

f) S= {(x,y) ∈ RxR: x =1 and 3 5 } = 5}
Donain : X=1 and X=1
3 = Range = 3 < 4 < 5
- X X X X X X X X X X X X X X X X X X X
(Q.5) evaluate S[1], for each of relations in Ex. Y:
a) $S[1] = [-\sqrt{15}, \sqrt{15}]$
b) $S[1] = \int -\sqrt{2}, \sqrt{2}$ e) $S[1] = \int \mathcal{J} \in \mathbb{R} : \mathcal{J} > 3$ and $\mathcal{J} < -8$ $f' : S[1] = \int \mathcal{J} \in \mathbb{R} : \mathcal{J} < 5$ $O.6$ let $S = \int 1.2$. List all the relations on S
e) S[1] = { yer : 2>3 and y <-3}
f'S[1] = fyer: 13<4 < 5]
$S_1 = \emptyset$, $S_2 = \int (1,1) \int_{-1}^{1} S_3 = \int (2,2) \int_{-1}^{1} S_4 = \int (1,2) \int_{-1}^{1} S_4 = \int$
$S_{1} = \emptyset$, $S_{2} = \{(1,1)\}$, $S_{3} = \{(2,2)\}$ = $S_{4} = \{(1,2)\}$, $S_{5} = \{(2,2)\}$, $S_{7} = \{(2,2)\}$, $S_{7} = \{(2,2)\}$, $S_{7} = \{(2,2)\}$, $S_{8} = \{(2,2)\}$, $S_{9} = \{(2,2)\}$
2

 $S_{0} = \int (1,1), (2,2), (2,1) \int S_{0} = \int (2,2), (1,2) \int S_{0} = \int (2,2), (2,1) \int S_{0} = \int (2,2), (2,2) \int S_{0} = \int (2$ (Q.7) let $A = \{x \in R : x \in Z\}$. $B = \{x \in R : x \in Y\}$ and $C = \{x \in R : z \in X \in Y\}$. a) sketch the graph of C x (AUB) :-* AUB = [1,2]U (3,4) Cx(AUB) => < -3 -2 -4 2 3 4 5 x b) sketch the graph of (CXA) U(CXB) := CXA CXB

Uploaded By: anonymous

R= the domain of S = the domain of T = The range of S

= the range of T. but SNT = Ø:-S =) (xy) = RxR = 1 = x+1) T =] (x, y) = IRxIR : y = x] (Q.9) Give a proof of , or a counter example to , each of the following statments . = a) for any three sets A. B and C

Ax (BUC) = (AXB) U(AXC) let (xy) & Ax(BUC) (X & A and y & (BUC) (=) XEA and (JEB or JEC) (X,y) \(AXB \) or (X \(A) \(A XC \) (X,y) \in (AxB) U(Axc)

b) for any three sets A.B. and C Ax (BAC) = (AXB) N(AXC) let (xy) & Ax(BM) (=> X&A and y&(BMC) () XEA and (yEB and yEK) (=) (x ∈ A and y ∈ B) and ((x ∈ A) and y ∈ C) (=)((x,y) ∈ AxB) and ((x,y) ∈ Axc) (X,y) & (AxB) A (Axc) (Q.II) a) let 5 and T be relations. Prove that if S CT and X is a member of the domain of S, then S[X] ST[X] :-Suppose SCT and X & Domain of S and > X & Domain of S -> Y & S[X] (x,y) ∈ S (x,y) ∈ T Since S ⊆ T ★ X ∈ Domain of T and y ∈ T[X] 4) S[x] C T[x]

b) let A and B be renempty sets. Prove that

(AXB) [X] = B if XE A and (AXB)[X] = \$\phi\$ if X\$\neq A= * if x & A then (AxB)[x] = Ø :-Centralition: Suppose X A and (AXB) [X] + & => x \neq A and 3 y \in (AxB)(X) -> x & A and (xig) & AXB =) X & A and X E A and y E B la contradiction X * if XEA Hen (AXB) [X] = B (C) suppose XEA and y ((AXB)[Y] => (Y,y) (AXB) =) y EB [] sypse x ∈ A and y ∈ B =) (x,y) ∈ (AxB) => y ∈ (AxB)[x] AxB = BxA if and only if A = B D* if AXB = BXA then A = B (* if A=B the AxB-BAA let XE A and yEB let XEA and yEB =) X EB, y EA (A=B) =) (X1x) \in (Ax8) => (xig) E (BxA) since AxB = BxA => (x,y) & AxB => (x14) = BxA => XEB and yEA => AXB = BXA / => ACB Since XEA and XEB => BEA since SEB and JEA => A = B (ASB and BSA)

Exercises 4.2, :-(Q.17) which of the following relations are symmetric? a) AUB, where A= ((x,y) = 1Rx1R: x=0) B= ((x,y) = 1Rx1R: y=0) y=x, then the relation is Symmetric. (-1,2) ∈ R, but (2,-1) & R The circle with center (1,0) and radious . There is no reflection about y=x => not symmetric . toke (1,-1) ∈ R but (-1,1) ∉ R

Uploaded By: anonymous

Uploaded By: anonymous

Exercises 4.5 (Q.28) let R= (xy) E RXR: X-y=0) . X=y2 a) Prove that R is an equivalence relation on R: = J reflexive $\begin{cases} x^2 - y^2 = 0 \Rightarrow x^2 - x^2 = 0 \Rightarrow (x, x) \in \mathbb{R} \end{cases}$ $\begin{cases} x^2 - y^2 = 0 \Rightarrow x^2 - y^2 = 0 \end{cases}$ and $\begin{cases} x^2 - y^2 = 0 \end{cases}$ Since $\begin{cases} y^2 - x^2 = 0 \end{cases}$ 3) transitive : $(x,y) \in \mathbb{R}$ and $(y,z) \in \mathbb{R}$ $x^2 - y^2 = 0$ and $y^2 \cdot z^2 = 0$ = $x^2 - z^2 = 0$ = $(x,z) \in \mathbb{R}$ Hence R is an equivalence relation b) list all members of [3] :-[3] = [3, -3] (Q.So) let A = [1,2,5,4] :a) either find a relation that is reflexive on A but no reither symmetric ner transitive or prove that no such relation exists -

(Q. 34) the b	let IR be llowing subsa	the sel of a	all red number	is and consider	
$R_{1} = \{(x,y) \in RxR : xy = 0\}$ $R_{2} = \{(x,y) \in RxR : xy \neq 0\}$ $R_{3} = \{(x,y) \in RxR : x'+y'=1\}$			R= ((x,y) = RxR: x-y <5) Ry: ((x,y) = RxR: x >)		
which.	of the ab	Symmetric	Hansitive	equivalence relation	
Re Re	X	~	X	X	
R _s	X	X	1	X	
R ₅	Proch.	ed lock	1-1 f(1)-	X Land	
(0.35) for each real number x, let $f(x) = x^2$. For any two real numbers a and by define $a = b$ provided that $f(a) = f(b)$. Prove that $a = c$ is an equivalence relation on					
R and list all the members of [-1] :-					
$\Rightarrow f(x) = x^2, a = b, f(a) = f(b)$					
* reflexive: $(x, x) \Rightarrow x^2 = x^2$, $f(x) = f(x)$ * Symmetric: $(x,y) \Rightarrow f(x) = f(y) \Rightarrow x^2 = y^2$ and					
$(y,x) - f(y) = f(x) = y^2 - x^2$					

* transitive: (x,y) and (y,z), f(x)=f(y) and $f(y)=f(z)=\frac{1}{2}$ * [-7] = 549] (0.36) a) Prove that ~ is an equivalence relation on Par * $[(a,b),(a,b)] \in \mathbb{Z} \Rightarrow a^2+b^2=a^2+b^3 \Rightarrow reflexive$ * $[(a,b),(c,d)] \in \mathbb{Z} \Rightarrow a^2+b^2=c^2+d^2$ $\Rightarrow c^2+d^2=a^2+b^3$ x >[(ad),(a,b)] = = = 54mmetric * [(a,b), (c,d)] == and [(c,d), (e, f)] = ~ =) $a^2 + b^2 = c^2 + d^2$ and $c^2 + d^2 = e^2 + f^2$ =) $a^2 + b^2 = e^2 + f^2 =)$ [(a,b)/, (e,f)] $\in \mathbb{Z}$ =) transitive Hence, ~ is equivalence relation. b) list all the members of [(0,0)] :-R [(0,0)] = \((0,0) \) c) Give a geometric description of [(5, 11)] x2+ y2 = 146

(2.39) @ reflexive: $((x,y),(x,y)) \in S$ since xy = yx = y = x = (3) transitive: suppose $((x,y),(z,v)) \in S$ and $((z,y),(e,f)) \in S$ $=) \times v = yz$ and zf = ve => v = zf $=) \times (zf) = yz => \times f = ye => ((x,y),(e,f)) \in S$ * R[(6,8)] = {(3,4), (6,8), (9,12), (12,16)} on a set x: - let R and S be equivalence relations a) Is RUS reflexive on X?? . let $a \in X$, \Rightarrow $(a,a) \in R$ and $(a,a) \in S$ Since R, S reflexive on X. \Rightarrow $(a,a) \in RUS \Rightarrow$ reflexive b) Is RUS symmetric ?? let (x,y) ERUS => (x,y) ER or (x,y) ES =) (y,x) ER or (y,x) ES -) (y, x) E RUS =) symmetric

