

Prescott's MICROBIOLOGY

ELEVENTH EDITION

JOANNE WILLEY
KATHLEEN SANDMAN
DOROTHY WOOD

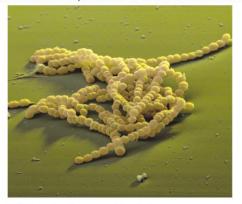
Chapter 3

Bacterial Cell Structure

Shape, Arrangement, and Size

Shape.

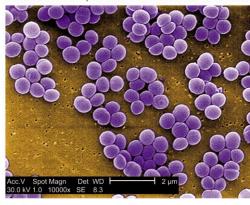
- Cocci and rods most common.
- Various others.


Arrangement.

- Determined by plane of division.
- Determined by separation or not.

Size—varies.

Cocci Shape and Arrangement


Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

(a) S. agalactiae—cocci in chains

©Science Source

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

(b) S. aureus—cocci in clusters

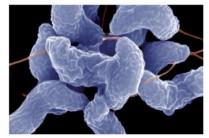
Source: CDC/Janice Haney Carr

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

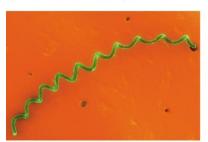
(c) L. pneumophila—rods in chains

Source: CDC/Janice Haney Carr

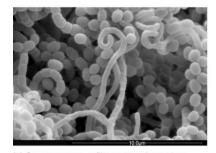
Cocci (s., coccus)—spheres.


- diplococci (s., diplococcus)—pairs.
- streptococci—chains.
- staphylococci—grape-like clusters.
- tetrads—4 cocci in a square.
- sarcinae—cubic configuration of 8 cocci.

Other Shapes and Aggregations


Copyright @ McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

(a) V. vulnificus—comma-shaped vibrios


(b) C. jejuni-spiral-shaped

(c) L. interrogans-a spirochete

(d) C. crescentus—a stalked bacterium

(e) Streptomyces—a filamentous bacterium

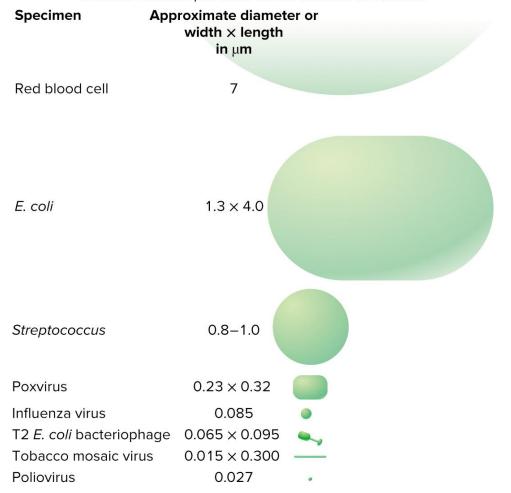
(f) C. crocatus fruiting body

(a) @Media for Medical/Getty Images; (b) Source: Photo by DeWood, digital colorization by Stephen Ausmus/USDA-ARS; (c) @Sebastian Kaulitzki/Getty Images; (d) @Biology Pics/Science Source; (e) @Dr. Amy Gehring; (f) @Yoav Levy/DIOMEDIA Bacilli (s., bacillus)—rods.

Coccobacilli—very short rods.

Vibrios—resemble rods, comma shaped.

Spirilla (s., spirillum)—rigid helices.


Spirochetes—flexible helices.

Mycelium—network of long, multinucleate filaments.

Pleomorphic—organisms that are variable in shape.

Size

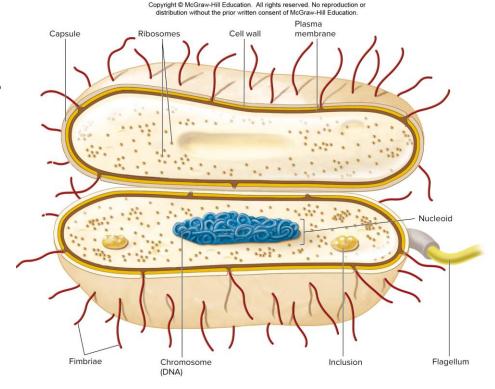
Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Smallest—0.3 μm (*Mycoplasma*).

Average rod-1.1 to 1.5 by 2 to 6 μ m (*E. coli*).

Very large—600 by 80 μm (*Epulopiscium fishelsoni*).

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.


©Esther Angert/Medical Images/DIOMEDIA

Bacterial Cell Organization—Common Features

Cell envelope—3 layers.

Cytoplasm.

External structures.

Common Bacterial Structures and Their Functions

Plasma membrane	Selectively permeable barrier, mechanical boundary of cell, nutrient and waste transport, location of many metabolic processes (respiration, photosynthesis), detection of environmental cues for chemotaxis
Gas vacuole	An inclusion that provides buoyancy for floating in aquatic environments
Ribosomes	Protein synthesis
Inclusions	Storage of carbon, phosphate, and other substances; site of chemical reactions (microcompartments); movement
Nucleoid	Localization of genetic material (DNA)
Periplasmic space	In typical Gram-negative bacteria, contains hydrolytic enzymes and binding proteins for nutrient processing and uptake; in typical Gram-positive bacteria, may be smaller or absent
Cell wall	Protection from osmotic stress, helps maintain cell shape
Capsules and slime layers	Resistance to phagocytosis, adherence to surfaces
Fimbriae and pili	Attachment to surfaces, bacterial conjugation and transformation, twitching
Flagella	Swimming and swarming motility
Endospore	Survival under harsh environmental conditions

Bacterial Cell Envelope

Plasma membrane.

Cell wall.

Layers outside the cell wall.

- Capsule.
- Slime layer.

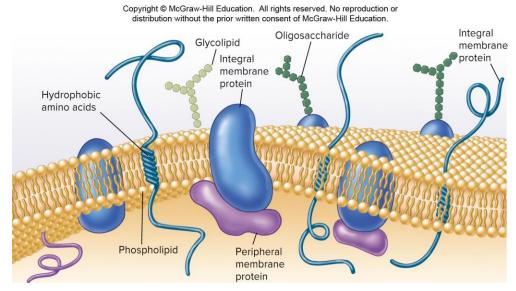
Plasma Membrane Functions

Encompasses the cytoplasm; absolute requirement for all living organisms.

Selectively permeable barrier.

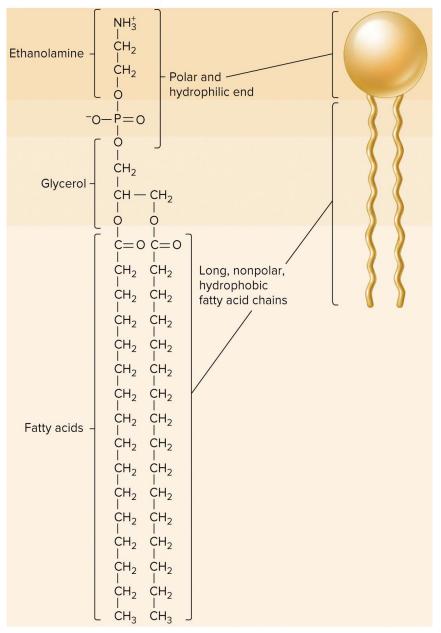
Interacts with external environment.

- Receptors for detection of and response to chemicals in surroundings.
- Transport systems.
- Metabolic processes.


Membranes Are Lipid Bilayers With Floating Proteins

Amphipathic lipids.

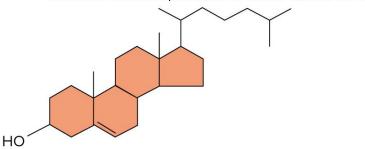
- Polar ends (hydrophilic—interact with water).
- Non-polar tails (hydrophobic—insoluble in water).


Membrane proteins.

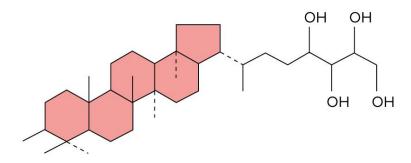
- Peripheral—Loosely connected to membrane; easily removed.
- Integral—Amphipathic (embedded within membrane); carry out important functions.

Structure of a Phospholipid

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.


Bacterial Lipids

Saturation levels of membrane lipids reflect environmental conditions such as temperature.


Bacterial membranes lack sterols but do contain sterol-like molecules, hopanoids.

- Stabilize membrane.
- Mark microdomain boundaries.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

(a) Cholesterol (a steroid) is found in the membranes of eukaryotes.

(b) Bacteriohopanetetrol (a hopanoid) is found in many bacterial membranes.

Nutrients

Macroelements (macronutrients)—required in relatively large amounts.

- C, O, H, N, S, and P—found in organic molecules (proteins, lipids, carbohydrates, and nucleic acids).
- K, Ca, Mg, and Fe—cations; serve in variety of roles including assisting enzymes and biosynthesis.

Micronutrients (trace elements)—required in trace amounts.

- Mn, Zn, Co, Mo, Ni, and Cu.
- Often supplied in water/media components; ubiquitous
- Work to assist enzymes (cofactors).

Some unique substances may be required.

Growth Factors

Organic compounds.

Essential cell components (or their precursors) that *the* cell cannot synthesize.

Must be supplied by environment if cell is to survive and reproduce.

Classes include:

- Amino acids—needed for protein synthesis.
- Purines and pyrimidines—needed for nucleic acid synthesis.
- Vitamins—function as enzyme cofactors.

Methods for Uptake of Nutrients

Microbes can only take in dissolved particles across a selectively permeable membrane.

Some nutrients enter by passive diffusion.

Microorganisms use transport mechanisms.

- Passive diffusion.
- Facilitated diffusion.
- Primary and secondary active transport.
- Group translocation.

Passive Diffusion

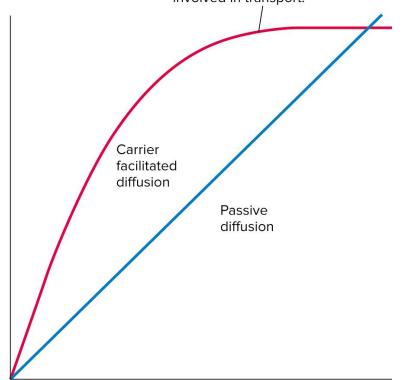
Molecules move from *region of higher concentration to one of lower concentration*between the cell's interior and the exterior.

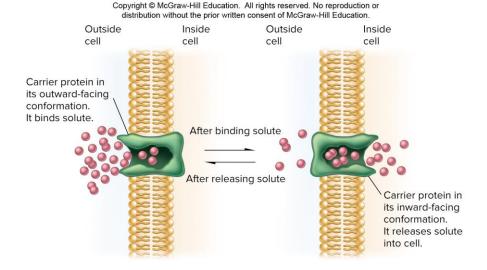
 H_2O , O_2 , and CO_2 often move across membranes this way.

Facilitated Diffusion

Similar to passive diffusion.

- Movement of molecules <u>is not</u> energy dependent.
- Direction of movement is *from high concentration to low concentration*.
- Size of concentration gradient impacts rate of uptake.


Differs from passive diffusion.


- Uses membrane bound carrier molecules (permeases).
- Rate increases with the concentration gradient.
- Effectively transports glycerol, sugars, and amino acids.

Facilitated versus Passive Diffusion

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

The plateau in this line represents the saturation effect that is seen whenever a carrier protein is involved in transport.

Concentration gradient

Rate of transport

Active Transport

Energy-dependent process.

ATP or proton motive force used.

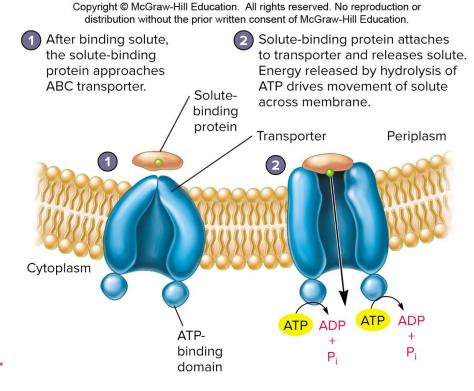
Move molecules against the gradient.

Concentrates molecules inside cell.

Involves carrier proteins (permeases).

 Carrier saturation effect is observed at high solute concentrations.

ABC Transporters

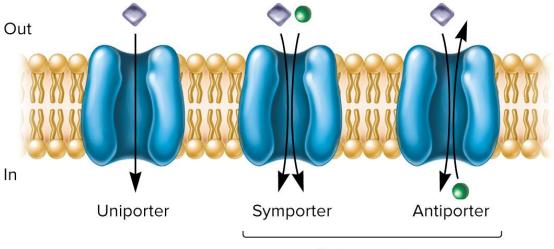

Primary active transporters use ATP.

ATP-binding cassette (ABC) transporters.

Observed in *Bacteria*, *Archaea*, and eukaryotes

Consist of:

- 2 hydrophobic membrane spanning domains.
- 2 cytoplasmic associated ATPbinding domains.
- Substrate binding domains.



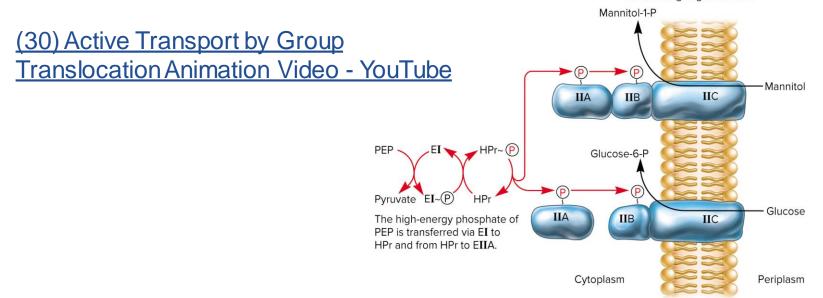
Secondary Active Transport

Use ion gradients to cotransport substances.

- Protons.
- Symport—two substances both move in the same direction.
- Antiport—two substances move in opposite directions.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Cotransporters


Group Translocation

Energy dependent transport that chemically modifies molecule as it is brought into cell.

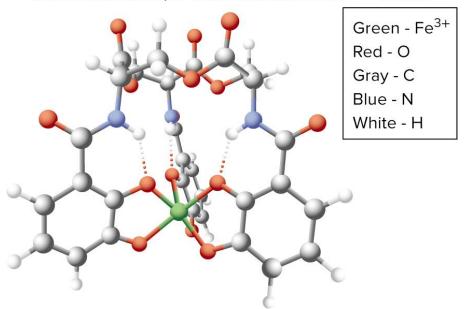
Best known translocation system is phosphoenolpyruvate: sugar phosphotransferase system (PTS).

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Phosphate is then transferred to incoming sugar via EIIB.

Iron Uptake

Microorganisms require iron.


• Ferric iron is very insoluble so uptake is difficult.

Microorganisms secrete siderophores to aid uptake.

Siderophore complexes with ferric ion.

Complex is then transported into cell.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

3.4 There Are Two Main Types of Bacterial Cell Walls

- a. Describe peptidoglycan structure.
- b. Compare and contrast the cell walls of typical Gram-positive and Gram-negative bacteria.
- c. Relate bacterial cell wall structure to the Gram-staining reaction.

Bacterial Cell Wall

Cell wall functions.

- Maintains shape of the bacterium.
- Helps protect cell from osmotic lysis and toxic materials.
- May contribute to pathogenicity.

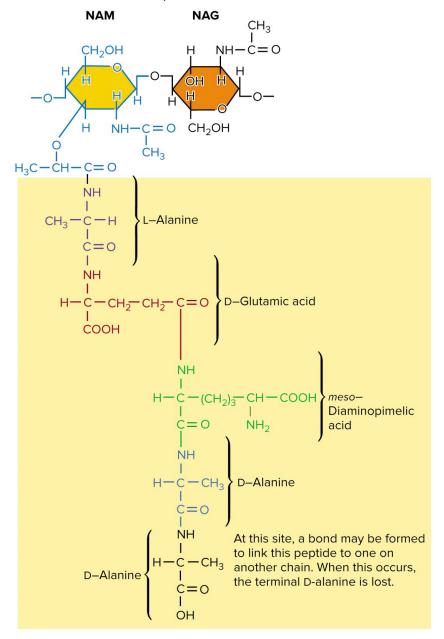
Peptidoglycan (murein).

Rigid structure lying just outside the cell plasma membrane.

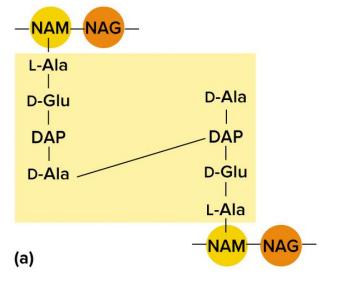
Two types of bacteria based on Gram stain.

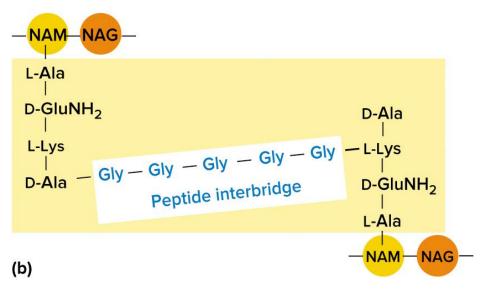
- Gram-positive: stain purple; thick peptidoglycan.
- Gram-negative: stain pink or red; thin peptidoglycan and outer membrane.

Peptidoglycan Structure


Meshlike polymer of identical subunits forming long strands.

Two alternating sugars.

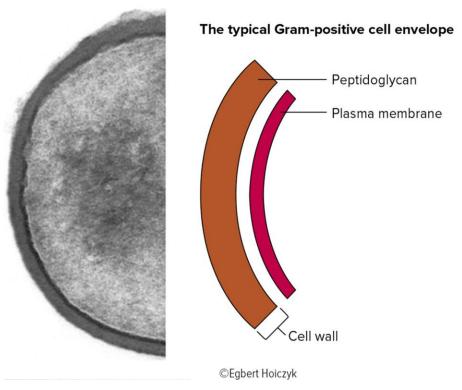

- N-acetylglucosamine (NAG).
- N- acetylmuramic acid.


Alternating D- and L-amino acids.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Strands Are Crosslinked


Peptidoglycan strands have a helical shape.

Peptidoglycan chains are crosslinked by *peptides for strength*.

- Interbridges may form.
- Peptidoglycan sacs interconnected networks.
- Various structures occur.

Gram-Positive Cell Walls

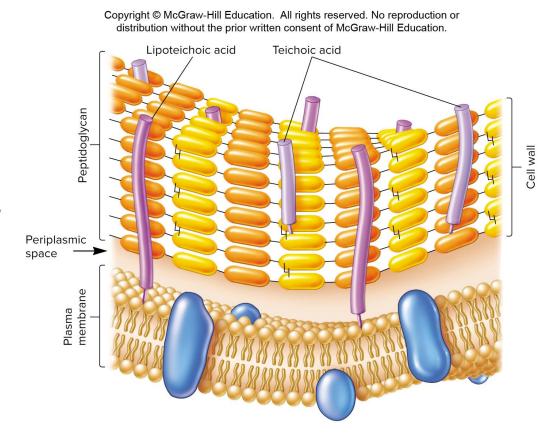
Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Composed primarily of peptidoglycan.

May also contain teichoic acids (negatively charged).

- Help maintain cell envelope.
- Protect from environmental substances.
- May bind to host cells.

Some Gram-positive bacteria have layer of proteins on surface of peptidoglycan.


Periplasmic Space of Gram-Positive Bacteria

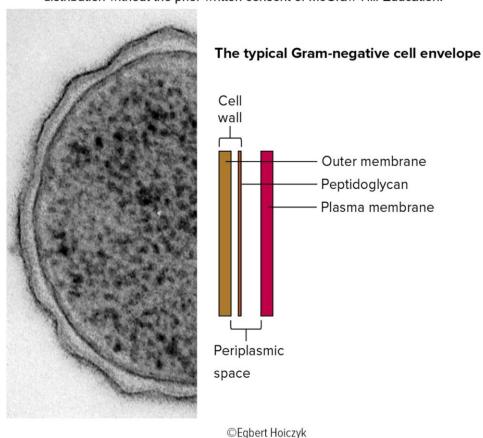
Between plasma membrane and cell wall.

Periplasm has relatively few proteins.

Exoenzymes secreted by Gram-positive bacteria.

 Aid in degradation of large nutrients.

Gram-Negative Cell Wall Basic Structure


More complex than Gram-positive.

Consist of a thin layer of peptidoglycan surrounded by an outer membrane.

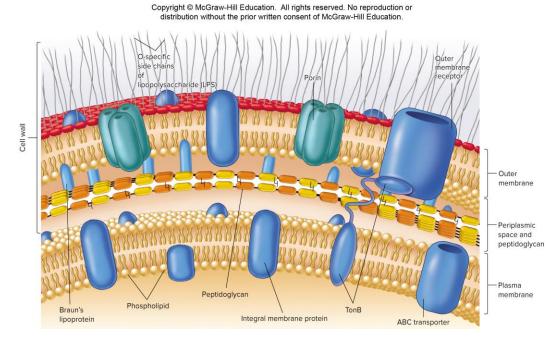
Outer membrane composed of lipids, lipoproteins, and lipopolysaccharide.

No teichoic acids.

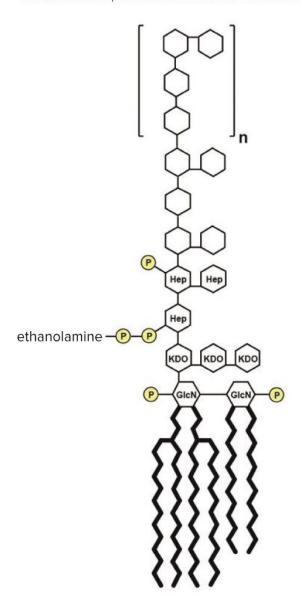
Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Gram-Negative Cell Walls

Outer membrane (OM) outside thin peptidoglycan layer.


Braun's lipoproteins connect OM to peptidoglycan.

Other adhesion sites reported.


Peptidoglycan is approximately 5 to 10% of cell wall weight.

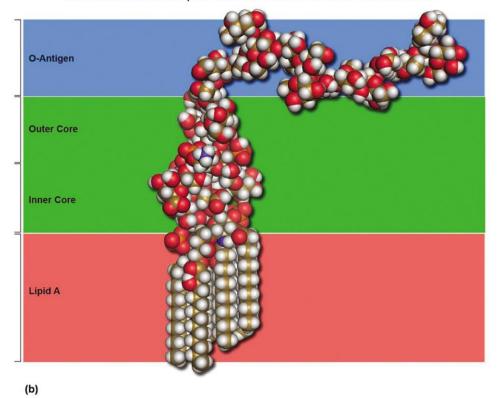
Periplasmic space differs from that in Gram-positive cells.

- May constitute 20 to 40% of cell volume.
 - Many enzymes present in periplasm.
 - Hydrolytic enzymes, transport proteins and other proteins.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

LPS— Lipopolysaccharide

Consists of three parts.


- Lipid A.
- Core polysaccharide.
- O side chain (O antigen).

Lipid A buried in outer membrane.

Core polysaccharide, O side chain extend out from the cell.

Importance of LPS

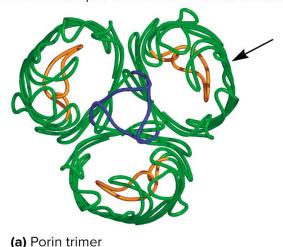
Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Contributes to negative charge on cell surface.

Helps stabilize outer membrane structure.

Creates a permeability barrier.

Host defense protection (O antigen).


Acts as an endotoxin (lipid A).

Gram-Negative Outer Membrane Permeability

More permeable than plasma membrane due to presence of *porin proteins* and transporter proteins.

 Porin proteins form channels to let small molecules (600 to 700 daltons) pass.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

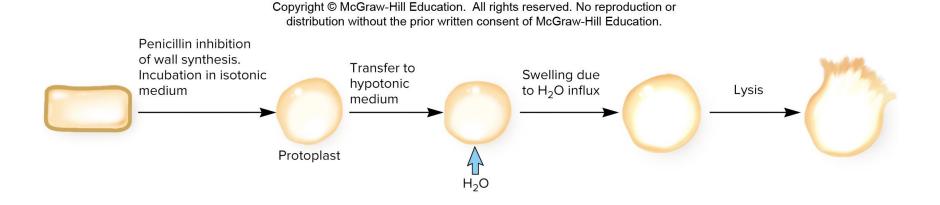
(b) OmpF side view

Cell Walls and Osmotic Protection

Hypotonic environments.

- Solute concentration outside cell less than inside cell.
- Water moves into cell and cell swells.
- Cell wall protects from lysis.

Hypertonic environments.


- Solute concentration outside cell is greater than inside.
- Water leaves cell.
- Plasmolysis occurs.

Evidence for Protection of Cell Wall

Lysozyme breaks bond between NAG and NAM.

Penicillin inhibits peptidoglycan synthesis.

If cells are treated with either of the above, they lyse in a hypotonic solution.

Cells That Lose a Cell Wall May Survive in Isotonic Environments

Protoplasts.

Spheroplasts.

Mycoplasma.

- Never produce a cell wall.
- Plasma membrane more resistant to osmotic pressure.

3.5 The Cell Envelope Often Includes Layers Outside the Cell Wall

- a. List the structures found in all the layers of bacterial cell envelopes.
- b. Identify the functions and the major component molecules in cell envelope structures.

Components Outside of the Cell Wall

Outermost layer in the cell envelope.

Capsules and slime layers.

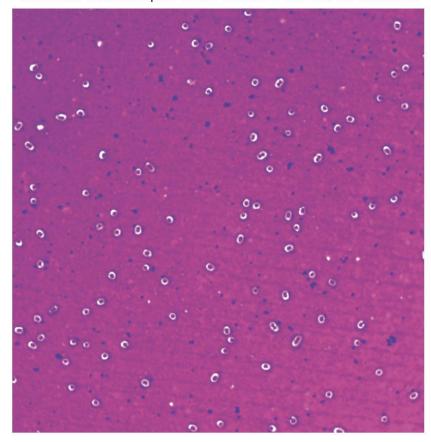
Glycocalyx—aids in attachment to solid surfaces.

• For example, biofilms in plants and animals.

S-layers.

Components Outside of Cell Wall— Capsules

Well organized and not easily removed from cell.


Usually composed of polysaccharides.

Visible in light microscope.

Protective advantages.

- Resistant to phagocytosis.
- Protect from desiccation.
- Exclude viruses and detergents.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

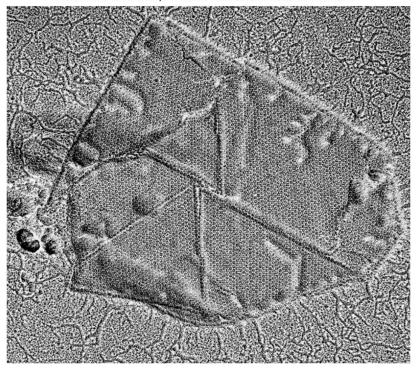
K. pneumoniae

Components Outside of Cell Wall— Slime Layers

Similar to capsules except diffuse, unorganized, and easily removed.

Slime may facilitate motility.

Regularly structured selfassembling layers of protein or glycoprotein.


- In Gram-negative bacteria, S layer adheres to outer membrane.
- In Gram-positive bacteria, associated with peptidoglycan.

S Layer functions.

- Protect from ion and pH fluctuations, osmotic stress, enzymes, and predation.
- Maintains shape and rigidity.
- Promotes adhesion to surfaces.
- Protects from host defenses.
- Potential use in nanotechnology.

Components Outside of Cell Wall—S Layers

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

©Dr. Robert G.E. Murray/University of Western Ontario

3.6 The Bacterial Cytoplasm Is More Complex Than Once Thought

- a. Describe the function of three types of bacterial cytoskeletal proteins and compare their structure with those of eukaryotes.
- b. Compare and contrast storage inclusions and microcompartments, citing specific examples.
- c. List the composition of bacterial ribosomes and their spatial organization within the cell.
- d. Differentiate the structure and function of bacterial chromosomes and plasmids.

Bacterial Cytoplasmic Structures

Cytoskeleton.

Intracytoplasmic membranes.

Inclusions.

Ribosomes.

Nucleoid.

Plasmids.

Bacterial Cytoskeleton

Homologs of all 3 eukaryotic cytoskeletal elements have been identified in bacteria.

- Actin filaments.
- Microtubules.
- Intermediate filaments.

Functions are similar as in eukaryotes.

- Participate in cell division.
- Localize proteins.
- Determine cell shape.

Best Studied Examples of Bacterial Cytoskeleton Molecules

FtsZ—many bacteria.

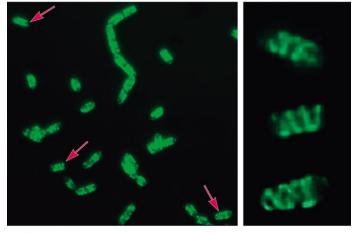
 Forms ring during septum formation in cell division.


MreB—many rods.

 Maintains shape by positioning peptidoglycan synthesis machinery.

CreS—rare, maintains curve shape.

©2020 McGraw-Hill Education


Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

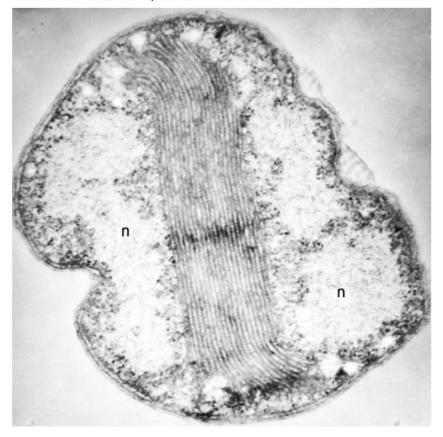
(a) FtsZ

©Dr. Joseph Pogliano

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

(b) Mbl

(c) Mbl

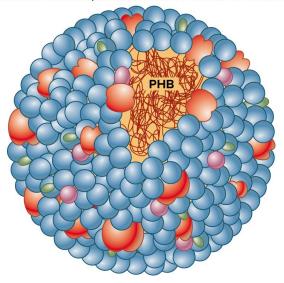

(b) ©Jeff Errington/Centre for Bacterial Cell Biology/Newcastle University; (c) ©Jeff Errington/Centre for Bacterial Cell Biology/Newcastle University

Intracytoplasmic Membranes

Plasma membrane infoldings.

- Observed in many photosynthetic bacteria.
- Observed in many bacteria with high respiratory activity.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.


Inclusions

Granules, crystals, or globules of organic or inorganic material that are stockpiled by the cell for future use.

Some are enclosed by a single-layered membrane.

- Membranes vary in composition.
- Some made of proteins; others contain lipids.
- May be referred to as microcompartments.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

(a) Sulfur globules

Storage Inclusions

Storage of nutrients, metabolic end products, energy, building blocks.

Glycogen storage.

Carbon storage.

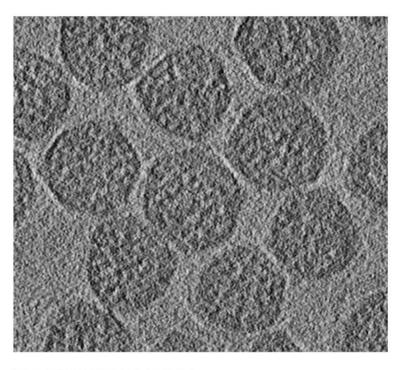
poly-β-hydroxybutyrate (PHB).

Phosphate—polyphosphate.

Amino acids—cyanophycin granules.

©Bryant, N. Pfenning and J.G. Holt (Eds), Bergey's Manual of Systematic

Bacteriology, Vol. 3. © 1989 Williams and Wilkins Co., Baltimore Access the text alternative for these images


Microcompartments

Not bound by membranes but compartments for specific functions.

Carboxysomes—CO₂ fixing bacteria.

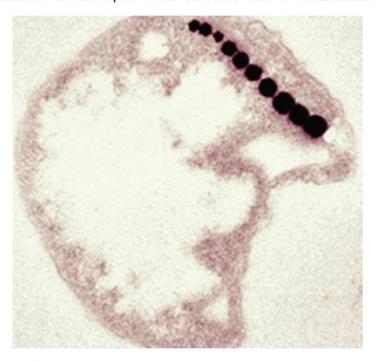
Contain the enzyme
 RubisCO for CO₂ fixation.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

(b) Carboxysomes

Gas Vacuoles

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.


(c) Gas vacuoles

Found in aquatic, photosynthetic bacteria and archaea.

Provide buoyancy in gas vesicles.

Magnetosomes

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

(d) Magnetosomes

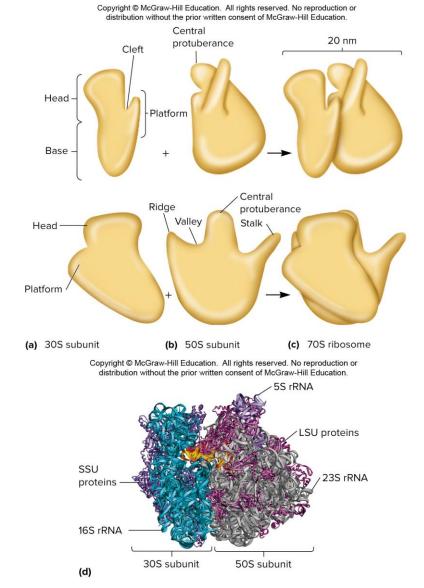
Found in aquatic bacteria.

Magnetite particles for orientation in Earth's magnetic field.

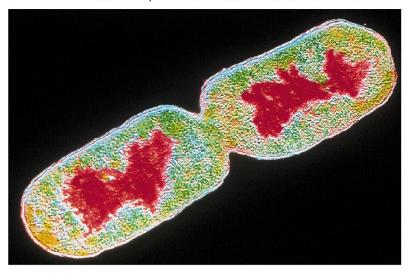
Cytoskeletal protein MamK.

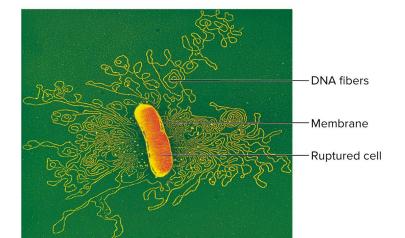
 Helps form magnetosome chain.

Ribosomes


Complex protein/RNA structures.

- Sites of protein synthesis.
- Bacterial and archaea ribosome = 70S.


Bacterial ribosomal RNA.


- 16S small subunit.
- 23S and 5S in large subunit.
- (28s, 5.8s, 5s)

(33) Difference between 70S and 80S Ribosomes (Prokaryotic vs Eukaryotic ribosomes) Subtitled - YouTube

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

(a) ©CNRI/SPL/Science Source; (b) ©Dr. Gopal Murti/SPL/Science Source

The Nucleoid

Usually not membrane bound (few exceptions).

Location of chromosome and associated proteins.

Usually 1 closed circular, double-stranded DNA molecule.

Supercoiling and nucleoid proteins (different from histones) aid in folding.

(b)

(a)

Plasmids

Extrachromosomal DNA.

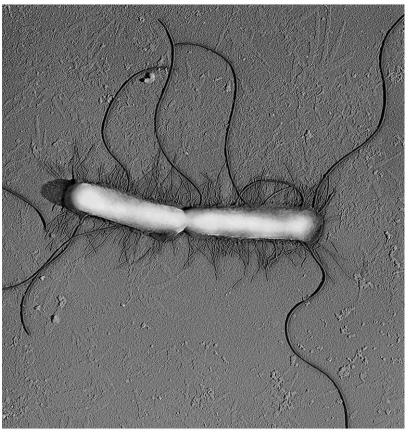
Usually small, closed circular DNA molecules.

Exist and replicate independently of chromosome.

- Episomes—may integrate into chromosome.
- Inherited during cell division.

Classification via mode of existence, spread, and function.

External Structures


Extend beyond the cell envelope in bacteria.

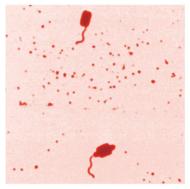
Function in protection, attachment to surfaces, horizontal gene transfer, cell movement.

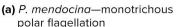
- Pili and fimbriae.
- Flagella.

Pili and Fimbriae

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

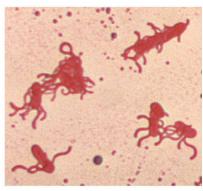
©Thomas Deerinck, NCMIR/Science Source


Fimbriae (s., fimbria); pili (s., pilus).


- Short, thin, hairlike, protein appendages (up to 1,000/cell).
- Can mediate attachment to surfaces, motility, DNA uptake.

Sex pili (s., pilus).

- Longer, thicker, less numerous (1 to 10/cell).
- Genes for formation on plasmids.
- Required for conjugation.


Flagella

(b) S. *volutans*—lophotrichous flagellation

(c) B. alvei—peritrichous flagellation

(a, c) Source: CDC/Dr. William A. Clark; (b) @McGraw-Hill Education/James Redfearn, photographer

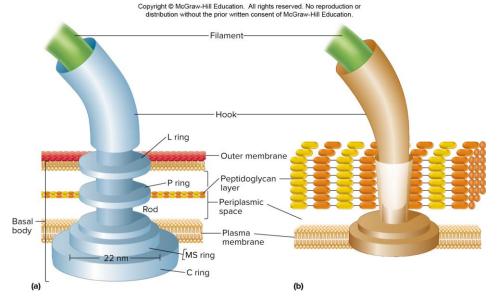
Threadlike, locomotor appendages extending outward from plasma membrane and cell wall.

Functions.

©2020 McGraw-Hill Education

- Motility and swarming behavior.
- Attachment to surfaces.
- May be virulence factors.

Patterns of flagellation.

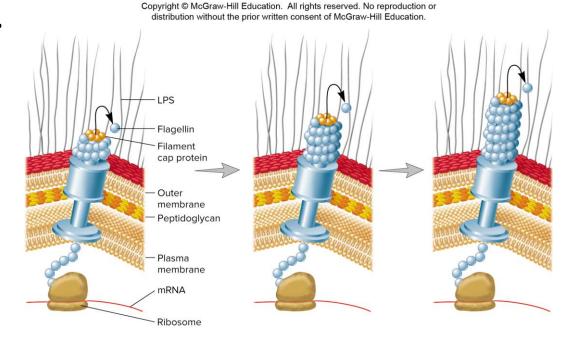

- Monotrichous—one flagellum.
- Polar flagellum—flagellum at end of cell.
- Amphitrichous—one flagellum at each end of cell.
- Lophotrichous—cluster of flagella at one or both ends.
- Peritrichous—spread over entire surface of cell.

Bacterial Flagella

Thin, rigid protein structures that cannot be observed with bright-field microscope unless specially stained.

Ultrastructure composed of three parts.

- Filament extends from cell surface to the tip.
- Basal body is series of rings that drive flagellar motor.
- Hook links filament to basal body.


Flagellar Synthesis

Complex process involving many genes/gene products.

New flagellin molecules transported through the hollow filament using Type III-like secretion system.

Filament subunits self-assemble with help of filament

cap at tip, not base.

Motility

Flagellar movement.

Swarming.

Spirochete motility.

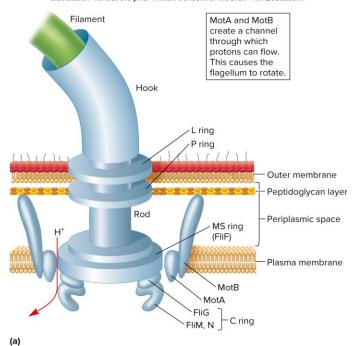
Twitching and gliding motility.

Chemotaxis.

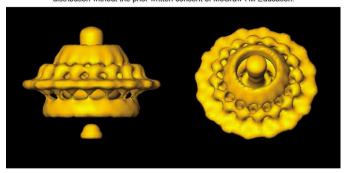
- Move toward chemical attractants such as nutrients, away from harmful substances.
- Move in response to temperature, light, oxygen, osmotic pressure, and gravity.

Flagellar Movement

Flagellum rotates like a propeller.


- Very rapid rotation up to 1100 revolutions/sec.
- In general, counterclockwise (CCW) rotation causes forward motion (run).
- In general, clockwise rotation (CW) disrupts run causing cell to stop and tumble.

Copyright @ McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. Forward run (a) Tumble (b) Forward run (c) Tumble


(d)

Mechanism of Flagellar Movement

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

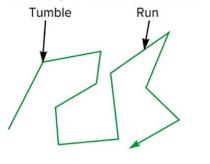
Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

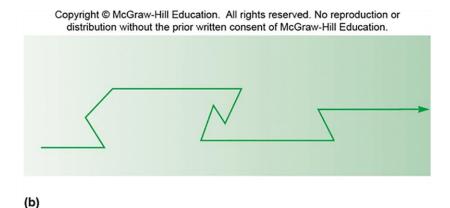
Flagellum is 2 part motor producing torque.

Rotor.

 C (FliG protein) ring and MS ring turn and interact with stator.

Stator—Mot A and Mot B proteins.


- Form channel through plasma membrane.
- Protons move through Mot A and Mot B channels using energy of proton motive force.
- Torque powers rotation of the basal body and filament.


@Gavin Murphy/Nature/Science Source

(b)

Chemotaxis

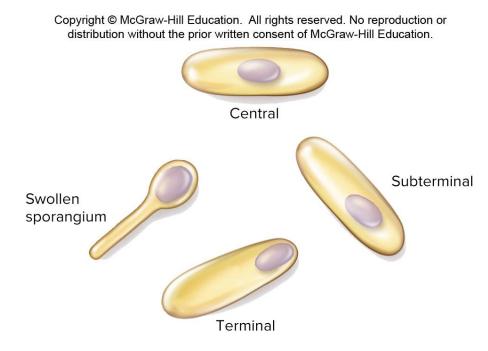
Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Movement toward a chemical attractant or away from a chemical repellent.

Changing concentrations of chemical attractants and chemical repellents bind chemoreceptors of chemosensing system.

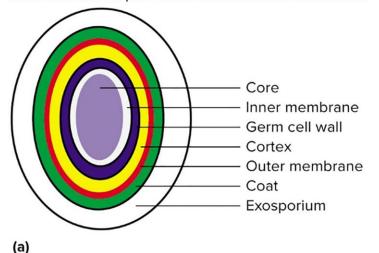
In presence of attractant/repellant, tumbling frequency is reduced; runs toward/away from compound are longer.

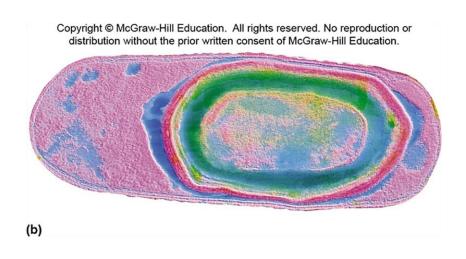
Behavior of bacterium altered by temporal concentration of chemical.


(a)

The Bacterial Endospore

Complex, dormant structure formed by some bacteria. Various locations within the cell.


Resistant to numerous environmental conditions (including heat, radiation, chemicals, desiccation) due to:


- Calcium (complexed with dipicolinic acid).
- Small, acid-soluble, DNA-binding proteins (SASPs).
- Dehydrated core.
- Spore coat and exosporium protect.

Endospore Structure

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Spore surrounded by thin covering called exosporium.

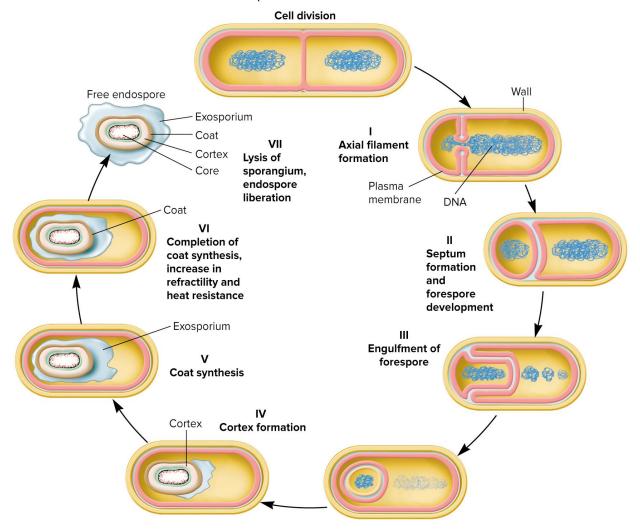
Thick layers of protein form the spore coat.

Cortex, beneath the coat, thick peptidoglycan.

Core has nucleoid and ribosomes.

Sporulation

Process of endospore formation.


Occurs over several hours.

Normally commences when growth ceases because of lack of nutrients.

Complex multistage process.

Sporulation Cycle

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Formation of Vegetative Cell

Activation.

- Prepares endospores for germination.
- Often results from treatments like heating.

Germination.

- Environmental nutrients are detected.
- Spore swelling and rupture of absorption of spore coat.
- Increased metabolic activity.

Outgrowth.

Emergence of vegetative cell.