
Objectives
■■ To solve mathematical problems by using the methods in the Math class (§4.2).

■■ To represent characters using the char type (§4.3).

■■ To encode characters using ASCII and Unicode (§4.3.1).

■■ To represent special characters using the escape sequences (§4.3.2).

■■ To cast a numeric value to a character and cast a character to an integer (§4.3.3).

■■ To compare and test characters using the static methods in the Character
class (§4.3.4).

■■ To introduce objects and instance methods (§4.4).

■■ To represent strings using the String object (§4.4).

■■ To return the string length using the length() method (§4.4.1).

■■ To return a character in the string using the charAt(i) method (§4.4.2).

■■ To use the + operator to concatenate strings (§4.4.3).

■■ To return an uppercase string or a lowercase string and to trim a string (§4.4.4).

■■ To read strings from the console (§4.4.5).

■■ To read a character from the console (§4.4.6).

■■ To compare strings using the equals and the compareTo methods (§4.4.7).

■■ To obtain substrings (§4.4.8).

■■ To find a character or a substring in a string using the indexOf method (§4.4.9).

■■ To program using characters and strings (GuessBirthday) (§4.5.1).

■■ To convert a hexadecimal character to a decimal value (HexDigit2Dec) (§4.5.2).

■■ To revise the lottery program using strings (LotteryUsingStrings) (§4.5.3).

■■ To format output using the System.out.printf method (§4.6).

Mathematical
Functions, Characters,
and Strings

CHAPTER

4

M04_LIAN9966_12_SE_C04.indd 121 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

122 Chapter 4   Mathematical Functions, Characters, and Strings

4.1  Introduction
The focus of this chapter is to introduce mathematical functions, characters, string ob-
jects, and use them to develop programs.

The preceding chapters introduced fundamental programming techniques and taught you how
to write simple programs to solve basic problems using selection statements. This chapter
introduces methods for performing common mathematical operations. You will learn how to
create custom methods in Chapter 6.

Suppose you need to estimate the area enclosed by four cities, given the GPS locations (lati-
tude and longitude) of these cities, as shown in the following diagram. How would you write a
program to solve this problem? You will be able to write such a program in this chapter.

Point
Key

problem

Atlanta
(33.7489954, 284.3879824)

Charlotte (35.2270869, 280.8431267)

Savannah
(32.0835407, 281.0998342)

Orlando (28.5383355, 281.3792365)

Because strings are frequently used in programming, it is beneficial to introduce strings early
so that you can begin to use them to develop useful programs. This chapter also gives a brief
introduction to string objects; you will learn more on objects and strings in Chapters 9 and 10.

4.2  Common Mathematical Functions
Java provides many useful methods in the Math lass for performing common mathe-
matical functions.

A method is a group of statements that performs a specific task. You have already used the
pow(a, b) method to compute ab in Section 2.9.4, Exponent Operations and the random() method
for generating a random number in Section 3.7. This section introduces other useful methods in
the Math class. They can be categorized as trigonometric methods, exponent methods, and service
methods. Service methods include the rounding, min, max, absolute, and random methods. In
addition to methods, the Math class provides two useful double constants, PI and E (the base of
natural logarithms). You can use these constants as Math.PI and Math.E in any program.

4.2.1  Trigonometric Methods
The Math class contains the following methods as listed in Table 4.1 for performing trigono-
metric functions:
The parameter for sin, cos, and tan is an angle in radians. The return value for asin and
atan is an angle in radians in the range between -p/2 and p/2, and for acos is between 0
and p. One degree is equal to p/180 in radians, 90 degrees is equal to p/2 in radians, and 30
degrees is equal to p/6 in radians.

For example,

Math.toDegrees(Math.PI / 2) returns 90.0
Math.toRadians(30) returns 0.5236 (same as π/6)
Math.sin(0) returns 0.0

Point
Key

VideoNote

Introduce Math functions

M04_LIAN9966_12_SE_C04.indd 122 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

4.2  Common Mathematical Functions 123

Table 4.1  Trigonometric Methods in the Math Class

Method Description

sin(radians) Returns the trigonometric sine of an angle in radians.

cos(radians) Returns the trigonometric cosine of an angle in radians.

tan(radians) Returns the trigonometric tangent of an angle in radians.

toRadians(degree) Returns the angle in radians for the angle in degrees.

toDegrees(radians) Returns the angle in degrees for the angle in radians.

asin(a) Returns the angle in radians for the inverse of sine.

acos(a) Returns the angle in radians for the inverse of cosine.

atan(a) Returns the angle in radians for the inverse of tangent.

Table 4.2  Exponent Methods in the Math Class

Method Description

exp(x) Returns e raised to power of x (ex).

log(x) Returns the natural logarithm of x (ln(x) = loge(x)).

log10(x) Returns the base 10 logarithm of x (log10(x)).

pow(a, b) Returns a raised to the power of b (ab).

sqrt(x) Returns the square root of x (2x) for x7 =0.

For example,
e3.5 is Math.exp(3.5), which returns 33.11545
ln(3.5) is Math.log(3.5), which returns 1.25276
log10 (3.5) is Math.log10(3.5), which returns 0.544
23 is Math.pow(2, 3), which returns 8.0
32 is Math.pow(3, 2), which returns 9.0
4.52.5 is Math.pow(4.5, 2.5), which returns 42.956724 is Math.sqrt(4), which returns 2.0210.5 is Math.sqrt(10.5), which returns 3.24

4.2.3  The Rounding Methods
The Math class contains four rounding methods as listed in Table 4.3.

Math.sin(Math.toRadians(270)) returns −1.0
Math.sin(Math.PI / 6) returns 0.5
Math.sin(Math.PI / 2) returns 1.0
Math.cos(0) returns 1.0
Math.cos(Math.PI / 6) returns 0.866
Math.cos(Math.PI / 2) returns 0
Math.asin(0.5) returns 0.523598333 (same as π/6)
Math.acos(0.5) returns 1.0472 (same as π/3)
Math.atan(1.0) returns 0.785398 (same as π/4)

4.2.2  Exponent Methods
There are five methods related to exponents in the Math class as listed in Table 4.2.

M04_LIAN9966_12_SE_C04.indd 123 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

124 Chapter 4   Mathematical Functions, Characters, and Strings

For example,

Math.ceil(2.1) returns 3.0
Math.ceil(2.0) returns 2.0
Math.ceil(−2.0) returns −2.0
Math.ceil(−2.1) returns −2.0
Math.floor(2.1) returns 2.0
Math.floor(2.0) returns 2.0
Math.floor(−2.0) returns −2.0
Math.floor(−2.1) returns −3.0
Math.rint(2.1) returns 2.0
Math.rint(−2.0) returns −2.0
Math.rint(−2.1) returns −2.0
Math.rint(2.5) returns 2.0
Math.rint(3.5) returns 4.0
Math.rint(−2.5) returns −2.0
Math.round(2.6f) returns 3 // Returns int
Math.round(2.0) returns 2 // Returns long
Math.round(−2.0f) returns −2 // Returns int
Math.round(−2.6) returns −3 // Returns long
Math.round(−2.4) returns −2 // Returns long

4.2.4  The min, max, and abs Methods
The min and max methods return the minimum and maximum numbers of two numbers (int,
long, float, or double). For example, max(4.4, 5.0) returns 5.0, and min(3, 2)
returns 2.

The abs method returns the absolute value of the number (int, long, float, or double).
For example,

Math.max(2, 3) returns 3
Math.min(2.5, 4.6) returns 2.5
Math.max(Math.max(2.5, 4.6), Math.min(3, 5.6)) returns 4.6
Math.abs(−2) returns 2
Math.abs(−2.1) returns 2.1

4.2.5  The random Method
You used the random() method in the preceding chapter. This method generates a random dou-
ble value greater than or equal to 0.0 and less than 1.0 (0 <= Math.random() < 1.0). You
can use it to write a simple expression to generate random numbers in any range. For example,

Table 4.3  Rounding Methods in the Math Class

Method Description

ceil(x) x is rounded up to its nearest integer. This integer is returned as a double value.

floor(x) x is rounded down to its nearest integer. This integer is returned as a double value.

rint(x) x is rounded to its nearest integer. If x is equally close to two integers, the even one is returned as a double value.

round(x) Returns (int)Math.floor(x + 0.5) if x is a float and returns (long)Math.floor(x + 0.5) if x is a double.

(int)(Math.random() * 10);
Return a random integer
between 0 and 9.

Return a random integer
between 50 and 99.

(50 + int)(Math.random() * 50);

Return a random integer
between a and a1b21.

a + (int)(Math.random() * b);

In general,

M04_LIAN9966_12_SE_C04.indd 124 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

4.2  Common Mathematical Functions 125

4.2.6  Case Study: Computing Angles of a Triangle
You can use the math methods to solve many computational problems. Given the three sides
of a triangle, for example, you can compute the angles by using the following formulas:

A
acos(a 3 a 2 b 3 b 2 c 3 c)

22 3 b 3 c

B
acos(b 3 b 2 a 3 a 2 c 3 c)

22 3 a 3 c

C 5

5

5

acos(c 3 c 2 a 3 a 2 b 3 b)

22 3 a 3 b

b
A

x1, y1

c

x2, y2

B

x3, y3

C

a

Don’t be intimidated by the mathematical formula. As we discussed early in Listing 2.9,
ComputeLoan.java, you don’t have to know how the mathematical formula is derived in order
to write a program for computing the loan payments. Here, in this example, given the length of
three sides, you can use this formula to write a program to compute the angles without having
to know how the formula is derived. In order to compute the lengths of the sides, we need to
know the coordinates of three corner points and compute the distances between the points.

Listing 4.1 is an example of a program that prompts the user to enter the x- and y-coordinates
of the three corner points in a triangle then displays the three angles.

Listing 4.1  ComputeAngles.java
 1 import java.util.Scanner;
 2
 3 public class ComputeAngles {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6
 7 // Prompt the user to enter three points
 8 System.out.print("Enter three points: ");
 9 double x1 = input.nextDouble();
10 double y1 = input.nextDouble();
11 double x2 = input.nextDouble();
12 double y2 = input.nextDouble();
13 double x3 = input.nextDouble();
14 double y3 = input.nextDouble();
15
16 // Compute three sides
17 double a = Math.sqrt((x2 − x3) * (x2 − x3)
18 + (y2 − y3) * (y2 − y3));
19 double b = Math.sqrt((x1 − x3) * (x1 − x3)
20 + (y1 − y3) * (y1 − y3));
21 double c = Math.sqrt((x1 − x2) * (x1 − x2)
22 + (y1 − y2) * (y1 − y2));
23
24 // Compute three angles
25 double A = Math.toDegrees(Math.acos((a * a − b * b − c * c)
26 / (−2 * b * c)));
27 double B = Math.toDegrees(Math.acos((b * b − a * a − c * c)
28 / (−2 * a * c)));
29 double C = Math.toDegrees(Math.acos((c * c − b * b − a * a)
30 / (−2 * a * b)));
31
32 // Display results
33 System.out.println("The three angles are " +
34 Math.round(A * 100) / 100.0 + " " +

enter three points

compute sides

display result

M04_LIAN9966_12_SE_C04.indd 125 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

126 Chapter 4   Mathematical Functions, Characters, and Strings

35 Math.round(B * 100) / 100.0 + " " +
36 Math.round(C * 100) / 100.0);
37 }
38 }

Enter three points: 1 1 6.5 1 6.5 2.5
The three angles are 15.26 90.0 74.74

The program prompts the user to enter three points (line 8). This prompting message is not
clear. You should give the user explicit instructions on how to enter these points as follows:

System.out.print("Enter the coordinates of three points separated "
 + "by spaces like x1 y1 x2 y2 x3 y3: ");

Note that the distance between two points (x1, y1) and (x2, y2) can be computed
using the formula 2(x2 - x1)

2 + (y2 - y1)
2. The program computes the distances between

two points (lines 17–22), and applies the formula to compute the angles (lines 25–30). The
angles are rounded to display up to two digits after the decimal point (lines 34–36).

The Math class is used in the program, but not imported, because it is in the java.lang
package. All the classes in the java.lang package are implicitly imported in a Java program.

4.2.1	 Evaluate the following method calls:
Point

Check

(a)	 Math.sqrt(4)
(b)	 Math.sin(2 * Math.PI)
(c)	 Math.cos(2 * Math.PI)
(d)	 Math.pow(2, 2)
(e)	 Math.log(Math.E)
(f)	 Math.exp(1)
(g)	 Math.max(2, Math.min(3, 4))
(h)	 Math.rint(−2.5)
(i)	 Math.ceil(−2.5)

(j)	 Math.floor(−2.5)
(k)	 Math.round(−2.5f)
(l)	 Math.round(−2.5)

(m)	 Math.rint(2.5)
(n)	 Math.ceil(2.5)
(o)	 Math.floor(2.5)
(p)	 Math.round(2.5f)
(q)	 Math.round(2.5)
(r)	 Math.round(Math.abs(−2.5))

4.2.2	 True or false? The argument for trigonometric methods is an angle in radians.
4.2.3	 Write a statement that converts 47 degrees to radians and assigns the result to a variable.
4.2.4	 Write a statement that converts PI / 7 to an angle in degrees and assigns the result

to a variable.
4.2.5	 Write an expression that obtains a random integer between 34 and 55. Write an ex-

pression that obtains a random integer between 0 and 999. Write an expression that
obtains a random number between 5.5 and 55.5.

4.2.6	 Why does the Math class not need to be imported?
4.2.7	 What is Math.log(Math.exp(5.5))?

What is Math.exp(Math.log(5.5))?

What is Math.asin(Math.sin(Math.PI / 6))?

What is Math.sin(Math.asin(Math.PI / 6))?

4.3  Character Data Type and Operations
A character data type represents a single character.

In addition to processing numeric values, you can process characters in Java. The character
data type, char, is used to represent a single character. A character literal is enclosed in single
quotation marks. Consider the following code:

char letter = 'A';
char numChar = '4';

Point
Key

char type

M04_LIAN9966_12_SE_C04.indd 126 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

4.3  Character Data Type and Operations 127

The first statement assigns character A to the char variable letter. The second statement
assigns digit character 4 to the char variable numChar.

Caution
A string literal must be enclosed in double quotation marks (" "). A character literal is
a single character enclosed in single quotation marks (' '). Therefore, "A" is a string,
but 'A' is a character.

4.3.1  Unicode and ASCII Code
Computers use binary numbers internally. A character is stored in a computer as a sequence of
0s and 1s. Mapping a character to its binary representation is called encoding. There are different
ways to encode a character. How characters are encoded is defined by an encoding scheme.

Java supports Unicode, an encoding scheme established by the Unicode Consortium to
support the interchange, processing, and display of written texts in the world’s diverse lan-
guages. Unicode was originally designed as a 16-bit character encoding. The primitive data
type char was intended to take advantage of this design by providing a simple data type
that could hold any character. However, it turned out that the 65,536 characters possible in
a 16-bit encoding are not sufficient to represent all the characters in the world. The Unicode
standard therefore has been extended to allow up to 1,112,064 characters. Those characters
that go beyond the original 16-bit limit are called supplementary characters. Java supports
the supplementary characters. The processing and representing of supplementary characters
are beyond the scope of this book. For simplicity, this book considers only the original 16-bit
Unicode characters. These characters can be stored in a char type variable.

A 16-bit Unicode takes two bytes, preceded by \u, expressed in four hexadecimal digits
that run from \u0000 to \uFFFF. Hexadecimal numbers are introduced in Appendix F,
Number Systems. For example, the English word welcome is translated into Chinese using
two characters, . The Unicodes of these two characters are \u6B22\u8FCE. The
Unicodes for the Greek letters a b g are \u03b1 \u03b2 \u03b3 respectively.

Most computers use ASCII (American Standard Code for Information Interchange), an
8-bit encoding scheme, for representing all uppercase and lowercase letters, digits, punctua-
tion marks, and control characters. Unicode includes ASCII code, with \u0000 to \u007F
corresponding to the 128 ASCII characters. Table 4.4 shows the ASCII code for some com-
monly used characters. Appendix B, “The ASCII Character Set,” gives a complete list of
ASCII characters and their decimal and hexadecimal codes.

char literal

encoding

Unicode

original Unicode

supplementary Unicode

ASCII

Table 4.4  ASCII Code for Commonly Used Characters

Characters Code Value in Decimal Unicode Value

'0' to '9' 48 to 57 \u0030 to \u0039

'A' to 'Z' 65 to 90 \u0041 to \u005A

'a' to 'z' 97 to 122 \u0061 to \u007A

You can use ASCII characters such as 'X', '1', and '$' in a Java program as well as
Unicodes. Thus, for example, the following statements are equivalent:

char letter = 'A';
char letter = '\u0041'; // Character A’s Unicode is 0041

Both statements assign character A to the char variable letter.

Note
The increment and decrement operators can also be used on char variables to get the next
or preceding Unicode character. For example, the following statements display character b:

char ch = 'a';
System.out.println(++ch);

char increment and decrement

M04_LIAN9966_12_SE_C04.indd 127 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

128 Chapter 4   Mathematical Functions, Characters, and Strings

4.3.2  Escape Sequences for Special Characters
Suppose you want to print a message with quotation marks in the output. Can you write a
statement like this?

System.out.println("He said "Java is fun"");

No, this statement has a compile error. The compiler thinks the second quotation
character is the end of the string and does not know what to do with the rest of the
characters.

To overcome this problem, Java uses a special notation to represent special characters, as
listed in Table 4.5. This special notation, called an escape sequence, consists of a backslash
(\) followed by a character or a combination of digits. For example, \t is an escape sequence
for the Tab character, and an escape sequence such as \u03b1 is used to represent a Unicode.
The symbols in an escape sequence are interpreted as a whole rather than individually. An
escape sequence is considered as a single character.

escape sequence

Table 4.5  Escape Sequences

Escape Sequence Name Unicode Code Decimal Value

\b Backspace \u0008   8

\t Tab \u0009   9

\n Linefeed \u000A 10

\f Formfeed \u000C 12

\r Carriage Return \u000D 13

\\ Backslash \u005C 92

\" Double Quote \u0022 34

So, now you can print the quoted message using the following statement:

System.out.println("He said \"Java is fun\"");

The output is

He said "Java is fun"

Note the symbols \ and " together represent one character.
The backslash \ is called an escape character. It is a special character. To display this

character, you have to use an escape sequence \\. For example, the following code

System.out.println("\\t is a tab character");

displays

\t is a tab character

4.3.3  Casting between char and Numeric Types
A char can be cast into any numeric type, and vice versa. When an integer is cast into a
char, only its lower 16 bits of data are used; the other part is ignored. For example:

// Note a hex integer is written using prefix 0X
char ch = (char)0XAB0041; // The lower 16 bits hex code 0041 is
 // assigned to ch
System.out.println(ch); // ch is character A

When a floating-point value is cast into a char, the floating-point value is first cast into an
int, which is then cast into a char.

escape character

M04_LIAN9966_12_SE_C04.indd 128 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

4.3  Character Data Type and Operations 129

char ch = (char)65.25; // Decimal 65 is assigned to ch
System.out.println(ch); // ch is character A

When a char is cast into a numeric type, the character’s Unicode is cast into the specified
numeric type.

int i = (int)'A'; // The Unicode of character A is assigned to i
System.out.println(i); // i is 65

Implicit casting can be used if the result of a casting fits into the target variable. Otherwise,
explicit casting must be used. For example, since the Unicode of 'a' is 97, which is within
the range of a byte, these implicit castings are fine:

byte b = 'a';
int i = 'a';

But the following statement is incorrect, because the Unicode \uFFF4 cannot fit into a
byte:

byte b = '\uFFF4';

To force this assignment, use explicit casting, as follows:

byte b = (byte)'\uFFF4';

Any positive integer between 0 and FFFF in hexadecimal can be cast into a character
implicitly. Any number not in this range must be cast into a char explicitly.

All numeric operators can be applied to char operands. A char operand is automat-
ically cast into a number if the other operand is a number or a character. If a string is
concatenated with a character, the character is converted into a string. For example, the
following statements

int i = '2' + '3'; // (int)'2' is 50 and (int)'3' is 51
System.out.println("i is " + i); // i is 101
int j = 2 + 'a'; // (int)'a' is 97
System.out.println("j is " + j); // j is 99
System.out.println(j + " is the Unicode for character ")
 + (char)j); // 99 is the Unicode for character c
System.out.println("Chapter " + '2');

display

i is 101
j is 99
99 is the Unicode for character c
Chapter 2

4.3.4  Comparing and Testing Characters
Two characters can be compared using the relational operators just like comparing two
numbers. This is done by comparing the Unicodes of the two characters. For example,

'a' < 'b' is true because the Unicode for 'a' (97) is less than the Unicode for 'b' (98).
'a' < 'A' is false because the Unicode for 'a' (97) is greater than the Unicode for 'A' (65).
'1' < '8' is true because the Unicode for '1' (49) is less than the Unicode for '8' (56).

Often in the program, you need to test whether a character is a number, a letter, an
uppercase letter, or a lowercase letter. As given in Appendix B, the ASCII character set, that
the Unicodes for lowercase letters are consecutive integers starting from the Unicode for 'a',
then for 'b', 'c',. . . , and 'z'. The same is true for the uppercase letters and for numeric
characters. This property can be used to write the code to test characters. For example, the
following code tests whether a character ch is an uppercase letter, a lowercase letter, or a
digital character:

numeric operators on characters

M04_LIAN9966_12_SE_C04.indd 129 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

130 Chapter 4   Mathematical Functions, Characters, and Strings

if (ch >= 'A' && ch <= 'Z')
 System.out.println(ch + " is an uppercase letter");
else if (ch >= 'a' && ch <= 'z')
 System.out.println(ch + " is a lowercase letter");
else if (ch >= '0' && ch <= '9')
 System.out.println(ch + " is a numeric character");

For convenience, Java provides the following methods in the Character class for testing
characters as listed in Table 4.6. The Character class is defined in the java.lang package.

Table 4.6  Methods in the Character Class

Method Description

isDigit(ch) Returns true if the specified character is a digit.

isLetter(ch) Returns true if the specified character is a letter.

isLetterOrDigit(ch) Returns true if the specified character is a letter or digit.

isLowerCase(ch) Returns true if the specified character is a lowercase letter.

isUpperCase(ch) Returns true if the specified character is an uppercase letter.

toLowerCase(ch) Returns the lowercase of the specified character.

toUpperCase(ch) Returns the uppercase of the specified character.

For example,

System.out.println("isDigit('a') is " + Character.isDigit('a'));
System.out.println("isLetter('a') is " + Character.isLetter('a'));
System.out.println("isLowerCase('a') is "
 + Character.isLowerCase('a'));
System.out.println("isUpperCase('a') is "
 + Character.isUpperCase('a'));
System.out.println("toLowerCase('T') is "
 + Character.toLowerCase('T'));
System.out.println("toUpperCase('q') is "
 + Character.toUpperCase('q'));

displays

isDigit('a') is false
isLetter('a') is true
isLowerCase('a') is true
isUpperCase('a') is false
toLowerCase('T') is t
toUpperCase('q') is Q

4.3.1	 Which of the following are correct literals for characters?

'1', '\u345dE', '\u3fFa', '\b', '\t'

4.3.2	 How do you display the characters \ and "?
4.3.3	 Use print statements to find out the ASCII code for ‘1’, ‘A’, ‘B’, ‘a’, and ‘b’.

Use print statements to find out the character for the decimal codes 40, 59, 79, 85,
and 90. Use print statements to find out the character for the hexadecimal code 40,
5A, 71, 72, and 7A.

4.3.4	 Evaluate the following:

int i = '1';
int j = '1' + '2' * ('4' − '3') + 'b' / 'a';
int k = 'a';
char c = 90;

Point
Check

M04_LIAN9966_12_SE_C04.indd 130 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

4.4  The String Type 131

4.3.5	 Can the following conversions involving casting be allowed? If so, find the
converted result.

char c = 'A';
int i = (int)c;

float f = 1000.34f;
int i = (int)f;

double d = 1000.34;
int i = (int)d;

int i = 97;
char c = (char)i;

4.3.6	 Show the output of the following program:

public class Test {
 public static void main(String[] args) {
 char x = 'a';
 char y = 'c';
 System.out.println(++x);
 System.out.println(y++);
 System.out.println(x − y);
 }
}

4.3.7	 Write the code that generates a random lowercase letter.

4.3.8	 Show the output of the following statements:

System.out.println('a' < 'b');
System.out.println('a' <= 'A');
System.out.println('a' > 'b');
System.out.println('a' >= 'A');
System.out.println('a' == 'a');
System.out.println('a' != 'b');

4.4  The String Type
A string is a sequence of characters.

 The char type represents only one character. To represent a string of characters, use the data
type called String. For example, the following code declares message to be a string with
the value “Welcome to Java".

String message = "Welcome to Java";

String is a predefined class in the Java library, just like the classes System and Scanner.
The String type is not a primitive type. It is known as a reference type. Any Java class can
be used as a reference type for a variable. The variable declared by a reference type is known
as a reference variable that references an object. Here, message is a reference variable that
references a string object with contents Welcome to Java.

Reference data types will be discussed in detail in Chapter 9, Objects and Classes. For the
time being, you need to know only how to declare a String variable, how to assign a string
to the variable, and how to use the methods in the String class. More details on using strings
will be covered in Chapter 10.

Table 4.7 lists the String methods for obtaining string length, for accessing characters in
the string, for concatenating string, for converting string to uppercases or lowercases, and for
trimming a string.

Point
Key

VideoNote

Introduce strings and objects

M04_LIAN9966_12_SE_C04.indd 131 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

132 Chapter 4   Mathematical Functions, Characters, and Strings

Strings are objects in Java. The methods listed in Table 4.7 can only be invoked from a
specific string instance. For this reason, these methods are called instance methods. A non-
instance method is called a static method. A static method can be invoked without using
an object. All the methods defined in the Math class are static methods. They are not tied to a
specific object instance. The syntax to invoke an instance method is referenceVariable.
methodName(arguments). A method may have many arguments or no arguments. For ex-
ample, the charAt(index) method has one argument, but the length() method has no ar-
guments. Recall that the syntax to invoke a static method is ClassName.methodName(ar-
guments). For example, the pow method in the Math class can be invoked using Math.
pow(2, 2.5).

4.4.1  Getting String Length
You can use the length() method to return the number of characters in a string. For exam-
ple, the following code

String message = "Welcome to Java";
System.out.println("The length of " + message + " is "
 + message.length());

displays

The length of Welcome to Java is 15

Note
When you use a string, you often know its literal value. For convenience, Java allows
you to use the string literal to refer directly to strings without creating new variables.
Thus, "Welcome to Java".length() is correct and returns 15. Note that ""
denotes an empty string and "".length() is 0.

4.4.2  Getting Characters from a String
The s.charAt(index) method can be used to retrieve a specific character in a string s,
where the index is between 0 and s.length()–1. For example, message.charAt(0) re-
turns the character W, as shown in Figure 4.1. Note that the index for the first character in the
string is 0.

instance method
static method

string literal

empty string

charAt(index)

Table 4.7  Simple Methods for String Objects

Method Description

length() Returns the number of characters in this string.

charAt(index) Returns the character at the specified index from this string.

concat(s1) Returns a new string that concatenates this string with string s1.

toUpperCase() Returns a new string with all letters in uppercase.

toLowerCase() Returns a new string with all letters in lowercase.

trim() Returns a new string with whitespace characters trimmed on both sides.

Indices
message

message.charAt(0) message.length() is 15 message.charAt(14)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

W e l c o m e t o J a v a

Figure 4.1  The characters in a String object can be accessed using its index.

M04_LIAN9966_12_SE_C04.indd 132 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

4.4  The String Type 133

Caution
Attempting to access characters in a string s out of bounds is a common pro­
gramming error. To avoid it, make sure that you do not use an index beyond
s.length()–1. For example, s.charAt(s.length()) would cause a
StringIndexOutOfBoundsException.

4.4.3  Concatenating Strings
You can use the concat method to concatenate two strings. The statement given below, for
example, concatenates strings s1 and s2 into s3:

String s3 = s1.concat(s2);

Because string concatenation is heavily used in programming, Java provides a convenient
way to accomplish it. You can use the plus (+) operator to concatenate two strings, so the
previous statement is equivalent to

String s3 = s1 + s2;

The following code combines the strings message, " and ", and "HTML" into one string:

String myString = message + " and " + "HTML";

Recall that the + operator can also concatenate a number or a character with a string. In this
case, the number or character is converted into a string then concatenated. Note at least one of
the operands must be a string in order for concatenation to take place. If one of the operands
is a nonstring (e.g., a number), the nonstring value is converted into a string and concatenated
with the other string. Here are some examples:

// Three strings are concatenated
String message = "Welcome " + "to " + "Java";

// String Chapter is concatenated with number 2
String s = "Chapter" + 2; // s becomes Chapter2

// String Supplement is concatenated with character B
String s1 = "Supplement" + 'B'; // s1 becomes SupplementB

If neither of the operands is a string, the plus sign (+) is the addition operator that adds two
numbers.

The augmented += operator can also be used for string concatenation. For example, the
following code appends the string " and Java is fun" with the string "Welcome to
Java" in message.

message += " and Java is fun";

So the new message is "Welcome to Java and Java is fun."
If i = 1 and j = 2, what is the output of the following statement?

System.out.println("i + j is " + i + j);

The output is "i + j is 12" because "i + j is" is concatenated with the value of
i first. To force i + j to be executed first, enclose i + j in the parentheses, as follows:

System.out.println("i + j is " + (i + j));

4.4.4  Converting Strings
The toLowerCase() method returns a new string with all lowercase letters, and the
toUpperCase() method returns a new string with all uppercase letters. For example,

"Welcome".toLowerCase() returns a new string welcome.
"Welcome".toUpperCase() returns a new string WELCOME.

string index range

s1.concat(s2)

s1 + s2

concatenate strings and numbers

toLowerCase()
toUpperCase()

M04_LIAN9966_12_SE_C04.indd 133 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

134 Chapter 4   Mathematical Functions, Characters, and Strings

The trim() method returns a new string by eliminating whitespace characters from both
ends of the string. The characters ' ', \t, \f, \r, or \n are known as whitespace characters.
For example,

"\t Good Night \n".trim() returns a new string Good Night.

4.4.5  Reading a String from the Console
To read a string from the console, invoke the next() method on a Scanner object. For ex-
ample, the following code reads three strings from the keyboard:

Scanner input = new Scanner(System.in);
System.out.print("Enter three words separated by spaces: ");
String s1 = input.next();
String s2 = input.next();
String s3 = input.next();
System.out.println("s1 is " + s1);
System.out.println("s2 is " + s2);
System.out.println("s3 is " + s3);

whitespace character

trim()

read strings

Enter three words separated by spaces: Welcome to Java
s1 is Welcome
s2 is to
s3 is Java

The next() method reads a string that ends with a whitespace character. You can use the
nextLine() method to read an entire line of text. The nextLine() method reads a string
that ends with the Enter key pressed. For example, the following statements read a line of text:

Scanner input = new Scanner(System.in);
System.out.println("Enter a line: ");
String s = input.nextLine();
System.out.println("The line entered is " + s);

Enter a line: Welcome to Java
The line entered is Welcome to Java

For convenience, we call the input using the methods next(), nextByte(),
nextShort(), nextInt(), nextLong(), nextFloat(), and nextDouble() the
token-based input, because they read individual elements separated by whitespace characters
rather than an entire line. The nextLine() method is called a line-based input.

Important Caution
To avoid input errors, do not use a line-based input after a token-based input in the pro­
gram. The reasons will be explained in Section 12.11.4, "How Does Scanner Work?"

4.4.6  Reading a Character from the Console
To read a character from the console, use the nextLine() method to read a string and then
invoke the charAt(0) method on the string to return a character. For example, the following
code reads a character from the keyboard:

Scanner input = new Scanner(System.in);
System.out.print("Enter a character: ");
String s = input.nextLine();
char ch = s.charAt(0);
System.out.println("The character entered is " + ch);

token-based input

line-based input

avoid input errors

M04_LIAN9966_12_SE_C04.indd 134 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

4.4  The String Type 135

4.4.7  Comparing Strings
The String class contains the methods, as listed in Table 4.8, for comparing two strings.

Table 4.8  Comparison Methods for String Objects

Method Description

equals(s1) Returns true if this string is equal to string s1.

equalsIgnoreCase(s1) Returns true if this string is equal to string s1; it is case insensitive.

compareTo(s1) Returns an integer greater than 0, equal to 0, or less than 0 to indicate whether this string is
greater than, equal to, or less than s1.

compareToIgnoreCase(s1) Same as compareTo except that the comparison is case insensitive.

startsWith(prefix) Returns true if this string starts with the specified prefix.

endsWith(suffix) Returns true if this string ends with the specified suffix.

contains(s1) Returns true if s1 is a substring in this string.

How do you compare the contents of two strings? You might attempt to use the ==
operator, as follows:

if (string1 == string2)
 System.out.println("string1 and string2 are the same object");
else
 System.out.println("string1 and string2 are different objects");

However, the == operator checks only whether string1 and string2 refer to the same
object; it does not tell you whether they have the same contents. Therefore, you cannot use
the == operator to find out whether two string variables have the same contents. Instead, you
should use the equals method. The following code, for instance, can be used to compare two
strings:

if (string1.equals(string2))
 System.out.println("string1 and string2 have the same contents");
else
 System.out.println("string1 and string2 are not equal");

For example, the following statements display true then false:

String s1 = "Welcome to Java";
String s2 = "Welcome to Java";
String s3 = "Welcome to C++";
System.out.println(s1.equals(s2)); // true
System.out.println(s1.equals(s3)); // false

The compareTo method can also be used to compare two strings. For example, consider
the following code:

s1.compareTo(s2)

The method returns the value 0 if s1 is equal to s2, a value less than 0 if s1 is
lexicographically (i.e., in terms of Unicode ordering) less than s2, and a value greater than 0
if s1 is lexicographically greater than s2.

The actual value returned from the compareTo method depends on the offset of the first
two distinct characters in s1 and s2 from left to right. For example, suppose s1 is abc and s2
is abg, and s1.compareTo(s2) returns −4. The first two characters (a vs. a) from s1 and
s2 are compared. Because they are equal, the second two characters (b vs. b) are compared.
Because they are also equal, the third two characters (c vs. g) are compared. Since the char-
acter c is 4 less than g, the comparison returns −4.

==

string1.
equals(string2)

s1.compareTo(s2)

M04_LIAN9966_12_SE_C04.indd 135 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

136 Chapter 4   Mathematical Functions, Characters, and Strings

Caution
Syntax errors will occur if you compare strings by using relational operators >, >=, <, or
<=. Instead, you have to use s1.compareTo(s2).

Note
The equals method returns true if two strings are equal, and false if they are not.
The compareTo method returns 0, a positive integer, or a negative integer, depending
on whether one string is equal to, greater than, or less than the other string.

The String class also provides the equalsIgnoreCase and compareToIgnoreCase
methods for comparing strings. The equalsIgnoreCase and compareToIgnoreCase
methods ignore the case of the letters when comparing two strings. You can also use str.
startsWith(prefix) to check whether string str starts with a specified prefix, str.end-
sWith(suffix) to check whether string str ends with a specified suffix, and str.con-
tains(s1) to check whether string str contains string s1. For example,

"Welcome to Java".startsWith("We") returns true.
"Welcome to Java".startsWith("we") returns false.
"Welcome to Java".endsWith("va") returns true.
"Welcome to Java".endsWith("v") returns false.
"Welcome to Java".contains("to") returns true.
"Welcome to Java".contains("To") returns false.

Listing 4.2 gives a program that prompts the user to enter two cities and displays them in
alphabetical order.

Listing 4.2  OrderTwoCities.java
 1 import java.util.Scanner;
 2
 3 public class OrderTwoCities {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6
 7 // Prompt the user to enter two cities
 8 System.out.print("Enter the first city: ");
 9 String city1 = input.nextLine();
10 System.out.print("Enter the second city: ");
11 String city2 = input.nextLine();
12
13 if (city1.compareTo(city2) < 0)
14 System.out.println("The cities in alphabetical order are " +
15 city1 + " " + city2);
16 else
17 System.out.println("The cities in alphabetical order are " +
18 city2 + " " + city1);
19 }
20 }

input city1

input city2

compare two cities

Enter the first city: New York
Enter the second city: Boston
The cities in alphabetical order are Boston New York

The program reads two strings for two cities (lines 9 and 11). If input.nextLine() is re-
placed by input.next() (line 9), you cannot enter a string with spaces for city1. Since a city
name may contain multiple words separated by spaces, the program uses the nextLine method
to read a string (lines 9 and 11). Invoking city1.compareTo(city2) compares two strings
city1 with city2 (line 13). A negative return value indicates that city1 is less than city2.

M04_LIAN9966_12_SE_C04.indd 136 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

4.4  The String Type 137

4.4.8  Obtaining Substrings
You can obtain a single character from a string using the charAt method. You can also ob-
tain a substring from a string using the substring method (see Figure 4.2) in the String
class, as given in Table 4.9.

For example,

String message = "Welcome to Java";
message = message.substring(0,11) + "HTML";
The string message now becomes Welcome to HTML.

indices
message

message.substring(0, 11) message.substring(11)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

W e l c o m e t o J a v a

Figure 4.2  The substring method obtains a substring from a string.

Table 4.9  The String Class Contains the Methods for Obtaining Substrings

Method Description

substring(beginIndex) Returns this string’s substring that begins with the character at the specified beginIndex and extends to
the end of the string, as shown in Figure 4.2.

substring(beginIndex,

endIndex)
Returns this string’s substring that begins at the specified beginIndex and extends to the character at index
endIndex – 1, as shown in Figure 4.2. Note the character at endIndex is not part of the substring.

Note
If beginIndex is endIndex, substring(beginIndex, endIndex) returns
an empty string with length 0. If beginIndex > endIndex, it would be a runtime error.

4.4.9  Finding a Character or a Substring in a String
The String class provides several versions of indexOf and lastIndexOf methods to find
a character or a substring in a string, as listed in Table 4.10.

beginIndex <= endIndex

Table 4.10  The String Class Contains the Methods for Finding Substrings

Method Description

indexOf(ch) Returns the index of the first occurrence of ch in the string. Returns −1 if not matched.

indexOf(ch, fromIndex) Returns the index of the first occurrence of ch after fromIndex in the string. Returns −1 if not
matched.

indexOf(s) Returns the index of the first occurrence of string s in this string. Returns −1 if not matched.

indexOf(s, fromIndex) Returns the index of the first occurrence of string s in this string after fromIndex. Returns −1 if not
matched.

lastIndexOf(ch) Returns the index of the last occurrence of ch in the string. Returns −1 if not matched.

lastIndexOf(ch, fromIndex) Returns the index of the last occurrence of ch before fromIndex in this string. Returns −1 if not
matched.

lastIndexOf(s) Returns the index of the last occurrence of string s. Returns −1 if not matched.

lastIndexOf(s, fromIndex) Returns the index of the last occurrence of string s before fromIndex. Returns −1 if not matched.

M04_LIAN9966_12_SE_C04.indd 137 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

138 Chapter 4   Mathematical Functions, Characters, and Strings

For example,

"Welcome to Java".indexOf('W') returns 0.
"Welcome to Java".indexOf('o') returns 4.
"Welcome to Java".indexOf('o', 5) returns 9.
"Welcome to Java".indexOf("come") returns 3.
"Welcome to Java".indexOf("Java", 5) returns 11.
"Welcome to Java".indexOf("java", 5) returns −1.

"Welcome to Java".lastIndexOf('W') returns 0.
"Welcome to Java".lastIndexOf('o') returns 9.
"Welcome to Java".lastIndexOf('o', 5) returns 4.
"Welcome to Java".lastIndexOf("come") returns 3.
"Welcome to Java".lastIndexOf("Java", 5) returns −1.
"Welcome to Java".lastIndexOf("Java") returns 11.

Suppose that a string s contains the first name and last name separated by a space. You can
use the following code to extract the first name and last name from the string:

int k = s.indexOf(' ');
String firstName = s.substring(0, k);
String lastName = s.substring(k + 1);

For example, if s is Kim Jones, the following diagram illustrates how the first name and last
name are extracted.

IndexOf

lastIndexOf

s

0 1 2 3 4 5 6 7 8

K

k is 3

s.substring(0,
k) is Kim

s.substring(k11)
is Jones

i m J o n e s

4.4.10  Conversion between Strings and Numbers
You can convert a numeric string into a number. To convert a string into an int value, use the
Integer.parseInt method, as follows:

int intValue = Integer.parseInt(intString);

where intString is a numeric string such as "123".
To convert a string into a double value, use the Double.parseDouble method, as

follows:

double doubleValue = Double.parseDouble(doubleString);

where doubleString is a numeric string such as "123.45".
If the string is not a numeric string, the conversion would cause a runtime error. The

Integer and Double classes are both included in the java.lang package, and thus they are
automatically imported.

You can convert a number into a string; simply use the string concatenating operator as
follows:

String s = number + "";

4.4.1	 Suppose s1, s2, and s3 are three strings, given as follows:

String s1 = "Welcome to Java";
String s2 = "Programming is fun";
String s3 = "Welcome to Java";

Integer.parseInt method

Double.parseDouble
method

number to string

Point
Check

M04_LIAN9966_12_SE_C04.indd 138 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

4.4  The String Type 139

What are the results of the following expressions?

(a)	 s1 == s2

(b)	 s2 == s3

(c)	 s1.equals(s2)

(d)	 s1.equals(s3)

(e)	 s1.compareTo(s2)

(f)	 s2.compareTo(s3)

(g)	 s2.compareTo(s2)

(h)	 s1.charAt(0)

(i)	 s1.indexOf('j')

(j)	 s1.indexOf("to")

(k)	 s1.lastIndexOf('a')

(l)	 s1.lastIndexOf("o", 15)

(m)	 s1.length()

(n)	 s1.substring(5)

(o)	 s1.substring(5, 11)

(p)	 s1.startsWith("Wel")

(q)	 s1.endsWith("Java")

(r)	 s1.toLowerCase()

(s)	 s1.toUpperCase()

(t)	 s1.concat(s2)

(u)	 s1.contain(s2)

(v)	 "\t Wel \t".trim()

4.4.2	 Suppose s1 and s2 are two strings. Which of the following statements or expres-
sions are incorrect?

String s = "Welcome to Java";
String s3 = s1 + s2;
s3 = s1 − s2;
s1 == s2;
s1 >= s2;
s1.compareTo(s2);
int i = s1.length();
char c = s1(0);
char c = s1.charAt(s1.length());

4.4.3	 Show the output of the following statements (write a program to verify your
results):

System.out.println("1" + 1);
System.out.println('1' + 1);
System.out.println("1" + 1 + 1);
System.out.println("1" + (1 + 1));
System.out.println('1' + 1 + 1);

4.4.4	 Evaluate the following expressions (write a program to verify your results):

1 + "Welcome " + 1 + 1
1 + "Welcome " + (1 + 1)
1 + "Welcome " + ('\u0001' + 1)
1 + "Welcome " + 'a' + 1

4.4.5	 Let s1 be " Welcome " and s2 be " welcome ". Write the code for the
following statements:

(a)	 Check whether s1 is equal to s2 and assign the result to a Boolean variable
isEqual.

(b)	 Check whether s1 is equal to s2, ignoring case, and assign the result to a Bool-
ean variable isEqual.

(c)	 Compare s1 with s2 and assign the result to an int variable x.

(d)	 Compare s1 with s2, ignoring case, and assign the result to an int variable x.

(e)	 Check whether s1 has the prefix AAA and assign the result to a Boolean
variable b.

(f)	 Check whether s1 has the suffix AAA and assign the result to a Boolean
variable b.

M04_LIAN9966_12_SE_C04.indd 139 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

140 Chapter 4   Mathematical Functions, Characters, and Strings

(g)	 Assign the length of s1 to an int variable x.

(h)	 Assign the first character of s1 to a char variable x.

(i)	 Create a new string s3 that combines s1 with s2.

(j)	 Create a substring of s1 starting from index 1.

(k)	 Create a substring of s1 from index 1 to index 4.

(l)	 Create a new string s3 that converts s1 to lowercase.

(m)	 Create a new string s3 that converts s1 to uppercase.

(n)	 Create a new string s3 that trims whitespaces on both ends of s1.

(o)	 Assign the index of the first occurrence of the character e in s1 to an int variable x.

(p)	 Assign the index of the last occurrence of the string abc in s1 to an int variable x.

4.4.6	 Write one statement to return the number of digits in an integer i.

4.4.7	 Write one statement to return the number of digits in a double value d.

4.5  Case Studies
Strings are fundamental in programming. The ability to write programs using strings
is essential in learning Java programming.

You will frequently use strings to write useful programs. This section presents three examples
of solving problems using strings.

4.5.1  Case Study: Guessing Birthdays
You can find out the date of the month when your friend was born by asking five questions.
Each question asks whether the day is in one of the five sets of numbers.

Point
Key

16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31

9 10 11
12 13 14 15
24 25 26 27
28 29 30 31

5 6 7
12 13 14 15
20 21 22 23
28 29 30 31

2 3 6 7
10 11 14 15
18 22 23
26 27 30 31

3 5 7
9 11 13 15

17 19 1921 23
25 27 29 31

Set1 Set2 Set3 Set4 Set5

841

1

5 19

The birthday is the sum of the first numbers in the sets where the day appears. For exam-
ple, if the birthday is 19, it appears in Set1, Set2, and Set5. The first numbers in these three
sets are 1, 2, and 16. Their sum is 19.

Listing 4.3 gives a program that prompts the user to answer whether the day is in Set1
(lines 41–44), in Set2 (lines 50–53), in Set3 (lines 59–62), in Set4 (lines 68–71), and in Set5
(lines 77–80). If the number is in the set, the program adds the first number in the set to day
(lines 47, 56, 65, 74, and 83).

Listing 4.3  GuessBirthday.java
 1 import java.util.Scanner;
 2
 3 public class GuessBirthday {
 4 public static void main(String[] args) {
 5 String set1 =

M04_LIAN9966_12_SE_C04.indd 140 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

4.5  Case Studies 141

 6 " 1 3 5 7\n" +
 7 " 9 11 13 15\n" +
 8 "17 19 21 23\n" +
 9 "25 27 29 31";
10
11 String set2 =
12 " 2 3 6 7\n" +
13 "10 11 14 15\n" +
14 "18 19 22 23\n" +
15 "26 27 30 31";
16
17 String set3 =
18 " 4 5 6 7\n" +
19 "12 13 14 15\n" +
20 "20 21 22 23\n" +
21 "28 29 30 31";
22
23 String set4 =
24 " 8 9 10 11\n" +
25 "12 13 14 15\n" +
26 "24 25 26 27\n" +
27 "28 29 30 31";
28
29 String set5 =
30 "16 17 18 19\n" +
31 "20 21 22 23\n" +
32 "24 25 26 27\n" +
33 "28 29 30 31";
34
35 int day = 0;
36
37 // Create a Scanner
38 Scanner input = new Scanner(System.in);
39
40 // Prompt the user to answer questions
41 System.out.print("Is your birthday in Set1?\n");
42 System.out.print(set1);
43 System.out.print("\nEnter 0 for No and 1 for Yes: ");
44 int answer = input.nextInt();
45
46 if (answer == 1)
47 day += 1;
48
49 // Prompt the user to answer questions
50 System.out.print("\nIs your birthday in Set2?\n");
51 System.out.print(set2);
52 System.out.print("\nEnter 0 for No and 1 for Yes: ");
53 answer = input.nextInt();
54
55 if (answer == 1)
56 day += 2;
57
58 // Prompt the user to answer questions
59 System.out.print("\nIs your birthday in Set3?\n");
60 System.out.print(set3);
61 System.out.print("\nEnter 0 for No and 1 for Yes: ");
62 answer = input.nextInt();
63
64 if (answer == 1)
65 day += 4;

in Set3?

in Set2?

in Set1?

day to be determined

M04_LIAN9966_12_SE_C04.indd 141 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

142 Chapter 4   Mathematical Functions, Characters, and Strings

66
67 // Prompt the user to answer questions
68 System.out.print("\nIs your birthday in Set4?\n");
69 System.out.print(set4);
70 System.out.print("\nEnter 0 for No and 1 for Yes: ");
71 answer = input.nextInt();
72
73 if (answer == 1)
74 day += 8;
75
76 // Prompt the user to answer questions
77 System.out.print("\nIs your birthday in Set5?\n");
78 System.out.print(set5);
79 System.out.print("\nEnter 0 for No and 1 for Yes: ");
80 answer = input.nextInt();
81
82 if (answer == 1)
83 day += 16;
84
85 System.out.println("\nYour birthday is " + day + "!");
86 }
87 }

in Set5?

in Set4?

Is your birthday in Set1?
  1  3   5  7
 9 11 13 15
17 19 21 23
25 27 29 31
Enter 0 for No and 1 for Yes: 1

Is your birthday in Set2?
 2  3  6  7
10 11 14 15
18 19 22 23
26 27 30 31
Enter 0 for No and 1 for Yes: 1

Is your birthday in Set3?
 4  5  6  7
12 13 14 15
20 21 22 23
28 29 30 31
Enter 0 for No and 1 for Yes: 0

Is your birthday in Set4?
 8  9 10 11
12 13 14 15
24 25 26 27
28 29 30 31
Enter 0 for No and 1 for Yes: 0

Is your birthday in Set5?
16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31
Enter 0 for No and 1 for Yes: 1
Your birthday is 19!

M04_LIAN9966_12_SE_C04.indd 142 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

4.5  Case Studies 143

line# day answer output

35 0

44 1

47 1

53 1

56 3

62 0

71 0

80 1

83 19

85 Your birthday is 19!

This game is easy to program. You may wonder how the game was created. The mathematics
behind the game is actually quite simple. The numbers are not grouped together by accident—
the way they are placed in the five sets is deliberate. The starting numbers in the five sets are
1, 2, 4, 8, and 16, which correspond to 1, 10, 100, 1000, and 10000 in binary (binary num-
bers are introduced in Appendix F, Number Systems). A binary number for decimal integers
between 1 and 31 has at most five digits, as shown in Figure 4.3a. Let it be b5b4b3b2b1. Thus,
b5b4b3b2b1 = b5 0000 + b4 000 + b3 00 + b2 0 + b1, as shown in Figure 4.3b. If a day’s binary
number has a digit 1 in bk, the number should appear in Setk. For example, number 19 is binary
10011, so it appears in Set1, Set2, and Set5. It is binary 1 + 10 + 10000 = 10011 or decimal 1
+ 2 + 16 = 19. Number 31 is binary 11111, so it appears in Set1, Set2, Set3, Set4, and Set5. It
is binary 1 + 10 + 100 + 1000 + 10000 = 11111 or decimal 1 + 2 + 4 + 8 + 16 = 31.

mathematics behind the game

Decimal Binary

1 00001
2 00010

000113
...
19 10011
...
31 11111

10000
10
1

10011

19 31

10000
1000
100
10
1

11111

0
0 0

0
0

0

b5

b4

b3

b2

b1

b5 b4 b3 b2 b1

0

0 00

(a) (b)

1
1 1

Figure 4.3  (a) A number between 1 and 31 can be represented using a five-digit binary
number. (b) A five-digit binary number can be obtained by adding binary numbers 1, 10,
100, 1000, or 10000.

4.5.2  Case Study: Converting a Hexadecimal Digit to a Decimal
Value

The hexadecimal number system has 16 digits: 0–9, A–F. The letters A, B, C, D, E, and F corre-
spond to the decimal numbers 10, 11, 12, 13, 14, and 15. We now write a program that prompts
the user to enter a hex digit and display its corresponding decimal value, as given in Listing 4.4.

Listing 4.4  HexDigit2Dec.java
 1 import java.util.Scanner;
 2
 3 public class HexDigit2Dec {
 4 public static void main(String[] args) {

VideoNote

Convert hex to decimal

M04_LIAN9966_12_SE_C04.indd 143 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

144 Chapter 4   Mathematical Functions, Characters, and Strings

 5 Scanner input = new Scanner(System.in);
 6 System.out.print("Enter a hex digit: ");
 7 String hexString = input.nextLine();
 8
 9 // Check if the hex string has exactly one character
10 if (hexString.length() != 1) {
11 System.out.println("You must enter exactly one character");
12 System.exit(1);
13 }
14
15 // Display decimal value for the hex digit
16 char ch = Character.toUpperCase(hexString.charAt(0));
17 if ('A' <= ch && ch <= 'F') {
18 int value = ch − 'A' + 10;
19 System.out.println("The decimal value for hex digit "
20 + ch + " is " + value);
21 }
22 else if (Character.isDigit(ch)) {
23 System.out.println("The decimal value for hex digit "
24 + ch + " is " + ch);
25 }
26 else {
27 System.out.println(ch + " is an invalid input");
28 }
29 }
30 }

input string

check length

is A–F?

is 0–9?

Enter a hex digit: AB7C
You must enter exactly one character

Enter a hex digit: B
The decimal value for hex digit B is 11

Enter a hex digit: 8
The decimal value for hex digit 8 is 8

Enter a hex digit: T
T is an invalid input

The program reads a string from the console (line 7) and checks if the string contains a
single character (line 10). If not, report an error and exit the program (line 12).

The program invokes the Character.toUpperCase method to obtain the character ch
as an uppercase letter (line 16). If ch is between 'A' and 'F' (line 17), the corresponding
decimal value is ch – 'A' + 10 (line 18). Note ch – 'A' is 0 if ch is 'A', ch – 'A' is
1 if ch is 'B', and so on. When two characters perform a numerical operation, the characters'
Unicodes are used in the computation.

The program invokes the Character.isDigit(ch) method to check if ch is between '0'
and '9' (line 22). If so, the corresponding decimal digit is the same as ch (lines 23 and 24).

If ch is not between 'A' and 'F' nor a digit character, the program displays an error mes-
sage (line 27).

M04_LIAN9966_12_SE_C04.indd 144 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

4.5  Case Studies 145

4.5.3  Case Study: Revising the Lottery Program Using Strings
The lottery program in Listing 3.8, Lottery.java, generates a random two-digit number,
prompts the user to enter a two-digit number, and determines whether the user wins according
to the following rule:

1.	 If the user input matches the lottery number in the exact order, the award is $10,000.
2.	 If all the digits in the user input match all the digits in the lottery number, the award is

$3,000.
3.	 If one digit in the user input matches a digit in the lottery number, the award is $1,000.

The program in Listing 3.8 uses an integer to store the number. Listing 4.5 gives a new
program that generates a random two-digit string instead of a number, and receives the user
input as a string instead of a number.

Listing 4.5  LotteryUsingStrings.java
 1 import java.util.Scanner;
 2
 3 public class LotteryUsingStrings {
 4 public static void main(String[] args) {
 5 // Generate a lottery as a two-digit string
 6 String lottery = "" + (int)(Math.random() * 10)
 7 + (int)(Math.random() * 10);
 8
 9 // Prompt the user to enter a guess
10 Scanner input = new Scanner(System.in);
11 System.out.print("Enter your lottery pick (two digits): ");
12 String guess = input.nextLine();
13
14 // Get digits from lottery
15 char lotteryDigit1 = lottery.charAt(0);
16 char lotteryDigit2 = lottery.charAt(1);
17
18 // Get digits from guess
19 char guessDigit1 = guess.charAt(0);
20 char guessDigit2 = guess.charAt(1);
21
22 System.out.println("The lottery number is " + lottery);
23
24 // Check the guess
25 if (guess.equals(lottery))
26 System.out.println("Exact match: you win $10,000");
27 else if (guessDigit2 == lotteryDigit1
28 && guessDigit1 == lotteryDigit2)
29 System.out.println("Match all digits: you win $3,000");
30 else if (guessDigit1 == lotteryDigit1
31 || guessDigit1 == lotteryDigit2
32 || guessDigit2 == lotteryDigit1
33 || guessDigit2 == lotteryDigit2)
34 System.out.println("Match one digit: you win $1,000");
35 else
36 System.out.println("Sorry, no match");
37 }
38 }

generate a lottery

enter a guess

exact match?

match all digits?

match one digit?

Enter your lottery pick (two digits): 00
The lottery number is 00
Exact match: you win $10,000

M04_LIAN9966_12_SE_C04.indd 145 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

146 Chapter 4   Mathematical Functions, Characters, and Strings

Enter your lottery pick (two digits): 45
The lottery number is 54
Match all digits: you win $3,000

Enter your lottery pick: 23
The lottery number is 34
Match one digit: you win $1,000

Enter your lottery pick: 23
The lottery number is 14
Sorry: no match

The program generates two random digits and concatenates them into the string lottery
(lines 6 and 7). After this, lottery contains two random digits.

The program prompts the user to enter a guess as a two-digit string (line 12) and checks the
guess against the lottery number in this order:

■■ First, check whether the guess matches the lottery exactly (line 25).

■■ If not, check whether the reversal of the guess matches the lottery (line 27).

■■ If not, check whether one digit is in the lottery (lines 30–33).

■■ If not, nothing matches and display “Sorry, no match” (line 36).

4.5.1	 If you run Listing 4.3 GuessBirthday.java with input 1 for Set1, Set3, and Set4 and
0 for Set2 and Set5, what will be the birthday?

4.5.2	 If you enter a lowercase letter such as b, the program in Listing 4.4 displays B is 11.
Revise the code as to display b is 11.

4.5.3	 What would be wrong if lines 6 and 7 are in Listing 4.5 replaced by the following
code?

String lottery = "" + (int)(Math.random() * 100);

4.6  Formatting Console Output
You can use the System.out.printf method to display formatted output on the
console.

 Often, it is desirable to display numbers in a certain format. For example, the following code
computes interest, given the amount and the annual interest rate:

double amount = 12618.98;
double interestRate = 0.0013;
double interest = amount * interestRate;
System.out.println("Interest is $" + interest);

Point
Check

Point
Key

Interest is $16.404674

Because the interest amount is currency, it is desirable to display only two digits after the
decimal point. To do this, you can write the code as follows:

double amount = 12618.98;
double interestRate = 0.0013;
double interest = amount * interestRate;
System.out.println("Interest is $"
 + (int)(interest * 100) / 100.0);

M04_LIAN9966_12_SE_C04.indd 146 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

4.6  Formatting Console Output 147

Interest is $16.4

However, the format is still not correct. There should be two digits after the decimal point:
16.40 rather than 16.4. You can fix it by using the printf method, as follows:

double amount = 12618.98;
double interestRate = 0.0013;
double interest = amount * interestRate;
System.out.printf("Interest is $%4.2f",
 interest);

% 2 f4 .

field width

precision

conversion code

format specifier

printf

Interest is $16.40

The f in the printf stands for formatted, implying that the method prints an item in some
format. The syntax to invoke this method is

System.out.printf(format, item1, item2, . . ., itemk);

where format is a string that may consist of substrings and format specifiers.
A format specifier specifies how an item should be formatted. An item may be a numeric

value, a character, a Boolean value, or a string. A simple format specifier consists of a percent
sign (%) followed by a conversion code. Table 4.11 lists some frequently used simple format
specifiers.

format specifier

Table 4.11  Frequently Used Format Specifiers

Format Specifier Output Example

%b A Boolean value True or false

%c A character ‘a’

%d A decimal integer 200

%f A floating-point number 45.460000

%e A number in standard scientific notation 4.556000e+01

%s A string “Java is cool”

Here is an example:

int count = 5;
double amount = 45.56;
System.out.printf("count is %d and amount is %f", count, amount);

display count is 5 and amount is 45.560000

items

Items must match the format specifiers in order, in number, and in exact type. For exam-
ple, the format specifier for count is %d and for amount is %f. By default, a floating-point
value is displayed with six digits after the decimal point. You can specify the width and pre-
cision in a format specifier, as shown in the examples in Table 4.12.

M04_LIAN9966_12_SE_C04.indd 147 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

148 Chapter 4   Mathematical Functions, Characters, and Strings

If an item requires more spaces than the specified width, the width is automatically in-
creased. For example, the following code

System.out.printf("%3d#%2s#%4.2f\n", 1234, "Java", 51.6653);

displays

1234#Java#51.67

The specified width for int item 1234 is 3, which is smaller than its actual size 4. The
width is automatically increased to 4. The specified width for string item Java is 2, which is
smaller than its actual size 4. The width is automatically increased to 4. The specified width
for double item 51.6653 is 4, but it needs width 5 to display 51.67, so the width is automat-
ically increased to 5.

You can display a number with thousand separators by adding a comma in front of a num-
ber specifier. For example, the following code

System.out.printf("%,8d %,10.1f\n", 12345678, 12345678.263);

displays

12,345,678 12,345,678.3

You can pad a number with leading zeros rather than spaces by adding a 0 in front of a
number specifier. For example, the following code

System.out.printf("%08d %08.1f\n", 1234, 5.63);

displays

00001234 000005.6

By default, the output is right justified. You can put the minus sign (−) in the format
specifier to specify that the item is left justified in the output within the specified field. For
example, the following statements

System.out.printf("%8d%8s%8.1f\n", 1234, "Java", 5.63);
System.out.printf("%−8d%−8s%−8.1f \n", 1234, "Java", 5.63);

display

thousand separators

leading zeros

right justify

left justify

Table 4.12  Examples of Specifying Width and Precision

Example Output

%5c Output the character and add four spaces before the character item, because the width
is 5.

%6b Output the Boolean value and add one space before the false value and two spaces
before the true value.

%5d Output the integer item with width 5. If the number of digits in the item is 65, add
spaces before the number. If the number of digits in the item is 75, the width is auto-
matically increased.

%10.2f Output the floating-point item with width 10 including a decimal point and two digits
after the point. Thus, there are seven digits allocated before the decimal point. If the
number of digits before the decimal point in the item is 67, add spaces before the
number. If the number of digits before the decimal point in the item is 77, the width
is automatically increased.

%10.2e Output the floating-point item with width 10 including a decimal point, two digits
after the point and the exponent part. If the displayed number in scientific notation has
width 610, add spaces before the number.

%12s Output the string with width 12 characters. If the string item has fewer than 12 char-
acters, add spaces before the string. If the string item has more than 12 characters, the
width is automatically increased.

M04_LIAN9966_12_SE_C04.indd 148 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

4.6  Formatting Console Output 149

where the square box () denotes a blank space.

Caution
The items must match the format specifiers in exact type. The item for the format speci­
fier %f or %e must be a floating-point type value such as 40.0, not 40. Thus, an int
variable cannot match %f or %e. You can use %.2f to specify a floating-point value
with two digits after the decimal point. However, %0.2f would be incorrect.

Tip
The % sign denotes a format specifier. To output a literal % in the format string, use %%.
For example, the following code

System.out.printf("%.2f%%\n", 75.234);

displays

75.23%

Listing 4.6 gives a program that uses printf to display a table.

Listing 4.6  FormatDemo.java
 1 public class FormatDemo {
 2 public static void main(String[] args) {
 3 // Display the header of the table
 4 System.out.printf("%−10s%−10s%−10s%−10s%−10s\n", "Degrees",
 5 "Radians", "Sine", "Cosine", "Tangent");
 6
 7 // Display values for 30 degrees
 8 int degrees = 30;
 9 double radians = Math.toRadians(degrees);
10 System.out.printf("%−10d%−10.4f%−10.4f%−10.4f%−10.4f\n", degrees,
11 radians, Math.sin(radians), Math.cos(radians),
12 Math.tan(radians));
13
14 // Display values for 60 degrees
15 degrees = 60;
16 radians = Math.toRadians(degrees);
17 System.out.printf("%−10d%−10.4f%−10.4f%−10.4f%−10.4f\n", degrees,
18 radians, Math.sin(radians), Math.cos(radians),
19 Math.tan(radians));
20 }
21 }

%%

display table header

values for 30 degrees

values for 60 degrees

8
1234 Java 5.6

1234 Java 5.6

8 8

Degrees	 Radians	 Sine	 Cosine	 Tangent

30	 0.5236	 0.5000	 0.8660	 0.5774
60	 1.0472	 0.8660	 0.5000	 1.7321

M04_LIAN9966_12_SE_C04.indd 149 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

150 Chapter 4   Mathematical Functions, Characters, and Strings

The statements in lines 4 and 5 display the column names of the table. The column names
are strings. Each string is displayed using the specifier %−10s, which left-justifies the string.
The statements in lines 10–12 display the degrees as an integer and four float values. The
integer is displayed using the specifier %−10d, and each float is displayed using the specifier
%−10.4f, which specifies four digits after the decimal point.

4.6.1	 What are the format specifiers for outputting a Boolean value, a character, a decimal
integer, a floating-point number, and a string?

4.6.2	 What is wrong in the following statements?

(a)	 System.out.printf("%5d %d", 1, 2, 3);

(b)	 System.out.printf("%5d %f", 1);

(c)	 System.out.printf("%5d %f", 1, 2);

(d)	 System.out.printf("%.2f\n%0.3f\n", 1.23456, 2.34);

(e)	 System.out.printf("%08s\n", "Java");

4.6.3	 Show the output of the following statements:

(a)	 System.out.printf("amount is %f %e\n", 32.32, 32.32);

(b)	 �System.out.printf("amount is %5.2f%% %5.4e\n", 32.327,
32.32);

(c)	 System.out.printf("%6b\n", (1 > 2));

(d)	 System.out.printf("%6s\n", "Java");

(e)	 System.out.printf("%−6b%s\n", (1 > 2), "Java");

(f)	 System.out.printf("%6b%−8s\n", (1 > 2), "Java");

(g)	 System.out.printf("%,5d %,6.1f\n", 312342, 315562.932);

(h)	 System.out.printf("%05d %06.1f\n", 32, 32.32);

Key Terms

Point
Check

char type, 126
encoding, 127
escape character, 128
escape sequence, 128
format specifier, 147
instance method, 132

line-based input, 134
static method, 132
supplementary Unicode, 127
token-based input, 134
Unicode, 127
whitespace character, 134

Chapter Summary

1.	 Java provides the mathematical methods sin, cos, tan, asin, acos, atan, toRa-
dians, toDegrees, exp, log, log10, pow, sqrt, ceil, floor, rint, round, min,
max, abs, and random in the Math class for performing mathematical functions.

2.	 The character type char represents a single character.

3.	 An escape sequence consists of a backslash (\) followed by a character or a combina-
tion of digits.

4.	 The character \ is called the escape character.

5.	 The characters ' ', \t, \f, \r, and \n are known as the whitespace characters.

6.	 Characters can be compared based on their Unicode using the relational operators.

M04_LIAN9966_12_SE_C04.indd 150 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Programming Exercises   151

7.	 The Character class contains the methods isDigit, isLetter, isLetterOr-
Digit, isLowerCase, and isUpperCase for testing whether a character is a digit,
letter, lowercase, or uppercase. It also contains the toLowerCase and toUpperCase
methods for returning a lowercase or uppercase letter.

8.	 A string is a sequence of characters. A string value is enclosed in matching double
quotes ("). A character value is enclosed in matching single quotes (').

9.	 Strings are objects in Java. A method that can only be invoked from a specific object is
called an instance method. A noninstance method is called a static method, which can
be invoked without using an object.

10.	 You can get the length of a string by invoking its length() method, retrieve a charac-
ter at the specified index in the string using the charAt(index) method, and use the
indexOf and lastIndexOf methods to find a character or a substring in a string.

11.	 You can use the concat method to concatenate two strings or the plus (+) operator to
concatenate two or more strings.

12.	 You can use the substring method to obtain a substring from the string.

13.	 You can use the equals and compareTo methods to compare strings. The equals
method returns true if two strings are equal, and false if they are not equal. The
compareTo method returns 0, a positive integer, or a negative integer, depending on
whether one string is equal to, greater than, or less than the other string.

14.	 The printf method can be used to display a formatted output using format specifiers.

Quiz

Answer the quiz for this chapter online at the Companion Website.

Programming Exercises

Section 4.2
	 4.1	 (Geometry: area of a pentagon) Write a program that prompts the user to enter

the length from the center of a pentagon to a vertex and computes the area of the
pentagon, as shown in the following figure.

r

S

The formula for computing the area of a pentagon is Area =
5 * s2

4 * tan ap
5
b

, where

s is the length of a side. The side can be computed using the formula s = 2r sin
p

5
,

where r is the length from the center of a pentagon to a vertex. Round up two digits
after the decimal point. Here is a sample run:

M04_LIAN9966_12_SE_C04.indd 151 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

152 Chapter 4   Mathematical Functions, Characters, and Strings

Enter the length from the center to a vertex: 5.5
The area of the pentagon is 71.92

	 *4.2	 (Geometry: great circle distance) The great circle distance is the distance be-
tween two points on the surface of a sphere. Let (x1, y1) and (x2, y2) be the
geographical latitude and longitude of two points. The great circle distance be-
tween the two points can be computed using the following formula:

d = radius * arccos(sin (x1) * sin(x2) + cos(x1) * cos(x2) * cos(y1 - y2))

Write a program that prompts the user to enter the latitude and longitude of two
points on the earth in degrees and displays its great circle distance. The average
radius of the earth is 6,371.01 km. Note you need to convert the degrees into
radians using the Math.toRadians method since the Java trigonometric meth-
ods use radians. The latitude and longitude degrees in the formula are for north
and west. Use negative to indicate south and east degrees. Here is a sample run:

VideoNote

Compute great circle distance

Enter point 1 (latitude and longitude) in degrees: 39.55 −116.25

Enter point 2 (latitude and longitude) in degrees: 41.5 87.37

The distance between the two points is 10691.79183231593 km

	 *4.3	 (Geography: estimate areas) Use the GPS locations for Atlanta, Georgia;
Orlando, Florida; Savannah, Georgia; and Charlotte, North Carolina in the fig-
ure in Section 4.1 to compute the estimated area enclosed by these four cities.
(Hint: Use the formula in Programming Exercise 4.2 to compute the distance
between two cities. Divide the polygon into two triangles and use the formula in
Programming Exercise 2.19 to compute the area of a triangle.)

	 4.4	 (Geometry: area of a hexagon) The area of a hexagon can be computed using the
following formula (s is the length of a side):

Area =
6 * s2

4 * tan(
p

6
)

Write a program that prompts the user to enter the side of a hexagon and displays
its area. Here is a sample run:

Enter the side: 5.5
The area of the hexagon is 78.59

	 *4.5	 (Geometry: area of a regular polygon) A regular polygon is an n-sided polygon
in which all sides are of the same length and all angles have the same degree (i.e.,
the polygon is both equilateral and equiangular). The formula for computing the
area of a regular polygon is

Area =
n * s2

4 * tan(
p

n
)

M04_LIAN9966_12_SE_C04.indd 152 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Programming Exercises   153

Here, s is the length of a side. Write a program that prompts the user to enter the
number of sides and their length of a regular polygon and displays its area. Here
is a sample run:

Enter the number of sides: 5
Enter the side: 6.5
The area of the polygon is 72.69017017488385

	 *4.6	 (Random points on a circle) Write a program that generates three random points
on a circle centered at (0, 0) with radius 40 and displays three angles in a triangle
formed by these three points, as shown in Figure 4.4a. Display the angles in
degrees. (Hint: Generate a random angle a in radians between 0 and 2p, as shown
in Figure 4.4b and the point determined by this angle is rxcos (a), rxsin (a).)

65

55

60

0 o’clock positionx 5 r3 cos(a) and y 5 r3 sin(a)

(a) (b) (c)

(0, 0)

p2

p1

p5p4

p3

(x, y)

a

r
r

Figure 4.4  (a) A triangle is formed from three random points on the circle. (b) A random
point on the circle can be generated using a random angle a. (c) A pentagon is centered at
(0, 0) with one point at the 0 o’clock position.

	 *4.7	 (Corner point coordinates) Suppose a pentagon is centered at (0, 0) with one point
at the 0 o’clock position, as shown in Figure 4.4c. Write a program that prompts
the user to enter the radius of the bounding circle of a pentagon and displays the
coordinates of the five corner points on the pentagon from p1 to p5 in this order. Use
console format to display two digits after the decimal point. Here is a sample run:

Enter the radius of the bounding circle: 100.52

The coordinates of five points on the pentagon are

(95.60, 31.06)

(0.00, 100.52)

(−95.60, 31.06)

(−58.08, −81.32)
(59.08, −81.32)

Sections 4.3–4.6
	 *4.8	 (Find the character of an ASCII code) Write a program that receives an ASCII code

(an integer between 0 and 127) and displays its character. Here is a sample run:

Enter an ASCII code: 69
The character for ASCII code 69 is E

M04_LIAN9966_12_SE_C04.indd 153 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

154 Chapter 4   Mathematical Functions, Characters, and Strings

	 *4.9	 (Find the Unicode of a character) Write a program that receives a character and
displays its Unicode. Here is a sample run:

Enter a character: E
The Unicode for the character E is 69

	 *4.10	 (Guess birthday) Rewrite Listing 4.3, GuessBirthday.java, to prompt the user to
enter the character Y for Yes and N for No, rather than entering 1 for Yes and 0 for
No.

	 *4.11	 (Decimal to hex) Write a program that prompts the user to enter an integer be-
tween 0 and 15 and displays its corresponding hex number. For an incorrect
input number, display invalid input. Here are some sample runs:

Enter a decimal value (0 to 15): 11
The hex value is B

	 4.12	 (Hex to binary) Write a program that prompts the user to enter a hex digit and
displays its corresponding binary number in four digits. For example, hex digit 7
is 0111 in binary. Hex digits can be entered either in uppercase or lowercase. For
an incorrect input, display invalid input. Here is a sample run:

VideoNote

Convert hex to binary

Enter a hex digit: B
The binary value is 1011

Enter a hex digit: G
G is an invalid input

	 *4.13	 (Vowel or consonant?) Write a program that prompts the user to enter a letter and
check whether the letter is a vowel or consonant. For a nonletter input, display
invalid input. Here is a sample run:

Enter a letter: B
B is a consonant

Enter a letter: a
a is a vowel

Enter a letter: #
is an invalid input

Enter a decimal value (0 to 15): 5
The hex value is 5

Enter a decimal value (0 to 15): 31
31 is an invalid input

M04_LIAN9966_12_SE_C04.indd 154 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Programming Exercises   155

	 *4.14	 (Convert letter grade to number) Write a program that prompts the user to enter
a letter grade A, B, C, D, or F and displays its corresponding numeric value 4, 3,
2, 1, or 0. For other input, display invalid grade. Here is a sample run:

Enter a letter grade: B
The numeric value for grade B is 3

Enter a letter grade: T
T is an invalid grade

	 *4.15	 (Phone key pads) The international standard letter/number mapping found on the
telephone is shown below:

Write a program that prompts the user to enter a lowercase or uppercase let-
ter and displays its corresponding number. For a nonletter input, display invalid
input.

Enter a letter: A
The corresponding number is 2

Enter a letter: a
The corresponding number is 2

Enter a letter: +
+ is an invalid input

	 4.16	 (Random character) Write a program that displays a random uppercase letter
using the Math.random() method.

	 *4.17	 (Days of a month) Write a program that prompts the user to enter the year and the
first three letters of a month name (with the first letter in uppercase) and displays
the number of days in the month. If the input for month is incorrect, display a
message as presented in the following sample runs:

Enter a year: 2001

Enter a month: Jan

Jan 2001 has 31 days

M04_LIAN9966_12_SE_C04.indd 155 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

156 Chapter 4   Mathematical Functions, Characters, and Strings

Enter a year: 2016

Enter a month: jan
jan is not a correct month name

	 *4.18	 (Student major and status) Write a program that prompts the user to enter two
characters and displays the major and status represented in the characters. The
first character indicates the major and the second is a number character 1, 2, 3, or
4, which indicates whether a student is a freshman, sophomore, junior, or senior.
Suppose that the following characters are used to denote the majors:

M: Mathematics
C: Computer Science
I: Information Technology

Here are sample runs:

Enter two characters: M1
Mathematics Freshman

Enter two characters: C3
Computer Science Junior

Enter two characters: T3
Invalid input

	 4.19	 (Business: check ISBN-10) Rewrite Programming Exercise 3.9 by entering the
ISBN number as a string.

	 4.20	 (Process a string) Write a program that prompts the user to enter a string and
displays its length and its first character.

	 *4.21	 (Check SSN) Write a program that prompts the user to enter a Social Security
number in the format DDD-DD-DDDD, where D is a digit. Your program should
check whether the input is valid. Here are sample runs:

Enter a SSN: 232−23−5435
232−23−5435 is a valid social security number

Enter a SSN: 23−23−5435
23−23−5435 is an invalid social security number

	 4.22	 (Check substring) Write a program that prompts the user to enter two strings, and
reports whether the second string is a substring of the first string.

Enter string s1: ABCD

Enter string s2: BC
BC is a substring of ABCD

M04_LIAN9966_12_SE_C04.indd 156 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Programming Exercises   157

Enter string s1: ABCD

Enter string s2: BDC
BDC is not a substring of ABCD

	 *4.23	 (Financial application: payroll) Write a program that reads the following infor-
mation and prints a payroll statement:

Employee’s name (e.g., Smith)
Number of hours worked in a week (e.g., 10)
Hourly pay rate (e.g., 9.75)
Federal tax withholding rate (e.g., 20%)
State tax withholding rate (e.g., 9%)

A sample run is as follows:

Enter employee’s name: Smith
Enter number of hours worked in a week: 10
Enter hourly pay rate: 9.75
Enter federal tax withholding rate: 0.20
Enter state tax withholding rate: 0.09

Employee Name: Smith
Hours Worked: 10.0
Pay Rate: $9.75
Gross Pay: $97.50
Deductions:
 Federal Withholding (20.0%): $19.50
 State Withholding (9.0%): $8.77
 Total Deduction: $28.27
Net Pay: $69.22

	 *4.24	 (Order three cities) Write a program that prompts the user to enter three cities
and displays them in ascending order. Here is a sample run:

Enter the first city: Chicago
Enter the second city: Los Angeles
Enter the third city: Atlanta
The three cities in alphabetical order are Atlanta Chicago
Los Angeles

	 *4.25	 (Generate vehicle plate numbers) Assume that a vehicle plate number consists
of three uppercase letters followed by four digits. Write a program to generate a
plate number.

	 *4.26	 (Financial application: monetary units) Rewrite Listing 2.10, ComputeChange.
java, to fix the possible loss of accuracy when converting a float value to an int
value. Read the input as a string such as "11.56". Your program should ex-
tract the dollar amount before the decimal point, and the cents after the decimal
amount using the indexOf and substring methods.

Note
More than 200 additional programming exercises with solutions are provided to the
instructors on the Instructor Resource Website.

M04_LIAN9966_12_SE_C04.indd 157 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

M04_LIAN9966_12_SE_C04.indd 158 30/09/19 3:52 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

