do you find fib(index) for a given index? It is easy to find fib(2) because you
know fib(0) and fib(1). Assuming you know fib(index − 2) and fib(index − 1),
you can obtain fib(index) immediately. Thus, the problem of computing fib(index) is
reduced to computing fib(index − 2) and fib(index − 1). When doing so, you apply
the idea recursively until index is reduced to 0 or 1.

The base case is index = 0 or index = 1. If you call the method with index = 0 or
index = 1, it immediately returns the result. If you call the method with index >= 2, it divides
the problem into two subproblems for computing fib(index − 1) and fib(index − 2)
using recursive calls. The recursive algorithm for computing fib(index) can be simply
described as follows:

if (index == 0)
 return 0;
else if (index == 1)
 return 1;
else
 return fib(index − 1) + fib(index − 2);

Listing 18.2 gives a complete program that prompts the user to enter an index and computes
the Fibonacci number for that index.

Listing 18.2  ComputeFibonacci.java
 1 import java.util.Scanner;
 2
 3 public class ComputeFibonacci {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 // Create a Scanner
 7 Scanner input = new Scanner(System.in);
 8 System.out.print("Enter an index for a Fibonacci number: ");
 9 int index = input.nextInt();
10
11 // Find and display the Fibonacci number
12 System.out.println("The Fibonacci number at index "
13 + index + " is " + fib(index));
14 }
15
16 /** The method for finding the Fibonacci number */
17 public static long fib(long index) {
18 if (index == 0) // Base case
19 return 0;
20 else if (index == 1) // Base case
21 return 1;
22 else // Reduction and recursive calls
23 return fib(index − 1) + fib(index − 2);
24 }
25 }

base case

base case
recursion

M18_LIAN9966_12_SE_C18.indd 724 16/09/19 7:37 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

18.3  Case Study: Computing Fibonacci Numbers 725

The program does not show the considerable amount of work done behind the scenes by the
computer. Figure 18.4, however, shows the successive recursive calls for evaluating fib(4).
The original method, fib(4), makes two recursive calls, fib(3) and fib(2), and then
returns fib(3) + fib(2). However, in what order are these methods called? In Java, oper-
ands are evaluated from left to right, so fib(2) is called after fib(3) is completely evaluated.
The labels in Figure 18.4 show the order in which the methods are called.

As shown in Figure 18.4, there are many duplicated recursive calls. For instance, fib(2)
is called twice, fib(1) three times, and fib(0) twice. In general, computing fib(index)
requires roughly twice as many recursive calls as does computing fib(index − 1). As you
try larger index values, the number of calls substantially increases, as given in Table 18.1.

Enter an index for a Fibonacci number: 1

The Fibonacci number at index 1 is 1

Enter an index for a Fibonacci number: 6

The Fibonacci number at index 6 is 8

Enter an index for a Fibonacci number: 7

The Fibonacci number at index 7 is 13

Figure 18.4  Invoking fib(4) spawns recursive calls to fib.

return
10: return fib(3)

0: call 17: return fib(4)

return return

1: call

11: call

16: return fib(2)

return 1 return 0

12: call
13: return fib(1) 14: return fib(0)

15: return fib(0)
return return 1

2: call
7: return fib(2)

8: call

9: return fib(1)

return 1 return 0

3: call

4: return fib(1)
5: call

6: return fib(0)

fib(1)

fib(1)

fib(1)

fib(0)

fib(1)

fib(2)

fib(3)

fib(3)

fib(1) fib(0)

fib(1)

fib(4)

fib(4)

fib(0)

fib(2)

fib(2)
fib(2)

1

11

1

index 2 3 4 10 20 30 40 50

of calls 3 5 9 177 21,891 2,692,537 331,160,281 2,075,316,483

Table 18.1  Number of Recursive Calls in fib(index)

Pedagogical Note
The recursive implementation of the fib method is very simple and straightforward, but
it isn’t efficient, because it requires more time and memory to run recursive methods. See
Programming Exercise 18.2 for an efficient solution using loops. Though it is not prac-
tical, the recursive fib method is a good example of how to write recursive methods.

M18_LIAN9966_12_SE_C18.indd 725 16/09/19 7:37 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

726 Chapter 18   Recursion

	18.3.1	 Show the output of the following two programs:
Point

Check

	18.3.3	 How many times is the fib method in Listing 18.2 invoked for fib(6)?

18.4  Problem Solving Using Recursion
If you think recursively, you can solve many problems using recursion.

The preceding sections presented two classic recursion examples. All recursive methods have
the following characteristics:

■■ The method is implemented using an if−else or a switch statement that leads to
different cases.

■■ One or more base cases (the simplest case) are used to stop recursion.

■■ Every recursive call reduces the original problem, bringing it increasingly closer to a
base case until it becomes that case.

In general, to solve a problem using recursion, you break it into subproblems. Each subprob-
lem is the same as the original problem, but smaller in size. You can apply the same approach
to each subproblem to solve it recursively.

Recursion is everywhere. It is fun to think recursively. Consider drinking coffee. You may
describe the procedure recursively as follows:

public static void drinkCoffee(Cup cup) {
 if (!cup.isEmpty()) {
 cup.takeOneSip(); // Take one sip
 drinkCoffee(cup);
 }
}

Point
Key

recursion characteristics
if-else

base cases

reduction

think recursively

	18.3.2	 What is wrong in the following methods?

public class Test {
 public static void main(String[] args) {
 xMethod(5);
 }

 public static void xMethod(int n) {
 if (n > 0) {
 System.out.print(n + " ");
 xMethod(n − 1);
 }
 }
}

public class Test {
 public static void main(String[] args) {
 xMethod(5);
 }

 public static void xMethod(int n) {
 if (n > 0) {
 xMethod(n − 1);
 System.out.print(n + " ");
 }
 }
}

public class Test {
 public static void main(String[] args) {
 xMethod(1234567);
 }

 public static void xMethod(double n) {
 if (n != 0) {
 System.out.print(n);
 xMethod(n / 10);
 }
 }
}

public class Test {
 public static void main(String[] args) {
 Test test = new Test();
 System.out.println(test.toString());
 }

 public Test() {
 Test test = new Test();
 }
}

M18_LIAN9966_12_SE_C18.indd 726 16/09/19 7:37 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

18.4  Problem Solving Using Recursion 727

Assume cup is an object for a cup of coffee with the instance methods isEmpty() and take-
OneSip(). You can break the problem into two subproblems: one is to drink one sip of coffee,
and the other is to drink the rest of the coffee in the cup. The second problem is the same as the
original problem, but smaller in size. The base case for the problem is when the cup is empty.

Consider the problem of printing a message n times. You can break the problem into two
subproblems: one is to print the message one time, and the other is to print it n − 1 times. The
second problem is the same as the original problem, but it is smaller in size. The base case for
the problem is n == 0. You can solve this problem using recursion as follows:

public static void nPrintln(String message, int times) {
 if (times >= 1) {
 System.out.println(message);
 nPrintln(message, times − 1);
 } // The base case is times == 0
}

Note the fib method in the preceding section returns a value to its caller, but the drinkCoffee
and nPrintln methods are void and they do not return a value.

If you think recursively, you can use recursion to solve many of the problems presented in
earlier chapters of this book. Consider the palindrome problem in Listing 5.14. Recall that a
string is a palindrome if it reads the same from the left and from the right. For example, “mom”
and “dad” are palindromes but “uncle” and “aunt” are not. The problem of checking whether
a string is a palindrome can be divided into two subproblems:

■■ Check whether the first character and the last character of the string are equal.

■■ Ignore the two end characters and check whether the rest of the substring is a
palindrome.

The second subproblem is the same as the original problem, but smaller in size. There are two
base cases: (1) the two end characters are not the same and (2) the string size is 0 or 1. In case
1, the string is not a palindrome; in case 2, the string is a palindrome. The recursive method
for this problem can be implemented as given in Listing 18.3.

Listing 18.3  RecursivePalindromeUsingSubstring.java
 1 public class RecursivePalindromeUsingSubstring {
 2 public static boolean isPalindrome(String s) {
 3 if (s.length() <= 1) // Base case
 4 return true;
 5 else if (s.charAt(0) != s.charAt(s.length() − 1)) // Base case
 6 return false;
 7 else
 8 return isPalindrome(s.substring(1, s.length() − 1));
 9 }
10
11 public static void main(String[] args) {
12 System.out.println("Is moon a palindrome? "
13 + isPalindrome("moon"));
14 System.out.println("Is noon a palindrome? "
15 + isPalindrome("noon"));
16 System.out.println("Is a a palindrome? " + isPalindrome("a"));
17 System.out.println("Is aba a palindrome? " +
18 isPalindrome("aba"));
19 System.out.println("Is ab a palindrome? " + isPalindrome("ab"));
20 }
21 }

recursive call

think recursively

recursive call

base case

base case
method header

M18_LIAN9966_12_SE_C18.indd 727 16/09/19 7:37 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

728 Chapter 18   Recursion

The substring method in line 8 creates a new string that is same as the original string
except without the first and the last characters. Checking whether a string is a palindrome is
equivalent to checking whether the substring is a palindrome if the two end characters in the
original string are the same.

	18.4.1	 Describe the characteristics of recursive methods.

	18.4.2	 For the isPalindrome method in Listing 18.3, what are the base cases? How many
times is this method called when invoking isPalindrome("abdxcxdba")?

	18.4.3	 Show the call stack for isPalindrome("abcba") using the method defined in
Listing 18.3.

18.5  Recursive Helper Methods
Sometimes you can find a solution to the original problem by defining a recursive function
to a problem similar to the original problem. This new method is called a recursive helper
method. The original problem can be solved by invoking the recursive helper method.

The recursive isPalindrome method in Listing 18.3 is not efficient because it creates a new
string for every recursive call. To avoid creating new strings, you can use the low and high
indices to indicate the range of the substring. These two indices must be passed to the recursive
method. Since the original method is isPalindrome(String s), you have to create the new
method isPalindrome(String s, int low, int high) to accept additional information
on the string, as given in Listing 18.4.

Listing 18.4  RecursivePalindrome.java
 1 public class RecursivePalindrome {
 2 public static boolean isPalindrome(String s) {
 3 return isPalindrome(s, 0, s.length() − 1);
 4 }
 5
 6 private static boolean isPalindrome(String s, int low, int high) {
 7 if (high <= low) // Base case
 8 return true;
 9 else if (s.charAt(low) != s.charAt(high)) // Base case
10 return false;
11 else
12 return isPalindrome(s, low + 1, high − 1);
13 }
14
15 public static void main(String[] args) {
16 System.out.println("Is moon a palindrome? "
17 + isPalindrome("moon"));
18 System.out.println("Is noon a palindrome? "
19 + isPalindrome("noon"));
20 System.out.println("Is a a palindrome? " + isPalindrome("a"));
21 System.out.println("Is aba a palindrome? " + isPalindrome("aba"));
22 System.out.println("Is ab a palindrome? " + isPalindrome("ab"));
23 }
24 }

Point
Check

Point
Key

base case

base case

helper method

Is moon a palindrome? false
Is noon a palindrome? true
Is a a palindrome? true
Is aba a palindrome? true
Is ab a palindrome? false

M18_LIAN9966_12_SE_C18.indd 728 16/09/19 7:37 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

18.5  Recursive Helper Methods 729

Two overloaded isPalindrome methods are defined. The first method isPalindrome
(String s) checks whether a string is a palindrome and the second method isPalindrome
(String s, int low, int high) checks whether a substring s(low..high) is a palin-
drome. The first method passes the string s with low = 0 and high = s.length() – 1 to
the second method. The second method can be invoked recursively to check a palindrome in
an ever-shrinking substring. It is a common design technique in recursive programming to
define a second method that receives additional parameters. Such a method is known as a
recursive helper method.

Helper methods are very useful in designing recursive solutions for problems involving
strings and arrays. The sections that follow give two more examples.

18.5.1  Recursive Selection Sort
Selection sort was introduced in Section 7.11. Recall that it finds the smallest element in the
list and swaps it with the first element. It then finds the smallest element remaining and swaps
it with the first element in the remaining list and so on until the remaining list contains only a
single element. The problem can be divided into two subproblems:

■■ Find the smallest element in the list and swap it with the first element.

■■ Ignore the first element and sort the remaining smaller list recursively.

The base case is that the list contains only one element. Listing 18.5 gives the recursive sort
method.

Listing 18.5  RecursiveSelectionSort.java
 1 public class RecursiveSelectionSort {
 2 public static void sort(double[] list) {
 3 sort(list, 0, list.length − 1); // Sort the entire list
 4 }
 5
 6 private static void sort(double[] list, int low, int high) {
 7 if (low < high) {
 8 // Find the smallest number and its index in list[low .. high]
 9 int indexOfMin = low;
10 double min = list[low];
11 for (int i = low + 1; i <= high; i++) {
12 if (list[i] < min) {
13 min = list[i];
14 indexOfMin = i;
15 }
16 }
17
18 // Swap the smallest in list[low .. high] with list[low]
19 list[indexOfMin] = list[low];
20 list[low] = min;
21
22 // Sort the remaining list[low+1 .. high]
23 sort(list, low + 1, high);
24 }
25 }
26 }

Two overloaded sort methods are defined. The first method sort(double[] list)
sorts an array in list[0..list.length − 1] and the second method sort(double[]
list, int low, int high) sorts an array in list[low..high]. The second method
can be invoked recursively to sort an ever-shrinking subarray.

recursive helper method

base case
helper method

recursive call

M18_LIAN9966_12_SE_C18.indd 729 16/09/19 7:37 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

730 Chapter 18   Recursion

18.5.2  Recursive Binary Search
Binary search was introduced in Section 7.10.2. For binary search to work, the elements in the
array must be in increasing order. The binary search first compares the key with the element
in the middle of the array. Consider the following three cases:

■■ Case 1: If the key is less than the middle element, recursively search for the key in
the first half of the array.

■■ Case 2: If the key is equal to the middle element, the search ends with a match.

■■ Case 3: If the key is greater than the middle element, recursively search for the key
in the second half of the array.

Case 1 and Case 3 reduce the search to a smaller list. Case 2 is a base case when there is a
match. Another base case is that the search is exhausted without a match. Listing 18.6 gives a
clear, simple solution for the binary search problem using recursion.

Listing 18.6  RecursiveBinarySearch.java
 1 public class RecursiveBinarySearch {
 2 public static int binarySearch(int[] list, int key) {
 3 int low = 0;
 4 int high = list.length − 1;
 5 return binarySearch(list, key, low, high);
 6 }
 7
 8 private static int binarySearch(int[] list, int key,
 9 int low, int high) {
10 if (low > high) // The list has been exhausted without a match
11 return −low − 1;
12
13 int mid = (low + high) / 2;
14 if (key < list[mid])
15 return binarySearch(list, key, low, mid − 1);
16 else if (key == list[mid])
17 return mid;
18 else
19 return binarySearch(list, key, mid + 1, high);
20 }
21 }

The first method finds a key in the whole list. The second method finds a key in the list with
index from low to high.

The first binarySearch method passes the initial array with low = 0 and high = list.
length − 1 to the second binarySearch method. The second method is invoked recursively
to find the key in an ever-shrinking subarray.

	18.5.1	 Show the call stack for isPalindrome("abcba") using the method defined in
Listing 18.4.

	18.5.2	 Show the call stack for selectionSort(new double[]{2, 3, 5, 1}) using
the method defined in Listing 18.5.

	18.5.3	 What is a recursive helper method?

VideoNote

Binary search

base case

helper method

recursive call

base case

recursive call

Point
Check

M18_LIAN9966_12_SE_C18.indd 730 16/09/19 7:37 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

18.6  Case Study: Finding the Directory Size 731

18.6  Case Study: Finding the Directory Size
Recursive methods are efficient for solving problems with recursive structures.

The preceding examples can easily be solved without using recursion. This section presents a
problem that is difficult to solve without using recursion. The problem is to find the size of a
directory. The size of a directory is the sum of the sizes of all files in the directory. A directory
d may contain subdirectories. Suppose a directory contains files f1, f2, c , fm and subdirec-
tories d1, d2, c , dn, as shown in Figure 18.5.

Point
Key

VideoNote

Directory size

The size of the directory can be defined recursively as follows:

size(d) = size(f1) + size(f2) + g + size(fm) + size(d1) + size(d2) + g + size(dn)

The File class, introduced in Section 12.10, can be used to represent a file or a directory and obtain
the properties for files and directories. Two methods in the File class are useful for this problem:

■■ The length() method returns the size of a file.

■■ The listFiles() method returns an array of File objects under a directory.

Listing 18.7 gives a program that prompts the user to enter a directory or a file and displays
its size.

Listing 18.7  DirectorySize.java
 1 import java.io.File;
 2 import java.util.Scanner;
 3
 4 public class DirectorySize {
 5 public static void main(String[] args) {
 6 // Prompt the user to enter a directory or a file
 7 System.out.print("Enter a directory or a file: ");
 8 Scanner input = new Scanner(System.in);
 9 String directory = input.nextLine();
10
11 // Display the size
12 System.out.println(getSize(new File(directory)) + " bytes");
13 }
14
15 public static long getSize(File file) {
16 long size = 0; // Store the total size of all files
17

invoke method

getSize method

Figure 18.5  A directory contains files and subdirectories.

directory

. . . d2d1
f1 f2 . . .fm dn

M18_LIAN9966_12_SE_C18.indd 731 16/09/19 7:37 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

732 Chapter 18   Recursion

18 if (file.isDirectory()) {
19 File[] files = file.listFiles(); // All files and subdirectories
20 for (int i = 0; files != null && i < files.length; i++) {
21 size += getSize(files[i]); // Recursive call
22 }
23 }
24 else { // Base case
25 size += file.length();
26 }
27
28 return size;
29 }
30 }

base case

recursive call

all subitems
is directory?

If the file object represents a directory (line 18), each subitem (file or subdirectory) in the
directory is recursively invoked to obtain its size (line 21). If the file object represents a file
(line 24), the file size is obtained and added to the total size (line 25).

What happens if an incorrect or a nonexistent directory is entered? The program will detect
that it is not a directory and invoke file.length() (line 25), which returns 0. Thus, in this
case, the getSize method will return 0.

Tip
To avoid mistakes, it is a good practice to test all cases. For example, you should test
the program for an input of file, an empty directory, a nonexistent directory, and a
nonexistent file.

	18.6.1	 What is the base case for the getSize method?

	18.6.2	 How does the program get all files and directories under a given directory?

	18.6.3	 How many times will the getSize method be invoked for a directory if the
directory has three subdirectories and each subdirectory has four files?

	18.6.4	 Will the program work if the directory is empty (i.e., it does not contain any files)?

	18.6.5	 Will the program work if line 20 is replaced by the following code?

for (int i = 0; i < files.length; i++)

	18.6.6	 Will the program work if lines 20 and 21 are replaced by the following code?

for (File file: files)
 size += getSize(file); // Recursive call

testing all cases

Point
Check

Enter a directory or a file: c:\book

48619631 bytes

Enter a directory or a file: c:\book\Welcome.java

172 bytes

Enter a directory or a file: c:\book\NonExistentFile

0 bytes

M18_LIAN9966_12_SE_C18.indd 732 16/09/19 7:37 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

18.7  Case Study: Tower of Hanoi 733

18.7  Case Study: Tower of Hanoi
The Tower of Hanoi problem is a classic problem that can be solved easily using
recursion, but it is difficult to solve otherwise.

The problem involves moving a specified number of disks of distinct sizes from one tower to
another while observing the following rules:

■■ There are n disks labeled 1, 2, 3, . . . , n and three towers labeled A, B, and C.

■■ No disk can be on top of a smaller disk at any time.

■■ All the disks are initially placed on tower A.

■■ Only one disk can be moved at a time and it must be the smallest disk on a tower.

The objective of the problem is to move all the disks from A to B with the assistance of
C. For example, if you have three disks, the steps to move all of the disks from A to B are
shown in Figure 18.6. For an interactive demo, see liveexample.pearsoncmg.com/dsanimation/
TowerOfHanoieBook.html

Point
Key

Tower of Hanoi on
Companion Website

In the case of three disks, you can find the solution manually. For a larger number of disks,
however—even for four—the problem is quite complex. Fortunately, the problem has an inher-
ently recursive nature, which leads to a straightforward recursive solution.

The base case for the problem is n = 1. If n == 1, you could simply move the disk from A
to B. When n > 1, you could split the original problem into the following three subproblems
and solve them sequentially.

Figure 18.6  The goal of the Tower of Hanoi problem is to move disks from tower A to
tower B without breaking the rules.

A B C

A B C

A B C

A B C

A B CA C

B

Original position

Step 1: Move disk 1 from A to B

Step 2: Move disk 2 from A to C

Step 3: Move disk 1 from B to C

Step 4: Move disk 3 from A to B

Step 5: Move disk 1 from C to A

Step 7: Move disk 1 from A to B

Step 6: Move disk 2 from C to B

A A B C

B

C

0 4

1 5

2 6

3 7

2
3

3 1 2

23
1

3
2

31

1 3 2

2

1

1

1
23

1
2
3

M18_LIAN9966_12_SE_C18.indd 733 16/09/19 7:37 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

734 Chapter 18   Recursion

1.	 Move the first n − 1 disks from A to C recursively with the assistance of tower B, as
shown in Step 1 in Figure 18.7.

2.	 Move disk n from A to B, as shown in Step 2 in Figure 18.7.

3.	 Move n − 1 disks from C to B recursively with the assistance of tower A, as shown in
Step 3 in Figure 18.7.

The following method moves n disks from the fromTower to the toTower with the assistance
of the auxTower:

void moveDisks(int n, char fromTower, char toTower, char auxTower)

The algorithm for the method can be described as

if (n == 1) // Stopping condition
 Move disk 1 from the fromTower to the toTower;
else {
 moveDisks(n − 1, fromTower, auxTower, toTower);
 Move disk n from the fromTower to the toTower;
 moveDisks(n − 1, auxTower, toTower, fromTower);
}

Listing 18.8 gives a program that prompts the user to enter the number of disks
and invokes the recursive method moveDisks to display the solution for moving the
disks.

Listing 18.8  TowerOfHanoi.java
 1 import java.util.Scanner;
 2
 3 public class TowerOfHanoi {
 4 /** Main method */

Figure 18.7  The Tower of Hanoi problem can be decomposed into three subproblems.

A B
Original position

C

A B

Step 1: Move the first n – 1 disks from
A to C recursively

C

A B

Step 2: Move disk n from A to B

C

A B

Step 3: Move n – 1 disks from
C to B recursively

C

.

.

.

n – 1 disks

.

.

.

n – 1 disks

.

.

.

n – 1 disks

.

.

.

n – 1 disks

20

31

M18_LIAN9966_12_SE_C18.indd 734 16/09/19 7:37 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

18.7  Case Study: Tower of Hanoi 735

 5 public static void main(String[] args) {
 6 // Create a Scanner
 7 Scanner input = new Scanner(System.in);
 8 System.out.print("Enter number of disks: ");
 9 int n = input.nextInt();
10
11 // Find the solution recursively
12 System.out.println("The moves are:");
13 moveDisks(n, 'A', 'B', 'C');
14 }
15
16 /** The method for finding the solution to move n disks
17 from fromTower to toTower with auxTower */
18 public static void moveDisks(int n, char fromTower,
19 char toTower, char auxTower) {
20 if (n == 1) // Stopping condition
21 System.out.println("Move disk " + n + " from " +
22 fromTower + " to " + toTower);
23 else {
24 moveDisks(n − 1, fromTower, auxTower, toTower);
25 System.out.println("Move disk " + n + " from " +
26 fromTower + " to " + toTower);
27 moveDisks(n − 1, auxTower, toTower, fromTower);
28 }
29 }
30 }

base case

recursion

recursion

This problem is inherently recursive. Using recursion makes it possible to find a natural, simple
solution. It would be difficult to solve the problem without using recursion.

Consider tracing the program for n = 3. The successive recursive calls are shown in
Figure 18.8. As you can see, writing the program is easier than tracing the recursive calls. The
system uses stacks to manage the calls behind the scenes. To some extent, recursion provides
a level of abstraction that hides iterations and other details from the user.

	18.7.1	 How many times is the moveDisks method in Listing 18.8 invoked for
moveDisks(5, 'A', 'B', 'C')? Point

Check

Enter number of disks: 4
The moves are:
Move disk 1 from A to C
Move disk 2 from A to B
Move disk 1 from C to B
Move disk 3 from A to C
Move disk 1 from B to A
Move disk 2 from B to C
Move disk 1 from A to C
Move disk 4 from A to B
Move disk 1 from C to B
Move disk 2 from C to A
Move disk 1 from B to A
Move disk 3 from C to B
Move disk 1 from A to C
Move disk 2 from A to B
Move disk 1 from C to B

M18_LIAN9966_12_SE_C18.indd 735 16/09/19 7:37 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

736 Chapter 18   Recursion

18.8  Case Study: Fractals
Using recursion is ideal for displaying fractals because fractals are inherently
recursive.

A fractal is a geometrical figure, but unlike triangles, circles, and rectangles, fractals can be
divided into parts, each of which is a reduced-size copy of the whole. There are many interesting
examples of fractals. This section introduces a simple fractal, the Sierpinski triangle, named after
a famous Polish mathematician.

A Sierpinski triangle is created as follows:

1.	 Begin with an equilateral triangle, which is considered to be a Sierpinski fractal of order
(or level) 0, as shown in Figure 18.9a.

2.	 Connect the midpoints of the sides of the triangle of order 0 to create a Sierpinski triangle
of order 1 (see Figure 18.9b).

3.	 Leave the center triangle intact. Connect the midpoints of the sides of the three other
triangles to create a Sierpinski triangle of order 2 (see Figure 18.9c).

4.	 You can repeat the same process recursively to create a Sierpinski triangle of order 3,
4, . . . , and so on (see Figure 18.9d). For an interactive demo, see liveexample.pearsoncmg.
com/dsanimation/SierpinskiTriangleUsingHTML.html.

The problem is inherently recursive. How do you develop a recursive solution for it? Con-
sider the base case when the order is 0. It is easy to draw a Sierpinski triangle of order 0.
How do you draw a Sierpinski triangle of order 1? The problem can be reduced to drawing
three Sierpinski triangles of order 0. How do you draw a Sierpinski triangle of order 2? The
problem can be reduced to drawing three Sierpinski triangles of order 1, so the problem of
drawing a Sierpinski triangle of order n can be reduced to drawing three Sierpinski triangles
of order n − 1.

Listing 18.9 gives a program that displays a Sierpinski triangle of any order, as shown in
Figure 18.9. You can enter an order in a text field to display a Sierpinski triangle of the spec-
ified order.

Listing 18.9  SierpinskiTriangle.java
 1 import javafx.application.Application;
 2 import javafx.geometry.Point2D;
 3 import javafx.geometry.Pos;

Point
Key

Figure 18.8  Invoking moveDisks(3, 'A', 'B', 'C') spawns calls to moveDisks recursively.

moveDisks(2,'A','C','B')
move disk 3 from A to B
moveDisks(2,'C','B','A')

moveDisks(3,'A','B','C')

moveDisks(1,'A','B','C')
move disk 2 from A to C
moveDisks(1,'B','C','A')

moveDisks(2,'A','C','B')

moveDisks(1,'C','A','B')
move disk 2 from C to B
moveDisks(1,'A','B','C')

moveDisks(2,'C','B','A')

moveDisks(1,'A','B','C')

move disk 1 from A to B

moveDisks(1,'B','C','A')

move disk 1 from B to C

moveDisks(1,'C','A','B')

move disk 1 from C to A

moveDisks(1,'A','B','C')

move disk 1 from A to B

M18_LIAN9966_12_SE_C18.indd 736 16/09/19 7:37 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

18.8  Case Study: Fractals 737

 4 import javafx.scene.Scene;
 5 import javafx.scene.control.Label;
 6 import javafx.scene.control.TextField;
 7 import javafx.scene.layout.BorderPane;
 8 import javafx.scene.layout.HBox;
 9 import javafx.scene.layout.Pane;
10 import javafx.scene.paint.Color;
11 import javafx.scene.shape.Polygon;
12 import javafx.stage.Stage;
13
14 public class SierpinskiTriangle extends Application {
15 @Override // Override the start method in the Application class
16 public void start(Stage primaryStage) {
17 SierpinskiTrianglePane pane = new SierpinskiTrianglePane();
18 TextField tfOrder = new TextField();
19 tfOrder.setOnAction(
20 e −> pane.setOrder(Integer.parseInt(tfOrder.getText())));
21 tfOrder.setPrefColumnCount(4);
22 tfOrder.setAlignment(Pos.BOTTOM_RIGHT);
23
24 // Pane to hold label, text field, and a button
25 HBox hBox = new HBox(10);
26 hBox.getChildren().addAll(new Label("Enter an order: "), tfOrder);
27 hBox.setAlignment(Pos.CENTER);
28
29 BorderPane borderPane = new BorderPane();
30 borderPane.setCenter(pane);
31 borderPane.setBottom(hBox);
32

recursive triangle pane

listener for text field

hold label and text field

Figure 18.9  A Sierpinski triangle is a pattern of recursive triangles. Source: Copyright
© 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

(a) Order 0 (b) Order 1

(c) Order 2 (d) Order 3

M18_LIAN9966_12_SE_C18.indd 737 16/09/19 7:37 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

738 Chapter 18   Recursion

33 // Create a scene and place it in the stage
34 Scene scene = new Scene(borderPane, 200, 210);
35 primaryStage.setTitle("SierpinskiTriangle"); // Set the stage title
36 primaryStage.setScene(scene); // Place the scene in the stage
37 primaryStage.show(); // Display the stage
38
39 pane.widthProperty().addListener(ov −> pane.paint());
40 pane.heightProperty().addListener(ov −> pane.paint());
41 }
42
43 /** Pane for displaying triangles */
44 static class SierpinskiTrianglePane extends Pane {
45 private int order = 0;
46
47 /** Set a new order */
48 public void setOrder(int order) {
49 this.order = order;
50 paint();
51 }
52
53 SierpinskiTrianglePane() {
54 }
55
56 protected void paint() {
57 // Select three points in proportion to the pane size
58 Point2D p1 = new Point2D(getWidth() / 2, 10);
59 Point2D p2 = new Point2D(10, getHeight() − 10);
60 Point2D p3 = new Point2D(getWidth() − 10, getHeight() − 10);
61
62 this.getChildren().clear(); // Clear the pane before redisplay
63
64 displayTriangles(order, p1, p2, p3);
65 }
66
67 private void displayTriangles(int order, Point2D p1,
68 Point2D p2, Point2D p3) {
69 if (order == 0) {
70 // Draw a triangle to connect three points
71 Polygon triangle = new Polygon();
72 triangle.getPoints().addAll(p1.getX(), p1.getY(), p2.getX(),
73 p2.getY(), p3.getX(), p3.getY());
74 triangle.setStroke(Color.BLACK);
75 triangle.setFill(Color.WHITE);
76
77 this.getChildren().add(triangle);
78 }
79 else {
80 // Get the midpoint on each edge in the triangle
81 Point2D p12 = p1.midpoint(p2);
82 Point2D p23 = p2.midpoint(p3);
83 Point2D p31 = p3.midpoint(p1);
84
85 // Recursively display three triangles
86 displayTriangles(order − 1, p1, p12, p31);
87 displayTriangles(order − 1, p12, p2, p23);
88 displayTriangles(order − 1, p31, p23, p3);
89 }
90 }
91 }
92 }

listener for resizing

three initial points

clear the pane

draw a triangle

create a triangle

top subtriangle
left subtriangle
right subtriangle

M18_LIAN9966_12_SE_C18.indd 738 16/09/19 7:37 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

18.8  Case Study: Fractals 739

A Sierpinski triangle is displayed in a SierpinskiTrianglePane. The order property in
the inner class SierpinskiTrianglePane specifies the order for the Sierpinski triangle.
The Point2D class, introduced in Section 9.6.3, The Point2D Class, represents a point with
x- and y-coordinates. Invoking p1.midpoint(p2) returns a new Point2D object that is the
midpoint between p1 and p2 (lines 81–83).

	18.8.1	 How do you obtain the midpoint between two points?

	18.8.2	 What is the base case for the displayTriangles method?

	18.8.3	 How many times is the displayTriangles method invoked for a Sierpinski tri-
angle of order 0, order 1, order 2, and order n?

	18.8.4	 What happens if you enter a negative order? How do you fix this problem in the
code?

	18.8.5	 Instead of drawing a triangle using a polygon, rewrite the code to draw a triangle
by drawing three lines to connect the points in lines 71–77.

Point
Check

The initial triangle has three points set in proportion to the pane size (lines 58–60). If
order == 0, the displayTriangles(order, p1, p2, p3) method displays a triangle
that connects the three points p1, p2, and p3 (lines 71–77), as shown in Figure 18.10a.
Otherwise, it performs the following tasks:

1.	 Obtain the midpoint between p1 and p2 (line 81), the midpoint between p2 and p3 (line
82), and the midpoint between p3 and p1 (line 83), as shown in Figure 18.10b.

2.	 Recursively invoke displayTriangles with a reduced order to display three smaller
Sierpinski triangles (lines 86–88). Note each small Sierpinski triangle is structurally
identical to the original big Sierpinski triangle except that the order of a small triangle
is one less, as shown in Figure 18.10b.

displayTriangle method

Figure 18.10  Drawing a Sierpinski triangle spawns calls to draw three small Sierpinski triangles recursively.

p1

p3p2

Draw the Sierpinski triangle.
displayTriangles(order, p1, p2, p3)

p1

(a)

p3p2

p12 p31

p23

Recursively draw the small Sierpinski triangle.
displayTriangles(
order – 1, p1, p12, p31)

Recursively draw the
small Sierpinski triangle.
displayTriangles(
order – 1, p31, p23, p3)

Recursively draw the small
Sierpinski triangle.
displayTriangles(
order – 1, p12, p2, p23)

(b)

M18_LIAN9966_12_SE_C18.indd 739 16/09/19 7:37 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

740 Chapter 18   Recursion

18.9  Recursion vs. Iteration
Recursion is an alternative form of program control. It is essentially repetition without
a loop.

When you use loops, you specify a loop body. The repetition of the loop body is controlled
by the loop control structure. In recursion, the method itself is called repeatedly. A selection
statement must be used to control whether to call the method recursively or not.

Recursion bears substantial overhead. Each time the program calls a method, the system
must allocate memory for all of the method’s local variables and parameters. This can consume
considerable memory and requires extra time to manage the memory.

Any problem that can be solved recursively can be solved nonrecursively with iterations.
Recursion has some negative aspects: it uses up too much time and too much memory. Why,
then, should you use it? In some cases, using recursion enables you to specify a clear, simple
solution for an inherently recursive problem that would otherwise be difficult to obtain. Exam-
ples are the directory-size problem, the Tower of Hanoi problem, and the fractal problem,
which are rather difficult to solve without using recursion.

The decision whether to use recursion or iteration should be based on the nature of, and
your understanding of, the problem you are trying to solve. The rule of thumb is to use which-
ever approach can best develop an intuitive solution that naturally mirrors the problem. If an
iterative solution is obvious, use it. It will generally be more efficient than the recursive option.

Note
Recursive programs can run out of memory, causing a StackOverflowError.

Tip
If you are concerned about your program’s performance, avoid using recursion because
it takes more time and consumes more memory than iteration. In general, recursion can
be used to solve the inherent recursive problems such as Tower of Hanoi, recursive
directories, and Sierpinski triangles.

	18.9.1	 Which of the following statements are true?

a.	 Any recursive method can be converted into a nonrecursive method.

b.	 Recursive methods take more time and memory to execute than nonrecursive
methods.

c.	 Recursive methods are always simpler than nonrecursive methods.

d.	 There is always a selection statement in a recursive method to check whether a
base case is reached.

	18.9.2	 What is a cause for a stack-overflow exception?

18.10  Tail Recursion
A tail-recursive method is efficient.

A recursive method is said to be tail recursive if there are no pending operations to be performed
on return from a recursive call, as illustrated in Figure 18.11a. However, method B in Figure 18.11b
is not tail recursive because there are pending operations after a method call is returned.

For example, the recursive isPalindrome method (lines 6–13) in Listing 18.4 is tail
recursive because there are no pending operations after recursively invoking isPalindrome
in line 12. However, the recursive factorial method (lines 16–21) in Listing 18.1 is not
tail recursive because there is a pending operation, namely multiplication, to be performed on
return from each recursive call.

Point
Key

recursion overhead

recursion advantages

recursion or iteration?

StackOverflowError

performance concern

Point
Check

Point
Keytail recursion

M18_LIAN9966_12_SE_C18.indd 740 16/09/19 7:37 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

18.10  Tail Recursion 741

Tail recursion is desirable because the method ends when the last recursive call ends, and
there is no need to store the intermediate calls in the stack. Compilers can optimize tail recur-
sion to reduce stack size.

A nontail-recursive method can often be converted to a tail-recursive method by using aux-
iliary parameters. These parameters are used to contain the result. The idea is to incorporate the
pending operations into the auxiliary parameters in such a way that the recursive call no longer
has a pending operation. You can define a new auxiliary recursive method with the auxiliary
parameters. This method may overload the original method with the same name but a different
signature. For example, the factorial method in Listing 18.1 is written in a tail-recursive
way in Listing 18.10.

Listing 18.10  ComputeFactorialTailRecursion.java
 1 public class ComputeFactorialTailRecursion {
 2 /** Return the factorial for a specified number */
 3 public static long factorial(int n) {
 4 return factorial(n, 1); // Call auxiliary method
 5 }
 6
 7 /** Auxiliary tail−recursive method for factorial */
 8 private static long factorial(int n, int result) {
 9 if (n == 0)
10 return result;
11 else
12 return factorial(n − 1, n * result); // Recursive call
13 }
14 }

The first factorial method (line 3) simply invokes the second auxiliary method (line 4). The
second method contains an auxiliary parameter result that stores the result for the factorial
of n. This method is invoked recursively in line 12. There is no pending operation after a call
is returned. The final result is returned in line 10, which is also the return value from invoking
factorial(n, 1) in line 4.

	18.10.1	 Identify tail-recursive methods in this chapter.

	18.10.2	 Rewrite the fib method in Listing 18.2 using tail recursion.

invoke auxiliary method

auxiliary method

original method

recursive call

Point
Check

Figure 18.11  A tail-recursive method has no pending operations after a recursive call.

Recursive method A
. . .
. . .

. . .
Invoke method A recursively

Recursive method B
. . .
. . .
Invoke method B recursively
. . .
. . .

(a) Tail recursion (b) Nontail recursion

Key Terms

base case  720
direct recursion  723
indirect recursion  723
infinite recursion  723

recursive helper method  729
recursive method  720
stopping condition   720
tail recursion   740

M18_LIAN9966_12_SE_C18.indd 741 16/09/19 7:37 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

742 Chapter 18   Recursion

Chapter Summary

1.	 A recursive method is one that directly or indirectly invokes itself. For a recursive
method to terminate, there must be one or more base cases.

2.	 Recursion is an alternative form of program control. It is essentially repetition without
a loop control. It can be used to write simple, clear solutions for inherently recursive
problems that would otherwise be difficult to solve.

3.	 Sometimes the original method needs to be modified to receive additional parameters in
order to be invoked recursively. A recursive helper method can be defined for this purpose.

4.	 Recursion bears substantial overhead. Each time the program calls a method, the
system must allocate memory for all of the method’s local variables and param-
eters. This can consume considerable memory and requires extra time to manage
the memory.

5.	 A recursive method is said to be tail recursive if there are no pending operations to be
performed on return from a recursive call. Some compilers can optimize tail recursion
to reduce stack size.

Quiz

Answer the quiz for this chapter online at the book Companion Website.

Programming Exercises

Sections 18.2 and 18.3
	 *18.1	 (Factorial) Using the BigInteger class introduced in Section 10.9, you can

find the factorial for a large number (e.g., 100!). Implement the factorial
method using recursion. Write a program that prompts the user to enter an inte-
ger and displays its factorial.

	 *18.2	 (Fibonacci numbers) Rewrite the fib method in Listing 18.2 using iterations.

Hint: To compute fib(n) without recursion, you need to obtain fib(n − 2)
and fib(n − 1) first. Let f0 and f1 denote the two previous Fibonacci num-
bers. The current Fibonacci number would then be f0 + f1. The algorithm can
be described as follows:

f0 = 0; // For fib(0)
f1 = 1; // For fib(1)

for (int i = 1; i <= n; i++) {
 currentFib = f0 + f1;
 f0 = f1;
 f1 = currentFib;
}
// After the loop, currentFib is fib(n)

Write a test program that prompts the user to enter an index and displays its
Fibonacci number.

M18_LIAN9966_12_SE_C18.indd 742 16/09/19 7:37 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Programming Exercises 743

	 *18.3	 (Compute greatest common divisor using recursion) The gcd(m, n) can also
be defined recursively as follows:

■■ If m % n is 0, gcd(m, n) is n.
■■ Otherwise, gcd(m, n) is gcd(n, m % n).

Write a recursive method to find the GCD. Write a test program that prompts the
user to enter two integers and displays their GCD.

	 18.4	 (Sum series) Write a recursive method to compute the following series:

m(i) = 1 +
1
2

+
1
3

+ g +
1
i

Write a test program that displays m(i) for i = 1, 2, . . . , 10.

	 18.5	 (Sum series) Write a recursive method to compute the following series:

m(i) =
1
3

+
2
5

+
3
7

+
4
9

+
5
11

+
6
13

+ g +
i

2i + 1
Write a test program that displays m(i) for i = 1, 2, . . . , 10.

	 *18.6	 (Sum series) Write a recursive method to compute the following series:

m(i) =
1
2

+
2
3

+ g +
i

i + 1
Write a test program that displays m(i) for i = 1, 2, . . . , 10.

	 *18.7	 (Fibonacci series) Modify Listing 18.2, ComputeFibonacci.java, so that the pro-
gram finds the number of times the fib method is called. (Hint: Use a static
variable and increment it every time the method is called.)

Section 18.4
	 *18.8	 (Print the digits in an integer reversely) Write a recursive method that displays

an int value reversely on the console using the following header:

public static void reverseDisplay(int value)

For example, reverseDisplay(12345) displays 54321. Write a test program
that prompts the user to enter an integer and displays its reversal.

	 *18.9	 (Print the characters in a string reversely) Write a recursive method that dis-
plays a string reversely on the console using the following header:

public static void reverseDisplay(String value)

For example, reverseDisplay("abcd") displays dcba. Write a test program
that prompts the user to enter a string and displays its reversal.

	 *18.10	 (Occurrences of a specified character in a string) Write a recursive method that
finds the number of occurrences of a specified letter in a string using the follow-
ing method header:

public static int count(String str, char a)

For example, count("Welcome", 'e') returns 2. Write a test program that
prompts the user to enter a string and a character, and displays the number of
occurrences for the character in the string.

M18_LIAN9966_12_SE_C18.indd 743 16/09/19 7:37 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

744 Chapter 18   Recursion

	 *18.11	 (Sum the digits in an integer using recursion) Write a recursive method that
computes the sum of the digits in an integer. Use the following method header:

public static int sumDigits(long n)

For example, sumDigits(234) returns 2 + 3 + 4 = 9. Write a test program
that prompts the user to enter an integer and displays its sum.

Section 18.5
	 **18.12	 (Print the characters in a string reversely) Rewrite Programming Exercise 18.9

using a helper method to pass the substring high index to the method. The
helper method header is

public static void reverseDisplay(String value, int high)

	 *18.13	 (Find the largest number in an array) Write a recursive method that returns the
largest integer in an array. Write a test program that prompts the user to enter a
list of eight integers and displays the largest element.

	 *18.14	 (Find the number of uppercase letters in a string) Write a recursive method
to return the number of uppercase letters in a string. Write a test program that
prompts the user to enter a string and displays the number of uppercase letters in
the string.

	 *18.15	 (Occurrences of a specified character in a string) Rewrite Programming Exer-
cise 18.10 using a helper method to pass the substring high index to the method.
The helper method header is

public static int count(String str, char a, int high)

	 *18.16	 (Find the number of uppercase letters in an array) Write a recursive method
to return the number of uppercase letters in an array of characters. You need to
define the following two methods. The second one is a recursive helper method.

public static int count(char[] chars)
public static int count(char[] chars, int high)

Write a test program that prompts the user to enter a list of characters in one line
and displays the number of uppercase letters in the list.

	 *18.17	 (Occurrences of a specified character in an array) Write a recursive method that
finds the number of occurrences of a specified character in an array. You need to
define the following two methods. The second one is a recursive helper method.

public static int count(char[] chars, char ch)
public static int count(char[] chars, char ch, int high)

Write a test program that prompts the user to enter a list of characters in one line,
and a character, and displays the number of occurrences of the character in the list.

Sections 18.6–18.10
	 *18.18	 (Tower of Hanoi) Modify Listing 18.8, TowerOfHanoi.java, so the program finds

the number of moves needed to move n disks from tower A to tower B. (Hint:
Use a static variable and increment it every time the method is called.)

	 *18.19	 (Sierpinski triangle) Revise Listing 18.9 to develop a program that lets the
user use the + /- buttons, primary/secondary mouse buttons, and UP/
DOWN arrow keys to increase or decrease the current order by 1, as shown

M18_LIAN9966_12_SE_C18.indd 744 16/09/19 7:37 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Programming Exercises 745

in Figure 18.12a. The initial order is 0. If the current order is 0, the Decrease
button is ignored.

(a) (b)

Figure 18.12  (a) Programming Exercise 18.19 uses the + or - buttons to increase or
decrease the current order by 1. Source: Copyright © 1995–2016 Oracle and/or its affiliates.
All rights reserved. Used with permission. (b) Programming Exercise 18.20 draws ovals
using a recursive method.

	 *18.20	 (Display circles) Write a Java program that displays ovals, as shown in
Figure 18.12b. The circles are centered in the pane. The gap between two adja-
cent circles is 10 pixels, and the gap between the border of the pane and the
largest circle is also 10.

	 *18.21	 (Decimal to binary) Write a recursive method that converts a decimal number
into a binary number as a string. The method header is

public static String dec2Bin(int value)

Write a test program that prompts the user to enter a decimal number and displays
its binary equivalent.

	 *18.22	 (Decimal to hex) Write a recursive method that converts a decimal number into
a hex number as a string. The method header is

public static String dec2Hex(int value)

Write a test program that prompts the user to enter a decimal number and displays
its hex equivalent.

	 *18.23	 (Binary to decimal) Write a recursive method that parses a binary number as a
string into a decimal integer. The method header is

public static int bin2Dec(String binaryString)

Write a test program that prompts the user to enter a binary string and displays
its decimal equivalent.

	 *18.24	 (Hex to decimal) Write a recursive method that parses a hex number as a string
into a decimal integer. The method header is

public static int hex2Dec(String hexString)

Write a test program that prompts the user to enter a hex string and displays its
decimal equivalent.

M18_LIAN9966_12_SE_C18.indd 745 16/09/19 7:37 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

746 Chapter 18   Recursion

	 **18.25	 (String permutation) Write a recursive method to print all the permutations of a
string. For example, for the string abc, the permutation is
abc
acb
bac
bca
cab
cba

(Hint: Define the following two methods. The second is a helper method.)

public static void displayPermutation(String s)
public static void displayPermutation(String s1, String s2)

The first method simply invokes displayPermutation(" ", s). The second
method uses a loop to move a character from s2 to s1 and recursively invokes it
with new s1 and s2. The base case is that s2 is empty and prints s1 to the console.

Write a test program that prompts the user to enter a string and displays all its
permutations.

	 **18.26	 (Create a maze) Write a program that will find a path in a maze, as shown in
Figure 18.13a. The maze is represented by a 8 * 8 board. The path must meet
the following conditions:

■■ �The path is between the upper-left corner cell and the lower-right corner cell
in the maze.

Figure 18.13  The program finds a path from the upper-left corner to the bottom-right
corner. Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved.
Used with permission.

 (a) Correct path (b) Illegal path

■■ �The program enables the user to place or remove a mark on a cell. A path
consists of adjacent unmarked cells. Two cells are said to be adjacent if they
are horizontal or vertical neighbors.

■■ �The path does not contain cells that form a square. The path in Figure 18.13b,
for example, does not meet this condition. (The condition makes a path easy
to identify on the board.)

M18_LIAN9966_12_SE_C18.indd 746 16/09/19 7:37 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Programming Exercises 747

	 **18.27	 (Koch snowflake fractal) The text presented the Sierpinski triangle fractal. In
this exercise, you will write a program to display another fractal, called the Koch
snowflake, named after a famous Swedish mathematician. A Koch snowflake is
created as follows:

1.	 Begin with an equilateral triangle, which is considered to be the Koch fractal
of order (or level) 0, as shown in Figure 18.14a.

2.	 Divide each line in the shape into three equal line segments and draw an out-
ward equilateral triangle with the middle line segment as the base to create a
Koch fractal of order 1, as shown in Figure 18.14b.

3.	 Repeat Step 2 to create a Koch fractal of order 2, 3, . . . , and so on, as shown
in Figures 18.14c and d.

Figure 18.14  A Koch snowflake is a fractal starting with a triangle. Source: Copyright © 1995–2016 Oracle and/or
its affiliates. All rights reserved. Used with permission.

(a) (b) (c) (d)

	 **18.28	 (Nonrecursive directory size) Rewrite Listing 18.7, DirectorySize.java, without
using recursion.

	 *18.29	 (Number of files in a directory) Write a program that prompts the user to enter a
directory and displays the number of the files in the directory.

	 **18.30	 (Find words) Write a program that finds all occurrences of a word in all the files
under a directory, recursively. Pass the parameters from the command line as
follows:

java Exercise18_30 dirName word

	 **18.31	 (Replace words) Write a program that replaces all occurrences of a word with a
new word in all the files under a directory, recursively. Pass the parameters from
the command line as follows:

java Exercise18_31 dirName oldWord newWord

	***18.32	 (Game: Knight’s Tour) The Knight’s Tour is an ancient puzzle. The objective is
to move a knight, starting from any square on a chessboard, to every other square
once, as shown in Figure 18.15a. Note the knight makes only L-shaped moves
(two spaces in one direction and one space in a perpendicular direction). As
shown in Figure 18.15b, the knight can move to eight squares. Write a program
that displays the moves for the knight, as shown in Figure 18.15c. When you
click a cell, the knight is placed at the cell. This cell will be the starting point for
the knight. Click the Solve button to display the path for a solution.

(Hint: A brute-force approach for this problem is to move the knight from one
square to another available square arbitrarily. Using such an approach, your
program will take a long time to finish. A better approach is to employ some

VideoNote

Search a string in a directory

M18_LIAN9966_12_SE_C18.indd 747 16/09/19 7:37 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

748 Chapter 18   Recursion

heuristics. A knight has two, three, four, six, or eight possible moves, depending
on its location. Intuitively, you should attempt to move the knight to the least
accessible squares first and leave those more accessible squares open, so there
will be a better chance of success at the end of the search.)

	***18.33	 (Game: Knight’s Tour animation) Write a program for the Knight’s Tour problem.
Your program should let the user move a knight to any starting square and click the
Solve button to animate a knight moving along the path, as shown in Figure 18.16.

Figure 18.15  (a) A knight traverses all squares once. (b) A knight makes an L-shaped
move. (c) A program displays a Knight’s Tour path. Source: Copyright © 1995–2016 Oracle
and/or its affiliates. All rights reserved. Used with permission.

(a) (b) (c)

Figure 18.16  A knight traverses along the path. Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights
reserved. Used with permission.

	 **18.34	 (Game: Eight Queens) The Eight Queens problem is to find a solution to place
a queen in each row on a chessboard such that no two queens can attack each
other. Write a program to solve the Eight Queens problem using recursion and
display the result as shown in Figure 18.17.

Figure 18.17  The program displays a solution to the Eight Queens problem. Source:
Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

M18_LIAN9966_12_SE_C18.indd 748 16/09/19 7:37 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Programming Exercises 749

	**18.35	 (H-tree fractal) An H-tree (introduced at the beginning of this chapter in Figure
18.1) is a fractal defined as follows:

1.	 Begin with a letter H. The three lines of H are of the same length, as shown
in Figure 18.1a.

2.	 The letter H (in its sans-serif form, H) has four endpoints. Draw an H centered
at each of the four endpoints to an H-tree of order 1, as shown in Figure 18.1b.
These Hs are half the size of the H that contains the four endpoints.

3.	 Repeat Step 2 to create an H-tree of order 2, 3, . . . , and so on, as shown in
Figures 18.1c and d.

Write a program that draws an H-tree, as shown in Figure 18.1.

	 18.36	 (Sierpinski triangle) Write a program that lets the user to enter the order and
display the filled Sierpinski triangles as shown in Figure 18.18.

Figure 18.18  A filled Sierpinski triangle is displayed. Source: Copyright © 1995–2016 Oracle and/or its affiliates.
All rights reserved. Used with permission.

	 **18.37	 (Hilbert curve) The Hilbert curve, first described by German mathematician
David Hilbert in 1891, is a space-filling curve that visits every point in a square
grid with a size of 2 * 2, 4 * 4, 8 * 8, 16 * 16, or any other power of 2.
Write a program that displays a Hilbert curve for the specified order, as shown
in Figure 18.19.

Figure 18.19  A Hilbert curve with the specified order is drawn. Source: Copyright © 1995–2016 Oracle and/or its
affiliates. All rights reserved. Used with permission.

(a) (b) (c) (d)

M18_LIAN9966_12_SE_C18.indd 749 16/09/19 7:37 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

750 Chapter 18   Recursion

	 **18.38	 (Recursive tree) Write a program to display a recursive tree as shown in
Figure 18.20.

VideoNote

Recursive tree

	 **18.39	 (Drag the tree) Revise Programming Exercise 18.38 to move the tree to where
the mouse is dragged.

Figure 18.20  A recursive tree with the specified depth is drawn. Source: Copyright © 1995–2016 Oracle and/or its
affiliates. All rights reserved. Used with permission.

(a) (b) (c) (d)

M18_LIAN9966_12_SE_C18.indd 750 16/09/19 7:37 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

