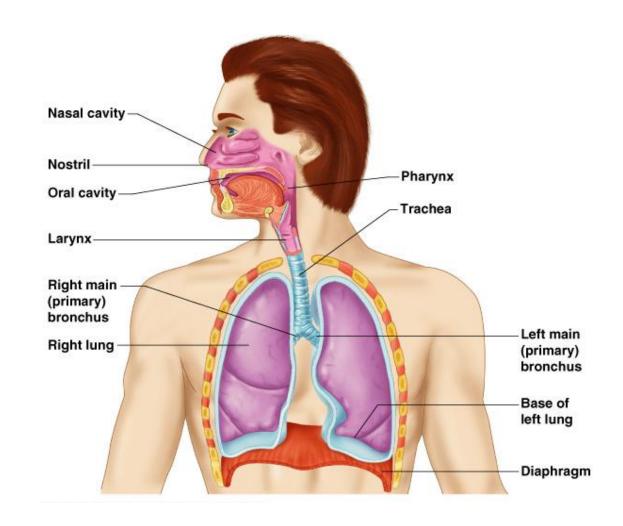

13 PART A

The Respiratory System

PowerPoint® Lecture Slide Presentation by Jerry L. Cook, Sam Houston University

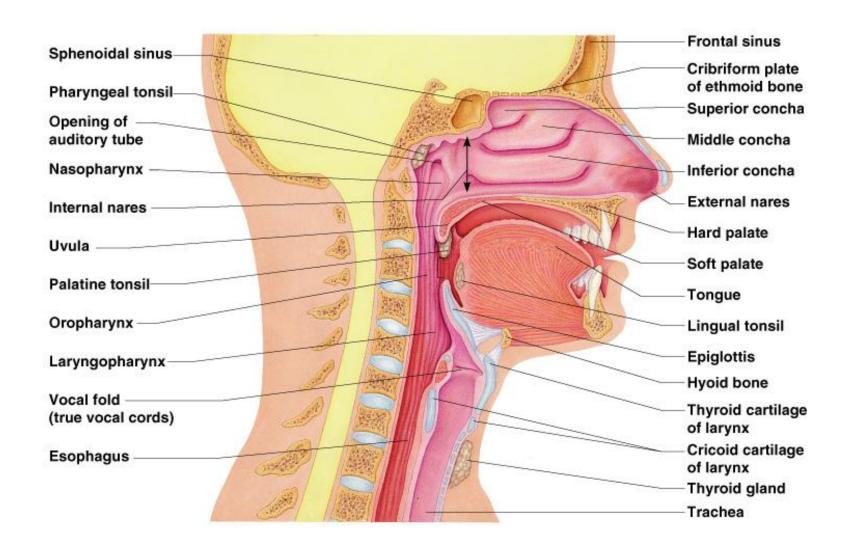

OF HUMAN ANATOMY & PHYSIOLOGY

EIGHTH EDITION

ELAINE N. MARIEB

Organs of the Respiratory system

- Nose
- Pharynx
- Larynx
- Trachea
- Bronchi
- Lungs –alveoli


Function of the Respiratory System

- Oversees gas exchanges between the blood and external environment
- Exchange of gasses takes place within the lungs in the alveoli
- Passageways to the lungs purify, warm, and humidify the incoming air

The Nose

- The only externally visible part of the respiratory system
- Air enters the nose through the external nares (nostrils)
- The interior of the nose consists of a nasal cavity divided by a nasal septum

Upper Respiratory Tract

Anatomy of the Nasal Cavity

- Olfactory receptors are located in the mucosa on the superior surface
- The rest of the cavity is lined with respiratory mucosa
 - Moistens air
 - Traps incoming foreign particles

Anatomy of the Nasal Cavity

- Lateral walls have projections called conchae
 - Increases surface area
 - Increases air turbulence within the nasal cavity
- The nasal cavity is separated from the oral cavity by the palate
 - Anterior hard palate (bone)
 - Posterior soft palate (muscle)

Paranasal Sinuses

- Cavities within bones surrounding the nasal cavity
 - Frontal bone
 - Sphenoid bone
 - Ethmoid bone
 - Maxillary bone

Paranasal Sinuses

- Function of the sinuses
 - Lighten the skull
 - Act as resonance chambers for speech
 - Produce mucus that drains into the nasal cavity

Pharynx (Throat)

- Muscular passage from nasal cavity to larynx
- Three regions of the pharynx
 - Nasopharynx superior region behind nasal cavity
 - Oropharynx middle region behind mouth
 - Laryngopharynx inferior region attached to larynx
- The oropharynx and laryngopharynx are common passageways for air and food

Structures of the Pharynx

- Auditory tubes enter the nasopharynx
- Tonsils of the pharynx
 - Pharyngeal tonsil (adenoids) in the nasopharynx
 - Palatine tonsils in the oropharynx
 - Lingual tonsils at the base of the tongue

Larynx (Voice Box)

- Routes air and food into proper channels
- Plays a role in speech
- Made of eight rigid hyaline cartilages and a spoon-shaped flap of elastic cartilage (epiglottis)

Structures of the Larynx

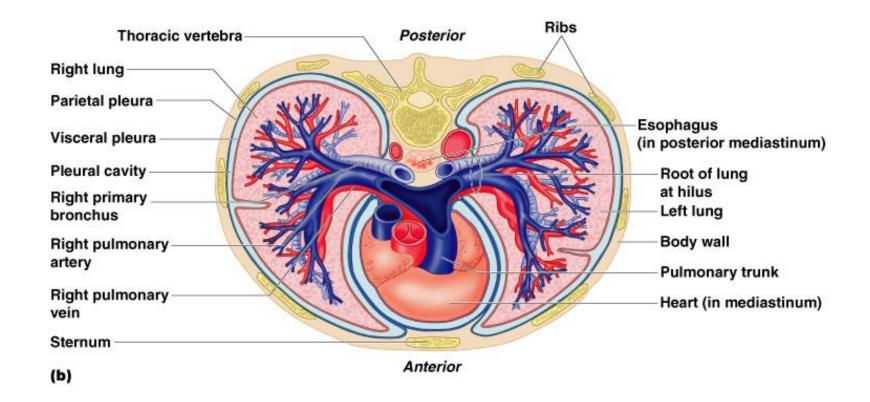
- Thyroid cartilage
 - Largest hyaline cartilage
 - Protrudes anteriorly (Adam's apple)
- Epiglottis
 - Superior opening of the larynx
 - Routes food to the larynx and air toward the trachea

Structures of the Larynx

- Vocal cords (vocal folds)
 - Vibrate with expelled air to create sound (speech)
- Glottis opening between vocal cords

Trachea (Windpipe)

- Connects larynx with bronchi
- Lined with ciliated mucosa
 - Beat continuously in the opposite direction of incoming air
 - Expel mucus loaded with dust and other debris away from lungs
- Walls are reinforced with C-shaped hyaline cartilage


Primary Bronchi

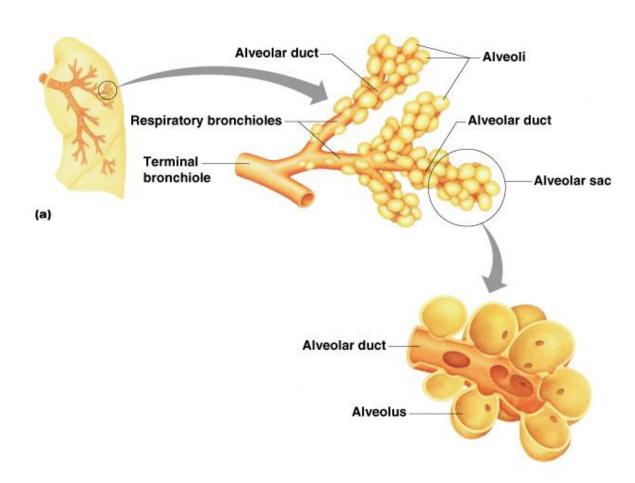
- Formed by division of the trachea
- Enters the lung at the hilus (medial depression)
- Right bronchus is wider, shorter, and straighter than left
- Bronchi subdivide into smaller and smaller branches

Lungs

- Occupy most of the thoracic cavity
 - Apex is near the clavicle (superior portion)
 - Base rests on the diaphragm (inferior portion)
 - Each lung is divided into lobes by fissures
 - Left lung two lobes
 - Right lung three lobes

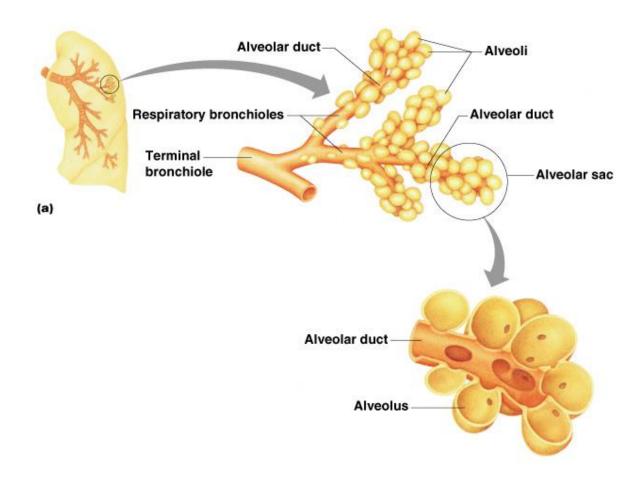
Lungs

Coverings of the Lungs


- Pulmonary (visceral) pleura covers the lung surface
- Parietal pleura lines the walls of the thoracic cavity
- Pleural fluid fills the area between layers of pleura to allow gliding

Respiratory Tree Divisions

- Primary bronchi
- Secondary bronchi
- Tertiary bronchi
- Bronchioli
- Terminal bronchioli


Bronchioles

Smallest branches of the bronchi

Bronchioles

 All but the smallest branches have reinforcing cartilage

Bronchioles

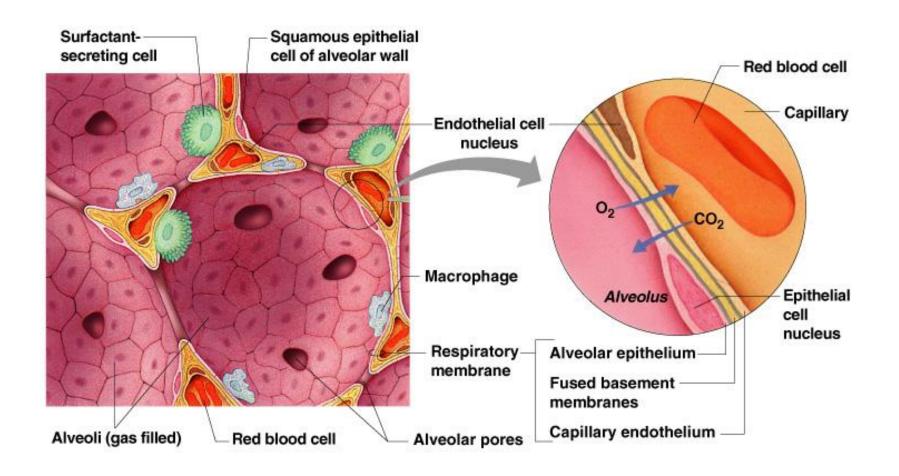
Alveoli Alveolar duct Respiratory bronchioles **Terminal** bronchiole Alveolar sac (a) Alveolar duct **Alveolus**

Alveolar duct

Terminal bronchioles end in alveoli

Respiratory Zone

- Structures
 - Respiratory bronchioli
 - Alveolar duct
 - Alveoli
- Site of gas exchange


Alveoli

- Structure of alveoli
 - Alveolar duct
 - Alveolar sac
 - Alveolus
- Gas exchange takes place within the alveoli in the respiratory membrane

Respiratory Membrane (Air-Blood Barrier)

- Thin squamous epithelial layer lining alveolar walls
- Pulmonary capillaries cover external surfaces of alveoli

Respiratory Membrane (Air-Blood Barrier)

Gas Exchange

- Gas crosses the respiratory membrane by diffusion
 - Oxygen enters the blood
 - Carbon dioxide enters the alveoli
- Macrophages add protection
- Surfactant coats gas-exposed alveolar surfaces

Events of Respiration

- Pulmonary ventilation moving air in and out of the lungs
- External respiration gas exchange between pulmonary blood and alveoli

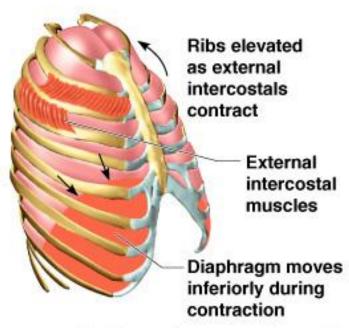
Events of Respiration

- Respiratory gas transport transport of oxygen and carbon dioxide via the bloodstream
- Internal respiration gas exchange between blood and tissue cells in systemic capillaries

Mechanics of Breathing (Pulmonary Ventilation)

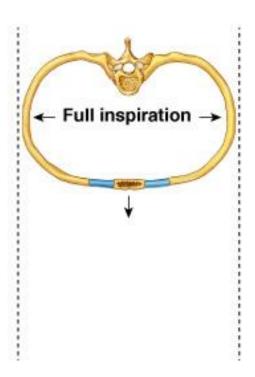
- Completely mechanical process
- Depends on volume changes in the thoracic cavity
- Volume changes lead to pressure changes, which lead to the flow of gases to equalize pressure

Mechanics of Breathing (Pulmonary Ventilation)


- Two phases
 - Inspiration flow of air into lung
 - Expiration air leaving lung

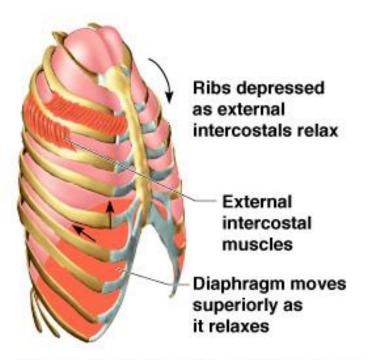
Inspiration

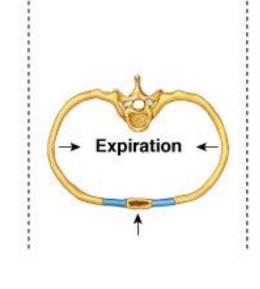
- Diaphragm and intercostal muscles contract
- The size of the thoracic cavity increases
- External air is pulled into the lungs due to an increase in intrapulmonary volume


Inspiration

Changes in anterior-posterior and superior-inferior dimensions

(a) Inspiration: Air (gases) flows into the lungs


Changes in lateral dimensions



Expiration

- Largely a passive process which depends on natural lung elasticity
- As muscles relax, air is pushed out of the lungs
- Forced expiration can occur mostly by contracting internal intercostal muscles to depress the rib cage

Expiration

(b) Expiration: Air (gases) flows out of the lungs

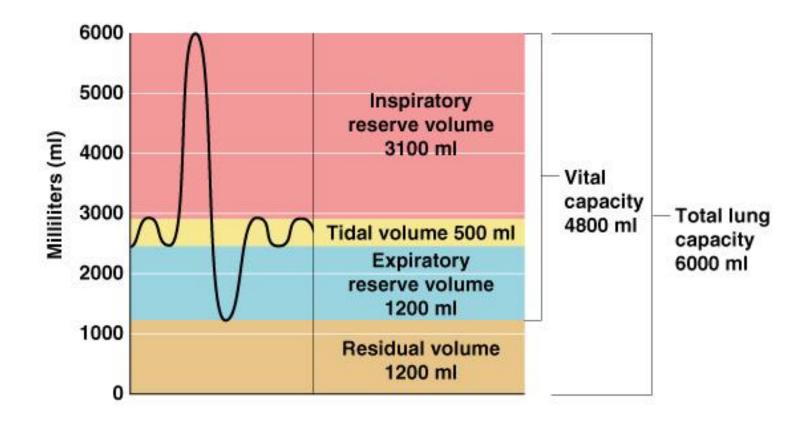
Pressure Differences in the Thoracic Cavity

- Normal pressure within the pleural space is always negative (intrapleural pressure)
- Differences in lung and pleural space pressures keep lungs from collapsing

Nonrespiratory Air Movements

- Can be caused by reflexes or voluntary actions
- Examples
 - Cough and sneeze clears lungs of debris
 - Laughing
 - Crying
 - Yawn
 - Hiccup

- Normal breathing moves about 500 ml of air with each breath (tidal volume [TV])
- Many factors that affect respiratory capacity
 - A person's size
 - Sex
 - Age
 - Physical condition
- Residual volume of air after exhalation, about
 1200 ml of air remains in the lungs


- Inspiratory reserve volume (IRV)
 - Amount of air that can be taken in forcibly over the tidal volume
 - Usually between 2100 and 3200 ml
- Expiratory reserve volume (ERV)
 - Amount of air that can be forcibly exhaled
 - Approximately 1200 ml

- Residual volume
 - Air remaining in lung after expiration
 - About 1200 ml

- Vital capacity
 - The total amount of exchangeable air
 - Vital capacity = TV + IRV + ERV
 - Dead space volume
 - Air that remains in conducting zone and never reaches alveoli
 - About 150 ml

- Functional volume
 - Air that actually reaches the respiratory zone
 - Usually about 350 ml
- Respiratory capacities are measured with a spirometer

Respiratory Capacities

