
Recursion

Refat Othman

Computer Science Department

Comp 133

Refat Othman

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Introduction to

Recursion
• A recursive function is one that calls

itself.

f1

void message()

{

printf("This is a recursive function.\n“);

message();

}

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Splitting a Problem into Smaller

Problems

• Assume that the problem of size 1 can be solved easily (i.e., the simple
case).

• We can recursively split the problem into a problem of size 1 and another
problem of size n-1.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Splitting a Problem into

Smaller
Let f(x)=f(x -1)+3 , f(0)=4 , find f(7)

f(7) = f(7-1)+3 → f(7)=f(6)+3 f(7)=22+2=25

f(6) = f(6-1)+3 → f(6)=f(5)+3 f(6)=19+3=22

f(5) = f(5-1)+3 → f(5)=f(4)+3 f(5)=16+3=19

f(4) = f(4-1)+3 → f(4)=f(3)+3 f(4)=13+3=16

f(3) = f(3-1)+3 → f(3)=f(2)+3 f(3)=10+3=13

f(2) = f(2-1)+3 → f(2)=f(1)+3 f(2)=7+3=10

f(1) = f(1-1)+3 → f(1)=f(0)+3 f(1)=4+3=7

f(0)=4

Base case

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Recursive Problem

void message()

{

printf("This is a recursive function.\n“);

message();

}

The function below displays the string "This is a

recursive function.\n", and then calls itself.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Recursive Problem

• The function is like an infinite loop

because there is no code to stop it

from repeating.

• Like a loop, a recursive function must

have some algorithm to control the

number of times it repeats.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Recursion

• Like a loop, a recursive function must have some algorithm

to control the number of times it repeats. Shown below is a
modification of the message function. It passes an integer

argument, which holds the number of times the function is

to call itself.

void message(int times)

{

if (times > 0)

{

printf("This is a recursive function.\n“);

message(times - 1);

}

}

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Recursion

• The function contains an if/else

statement that controls the repetition.

• As long as the times argument is

greater than zero, it will display the

message and call itself again. Each time

it calls itself, it passes times - 1 as

the argument.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Recursive Function

Let f(x)=f(x -1)+3 , f(0)=4 , find f(7)

int f(int x)

{

if (x == 0)

return 4; //base case

else

return f(x-1)+3;

}

Recursive function terminates when a base case is met.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Trace of f(x)=f(x -1)+3

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Recursive Function multiply

We can implement the multiplication by addition.

The simple case is “m*1=m.”

The recursive step uses the following equation:
“m*n = m+m*(n-1).”

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Trace of Function multiply(6,3)

.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Recursive Function

Factorial

In mathematics, the notation n! represents the factorial of the number n. The

factorial of a number is defined as:

n! = 1 * 2 * 3 * ... * n

1

if n > 0

if n = 0

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Another way of defining the factorial of a number, using recursion, is:

Recursive Function

Factorial

Factorial(n) = n * Factorial(n - 1)

1

if n > 0

if n = 0

The following C function implements the recursive definition shown above:

int factorial(int num)

{

if (num == 0)

return 1;

else

return num * factorial(num - 1);

}

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Recursive Function

Factorial

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Trace of fact = factorial(3);

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Tracing recursive methods

Consider the following method:
int mystery(int x, int y) {

if (x < y)

return x;

else

return mystery(x - y, y);

}

For each call below, indicate what value is returned:

mystery(6, 13)
mystery(14, 10)
mystery(37, 10)
mystery(8, 2)

mystery(50, 7)

6

4
7
0
1

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Recursive Function Power

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Recursive Function fibonacci

the Fibonacci sequence 1, 1, 2,3, 5, 8, 13, 21, 34,………….

an: 1, 1, 2, 3, 5, 8, 13, 21, 34,………….

n: 1, 2, 3, 4, 5, 6, 7, 8 , 9,………….

a1 =1 , a2 =1 , a3 = a1 + a2 =2 , an = an-1 + an-2

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Recursive Function fibonacci

the Fibonacci sequence 1, 1, 2,3, 5, 8, 13, 21, 34,………….

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

What is the output of the following statements.

Try each statement separately.

Recall:

// s=&s[0]

#include <stdio.h>

int main()

{

char s[10]="hello";

char *v;

v=s;

printf("%s",v);// hello

printf("%s",&v[1]);//ello

printf("%s",&v[2]);//llo

printf("%c",*v);//h

printf("%c",*(v+1));//e

printf("%c",*s);//h

printf("%c",*(s+1));//e

return 0;

}

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Reverse Word Print Word

Print

Hello

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Consider the following method:

void mystery(int n) {

if (n <= 1)

printf("%d",n);

else {

mystery(n/2);

printf(" , %d ",n);

}

}

For each call below, indicate what value is returned:
mystery2(1)

Tracing recursive methods

mystery2(2)
mystery2(3)
mystery2(4)
mystery2(16)
mystery2(30)
mystery2(100)

1

1 , 2
1 , 3
1 , 2 , 4
1 , 2 , 4 , 8 , 16
1 , 3 , 7 , 15 , 30
1 , 3 , 6 , 12 , 25 , 50 , 100

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

