Chapter 41

Animal Nutrition

PowerPoint® Lecture Presentations for

Biology

Eighth Edition
Neil Campbell and Jane Reece

Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

Overview: The Need to Feed

- Food is taken in, taken apart, and taken up in the process of animal nutrition
- In general, animals fall into three categories:
 - Herbivores eat mainly autotrophs (plants and algae)
 - Carnivores eat other animals

STUGENTSHIJE BLANC 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Omnivores regularly consume animals as well as plants or algal

matter

Concept 41.1: An animal's diet must supply chemical energy, organic molecules, and essential nutrients

- An animal's diet provides chemical energy, which is converted into ATP and powers processes in the body
- Animals need a source of organic carbon and organic nitrogen in order to construct organic molecules
- Essential nutrients are required by cells and must be obtained from dietary sources
- There are four classes of essential nutrients:
 - Essential amino acids
 - Essential fatty acids
 - Vitamins
 - Minerals

Essential Amino Acids

- Animals require 20 amino acids and can synthesize about half from molecules in their diet
- The remaining amino acids, the essential amino acids, must be obtained from food in preassembled form
- A diet that provides insufficient essential amino acids causes malnutrition called protein deficiency
- Meat, eggs, and cheese provide all the essential amino acids and are thus "complete" proteins
- Most plant proteins are incomplete in amino acid makeup
- Individuals who eat only plant proteins need to eat specific plant combinations to get all essential amino acids

Essential amino acids for adults

Corn (maize) and other grains

Methionine

Valine

Threonine

Phenylalanine


Leucine

Isoleucine

Tryptophan

Lysine

Beans and other legumes

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

 Some animals have adaptations that help them through periods when their bodies demand extraordinary amounts of protein

molting requires amino acids to build new feathers

- Growth
- Milk for feeding the young

Essential Fatty Acids and Vitamins

- Animals can synthesize most of the fatty acids they need
- The essential fatty acids are certain unsaturated fatty acids that must be obtained from the diet
- Deficiencies in fatty acids are rare
- Vitamins are organic molecules required in the diet in small amounts
- 13 vitamins essential to humans have been identified
- Vitamins are grouped into two categories: fat-soluble and water-soluble

Table 41.1 Vitamin Re	Table 41.1 Vitamin Requirements of Humans				
Vitamin	Major Dietary Sources	Major Functions in the Body	Symptoms of Deficiency or Extreme Excess		
Water-Soluble Vitamin	s				
Vitamin B ₁ (thiamine)	Pork, legumes, peanuts, whole grains	Coenzyme used in removing CO ₂ from organic compounds	Beriberi (nerve disorders, emaciation, anemia)		
Vitamin B ₂ (riboflavin)	Dairy products, meats, enriched grains, vegetables	Component of coenzymes FAD and FMN	Skin lesions such as cracks at corners of mouth		
Niacin (B ₃)	Nuts, meats, grains	Component of coenzymes NAD ⁺ and NADP ⁺	Skin and gastrointestinal lesions, nervous disorders Liver damage		
Vitamin B ₆ (pyridoxine)	Meats, vegetables, whole grains	Coenzyme used in amino acid metabolism	Irritability, convulsions, muscular twitching, anemia Unstable gait, numb feet, poor coordination		
Pantothenic acid (B ₅)	Most foods: meats, dairy products, whole grains, etc.	Component of coenzyme A	Fatigue, numbness, tingling of hands and feet		
Folic acid (folacin) (B ₉)	Green vegetables, oranges, nuts, legumes, whole grains	Coenzyme in nucleic acid and amino acid metabolism	Anemia, birth defects May mask deficiency of vitamin B ₁₂		
Vitamin B ₁₂	Meats, eggs, dairy products	Coenzyme in nucleic acid metabolism; maturation of red blood cells	Anemia, nervous system disorders		
Biotin	Legumes, other vegetables, meats	Coenzyme in synthesis of fat, glycogen, and amino acids	Scaly skin inflammation, neuromuscular disorders		
Vitamin C (ascorbic acid)	Fruits and vegetables, especially citrus fruits, broccoli, cabbage, tomatoes, green peppers	Used in collagen synthesis (such as for bone, cartilage, gums); antioxidant; aids in detoxification; improves iron absorption	Scurvy (degeneration of skin, teeth, blood vessels), weakness, delayed wound healing, impaired immunity Gastrointestinal upset		

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Vitamin	Major Dietary Sources	Major Functions in the Body	Symptoms of Deficiency or Extreme Excess
Fat-Soluble Vitamins			
Vitamin A (retinol)	Provitamin A (beta-carotene) in deep green and orange vegetables and fruits; retinal in dairy products	Component of visual pigments; maintenance of epithelial tissues; antioxidant; helps prevent damage to cell membranes	Blindness and increased death rate Headache, irritability, vomiting, hair loss, blurred vision, liver and bone damage
Vitamin D	Dairy products, egg yolk; also made in human skin in presence of sunlight	Aids in absorption and use of calcium and phosphorus; promotes bone growth	Rickets (bone deformities) in children bone softening in adults Brain , cardiovascular, and kidney damage
Vitamin E (tocopherol)	Vegetable oils, nuts, seeds	Antioxidant; helps prevent damage to cell membranes	Degeneration of the nervous system
Vitamin K (phylloquinone)	Green vegetables, tea; also made by colon bacteria	Important in blood clotting	Defective blood clotting Liver damage and anemia

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

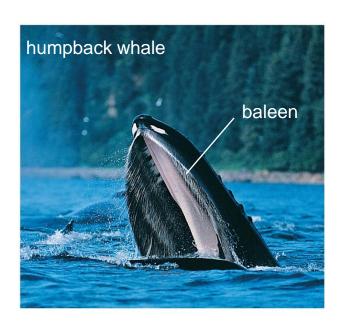
Minerals

Minerals are simple inorganic nutrients, usually required in small amounts

Mineral	Major Dietary Sources	Major Functions in the Body	Symptoms of Deficiency*
(Calcium (Ca)	Dairy products, dark green vegetables, legumes	Bone and tooth formation, blood clotting, nerve and muscle function	Retarded growth, possibly loss of bone mass
Phosphorus (P)	Dairy products, meats, grains	Bone and tooth formation, acid-base balance, nucleotide synthesis	Weakness, loss of minerals from bone, calcium loss
Sulfur (S)	Proteins from many sources	Component of certain amino acids	Symptoms of protein deficiency
Potassium (K)	Meats, dairy products, many fruits and vegetables, grains	Acid-base balance, water balance, nerve function	Muscular weakness, paralysis, nausea, heart failure
Chlorine (Cl)	Table salt	Acid-base balance, formation of gastric juice, nerve function, osmotic balance	Muscle cramps, reduced appetit
Sodium (Na)	Table salt	Acid-base balance, water balance, nerve function	Muscle cramps, reduced appetite
(Magnesium (Mg)	Whole grains, green leafy vegetables	Cofactor; ATP bioenergetics	Nervous system disturbances
ron (Fe)	Meats, eggs, legumes, whole grains, green leafy vegetables	Component of hemoglobin and of electron carriers in energy metabolism; enzyme cofactor	Iron-deficiency anemia, weakness, impaired immunity

STUDENTS-HUB COmpearson Education, Inc., publishing as Pearson Benjamin Cummings

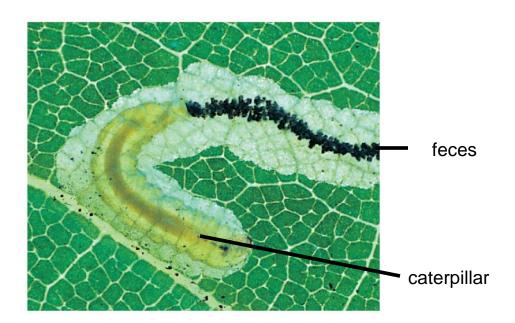
Mineral	Major Dietary Sources	Major Functions in the Body	Symptoms of Deficiency*
Fluorine (F)	Drinking water, tea, seafood	Maintenance of tooth (and probably bone) structure	Higher frequency of tooth decay
Zinc (Zn)	Meats, seafood, grains	Component of certain digestive enzymes and other proteins	Growth failure, skin abnormalities, reproductive failure, impaired immunity
Copper (Cu)	Seafood, nuts, legumes, organ meats	Enzyme cofactor in iron metabolism, melanin synthesis, electron transport	Anemia, cardiovascular abnormalities
Manganese (Mn)	Nuts, grains, vegetables, fruits, tea	Enzyme cofactor	Abnormal bone and cartilage
Iodine (I)	Seafood, dairy products, iodized salt	Component of thyroid hormones	Goiter (enlarged thyroid)
Cobalt (Co)	Meats and dairy products	Component of vitamin B ₁₂	None, except as B ₁₂ deficiency
Selenium (Se)	Seafood, meats, whole grains	Enzyme cofactor; antioxidant functioning in close association with vitamin E	Muscle pain, possibly heart muscle deterioration
Chromium (Cr)	Brewer's yeast, liver, seafood, meats, some vegetables	Involved in glucose and energy metabolism	Impaired glucose metabolism
Molybdenum (Mo)	Legumes, grains, some vegetables	Enzyme cofactor	Disorder in excretion of nitrogen-containing compounds

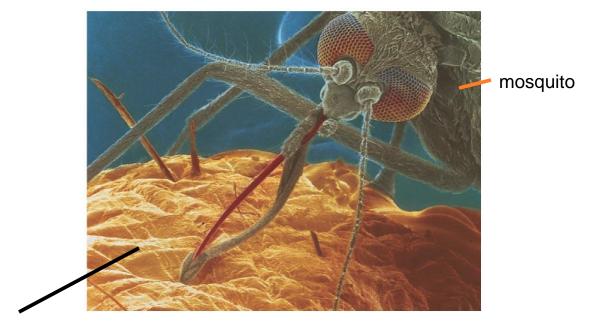

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Dietary Deficiencies

- Undernourishment is the result of a diet that consistently supplies less chemical energy than the body requires
- An undernourished individual will
 - Use up stored fat and carbohydrates
 - Break down its own proteins
 - Lose muscle mass
 - Suffer protein deficiency of the brain
 - Die or suffer irreversible damage
- Malnourishment is the long-term absence from the diet of one or more essential nutrients
- Malnourishment can cause deformities, disease, and death
- Malnourishment can be corrected by changes to a diet

Concept 41.2: The main stages of food processing are ingestion, digestion, absorption, and elimination


- Ingestion is the act of eating
- Many aquatic animals are suspension feeders, which sift small food particles from the water

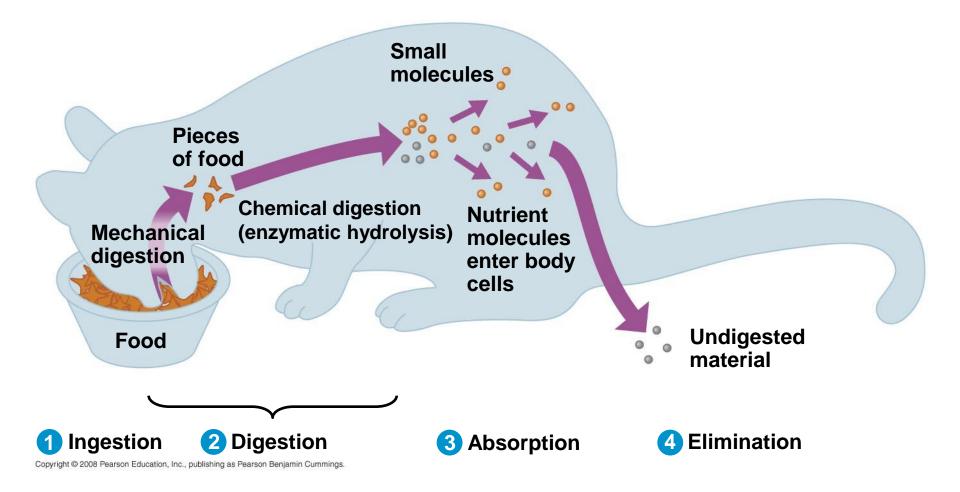

Substrate Feeders

 Substrate feeders are animals that live in or on their food source

Fluid Feeders

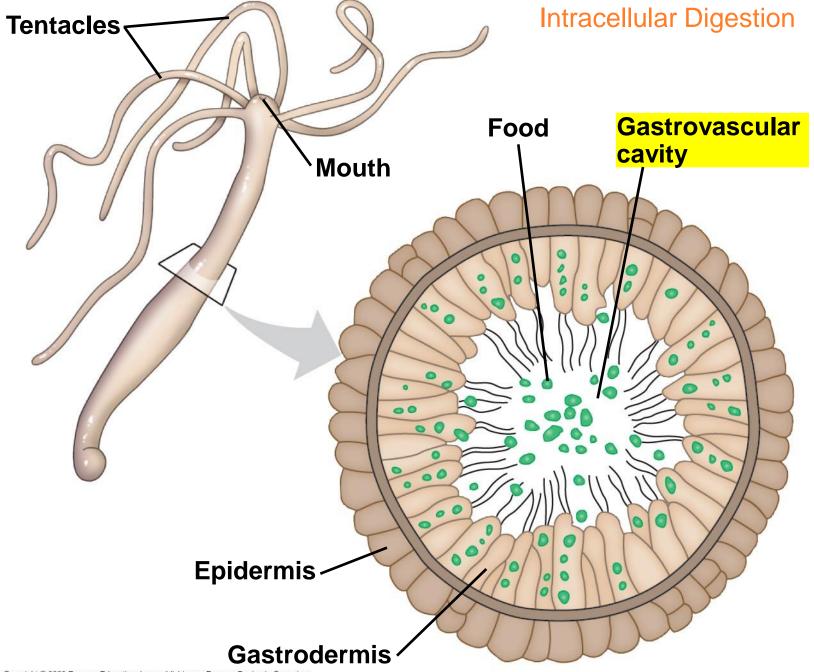
Fluid feeders suck nutrient-rich fluid from a living host

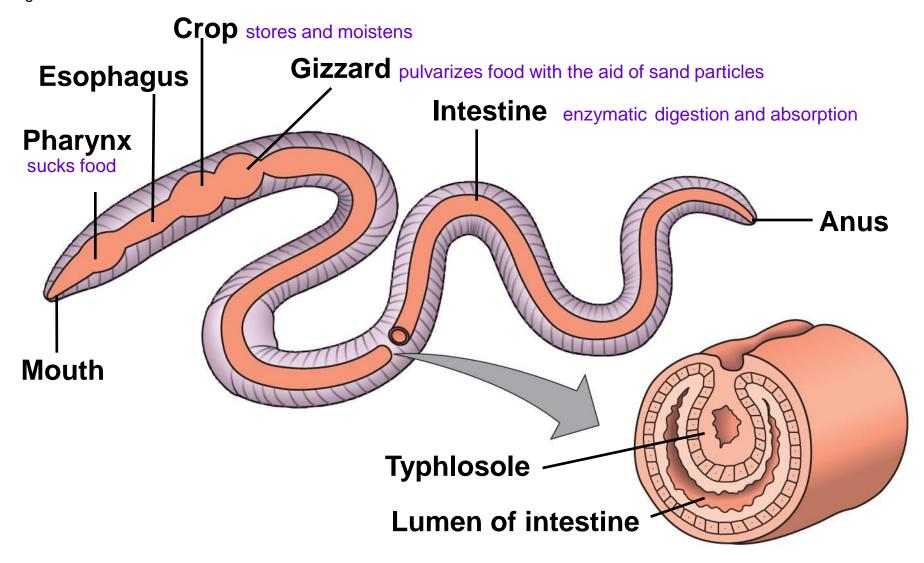
human skin


Bulk Feeders

Bulk feeders eat relatively large pieces of food

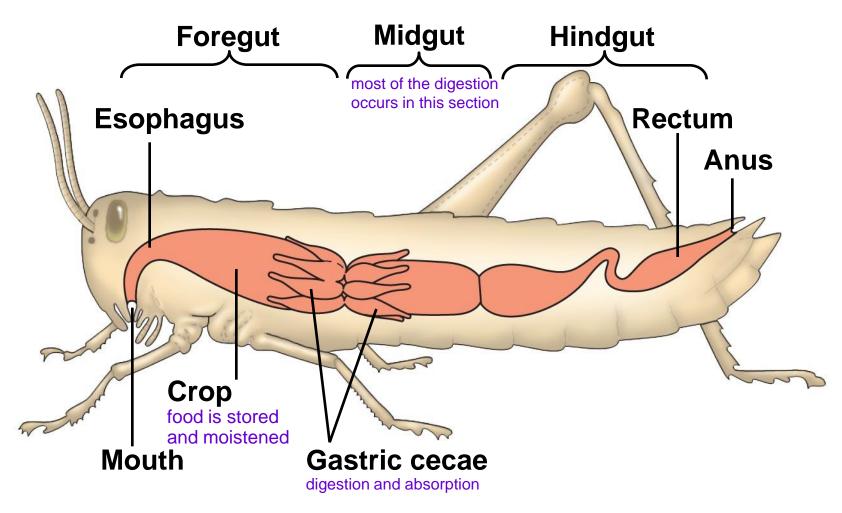
•adaptations include tentacles, pincers, claws, poisonous fangs, jaws, teeth with which the prey is teared off


- Digestion is the process of breaking food down into molecules small enough to absorb
 - In chemical digestion, the process of enzymatic hydrolysis splits bonds in molecules with the addition of water
- Absorption is uptake of nutrients by body cells
- Elimination is the passage of undigested material out of the digestive compartment

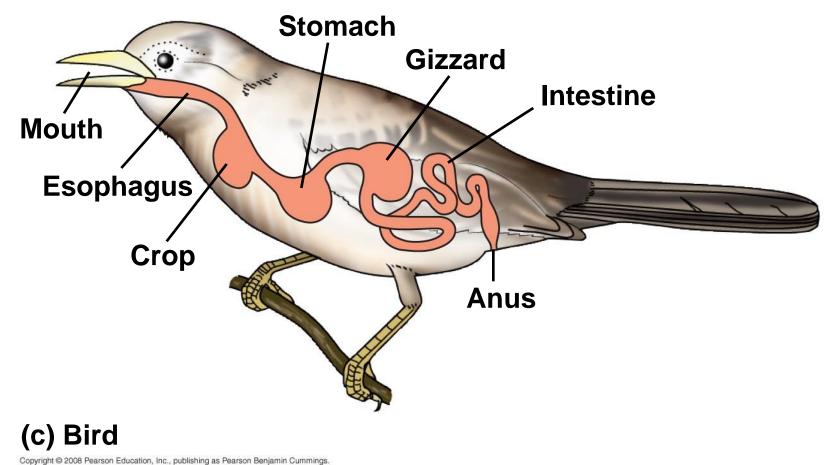

Digestive Compartments

- Most animals process food in specialized compartments
- These compartments reduce the risk of an animal digesting its own cells and tissues
- In intracellular digestion, food particles are engulfed by endocytosis and digested within food vacuoles (amoeba, hydra)
- Extracellular digestion is the breakdown of food particles outside of cells
- It occurs in compartments that are continuous with the outside of the animal's body
- Animals with simple body plans have a gastrovascular cavity that functions in both digestion and distribution of nutrients

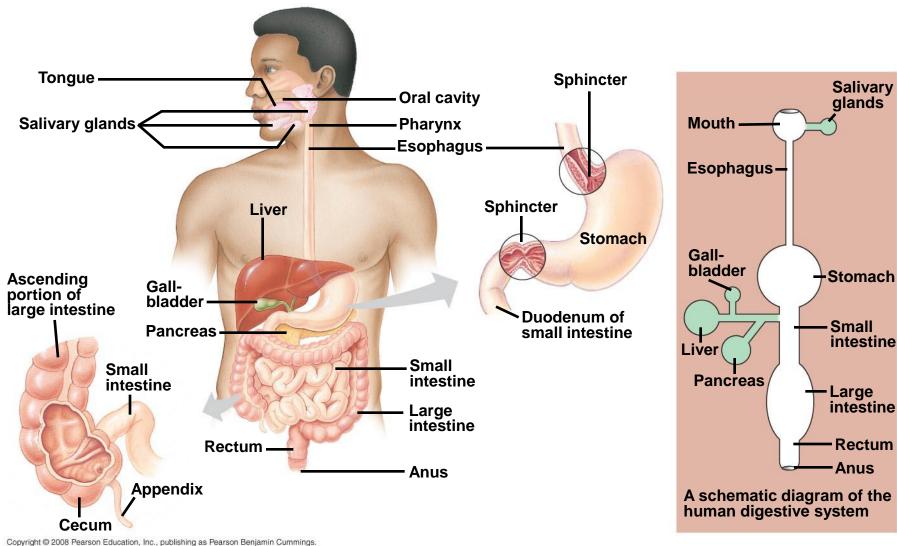
Fig. 41-8



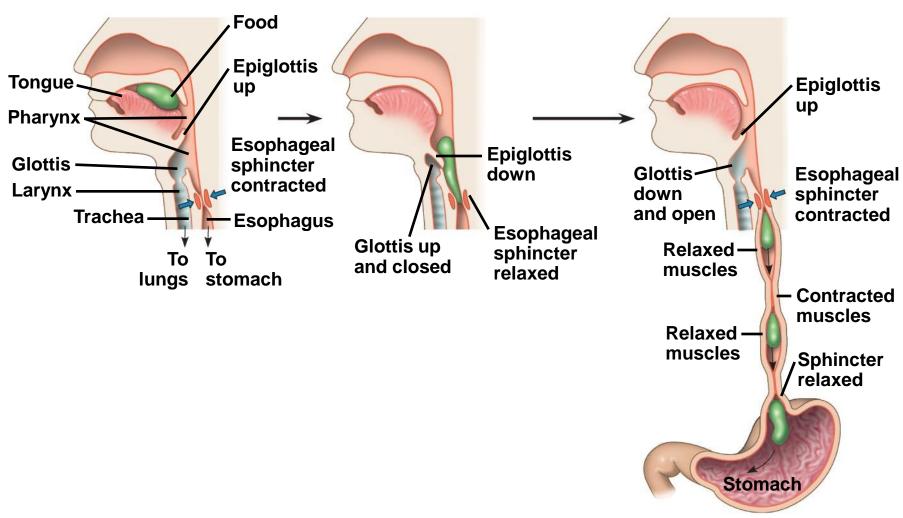
- More complex animals have a digestive tube with two openings, a mouth and an anus
- This digestive tube is called a complete digestive tract or an alimentary canal
- It can have specialized regions that carry out digestion and absorption in a stepwise fashion


(a) Earthworm

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.


(b) Grasshopper

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

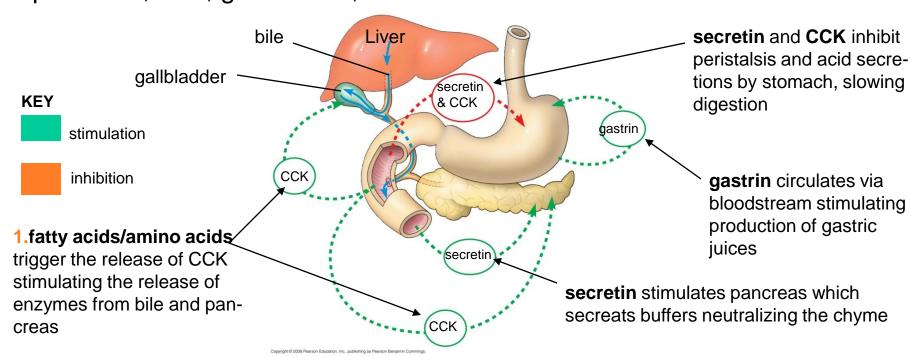

Concept 41.3: Organs specialized for sequential stages of food processing form the mammalian digestive system

- The mammalian digestive system consists of an alimentary canal and accessory glands that secrete digestive juices through ducts
- Mammalian accessory glands are the salivary glands, the pancreas, the liver, and the gallbladder
- Food is pushed along by peristalsis, rhythmic contractions of muscles in the wall of the canal
- Valves called sphincters regulate the movement of material between compartments

The Oral Cavity, Pharynx, and Esophagus

- The first stage of digestion is mechanical and takes place in the oral cavity
- Salivary glands deliver saliva to lubricate food
- Teeth chew food into smaller particles that are exposed to salivary amylase, initiating breakdown of glucose polymers
- The tongue shapes food into a bolus and provides help with swallowing
- The region we call our throat is the pharynx, a junction that opens to both the esophagus and the trachea (windpipe)
- The esophagus conducts food from the pharynx down to the stomach by peristalsis
- Swallowing causes the epiglottis to block entry to the trachea, and the bolus is guided by the larynx, the upper part of the respiratory tract
- Coughing occurs when the swallowing reflex fails and food or liquids reach the windpipe

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.


Digestion in the Stomach

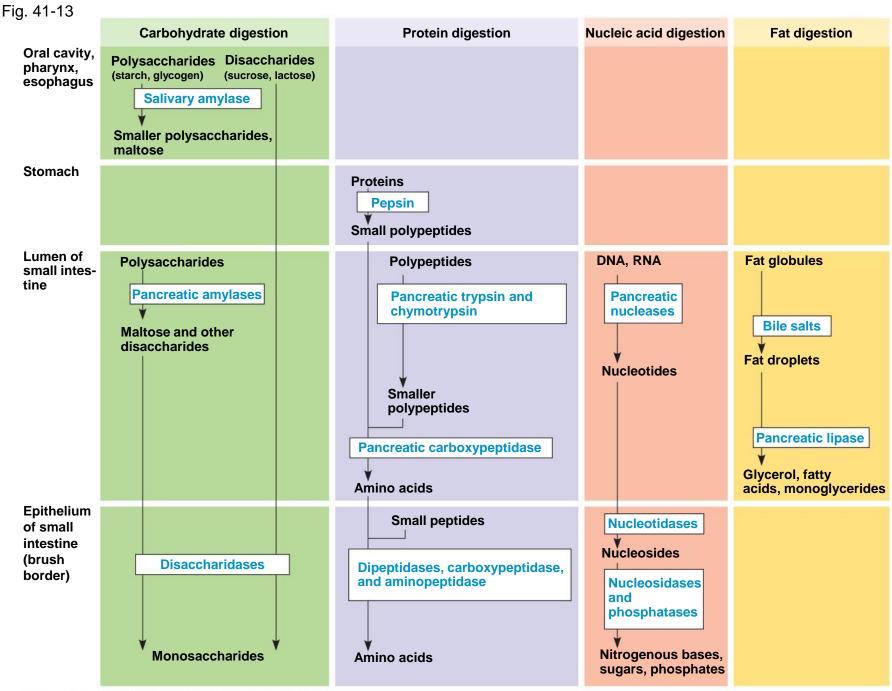
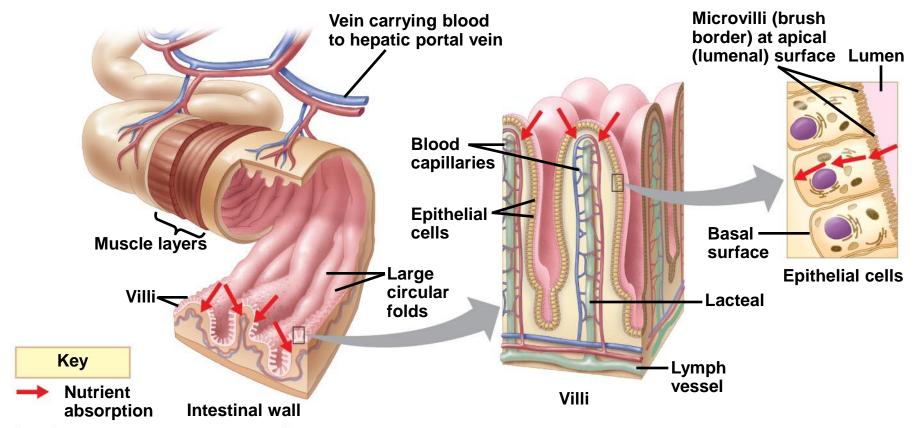

- The stomach stores food and secretes gastric juice, which converts a meal to acid chyme
- Gastric juice is made up of hydrochloric acid and the enzyme pepsin
- Parietal cells secrete hydrogen and chloride ions separately
- Chief cells secrete inactive pepsinogen, which is activated to pepsin when mixed with hydrochloric acid in the stomach
- Mucus protects the stomach lining from gastric juice
- Gastric ulcers, lesions in the lining, are caused mainly by the bacterium Helicobacter pylori
- Coordinated contraction and relaxation of stomach muscle churn the stomach's contents
- Sphincters prevent chyme from entering the esophagus and regulate its entry into the small intestine

Fig. 41-12 Esophagus. Sphincter -Stomach **Sphincter** 2 hm Small · intestine Folds of epithelial tissue Interior surface **Epithelium** of stomach 1 Pepsinogen and HCI Pepsinogen-➤ Pepsin are secreted. HCI **Gastric gland** 2 HCI converts 0 pepsinogen to pepsin. 3 Pepsin activates Mucus cells more pepsinogen. CI-0 Chief cells **Chief cell** Parietal cells Parietal cell

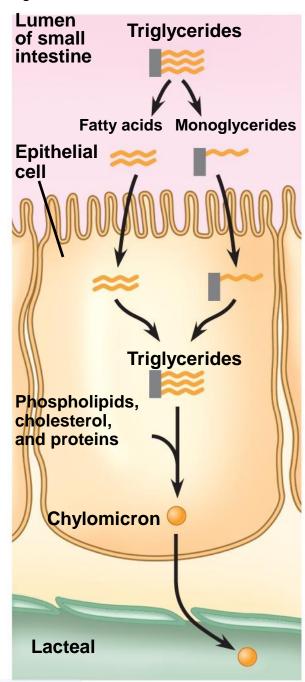
Digestion in the Small Intestine

- The small intestine is the longest section of the alimentary canal
- It is the major organ of digestion and absorption
- The first portion of the small intestine is the duodenum, where acid chyme from the stomach mixes with digestive juices from the pancreas, liver, gallbladder, and the small intestine itself



Pancreatic and Liver Secretions

- The pancreas produces proteases trypsin and chymotrypsin, proteindigesting enzymes that are activated after entering the duodenum
- Its solution is alkaline and neutralizes the acidic chyme
- In the small intestine, bile aids in digestion and absorption of fats
- Bile is made in the liver and stored in the gallbladder


Secretions and Absorptions of the Small Intestine

- The epithelial lining of the duodenum, called the brush border, produces several digestive enzymes
- Enzymatic digestion is completed as peristalsis moves the chyme and digestive juices along the small intestine
- Most digestion occurs in the duodenum; the jejunum and ileum function mainly in absorption of nutrients and water
- The small intestine has a huge surface area, due to villi and microvilli that are exposed to the intestinal lumen
- The enormous microvillar surface greatly increases the rate of nutrient absorption

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Fig. 41-16

Absorption of Fats

Each villus contains a network of blood vessels and a small lymphatic vessel called a lacteal

After glycerol and fatty acids are absorbed by epithelial cells, they are recombined into fats within these cells

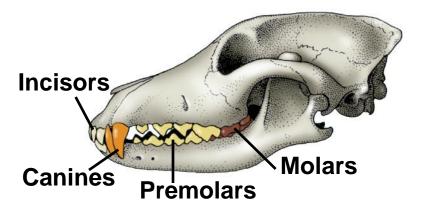
These fats are mixed with cholesterol and coated with protein, forming molecules called **chylomicrons**, which are transported into lacteals

Amino acids and sugars pass through the epithelium of the small intestine and enter the bloodstream

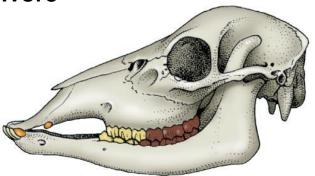
Capillaries and veins from the lacteals converge in the hepatic portal vein and deliver blood to the liver and then on to the heart

Absorption in the Large Intestine

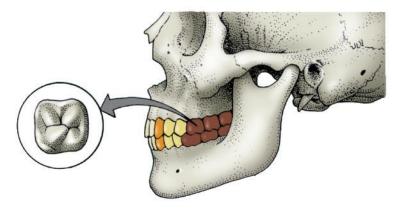
- The colon of the large intestine is connected to the small intestine
- The cecum aids in the fermentation of plant material and connects where the small and large intestines meet
- The human cecum has an extension called the appendix, which plays a very minor role in immunity


- A major function of the colon is to recover water that has entered the alimentary canal
- Wastes of the digestive tract, the feces, become more solid as they move through the colon
- Feces pass through the rectum and exit via the anus
- The colon houses strains of the bacterium Escherichia coli, some of which produce vitamins
- Feces are stored in the rectum until they can be eliminated
- Two sphincters between the rectum and anus control bowel movements

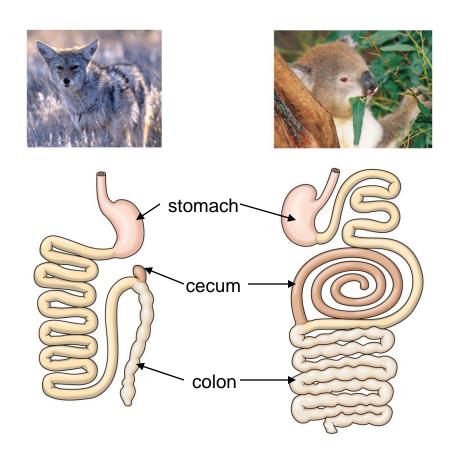
Concept 41.4: Evolutionary adaptations of vertebrate digestive systems correlate with diet


- Digestive systems of vertebrates are variations on a common plan
- However, there are intriguing adaptations, often related to diet

Some Dental Adaptations


- Dentition, an animal's assortment of teeth, is one example of structural variation reflecting diet
- Mammals have varying dentition that is adapted to their usual diet
- The teeth of poisonous snakes are modified as fangs for injecting venom
- All snakes can unhinge their jaws to swallow prey whole

(a) Carnivore


(b) Herbivore

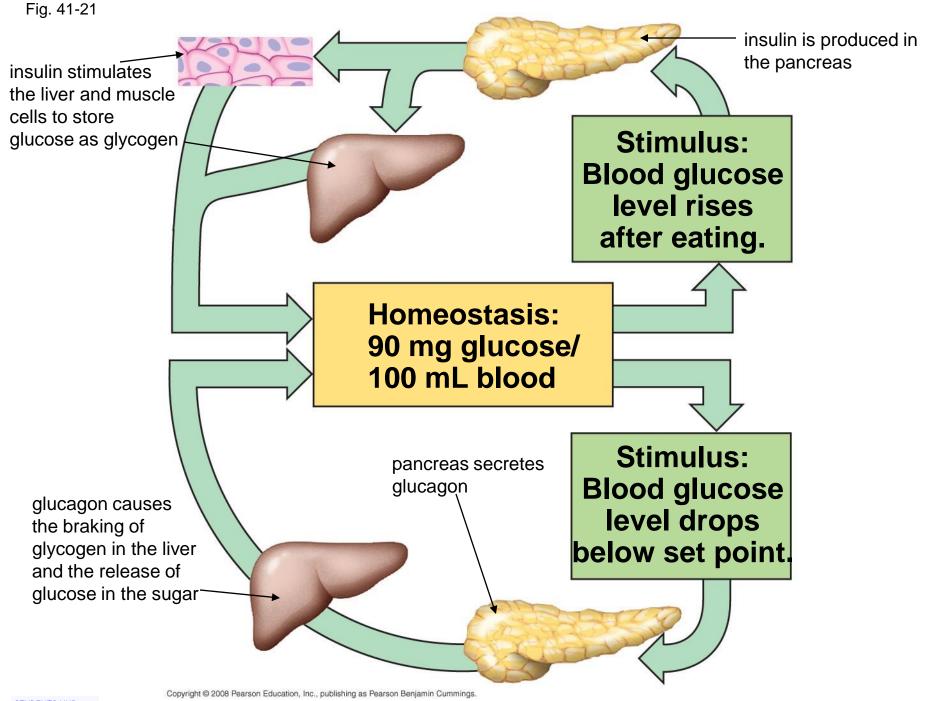
(c) Omnivore

Stomach and Intestinal Adaptations

 Herbivores generally have longer alimentary canals than carnivores, reflecting the longer time needed to digest vegetation

Mutualistic Adaptations

- Many herbivores have fermentation chambers, where symbiotic microorganisms digest cellulose
- The most elaborate adaptations for an herbivorous diet have evolved in the animals called ruminants

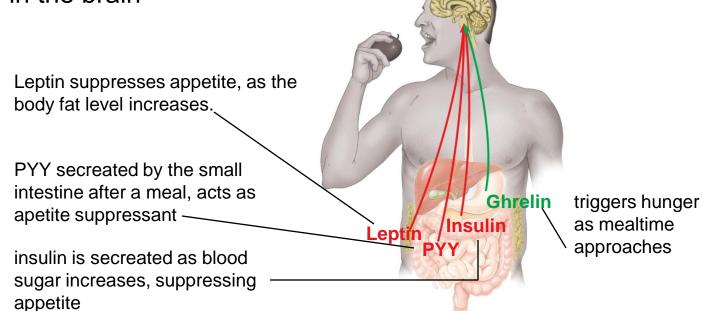

1. rumen after the cow first chews and swallows. the boluse enters the rumen (green arrow)

4. abomasum cow's own enzyme are active in the digestion

- 2. reticulum just as the rumen, it has mutualistic prokaryotes that aid in the breakage of the cellulose. The cow periodically regurgitates and rechews the food
- 3. omasum here the water is reabsorbed

Concept 41.5: Homeostatic mechanisms contribute to an animal's energy balance

- Food energy balances the energy from metabolism, activity, and storage
- Energy Sources and Stores
- Nearly all of an animal's ATP generation is based on oxidation of energy-rich molecules: carbohydrates, proteins, and fats
- Animals store excess calories primarily as glycogen in the liver and muscles
- Energy is secondarily stored as adipose, or fat, cells
- When fewer calories are taken in than are expended, fuel is taken from storage and oxidized



Overnourishment and Obesity

- Overnourishment causes obesity, which results from excessive intake of food energy with the excess stored as fat
- Obesity contributes to diabetes (type 2), cancer of the colon and breasts, heart attacks, and strokes

- Researchers have discovered several of the mechanisms that help regulate body weight
- Homeostatic mechanisms are feedback circuits that control the body's storage and metabolism of fat over the long-term

 Hormones regulate long-term and short-term appetite by affecting a "satiety center" in the brain

Obesity and Evolution

- The problem of maintaining weight partly stems from our evolutionary past, when fat hoarding was a means of survival
- A species of birds called petrels become obese as chicks; in order to consume enough protein from high-fat food, chicks need to consume more calories than they burn

The End