
Objectives
■■ To describe what a recursive method is and the benefits of using recur-

sion (§18.1).

■■ To develop recursive methods for recursive mathematical functions 
(§§18.2 and 18.3).

■■ To explain how recursive method calls are handled in a call stack 
(§§18.2 and 18.3).

■■ To solve problems using recursion (§18.4).

■■ To use an overloaded helper method to design a recursive method 
(§18.5).

■■ To implement a selection sort using recursion (§18.5.1).

■■ To implement a binary search using recursion (§18.5.2).

■■ To get the directory size using recursion (§18.6).

■■ To solve the Tower of Hanoi problem using recursion (§18.7).

■■ To draw fractals using recursion (§18.8).

■■ To discover the relationship and difference between recursion and 
iteration (§18.9).

■■ To know tail-recursive methods and why they are desirable (§18.10).

Recursion

CHAPTER

18
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720  Chapter 18    Recursion

18.1  Introduction
Recursion is a technique that leads to elegant solutions to problems that are difficult 
to program using simple loops.

Suppose you want to find all the files under a directory that contains a particular word. How 
do you solve this problem? There are several ways to do so. An intuitive and effective solution 
is to use recursion by searching the files in the subdirectories recursively.

H-trees, depicted in Figure 18.1, are used in a very large-scale integration (VLSI) design as a 
clock distribution network for routing timing signals to all parts of a chip with equal propagation 
delays. How do you write a program to display H-trees? A good approach is to use recursion.

Point
Key

search word problem
H-tree problem

To use recursion is to program using recursive methods—that is, to use methods that invoke 
themselves. Recursion is a useful programming technique. In some cases, it enables you to 
develop a natural, straightforward, simple solution to an otherwise difficult problem. This 
chapter introduces the concepts and techniques of recursive programming and illustrates with 
examples of how to “think recursively.”

18.2  Case Study: Computing Factorials
A recursive method is one that invokes itself directly or indirectly.

Many mathematical functions are defined using recursion. Let’s begin with a simple example. 
The factorial of a number n can be recursively defined as follows:

0! = 1;
n! = n × (n − 1)!; n > 0

How do you find n! for a given n? To find 1! is easy because you know that 0! is 1 and 1!  
is 1 × 0!. Assuming that you know (n − 1)!, you can obtain n! immediately by using  
n × (n − 1)!. Thus, the problem of computing n! is reduced to computing (n − 1)!. When 
computing (n − 1)!, you can apply the same idea recursively until n is reduced to 0.

Let factorial(n) be the method for computing n!. If you call the method with n = 0, 
it immediately returns the result. The method knows how to solve the simplest case, which is 
referred to as the base case or the stopping condition. If you call the method with n > 0, it 
reduces the problem into a subproblem for computing the factorial of n − 1. The subproblem 
is essentially the same as the original problem, but it is simpler or smaller. Because the sub-
problem has the same property as the original problem, you can call the method with a different 
argument, which is referred to as a recursive call.

The recursive algorithm for computing factorial(n) can be simply described as follows:

if (n == 0)
  return 1;

recursive method

Point
Key

base case or stopping 
condition

recursive call

Figure 18.1  An H-tree can be displayed using recursion. Source: Copyright © 1995–2016 Oracle and/or its affiliates. 
All rights reserved. Used with permission.

(a) (b) (c) (d)
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18.2  Case Study: Computing Factorials  721

else
  return n * factorial(n − 1);

A recursive call can result in many more recursive calls because the method keeps on dividing 
a subproblem into new subproblems. For a recursive method to terminate, the problem must 
eventually be reduced to a stopping case, at which point the method returns a result to its caller. 
The caller then performs a computation and returns the result to its own caller. This process 
continues until the result is passed back to the original caller. The original problem can now 
be solved by multiplying n by the result of factorial(n − 1).

Listing 18.1 gives a complete program that prompts the user to enter a nonnegative integer 
and displays the factorial for the number.

Listing 18.1  ComputeFactorial.java
 1  import java.util.Scanner;
 2
 3  public class ComputeFactorial {
 4    /** Main method */
 5    public static void main(String[] args) {
 6      // Create a Scanner
 7      Scanner input = new Scanner(System.in);
 8      System.out.print("Enter a nonnegative integer: ");
 9      int n = input.nextInt();
10
11      // Display factorial 
12      System.out.println("Factorial of " + n + " is " + factorial(n));
13    }
14
15    /** Return the factorial for the specified number */ 
16    public static long factorial(int n) {
17      if (n == 0)  // Base case 
18        return 1;
19      else 
20        return n *  factorial(n − 1); // Recursive call 
21    }
22  }

recursion

base case

The factorial method (lines 16–21) is essentially a direct translation of the recursive 
mathematical definition for the factorial into Java code. The call to factorial is recursive 
because it calls itself. The parameter passed to factorial is decremented until it reaches the 
base case of 0.

You see how to write a recursive method. How does recursion work behind the scenes? 
Figure 18.2 illustrates the execution of the recursive calls, starting with n = 4. The use of 
stack space for recursive calls is shown in Figure 18.3.

how does it work?

Enter a nonnegative integer: 4  
Factorial of 4 is 24

Enter a nonnegative integer: 10 
Factorial of 10 is 3628800
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722  Chapter 18    Recursion

Figure 18.3  When factorial(4) is being executed, the factorial method is called recursively, causing the stack 
space to dynamically change.
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n:   4

1 Space required
for factorial(4)

n:   4
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n:   4

3
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for factorial(3)
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Figure 18.2  Invoking factorial(4) spawns recursive calls to factorial.

return 1

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

factorial(4)

return 3 * factorial(2)

return 4 * factorial(3)
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18.3  Case Study: Computing Fibonacci Numbers  723

Pedagogical Note
It is simpler and more efficient to implement the factorial method using a loop. 
However, we use the recursive factorial method here to demonstrate the concept 
of recursion. Later in this chapter, we will present some problems that are inherently 
recursive and are difficult to solve without using recursion.

Note
If recursion does not reduce the problem in a manner that allows it to eventually converge 
into the base case or a base case is not specified, infinite recursion can occur. For exam-
ple, suppose you mistakenly write the factorial method as follows:

  public static long factorial(int n) {
    return n * factorial(n − 1);
  }

The method runs infinitely and causes a StackOverflowError.

The example discussed in this section shows a recursive method that invokes itself. This is 
known as direct recursion. It is also possible to create indirect recursion. This occurs when 
method A invokes method B, which in turn directly or indirectly invokes method A.

	18.2.1	 What is a recursive method? What is an infinite recursion?

	18.2.2	 How many times is the factorial method in Listing 18.1 invoked for factorial(6)?

	18.2.3	 Show the output of the following programs and identify base cases and recursive calls.

infinite recursion

direct recursion
indirect recursion

Point
Check

	18.2.4	 Write a recursive mathematical definition for computing 2n for a positive integer n.

	18.2.5	 Write a recursive mathematical definition for computing xn for a positive integer n 
and a real number x.

	18.2.6	 Write a recursive mathematical definition for computing 1 + 2 + 3 + g + n 
for a positive integer n.

18.3  Case Study: Computing Fibonacci Numbers
In some cases, recursion enables you to create an intuitive, straightforward, simple 
solution to a problem.

The factorial method in the preceding section could easily be rewritten without using 
recursion. In this section, we show an example for creating an intuitive solution to a problem 
using recursion. Consider the well-known Fibonacci-series problem:

The series: 0 1 1 2 3 5 8 13 21 34 55 89   . . . 
indexes: 0 1 2 3 4 5 6 7 8 9 10 11

Point
Key

public class Test {
  public static void main(String[] args) {
    System.out.println(
      "Sum is " + xMethod(5));
  }

  public static int xMethod(int n) {
    if (n == 1)
      return 1;
    else 
      return n + xMethod(n −  1);
  }
}

public class Test {
  public static void main(String[] args) {
    xMethod(1234567);
  }

  public static void xMethod(int n) {
    if (n > 0) {
      System.out.print(n %  10);
      xMethod(n /  10);
    }
  }
}

M18_LIAN9966_12_SE_C18.indd   723 16/09/19   7:37 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com



724  Chapter 18    Recursion

The Fibonacci series begins with 0 and 1, and each subsequent number is the sum of the pre-
ceding two. The series can be recursively defined as

fib(0) = 0;
fib(1) = 1;
fib(index) = fib(index − 2) + fib(index − 1); index >= 2

The Fibonacci series was named for Leonardo Fibonacci, a medieval mathematician, who 
originated it to model the growth of the rabbit population. It can be applied in numeric opti-
mization and in various other areas.

How do you find fib(index) for a given index? It is easy to find fib(2) because you 
know fib(0) and fib(1). Assuming you know fib(index − 2) and fib(index − 1),  
you can obtain fib(index) immediately. Thus, the problem of computing fib(index) is 
reduced to computing fib(index − 2) and fib(index − 1). When doing so, you apply 
the idea recursively until index is reduced to 0 or 1.

The base case is index = 0 or index = 1. If you call the method with index = 0 or  
index = 1, it immediately returns the result. If you call the method with index >= 2, it divides 
the problem into two subproblems for computing fib(index − 1) and fib(index − 2)  
using recursive calls. The recursive algorithm for computing fib(index) can be simply 
described as follows:

if (index == 0)
  return 0;
else if (index == 1)
  return 1;
else 
  return fib(index − 1) + fib(index − 2);

Listing 18.2 gives a complete program that prompts the user to enter an index and computes 
the Fibonacci number for that index.

Listing 18.2  ComputeFibonacci.java
 1  import java.util.Scanner;
 2
 3  public class ComputeFibonacci {
 4    /** Main method */ 
 5    public static void main(String[] args) {
 6      // Create a Scanner 
 7      Scanner input = new Scanner(System.in);
 8      System.out.print("Enter an index for a Fibonacci number: ");
 9      int index = input.nextInt();
10
11      // Find and display the Fibonacci number 
12      System.out.println("The Fibonacci number at index " 
13        + index + " is " + fib(index));
14    }
15
16    /** The method for finding the Fibonacci number */ 
17    public static long fib(long index) {
18      if (index == 0) // Base case 
19        return 0;
20      else if (index == 1) // Base case 
21        return 1;
22      else  // Reduction and recursive calls 
23        return fib(index − 1) + fib(index − 2);
24    }
25  }

base case

base case
recursion
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18.3  Case Study: Computing Fibonacci Numbers  725

The program does not show the considerable amount of work done behind the scenes by the 
computer. Figure 18.4, however, shows the successive recursive calls for evaluating fib(4). 
The original method, fib(4), makes two recursive calls, fib(3) and fib(2), and then 
returns fib(3) + fib(2). However, in what order are these methods called? In Java, oper-
ands are evaluated from left to right, so fib(2) is called after fib(3) is completely evaluated. 
The labels in Figure 18.4 show the order in which the methods are called.

As shown in Figure 18.4, there are many duplicated recursive calls. For instance, fib(2) 
is called twice, fib(1) three times, and fib(0) twice. In general, computing fib(index) 
requires roughly twice as many recursive calls as does computing fib(index − 1). As you 
try larger index values, the number of calls substantially increases, as given in Table 18.1.

Enter an index for a Fibonacci number:  1 

The Fibonacci number at index 1 is 1

Enter an index for a Fibonacci number:  6  

The Fibonacci number at index 6 is 8

Enter an index for a Fibonacci number:  7  

The Fibonacci number at index 7 is 13

Figure 18.4  Invoking fib(4) spawns recursive calls to fib.

return 
10: return fib(3)

0: call 17: return fib(4)

return return 

1: call 

11: call 

16: return fib(2)

return 1 return 0

12: call 
13: return fib(1) 14: return fib(0)

15: return fib(0)
return return 1 

2: call 
7: return fib(2)

8: call 

9: return fib(1)

return 1 return 0

3: call 

4: return fib(1)
5: call 

6: return fib(0) 

fib(1)

fib(1)

fib(1)

fib(0)

fib(1)

fib(2)

fib(3)

fib(3)

fib(1) fib(0)

fib(1)

fib(4)

fib(4)

fib(0)

fib(2)

fib(2)
fib(2)

1

11

1

index 2 3 4 10 20 30 40 50

# of calls 3 5 9 177 21,891 2,692,537 331,160,281 2,075,316,483

Table 18.1  Number of Recursive Calls in fib(index)

Pedagogical Note
The recursive implementation of the fib method is very simple and straightforward, but 
it isn’t efficient, because it requires more time and memory to run recursive methods. See 
Programming Exercise 18.2 for an efficient solution using loops. Though it is not prac-
tical, the recursive fib method is a good example of how to write recursive methods.
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726  Chapter 18    Recursion

	18.3.1	 Show the output of the following two programs:
Point

Check

	18.3.3	 How many times is the fib method in Listing 18.2 invoked for fib(6)?

18.4  Problem Solving Using Recursion
If you think recursively, you can solve many problems using recursion.

The preceding sections presented two classic recursion examples. All recursive methods have 
the following characteristics:

■■ The method is implemented using an if−else or a switch statement that leads to 
different cases.

■■ One or more base cases (the simplest case) are used to stop recursion.

■■ Every recursive call reduces the original problem, bringing it increasingly closer to a 
base case until it becomes that case.

In general, to solve a problem using recursion, you break it into subproblems. Each subprob-
lem is the same as the original problem, but smaller in size. You can apply the same approach 
to each subproblem to solve it recursively.

Recursion is everywhere. It is fun to think recursively. Consider drinking coffee. You may 
describe the procedure recursively as follows:

public static void drinkCoffee(Cup cup) {
  if (!cup.isEmpty()) {
    cup.takeOneSip(); // Take one sip 
    drinkCoffee(cup);
  }
}

Point
Key

recursion characteristics
if-else

base cases

reduction

think recursively

	18.3.2	 What is wrong in the following methods?

public class Test {
  public static void main(String[] args) {
    xMethod(5);
  }

  public static void xMethod(int n) {
    if (n > 0) {
      System.out.print(n + " ");
      xMethod(n − 1);
    }
  }
}

public class Test {
  public static void main(String[] args) {
    xMethod(5);
  }

  public static void xMethod(int n) {
    if (n > 0) {
      xMethod(n − 1); 
      System.out.print(n + " ");
    }
  }
}

public class Test {
  public static void main(String[] args) {
    xMethod(1234567);
  }

  public static void xMethod(double n) {
    if (n != 0) {
      System.out.print(n);
      xMethod(n / 10);
    }
  }
}

public class Test {
  public static void main(String[] args) {
    Test test = new Test();
    System.out.println(test.toString());
  }

  public Test() {
    Test test = new Test();
  }
}
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18.4  Problem Solving Using Recursion  727

Assume cup is an object for a cup of coffee with the instance methods isEmpty() and take-
OneSip(). You can break the problem into two subproblems: one is to drink one sip of coffee, 
and the other is to drink the rest of the coffee in the cup. The second problem is the same as the 
original problem, but smaller in size. The base case for the problem is when the cup is empty.

Consider the problem of printing a message n times. You can break the problem into two 
subproblems: one is to print the message one time, and the other is to print it n − 1 times. The 
second problem is the same as the original problem, but it is smaller in size. The base case for 
the problem is n == 0. You can solve this problem using recursion as follows:

public static void nPrintln(String message, int times) {
  if (times >= 1) {
    System.out.println(message);
    nPrintln(message, times − 1);
  } // The base case is times == 0
}

Note the fib method in the preceding section returns a value to its caller, but the drinkCoffee 
and nPrintln methods are void and they do not return a value.

If you think recursively, you can use recursion to solve many of the problems presented in 
earlier chapters of this book. Consider the palindrome problem in Listing 5.14. Recall that a 
string is a palindrome if it reads the same from the left and from the right. For example, “mom” 
and “dad” are palindromes but “uncle” and “aunt” are not. The problem of checking whether 
a string is a palindrome can be divided into two subproblems:

■■ Check whether the first character and the last character of the string are equal.

■■ Ignore the two end characters and check whether the rest of the substring is a 
palindrome.

The second subproblem is the same as the original problem, but smaller in size. There are two 
base cases: (1) the two end characters are not the same and (2) the string size is 0 or 1. In case 
1, the string is not a palindrome; in case 2, the string is a palindrome. The recursive method 
for this problem can be implemented as given in Listing 18.3.

Listing 18.3  RecursivePalindromeUsingSubstring.java
 1  public class RecursivePalindromeUsingSubstring {
 2    public static boolean isPalindrome(String s) {
 3      if (s.length() <= 1) // Base case
 4        return true;
 5      else if (s.charAt(0) != s.charAt(s.length() −  1)) // Base case
 6        return false;
 7      else
 8        return isPalindrome(s.substring(1, s.length() − 1));
 9    }
10
11    public static void main(String[] args) {
12      System.out.println("Is moon a palindrome? " 
13        + isPalindrome("moon"));
14      System.out.println("Is noon a palindrome? " 
15        + isPalindrome("noon"));
16      System.out.println("Is a a palindrome? " + isPalindrome("a"));
17      System.out.println("Is aba a palindrome? " +
18        isPalindrome("aba"));
19      System.out.println("Is ab a palindrome? " + isPalindrome("ab"));
20    }
21  }

recursive call

think recursively

recursive call

base case

base case
method header
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728  Chapter 18    Recursion

The substring method in line 8 creates a new string that is same as the original string 
except without the first and the last characters. Checking whether a string is a palindrome is 
equivalent to checking whether the substring is a palindrome if the two end characters in the 
original string are the same.

	18.4.1	 Describe the characteristics of recursive methods.

	18.4.2	 For the isPalindrome method in Listing 18.3, what are the base cases? How many 
times is this method called when invoking isPalindrome("abdxcxdba")?

	18.4.3	 Show the call stack for isPalindrome("abcba") using the method defined in 
Listing 18.3.

18.5  Recursive Helper Methods
Sometimes you can find a solution to the original problem by defining a recursive function 
to a problem similar to the original problem. This new method is called a recursive helper 
method. The original problem can be solved by invoking the recursive helper method.

The recursive isPalindrome method in Listing 18.3 is not efficient because it creates a new 
string for every recursive call. To avoid creating new strings, you can use the low and high 
indices to indicate the range of the substring. These two indices must be passed to the recursive 
method. Since the original method is isPalindrome(String s), you have to create the new 
method isPalindrome(String s, int low, int high) to accept additional information 
on the string, as given in Listing 18.4.

Listing 18.4  RecursivePalindrome.java
 1  public class RecursivePalindrome {
 2    public static boolean isPalindrome(String s) {
 3      return isPalindrome(s, 0, s.length() − 1);
 4    }
 5
 6    private static boolean isPalindrome(String s, int low, int high) {
 7      if (high <= low) // Base case
 8        return true;
 9      else if (s.charAt(low) != s.charAt(high)) // Base case
10        return false;
11      else
12        return isPalindrome(s, low + 1, high − 1);
13    }
14
15    public static void main(String[] args) {
16      System.out.println("Is moon a palindrome? "
17        + isPalindrome("moon"));
18      System.out.println("Is noon a palindrome? " 
19        + isPalindrome("noon"));
20      System.out.println("Is a a palindrome? " + isPalindrome("a"));
21      System.out.println("Is aba a palindrome? " + isPalindrome("aba"));
22      System.out.println("Is ab a palindrome? " + isPalindrome("ab"));
23    }
24  }

Point
Check

Point
Key

base case

base case

helper method

Is moon a palindrome? false
Is noon a palindrome? true
Is a a palindrome? true
Is aba a palindrome? true
Is ab a palindrome? false
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18.5  Recursive Helper Methods  729

Two overloaded isPalindrome methods are defined. The first method isPalindrome 
(String s) checks whether a string is a palindrome and the second method isPalindrome 
(String s, int low, int high) checks whether a substring s(low..high) is a palin-
drome. The first method passes the string s with low = 0 and high = s.length() – 1 to 
the second method. The second method can be invoked recursively to check a palindrome in 
an ever-shrinking substring. It is a common design technique in recursive programming to 
define a second method that receives additional parameters. Such a method is known as a 
recursive helper method.

Helper methods are very useful in designing recursive solutions for problems involving 
strings and arrays. The sections that follow give two more examples.

18.5.1  Recursive Selection Sort
Selection sort was introduced in Section 7.11. Recall that it finds the smallest element in the 
list and swaps it with the first element. It then finds the smallest element remaining and swaps 
it with the first element in the remaining list and so on until the remaining list contains only a 
single element. The problem can be divided into two subproblems:

■■ Find the smallest element in the list and swap it with the first element.

■■ Ignore the first element and sort the remaining smaller list recursively.

The base case is that the list contains only one element. Listing 18.5 gives the recursive sort 
method.

Listing 18.5  RecursiveSelectionSort.java
 1  public class RecursiveSelectionSort {
 2    public static void sort(double[] list) {
 3      sort(list, 0, list.length − 1); // Sort the entire list
 4    }
 5
 6    private static void sort(double[] list, int low, int high) {
 7      if (low < high) {
 8        // Find the smallest number and its index in list[low .. high]
 9        int indexOfMin = low;
10        double min = list[low];
11        for (int i = low + 1; i <= high; i++) {
12          if (list[i] < min) {
13            min = list[i];
14            indexOfMin = i;
15          }
16        }
17
18        // Swap the smallest in list[low .. high] with list[low] 
19        list[indexOfMin] = list[low];
20        list[low] = min;
21
22        // Sort the remaining list[low+1 .. high] 
23        sort(list, low + 1, high); 
24      }
25    }
26  }

Two overloaded sort methods are defined. The first method sort(double[] list) 
sorts an array in list[0..list.length − 1] and the second method sort(double[] 
list, int low, int high) sorts an array in list[low..high]. The second method 
can be invoked recursively to sort an ever-shrinking subarray.

recursive helper method

base case
helper method

recursive call
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730  Chapter 18    Recursion

18.5.2  Recursive Binary Search
Binary search was introduced in Section 7.10.2. For binary search to work, the elements in the 
array must be in increasing order. The binary search first compares the key with the element 
in the middle of the array. Consider the following three cases:

■■ Case 1: If the key is less than the middle element, recursively search for the key in 
the first half of the array.

■■ Case 2: If the key is equal to the middle element, the search ends with a match.

■■ Case 3: If the key is greater than the middle element, recursively search for the key 
in the second half of the array.

Case 1 and Case 3 reduce the search to a smaller list. Case 2 is a base case when there is a 
match. Another base case is that the search is exhausted without a match. Listing 18.6 gives a 
clear, simple solution for the binary search problem using recursion.

Listing 18.6  RecursiveBinarySearch.java
 1  public class RecursiveBinarySearch {
 2    public static int binarySearch(int[] list, int key) {
 3      int low = 0;
 4      int high = list.length − 1;
 5      return binarySearch(list, key, low, high);
 6    }
 7
 8    private static int binarySearch(int[] list, int key, 
 9        int low, int high) {
10      if (low > high) // The list has been exhausted without a match 
11        return −low − 1;
12
13      int mid = (low + high) / 2;
14      if (key < list[mid])
15        return binarySearch(list, key, low, mid − 1); 
16      else if (key == list[mid])
17        return mid;
18      else 
19        return binarySearch(list, key, mid + 1, high); 
20    }
21  }

The first method finds a key in the whole list. The second method finds a key in the list with 
index from low to high.

The first binarySearch method passes the initial array with low = 0 and high = list.
length − 1 to the second binarySearch method. The second method is invoked recursively 
to find the key in an ever-shrinking subarray.

	18.5.1	 Show the call stack for isPalindrome("abcba") using the method defined in 
Listing 18.4.

	18.5.2	 Show the call stack for selectionSort(new double[]{2, 3, 5, 1}) using 
the method defined in Listing 18.5.

	18.5.3	 What is a recursive helper method?

VideoNote

Binary search

base case

helper method

recursive call

base case

recursive call

Point
Check
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18.6  Case Study: Finding the Directory Size  731

18.6  Case Study: Finding the Directory Size
Recursive methods are efficient for solving problems with recursive structures.

The preceding examples can easily be solved without using recursion. This section presents a 
problem that is difficult to solve without using recursion. The problem is to find the size of a 
directory. The size of a directory is the sum of the sizes of all files in the directory. A directory 
d may contain subdirectories. Suppose a directory contains files f1, f2, c , fm and subdirec-
tories d1, d2, c , dn, as shown in Figure 18.5.

Point
Key

VideoNote

Directory size

The size of the directory can be defined recursively as follows:

size(d) = size(f1) + size(f2) + g + size(fm) + size(d1) + size(d2) + g + size(dn)

The File class, introduced in Section 12.10, can be used to represent a file or a directory and obtain 
the properties for files and directories. Two methods in the File class are useful for this problem:

■■ The length() method returns the size of a file.

■■ The listFiles() method returns an array of File objects under a directory.

Listing 18.7 gives a program that prompts the user to enter a directory or a file and displays 
its size.

Listing 18.7  DirectorySize.java
 1  import java.io.File;
 2  import java.util.Scanner;
 3
 4  public class DirectorySize {
 5    public static void main(String[] args) {
 6      // Prompt the user to enter a directory or a file
 7      System.out.print("Enter a directory or a file: ");
 8      Scanner input = new Scanner(System.in);
 9      String directory = input.nextLine();
10
11      // Display the size 
12      System.out.println(getSize(new File(directory)) + " bytes");
13    }
14
15    public static long getSize(File file) {
16      long size = 0; // Store the total size of all files 
17

invoke method

getSize method

Figure 18.5  A directory contains files and subdirectories.

directory

. . . d2d1
f1 f2 . . .fm dn
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732  Chapter 18    Recursion

18      if (file.isDirectory()) {
19        File[] files = file.listFiles(); // All files and subdirectories
20        for (int i = 0; files != null && i < files.length; i++) {
21          size += getSize(files[i]); // Recursive call 
22        }
23      }
24      else { // Base case 
25        size += file.length();
26      }
27
28      return size;
29    }
30  }

base case

recursive call

all subitems
is directory?

If the file object represents a directory (line 18), each subitem (file or subdirectory) in the 
directory is recursively invoked to obtain its size (line 21). If the file object represents a file 
(line 24), the file size is obtained and added to the total size (line 25).

What happens if an incorrect or a nonexistent directory is entered? The program will detect 
that it is not a directory and invoke file.length() (line 25), which returns 0. Thus, in this 
case, the getSize method will return 0.

Tip
To avoid mistakes, it is a good practice to test all cases. For example, you should test 
the program for an input of file, an empty directory, a nonexistent directory, and a 
nonexistent file.

	18.6.1	 What is the base case for the getSize method?

	18.6.2	 How does the program get all files and directories under a given directory?

	18.6.3	 How many times will the getSize method be invoked for a directory if the 
directory has three subdirectories and each subdirectory has four files?

	18.6.4	 Will the program work if the directory is empty (i.e., it does not contain any files)?

	18.6.5	 Will the program work if line 20 is replaced by the following code?

for (int i = 0; i < files.length; i++)

	18.6.6	 Will the program work if lines 20 and 21 are replaced by the following code?

for (File file: files)
  size += getSize(file); // Recursive call 

testing all cases

Point
Check

Enter a directory or a file: c:\book  

48619631 bytes

Enter a directory or a file: c:\book\Welcome.java  

172 bytes

Enter a directory or a file: c:\book\NonExistentFile  

0 bytes
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18.7  Case Study: Tower of Hanoi  733

18.7  Case Study: Tower of Hanoi
The Tower of Hanoi problem is a classic problem that can be solved easily using 
recursion, but it is difficult to solve otherwise.

The problem involves moving a specified number of disks of distinct sizes from one tower to 
another while observing the following rules:

■■ There are n disks labeled 1, 2, 3, . . . , n and three towers labeled A, B, and C.

■■ No disk can be on top of a smaller disk at any time.

■■ All the disks are initially placed on tower A.

■■ Only one disk can be moved at a time and it must be the smallest disk on a tower.

The objective of the problem is to move all the disks from A to B with the assistance of 
C. For example, if you have three disks, the steps to move all of the disks from A to B are 
shown in Figure 18.6. For an interactive demo, see liveexample.pearsoncmg.com/dsanimation/
TowerOfHanoieBook.html

Point
Key

Tower of Hanoi on 
Companion Website

In the case of three disks, you can find the solution manually. For a larger number of disks, 
however—even for four—the problem is quite complex. Fortunately, the problem has an inher-
ently recursive nature, which leads to a straightforward recursive solution.

The base case for the problem is n = 1. If n == 1, you could simply move the disk from A 
to B. When n > 1, you could split the original problem into the following three subproblems 
and solve them sequentially.

Figure 18.6  The goal of the Tower of Hanoi problem is to move disks from tower A to 
tower B without breaking the rules.
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A B C

A B CA C

B

Original position

Step 1: Move disk 1 from A to B

Step 2: Move disk 2 from A to C

Step 3: Move disk 1 from B to C

Step 4: Move disk 3 from A to B

Step 5: Move disk 1 from C to A

Step 7: Move disk 1 from A to B

Step 6: Move disk 2 from C to B
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734  Chapter 18    Recursion

1.	 Move the first n − 1 disks from A to C recursively with the assistance of tower B, as 
shown in Step 1 in Figure 18.7.

2.	 Move disk n from A to B, as shown in Step 2 in Figure 18.7.

3.	 Move n − 1 disks from C to B recursively with the assistance of tower A, as shown in 
Step 3 in Figure 18.7.

The following method moves n disks from the fromTower to the toTower with the assistance 
of the auxTower:

void moveDisks(int n, char fromTower, char toTower, char auxTower)

The algorithm for the method can be described as

if (n == 1) // Stopping condition 
  Move disk 1 from the fromTower to the toTower;
else {
  moveDisks(n − 1, fromTower, auxTower, toTower);
  Move disk n from the fromTower to the toTower;
  moveDisks(n − 1, auxTower, toTower, fromTower);
}

Listing 18.8 gives a program that prompts the user to enter the number of disks  
and invokes the recursive method moveDisks to display the solution for moving the 
disks.

Listing 18.8  TowerOfHanoi.java
 1  import java.util.Scanner;
 2
 3  public class TowerOfHanoi {
 4    /** Main method */

Figure 18.7  The Tower of Hanoi problem can be decomposed into three subproblems.
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Step 1: Move the first n – 1 disks from
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18.7  Case Study: Tower of Hanoi  735

 5    public static void main(String[] args) {
 6      // Create a Scanner
 7      Scanner input = new Scanner(System.in);
 8      System.out.print("Enter number of disks: ");
 9      int n = input.nextInt();
10
11      // Find the solution recursively
12      System.out.println("The moves are:");
13      moveDisks(n, 'A', 'B', 'C');
14    }
15
16    /** The method for finding the solution to move n disks 
17        from fromTower to toTower with auxTower */ 
18    public static void moveDisks(int n, char fromTower, 
19        char toTower, char auxTower) {
20      if (n == 1) // Stopping condition 
21        System.out.println("Move disk " + n + " from " +
22          fromTower + " to " + toTower);
23      else {
24        moveDisks(n − 1, fromTower, auxTower, toTower);
25        System.out.println("Move disk " + n + " from " +
26          fromTower + " to " + toTower);
27        moveDisks(n − 1, auxTower, toTower, fromTower);
28      }
29    }
30  }

base case

recursion

recursion

This problem is inherently recursive. Using recursion makes it possible to find a natural, simple 
solution. It would be difficult to solve the problem without using recursion.

Consider tracing the program for n = 3. The successive recursive calls are shown in 
Figure 18.8. As you can see, writing the program is easier than tracing the recursive calls. The 
system uses stacks to manage the calls behind the scenes. To some extent, recursion provides 
a level of abstraction that hides iterations and other details from the user.

	18.7.1	 How many times is the moveDisks method in Listing 18.8 invoked for 
moveDisks(5, 'A', 'B', 'C')? Point

Check

Enter number of disks:  4  
The moves are:
Move disk 1 from A to C
Move disk 2 from A to B
Move disk 1 from C to B
Move disk 3 from A to C
Move disk 1 from B to A
Move disk 2 from B to C
Move disk 1 from A to C
Move disk 4 from A to B
Move disk 1 from C to B
Move disk 2 from C to A
Move disk 1 from B to A
Move disk 3 from C to B
Move disk 1 from A to C
Move disk 2 from A to B
Move disk 1 from C to B
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18.8  Case Study: Fractals
Using recursion is ideal for displaying fractals because fractals are inherently 
recursive.

A fractal is a geometrical figure, but unlike triangles, circles, and rectangles, fractals can be 
divided into parts, each of which is a reduced-size copy of the whole. There are many interesting 
examples of fractals. This section introduces a simple fractal, the Sierpinski triangle, named after 
a famous Polish mathematician. 

A Sierpinski triangle is created as follows:

1.	 Begin with an equilateral triangle, which is considered to be a Sierpinski fractal of order 
(or level) 0, as shown in Figure 18.9a.

2.	 Connect the midpoints of the sides of the triangle of order 0 to create a Sierpinski triangle 
of order 1 (see Figure 18.9b).

3.	 Leave the center triangle intact. Connect the midpoints of the sides of the three other 
triangles to create a Sierpinski triangle of order 2 (see Figure 18.9c).

4.	 You can repeat the same process recursively to create a Sierpinski triangle of order 3, 
4, . . . , and so on (see Figure 18.9d). For an interactive demo, see liveexample.pearsoncmg.
com/dsanimation/SierpinskiTriangleUsingHTML.html.

The problem is inherently recursive. How do you develop a recursive solution for it? Con-
sider the base case when the order is 0. It is easy to draw a Sierpinski triangle of order 0. 
How do you draw a Sierpinski triangle of order 1? The problem can be reduced to drawing 
three Sierpinski triangles of order 0. How do you draw a Sierpinski triangle of order 2? The 
problem can be reduced to drawing three Sierpinski triangles of order 1, so the problem of 
drawing a Sierpinski triangle of order n can be reduced to drawing three Sierpinski triangles 
of order n − 1.

Listing 18.9 gives a program that displays a Sierpinski triangle of any order, as shown in 
Figure 18.9. You can enter an order in a text field to display a Sierpinski triangle of the spec-
ified order.

Listing 18.9  SierpinskiTriangle.java
 1  import javafx.application.Application;
 2  import javafx.geometry.Point2D;
 3  import javafx.geometry.Pos;

Point
Key

Figure 18.8  Invoking moveDisks(3, 'A', 'B', 'C') spawns calls to moveDisks recursively.

moveDisks(2,'A','C','B')
move disk 3 from A to B
moveDisks(2,'C','B','A')

moveDisks(3,'A','B','C')

moveDisks(1,'A','B','C')
move disk 2 from A to C
moveDisks(1,'B','C','A')

moveDisks(2,'A','C','B')

moveDisks(1,'C','A','B')
move disk 2 from C to B
moveDisks(1,'A','B','C')

moveDisks(2,'C','B','A')

moveDisks(1,'A','B','C')

move disk 1 from A to B

moveDisks(1,'B','C','A')

move disk 1 from B to C

moveDisks(1,'C','A','B')

move disk 1 from C to A

moveDisks(1,'A','B','C')

move disk 1 from A to B
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 4  import javafx.scene.Scene;
 5  import javafx.scene.control.Label;
 6  import javafx.scene.control.TextField;
 7  import javafx.scene.layout.BorderPane;
 8  import javafx.scene.layout.HBox;
 9  import javafx.scene.layout.Pane;
10  import javafx.scene.paint.Color;
11  import javafx.scene.shape.Polygon;
12  import javafx.stage.Stage;
13
14  public class SierpinskiTriangle extends Application {
15    @Override // Override the start method in the Application class 
16    public void start(Stage primaryStage) {
17      SierpinskiTrianglePane pane = new SierpinskiTrianglePane(); 
18      TextField tfOrder = new TextField();
19      tfOrder.setOnAction( 
20        e −> pane.setOrder(Integer.parseInt(tfOrder.getText())));
21      tfOrder.setPrefColumnCount(4);
22      tfOrder.setAlignment(Pos.BOTTOM_RIGHT);
23
24      // Pane to hold label, text field, and a button 
25      HBox hBox = new HBox(10);
26      hBox.getChildren().addAll(new Label("Enter an order: "), tfOrder);
27      hBox.setAlignment(Pos.CENTER);
28
29      BorderPane borderPane = new BorderPane();
30      borderPane.setCenter(pane);
31      borderPane.setBottom(hBox);
32

recursive triangle pane

listener for text field

hold label and text field

Figure 18.9  A Sierpinski triangle is a pattern of recursive triangles. Source: Copyright  
© 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission. 

(a) Order 0 (b) Order 1

(c) Order 2 (d) Order 3
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738  Chapter 18    Recursion

33      // Create a scene and place it in the stage 
34      Scene scene = new Scene(borderPane, 200, 210);
35      primaryStage.setTitle("SierpinskiTriangle"); // Set the stage title
36      primaryStage.setScene(scene); // Place the scene in the stage 
37      primaryStage.show(); // Display the stage 
38
39      pane.widthProperty().addListener(ov −> pane.paint()); 
40      pane.heightProperty().addListener(ov −> pane.paint());
41    }
42
43    /** Pane for displaying triangles */ 
44    static class SierpinskiTrianglePane extends Pane {
45      private int order = 0;
46
47      /** Set a new order */ 
48      public void setOrder(int order) {
49        this.order = order;
50        paint();
51      }
52
53      SierpinskiTrianglePane() {
54      }
55
56      protected void paint() {
57        // Select three points in proportion to the pane size 
58        Point2D p1 = new Point2D(getWidth() / 2, 10);
59        Point2D p2 = new Point2D(10, getHeight() − 10);
60        Point2D p3 = new Point2D(getWidth() − 10, getHeight() − 10);
61
62        this.getChildren().clear(); // Clear the pane before redisplay 
63
64        displayTriangles(order, p1, p2, p3); 
65      }
66
67      private void displayTriangles(int order, Point2D p1, 
68          Point2D p2, Point2D p3) { 
69        if (order == 0) {
70          // Draw a triangle to connect three points 
71          Polygon triangle = new Polygon();
72          triangle.getPoints().addAll(p1.getX(), p1.getY(), p2.getX(),
73              p2.getY(), p3.getX(), p3.getY());
74          triangle.setStroke(Color.BLACK);
75          triangle.setFill(Color.WHITE);
76
77          this.getChildren().add(triangle);
78        }
79        else {
80          // Get the midpoint on each edge in the triangle 
81          Point2D p12 = p1.midpoint(p2);
82          Point2D p23 = p2.midpoint(p3);
83          Point2D p31 = p3.midpoint(p1);
84
85          // Recursively display three triangles 
86          displayTriangles(order − 1, p1, p12, p31); 
87          displayTriangles(order − 1, p12, p2, p23); 
88          displayTriangles(order − 1, p31, p23, p3); 
89        }
90      }
91    }
92  }

listener for resizing

three initial points

clear the pane

draw a triangle

create a triangle

top subtriangle
left subtriangle
right subtriangle
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18.8  Case Study: Fractals  739

A Sierpinski triangle is displayed in a SierpinskiTrianglePane. The order property in 
the inner class SierpinskiTrianglePane specifies the order for the Sierpinski triangle. 
The Point2D class, introduced in Section 9.6.3, The Point2D Class, represents a point with 
x- and y-coordinates. Invoking p1.midpoint(p2) returns a new Point2D object that is the 
midpoint between p1 and p2 (lines 81–83).

	18.8.1	 How do you obtain the midpoint between two points?

	18.8.2	 What is the base case for the displayTriangles method?

	18.8.3	 How many times is the displayTriangles method invoked for a Sierpinski tri-
angle of order 0, order 1, order 2, and order n?

	18.8.4	 What happens if you enter a negative order? How do you fix this problem in the 
code?

	18.8.5	 Instead of drawing a triangle using a polygon, rewrite the code to draw a triangle 
by drawing three lines to connect the points in lines 71–77.

Point
Check

The initial triangle has three points set in proportion to the pane size (lines 58–60). If 
order == 0, the displayTriangles(order, p1, p2, p3) method displays a triangle 
that connects the three points p1, p2, and p3 (lines 71–77), as shown in Figure 18.10a. 
Otherwise, it performs the following tasks:

1.	 Obtain the midpoint between p1 and p2 (line 81), the midpoint between p2 and p3 (line 
82), and the midpoint between p3 and p1 (line 83), as shown in Figure 18.10b.

2.	 Recursively invoke displayTriangles with a reduced order to display three smaller 
Sierpinski triangles (lines 86–88). Note each small Sierpinski triangle is structurally 
identical to the original big Sierpinski triangle except that the order of a small triangle 
is one less, as shown in Figure 18.10b.

displayTriangle method

Figure 18.10  Drawing a Sierpinski triangle spawns calls to draw three small Sierpinski triangles recursively.

p1

p3p2

Draw the Sierpinski triangle.
displayTriangles(order, p1, p2, p3)

p1

(a)

p3p2

p12 p31

p23

Recursively draw the small Sierpinski triangle.
displayTriangles(
order – 1, p1, p12, p31)

Recursively draw the
small Sierpinski triangle.
displayTriangles(
order – 1, p31, p23, p3)

Recursively draw the small
Sierpinski triangle.
displayTriangles(
order – 1, p12, p2, p23)

(b)
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18.9  Recursion vs. Iteration
Recursion is an alternative form of program control. It is essentially repetition without 
a loop.

When you use loops, you specify a loop body. The repetition of the loop body is controlled 
by the loop control structure. In recursion, the method itself is called repeatedly. A selection 
statement must be used to control whether to call the method recursively or not.

Recursion bears substantial overhead. Each time the program calls a method, the system 
must allocate memory for all of the method’s local variables and parameters. This can consume 
considerable memory and requires extra time to manage the memory.

Any problem that can be solved recursively can be solved nonrecursively with iterations. 
Recursion has some negative aspects: it uses up too much time and too much memory. Why, 
then, should you use it? In some cases, using recursion enables you to specify a clear, simple 
solution for an inherently recursive problem that would otherwise be difficult to obtain. Exam-
ples are the directory-size problem, the Tower of Hanoi problem, and the fractal problem, 
which are rather difficult to solve without using recursion.

The decision whether to use recursion or iteration should be based on the nature of, and 
your understanding of, the problem you are trying to solve. The rule of thumb is to use which-
ever approach can best develop an intuitive solution that naturally mirrors the problem. If an 
iterative solution is obvious, use it. It will generally be more efficient than the recursive option.

Note
Recursive programs can run out of memory, causing a StackOverflowError.

Tip
If you are concerned about your program’s performance, avoid using recursion because 
it takes more time and consumes more memory than iteration. In general, recursion can 
be used to solve the inherent recursive problems such as Tower of Hanoi, recursive 
directories, and Sierpinski triangles.

	18.9.1	 Which of the following statements are true?

a.	 Any recursive method can be converted into a nonrecursive method.

b.	 Recursive methods take more time and memory to execute than nonrecursive 
methods.

c.	 Recursive methods are always simpler than nonrecursive methods.

d.	 There is always a selection statement in a recursive method to check whether a 
base case is reached.

	18.9.2	 What is a cause for a stack-overflow exception?

18.10  Tail Recursion
A tail-recursive method is efficient.

A recursive method is said to be tail recursive if there are no pending operations to be performed 
on return from a recursive call, as illustrated in Figure 18.11a. However, method B in Figure 18.11b 
is not tail recursive because there are pending operations after a method call is returned.

For example, the recursive isPalindrome method (lines 6–13) in Listing 18.4 is tail 
recursive because there are no pending operations after recursively invoking isPalindrome 
in line 12. However, the recursive factorial method (lines 16–21) in Listing 18.1 is not 
tail recursive because there is a pending operation, namely multiplication, to be performed on 
return from each recursive call.

Point
Key

recursion overhead

recursion advantages

recursion or iteration?

StackOverflowError

performance concern

Point
Check

Point
Keytail recursion
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18.10  Tail Recursion  741

Tail recursion is desirable because the method ends when the last recursive call ends, and 
there is no need to store the intermediate calls in the stack. Compilers can optimize tail recur-
sion to reduce stack size.

A nontail-recursive method can often be converted to a tail-recursive method by using aux-
iliary parameters. These parameters are used to contain the result. The idea is to incorporate the 
pending operations into the auxiliary parameters in such a way that the recursive call no longer 
has a pending operation. You can define a new auxiliary recursive method with the auxiliary 
parameters. This method may overload the original method with the same name but a different 
signature. For example, the factorial method in Listing 18.1 is written in a tail-recursive 
way in Listing 18.10.

Listing 18.10  ComputeFactorialTailRecursion.java
 1  public class ComputeFactorialTailRecursion {
 2    /** Return the factorial for a specified number */ 
 3    public static long factorial(int n) {
 4      return factorial(n, 1); // Call auxiliary method 
 5    }
 6
 7    /** Auxiliary tail−recursive method for factorial */ 
 8    private static long factorial(int n, int result) {
 9      if (n == 0)
10        return result;
11      else 
12        return factorial(n − 1, n * result); // Recursive call 
13    }
14  }

The first factorial method (line 3) simply invokes the second auxiliary method (line 4). The 
second method contains an auxiliary parameter result that stores the result for the factorial 
of n. This method is invoked recursively in line 12. There is no pending operation after a call 
is returned. The final result is returned in line 10, which is also the return value from invoking 
factorial(n, 1) in line 4.

	18.10.1	   Identify tail-recursive methods in this chapter.

	18.10.2	  Rewrite the fib method in Listing 18.2 using tail recursion.

invoke auxiliary method

auxiliary method

original method

recursive call
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Figure 18.11  A tail-recursive method has no pending operations after a recursive call.
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742  Chapter 18    Recursion

Chapter Summary

1.	 A recursive method is one that directly or indirectly invokes itself. For a recursive 
method to terminate, there must be one or more base cases.

2.	 Recursion is an alternative form of program control. It is essentially repetition without 
a loop control. It can be used to write simple, clear solutions for inherently recursive 
problems that would otherwise be difficult to solve.

3.	 Sometimes the original method needs to be modified to receive additional parameters in 
order to be invoked recursively. A recursive helper method can be defined for this purpose.

4.	 Recursion bears substantial overhead. Each time the program calls a method, the 
system must allocate memory for all of the method’s local variables and param-
eters. This can consume considerable memory and requires extra time to manage 
the memory.

5.	 A recursive method is said to be tail recursive if there are no pending operations to be 
performed on return from a recursive call. Some compilers can optimize tail recursion 
to reduce stack size.

Quiz

Answer the quiz for this chapter online at the book Companion Website.

Programming Exercises

Sections 18.2 and 18.3
	 *18.1	 (Factorial) Using the BigInteger class introduced in Section 10.9, you can 

find the factorial for a large number (e.g., 100!). Implement the factorial 
method using recursion. Write a program that prompts the user to enter an inte-
ger and displays its factorial.

	 *18.2	 (Fibonacci numbers) Rewrite the fib method in Listing 18.2 using iterations.

Hint: To compute fib(n) without recursion, you need to obtain fib(n − 2) 
and fib(n − 1) first. Let f0 and f1 denote the two previous Fibonacci num-
bers. The current Fibonacci number would then be f0 + f1. The algorithm can 
be described as follows:

f0 = 0; // For fib(0) 
f1 = 1; // For fib(1)

for (int i = 1; i <= n; i++) {
  currentFib = f0 + f1;
  f0 = f1;
  f1 = currentFib;
}
// After the loop, currentFib is fib(n) 

Write a test program that prompts the user to enter an index and displays its 
Fibonacci number.
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Programming Exercises  743

	 *18.3	 (Compute greatest common divisor using recursion) The gcd(m, n) can also 
be defined recursively as follows:

■■ If m % n is 0, gcd(m, n) is n.
■■ Otherwise, gcd(m, n) is gcd(n, m % n).

Write a recursive method to find the GCD. Write a test program that prompts the 
user to enter two integers and displays their GCD.

	 18.4	 (Sum series) Write a recursive method to compute the following series:

m(i) = 1 +
1
2

+
1
3

+ g +
1
i

Write a test program that displays m(i) for i =  1, 2, . . . , 10.

	 18.5	 (Sum series) Write a recursive method to compute the following series:

m(i) =
1
3

+
2
5

+
3
7

+
4
9

+
5
11

+
6
13

+ g +
i

2i + 1
Write a test program that displays m(i) for i = 1, 2, . . . , 10.

	 *18.6	 (Sum series) Write a recursive method to compute the following series:

m(i) =
1
2

+
2
3

+ g +
i

i + 1
Write a test program that displays m(i) for i =  1, 2, . . . , 10.

	 *18.7	 (Fibonacci series) Modify Listing 18.2, ComputeFibonacci.java, so that the pro-
gram finds the number of times the fib method is called. (Hint: Use a static 
variable and increment it every time the method is called.)

Section 18.4
	 *18.8	 (Print the digits in an integer reversely) Write a recursive method that displays 

an int value reversely on the console using the following header:

public static void reverseDisplay(int value)

For example, reverseDisplay(12345) displays 54321. Write a test program 
that prompts the user to enter an integer and displays its reversal.

	 *18.9	 (Print the characters in a string reversely) Write a recursive method that dis-
plays a string reversely on the console using the following header:

public static void reverseDisplay(String value)

For example, reverseDisplay("abcd") displays dcba. Write a test program 
that prompts the user to enter a string and displays its reversal.

	 *18.10	 (Occurrences of a specified character in a string) Write a recursive method that 
finds the number of occurrences of a specified letter in a string using the follow-
ing method header:

public static int count(String str, char a)

For example, count("Welcome", 'e') returns 2. Write a test program that 
prompts the user to enter a string and a character, and displays the number of 
occurrences for the character in the string.
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744  Chapter 18    Recursion

	 *18.11	 (Sum the digits in an integer using recursion) Write a recursive method that 
computes the sum of the digits in an integer. Use the following method header:

public static int sumDigits(long n)

For example, sumDigits(234) returns 2 + 3 + 4 = 9. Write a test program 
that prompts the user to enter an integer and displays its sum.

Section 18.5
	 **18.12	 (Print the characters in a string reversely) Rewrite Programming Exercise 18.9 

using a helper method to pass the substring high index to the method. The 
helper method header is

public static void reverseDisplay(String value, int high)

	 *18.13	 (Find the largest number in an array) Write a recursive method that returns the 
largest integer in an array. Write a test program that prompts the user to enter a 
list of eight integers and displays the largest element.

	 *18.14	 (Find the number of uppercase letters in a string) Write a recursive method 
to return the number of uppercase letters in a string. Write a test program that 
prompts the user to enter a string and displays the number of uppercase letters in 
the string.

	 *18.15	 (Occurrences of a specified character in a string) Rewrite Programming Exer-
cise 18.10 using a helper method to pass the substring high index to the method. 
The helper method header is

public static int count(String str, char a, int high)

	 *18.16	 (Find the number of uppercase letters in an array) Write a recursive method 
to return the number of uppercase letters in an array of characters. You need to 
define the following two methods. The second one is a recursive helper method.

public static int count(char[] chars)
public static int count(char[] chars, int high)

Write a test program that prompts the user to enter a list of characters in one line 
and displays the number of uppercase letters in the list.

	 *18.17	 (Occurrences of a specified character in an array) Write a recursive method that 
finds the number of occurrences of a specified character in an array. You need to 
define the following two methods. The second one is a recursive helper method.

public static int count(char[] chars, char ch)
public static int count(char[] chars, char ch, int high)

Write a test program that prompts the user to enter a list of characters in one line, 
and a character, and displays the number of occurrences of the character in the list.

Sections 18.6–18.10
	 *18.18	 (Tower of Hanoi) Modify Listing 18.8, TowerOfHanoi.java, so the program finds 

the number of moves needed to move n disks from tower A to tower B. (Hint: 
Use a static variable and increment it every time the method is called.)

	 *18.19	 (Sierpinski triangle) Revise Listing 18.9 to develop a program that lets the 
user use the + /-  buttons, primary/secondary mouse buttons, and UP/
DOWN arrow keys to increase or decrease the current order by 1, as shown 
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Programming Exercises  745

in Figure 18.12a. The initial order is 0. If the current order is 0, the Decrease 
button is ignored.

(a) (b)

Figure 18.12  (a) Programming Exercise 18.19 uses the +  or -  buttons to increase or 
decrease the current order by 1. Source: Copyright © 1995–2016 Oracle and/or its affiliates. 
All rights reserved. Used with permission. (b) Programming Exercise 18.20 draws ovals 
using a recursive method. 

	 *18.20	 (Display circles) Write a Java program that displays ovals, as shown in 
Figure 18.12b. The circles are centered in the pane. The gap between two adja-
cent circles is 10 pixels, and the gap between the border of the pane and the 
largest circle is also 10.

	 *18.21	 (Decimal to binary) Write a recursive method that converts a decimal number 
into a binary number as a string. The method header is

public static String dec2Bin(int value)

Write a test program that prompts the user to enter a decimal number and displays 
its binary equivalent.

	 *18.22	 (Decimal to hex) Write a recursive method that converts a decimal number into 
a hex number as a string. The method header is

public static String dec2Hex(int value)

Write a test program that prompts the user to enter a decimal number and displays 
its hex equivalent.

	 *18.23	 (Binary to decimal) Write a recursive method that parses a binary number as a 
string into a decimal integer. The method header is

public static int bin2Dec(String binaryString)

Write a test program that prompts the user to enter a binary string and displays 
its decimal equivalent.

	 *18.24	 (Hex to decimal) Write a recursive method that parses a hex number as a string 
into a decimal integer. The method header is

public static int hex2Dec(String hexString)

Write a test program that prompts the user to enter a hex string and displays its 
decimal equivalent.
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746  Chapter 18    Recursion

	 **18.25	 (String permutation) Write a recursive method to print all the permutations of a 
string. For example, for the string abc, the permutation is
abc
acb
bac
bca
cab
cba 

(Hint: Define the following two methods. The second is a helper method.)

public static void displayPermutation(String s)
public static void displayPermutation(String s1, String s2)

The first method simply invokes displayPermutation(" ", s). The second 
method uses a loop to move a character from s2 to s1 and recursively invokes it 
with new s1 and s2. The base case is that s2 is empty and prints s1 to the console.

Write a test program that prompts the user to enter a string and displays all its 
permutations.

	 **18.26	 (Create a maze) Write a program that will find a path in a maze, as shown in 
Figure 18.13a. The maze is represented by a 8 * 8 board. The path must meet 
the following conditions:

■■   �The path is between the upper-left corner cell and the lower-right corner cell 
in the maze.

Figure 18.13  The program finds a path from the upper-left corner to the bottom-right 
corner. Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. 
Used with permission. 

 (a) Correct path (b) Illegal path

■■   �The program enables the user to place or remove a mark on a cell. A path 
consists of adjacent unmarked cells. Two cells are said to be adjacent if they 
are horizontal or vertical neighbors.

■■   �The path does not contain cells that form a square. The path in Figure 18.13b, 
for example, does not meet this condition. (The condition makes a path easy 
to identify on the board.)
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Programming Exercises  747

	 **18.27	 (Koch snowflake fractal) The text presented the Sierpinski triangle fractal. In 
this exercise, you will write a program to display another fractal, called the Koch 
snowflake, named after a famous Swedish mathematician. A Koch snowflake is 
created as follows:

1.	 Begin with an equilateral triangle, which is considered to be the Koch fractal 
of order (or level) 0, as shown in Figure 18.14a.

2.	 Divide each line in the shape into three equal line segments and draw an out-
ward equilateral triangle with the middle line segment as the base to create a 
Koch fractal of order 1, as shown in Figure 18.14b.

3.	 Repeat Step 2 to create a Koch fractal of order 2, 3, . . . , and so on, as shown 
in Figures 18.14c and d.

Figure 18.14  A Koch snowflake is a fractal starting with a triangle. Source: Copyright © 1995–2016 Oracle and/or 
its affiliates. All rights reserved. Used with permission. 

(a) (b) (c) (d)

	 **18.28	 (Nonrecursive directory size) Rewrite Listing 18.7, DirectorySize.java, without 
using recursion.

	 *18.29	 (Number of files in a directory) Write a program that prompts the user to enter a 
directory and displays the number of the files in the directory.

	 **18.30	 (Find words) Write a program that finds all occurrences of a word in all the files 
under a directory, recursively. Pass the parameters from the command line as 
follows:

java Exercise18_30 dirName word 

	 **18.31	 (Replace words) Write a program that replaces all occurrences of a word with a 
new word in all the files under a directory, recursively. Pass the parameters from 
the command line as follows:

java Exercise18_31 dirName oldWord newWord 

	***18.32	 (Game: Knight’s Tour) The Knight’s Tour is an ancient puzzle. The objective is 
to move a knight, starting from any square on a chessboard, to every other square 
once, as shown in Figure 18.15a. Note the knight makes only L-shaped moves 
(two spaces in one direction and one space in a perpendicular direction). As 
shown in Figure 18.15b, the knight can move to eight squares. Write a program 
that displays the moves for the knight, as shown in Figure 18.15c. When you 
click a cell, the knight is placed at the cell. This cell will be the starting point for 
the knight. Click the Solve button to display the path for a solution.

(Hint: A brute-force approach for this problem is to move the knight from one 
square to another available square arbitrarily. Using such an approach, your 
program will take a long time to finish. A better approach is to employ some 

VideoNote

Search a string in a directory
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748  Chapter 18    Recursion

heuristics. A knight has two, three, four, six, or eight possible moves, depending 
on its location. Intuitively, you should attempt to move the knight to the least 
accessible squares first and leave those more accessible squares open, so there 
will be a better chance of success at the end of the search.)

	***18.33	 (Game: Knight’s Tour animation) Write a program for the Knight’s Tour problem. 
Your program should let the user move a knight to any starting square and click the 
Solve button to animate a knight moving along the path, as shown in Figure 18.16.

Figure 18.15  (a) A knight traverses all squares once. (b) A knight makes an L-shaped 
move. (c) A program displays a Knight’s Tour path. Source: Copyright © 1995–2016 Oracle 
and/or its affiliates. All rights reserved. Used with permission. 

(a) (b) (c)

Figure 18.16  A knight traverses along the path. Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights 
reserved. Used with permission.

	 **18.34	 (Game: Eight Queens) The Eight Queens problem is to find a solution to place 
a queen in each row on a chessboard such that no two queens can attack each 
other. Write a program to solve the Eight Queens problem using recursion and 
display the result as shown in Figure 18.17.

Figure 18.17  The program displays a solution to the Eight Queens problem. Source: 
Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.
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	**18.35	 (H-tree fractal) An H-tree (introduced at the beginning of this chapter in Figure 
18.1) is a fractal defined as follows:

1.	 Begin with a letter H. The three lines of H are of the same length, as shown 
in Figure 18.1a.

2.	 The letter H (in its sans-serif form, H) has four endpoints. Draw an H centered 
at each of the four endpoints to an H-tree of order 1, as shown in Figure 18.1b. 
These Hs are half the size of the H that contains the four endpoints.

3.	 Repeat Step 2 to create an H-tree of order 2, 3, . . . , and so on, as shown in 
Figures 18.1c and d.

Write a program that draws an H-tree, as shown in Figure 18.1.

	 18.36	 (Sierpinski triangle) Write a program that lets the user to enter the order and 
display the filled Sierpinski triangles as shown in Figure 18.18.

Figure 18.18  A filled Sierpinski triangle is displayed. Source: Copyright © 1995–2016 Oracle and/or its affiliates. 
All rights reserved. Used with permission. 

	 **18.37	 (Hilbert curve) The Hilbert curve, first described by German mathematician 
David Hilbert in 1891, is a space-filling curve that visits every point in a square 
grid with a size of 2 * 2, 4 * 4, 8 * 8, 16 * 16, or any other power of 2. 
Write a program that displays a Hilbert curve for the specified order, as shown 
in Figure 18.19.

Figure 18.19  A Hilbert curve with the specified order is drawn. Source: Copyright © 1995–2016 Oracle and/or its 
affiliates. All rights reserved. Used with permission. 

(a) (b) (c) (d)
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750  Chapter 18    Recursion

	 **18.38	 (Recursive tree) Write a program to display a recursive tree as shown in  
Figure 18.20.

VideoNote

Recursive tree

	 **18.39	 (Drag the tree) Revise Programming Exercise 18.38 to move the tree to where 
the mouse is dragged.

Figure 18.20  A recursive tree with the specified depth is drawn. Source: Copyright © 1995–2016 Oracle and/or its 
affiliates. All rights reserved. Used with permission. 

(a) (b) (c) (d)
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