Measuring & Reporting
Performance

Chapter 1 (4 Edition) |
f OR |
Chapter 4 (3¢9 Edition)

SSSSSSSSSSSSSSSS

https://students-hub.com

Review: Computer System Components

CPU Core
1 GHz - 3.8 GHz
4-way Superscaler

) All Non-blocking caches
RIgeipolrnifgi;cnogﬁ)gfi)' L1 16-128K 1-2 way set assoc_iat_ive (on chip), sepa_rate or unified
Dynamic scheduling L1 L2 256K-2M 4-32 way set associative (on chip) unified
Multiple FP, integer FUs CPU “ L3 2-16M 8-32 way set associative (off or on chip) unified
Dynamic branch prediction v L2
Hardware speculation N Examples: Alpha, AMD K7: EV6, 200-400 MHz
Caches | « L3 Intel PII, PlIl: GTL+ 133 MHz
Intel P4 800 MHz

Front Side Bus (FSB)
’ Off or On-chip :

adapters /0 Buses

Current Standard Example: PCI, 33-66MHz
’ 32-64 bits wide

' 133-528 MBYTES/SEC
kontrollers NICs PCI-X 133MHz 64 bit

1024 MBYTES/SEC

Disks ‘
Displays
Keyboards

Networks

/O Devices:
North South

Bridge Bridge 1/O Subsystem
Chipset

2

STUDENTS-HUB.com

https://students-hub.com

Review: What is Computer Architecture?

4 =)
a|< é§
<| L :Q

_ Interfaces)

Regs@ I

Machine Organizatioy

"

Computer

GHEIE Y Architect

Measurement &
_ Evaluation)

STUDENTS-HUB.com

https://students-hub.com

The Architecture Process

\/
Estimate
Cost & Sort
Performance

New concepts \/
created - .

Good
Bad ideas Mediocre ideas
ideas

STUDENTS-HUB.com

https://students-hub.com

Performance

 What is performance?
— Measuring performance
— Performance metrics
— Performance evaluation
— Why does some hardware perform better
« With different programs?
— What performance factors are related to hardware?

STUDENTS-HUB.com

https://students-hub.com

Measuring performance

« We need measures
— Comparison of machine properties
— Comparison of software properties (compilers)

 Purpose
— Making purchase decisions
— Development of new architectures

* |Is asingle measure sufficient?

— A machine with 600 MHz clock cycle is faster than 500 MHz
clock cycle!?

— Why do we still have mainframes?

STUDENTS-HUB.com

https://students-hub.com

Performance Measurement and Evaluation

 Many dimensions to
computer performance P

— CPU execution time

* by instruction or sequence
— floating point
— integer C

— branch performance
— Cache bandwidth
— Main memory bandwidth

— 1/O performance M
* bandwidth
* seeks

» pixels or polygons per
second
* Relative importance

depends on applications

STUDENTS-HUB.com

https://students-hub.com

Evaluation Tools

« Benchmarks, traces, & mixes

— macrobenchmarks & suites
« application execution time
— microbenchmarks

* measure one aspect of
performance

— traces
» replay recorded accesses
— cache, branch, register

« Simulation at many levels

— ISA, cycle accurate, RTL, gate,
circuit
« trade fidelity for simulation rate

« Area and delay estimation
* Analysis

STUDENTS-HUB.com

— e.g., queuing theory
— Fundamentals Laws

MOVE
BR
LOAD
STORE
ALU

39%
20%
20%
10%
11%

https://students-hub.com

Metrics of Computer Performance

Application Answers per month

Operations per second

Programming
Language

Compiler

(millions) of Instructions per second: MIPS
[1sa] (millions) of (FP) operations per second: MFLOP/s

Datapath
Control

Function Units
Transistors Wires Pins

Megabytes per second

Cycles per second (clock rate)

Each metric has a purpose, and each can be misused.

STUDENTS-HUB.com

https://students-hub.com

Benchmarks and Benchmarking

Some definitions are:

* |tIs a test that measures the performance
of a system or subsystem on a well-
defined task or set of task.

* A method of comparing the performance
of different computer architecture.

* Or a method of comparing the
performance of different software

SSSSSSSSSSSSSSSS

https://students-hub.com

Some Warnings about Benchmarks

« Benchmarks measure the
whole system

— application
— compiler
— operating system
— architecture
— Implementation
* Popular benchmarks

typically reflect yesterday’s
programs

— computers need to be
designed for tomorrow’s
programs

STUDENTS-HUB.com

« Benchmark timings often
very sensitive to

— alignment in cache
— location of data on disk
— values of data

 Benchmarks can lead to
Inbreeding or positive
feedback
— If you make an operation
fast (slow) it will be used
more (less) often

e SO you make it faster
(slower)

— and it gets used even
more (less)

» and so on...

11

https://students-hub.com

Choosing Programs To Evaluate
Performance

Levels of programs or benchmarks that could be used to
evaluate performance:
— Actual Target Workload: Full applications that run on the target
machine.
— Real Full Program-based Benchmarks:

« Select a specific mix or suite of programs that are typical of targeted
applications or workload (e.g SPEC95, SPEC CPU2000).

— Small “Kernel” Benchmarks:
« Key computationally-intensive pieces extracted from real programs.
— Examples: Matrix factorization, FFT, tree search, etc.
» Best used to test specific aspects of the machine.
— Microbenchmarks:

« Small, specially written programs to isolate a specific aspect of
performance characteristics: Processing: integer, floating point,
local memory, input/output, etc.

12

STUDENTS-HUB.com

https://students-hub.com

Types of Benchmarks

Pros

* Representative

Actual Target Workload

e Portable.
» Widely used.
* Measurements

useful in reality.

Full Application Benchmarks

« Easy to run, early in
the design cycle.

* Identify peak
performance and
potential bottlenecks.

STUDENTS-HUB.com

Small “Kernel”
Benchmarks

Microbenchmarks

Cons

* Very specific.

* Non-portable.

« Complex: Difficult
to run, or measure.

* Less representative
than actual workload.

 Easy to “fool” by
designing hardware
to run them well.

* Peak performance
results may be a long
way from real application
performance 13

https://students-hub.com

SPEC: System Performance Evaluation
Cooperative

The most popular and industry-standard set of CPU
benchmarks.

« SPECmarks, 1989:

— 10 programs yielding a single number (“SPECmarks”).

- SPEC92, 1992:
— SPECInt92 (6 integer programs) and SPECfp92 (14 floating point
programs).

« SPEC95, 1995:
— SPECIint95 (8 integer programs):
« go, m88ksim, gcc, compress, li, ijpeg, perl, vortex
— SPECfp95 (10 floating-point intensive programs):
« tomcatv, swim, su2cor, hydro2d, mgrid, applu, turb3d, apsi, fppp, wave5

— Performance relative to a Sun SuperSpark | (50 MHz) which is given a score
of SPECint95 = SPECfp95 =1

« SPEC CPU2000, 1999:

— CINT2000 (11 integer programs). CFP2000 (14 floating-point intensive
programs)

— Performance relative to a Sun Ultra5 10 (300 MHz) which is given a score
of SPECint2000 = SPECfp2000 = 100

14

STUDENTS-HUB.com

https://students-hub.com

SPEC95 Programs

Programs application domain: Engineering and scientific computation

Benchmark Description
go Artificial intelligence; plays the game of Go
m88ksim Motorola 88k chip simulator; runs test program
gcc The Gnu C compiler generating SPARC code
Integer |compress |Compresses and decompresses file in memory
[Lisp interpreter
jpeg Graphic compression and decompression
perl Manipulates strings and prime numbers in the special-purpose programming language Perl
vortex A database program
tomcatv A mesh generation program
swim Shallow water model with 513 x 513 grid
Floating su2cor quantum physics; Monte Carlo simulation
Point hydro2d Astrophysics; Hydrodynamic Naiver Stokes equations
marid Multigrid solver in 3-D potential field
applu Parabolic/elliptic partial differential equations
trub3d Simulates isotropic, homogeneous turbulence in a cube
apsi Solves problems regarding temperature, wind velocity, and distribution of pollutant
fpppp Quantum chemistry
waveb Plasma physics; electromagnetic particle simulation

15

STUDENTS-HUB.com

https://students-hub.com

Sample SPECInt95 (Integer) Results

- mgher-- s,betterw

wasunasseunanaan

1 BASE Scores [

WWW. macmfo de

KryoTech Cooling:
Alpha 21164/767

BASE Scores (not PEAK):
AMD K7

Unreleased / Prototypes:
Alpha 21364/1000: ~70

— & DEC Alpha 21064
—4—DEC Alpha 21164PC
—@3—DEC Alpha 21164
—#——DEC Alpha 21264
—#&——Intel Pentium
—¢—Intel Pentium MMX
~—@—Inte| Pentium Pro
———Intel Pentium II
—<——1Intel Pentium II Xeon
---0-- Intel P, II Celeron
—a&—Intel Pentium IIIf100
—a—Intel Pentium IIIf133
—&—Intel Pentium III Xeon
—a—AMD K7 Athlon

O PowerPC 603e
~—a#&—PowerPC 604
—g—PowerPC 604e
—@—PowerPC 620
—a&—PowerPC 740
—¢—PowerPC 750/G3
—®&—PowerPC 7400/G4
~—@®—Sun SuperSparc I
—&——Sun UltraSPARC-I
—4—Sun UltraSPARC-I1I
—@—Sun UltraSPARC-IIi
—-—Sun UltraSPARC-III
HP PA 8000

HP PA 8200

HP PA 8500
——SGI MIPS R10000

5= ->£~ l:“

u} S0
MHz

100
MHz

250
MHz

150 200
MHz MHz

300 350 400 4350 500 550 &00

MHz

MHz

MHz MHz MH:z

MHz

MHz

650 700 730 800 830 900

MHz MHz MHz MH:z

MHz MHz

STUDENTS-HUB.com

16

https://students-hub.com

Sample SPEC{p95 (Floating Point) Results

33

30 4
29 4
28 -

26 4
25 4
24 4

20 -
19 4

17 4
16 4
15 4

13 4
12 4

10 4

27 4

32 1o v

23 4.
22 4.
21 4.

18 e

14 4.

. | wwwmacmfode |

Qutside of chart:
Alpha 21264/700: 68.1
HP PA-8500/440: 51.4

BASE Scores (not PEAK):
AMD K7

KryoTech Cooling:
Alpha 21164/767

Unreleased:
Alpha 21364/1000: ~120
Sun UltraSPARC III/600: ~60

& —DEC Alpha 21064
—4—DEC Alpha 21164PC
—@3—DEC Alpha 21164
—#—DEC Alpha 21264
—#&—Intel Pentium
——Intel Pentium MM¥
—@—Intel Pentium Pro
———Intel Pentium II
—<&—1Intel Pentium II Xeon
--0-- Intel P, II Celeron
—a&—Intel Pentium IIIf100
—a&—Intel Pentium IIIf133
——Intel Pentium III Xeon
—&—~AMD K7 Athlon

O PowerPC 603e
—&—PowerPC 604
—4—PowerPC 604e
—@—PowerPC 620
—a&—PowerPC 740
—¢—PowerPC 750/G3
—®—PowerPC 7400/G4
—@—5Sun SuperSPARC I
—#&—Sun UltraSPARC-I
——Sun UltraSPARC-II
—@—Sun UltraSPARC-IIi
———Sun UltraSPARC-III
—p—HP P& 8000

+—HP PA 8200
———HP PA 8500
——SGI MIPS R10000

O T T T T T T ' T L) L) T T L) T T T T T T T
0 S0 100 150 200 250 300 350 400 450 S00 S50 600 &50 700 750 200 850 900 950 10
MHz O
MHz

STUDENTS-HUB.com

https://students-hub.com

The SPEC CPU2000 Benchmarks

12 Integer benchmarks (C and C++) 14 FP benchmarks (Fortran 77, 90, and C)
Name Description Name Description
gzip Compression wupwise | Quantum chromodynamics
vpr FPGA placement and routing swim Shallow water model
gcc GNU C compiler mgrid Multigrid solver in 3D potential field
mcf Combinatorial optimization applu Partial differential equation
crafty Chess program mesa Three-dimensional graphics library
parser Word processing program galgel Computational fluid dynamics
eon Computer visualization art Neural networks image recognition
perlomk | Perl application equake Seismic wave propagation simulation
gap Group theory, interpreter facerec Image recognition of faces
vortex Object-oriented database ammp Computational chemistry
bzip2 Compression lucas Primality testing
twolf Place and route simulator fma3d Crash simulation using finite elements
sixtrack High-energy nuclear physics
apsi Meteorology: pollutant distribution

s+ Wall clock time is used as metric

+» Benchmarks measure CPU time, because of little I/O

STUDENTS-HUB.com

https://students-hub.com

SPEC 2000 Ratings (Pentium Il & 4)

1400
Note the relative positions of
1200 H the CINT and CFP 2000 ;\
curves for the Pentium Il & 4 .
Pentium 4 CFP2000
1000

Pentium 4 CINT2000

800 !/././‘

Geometric mean of SPEC ratios

relative to Sun Ultra 5 (300 MHz)
SPEC CINT2000 and CFP2000 performance

SPEC ratio = Execution time is normalized

600
Pe ntium 11l CINT2000 gée/b Pentium Il does better at

400 the integer benchmarks, [
¥ while Pentium 4 does better
o [(r;entium Il CFP2000 at the floating-point
= 200 benchmarks due to its |
© advanced SSE2 instructions
O 0 T T T T T T
H_J 500 1000 1500 2000 2500 3000 3500
N Clock rate in MHz

STUDENTS-HUB.com

https://students-hub.com

Common Benchmarking Mistakes

Only average behavior
represented in test
workload

Skewness of device
demands ignored

Loading level controlled
Inappropriately
Caching effects ignored
Buffer sizes not
appropriate
Inaccuracies due to
sampling ignored

SSSSSSSSSSSSSSSS

Ignoring monitoring
overhead

Not validating
measurements

Not ensuring same initial
conditions

Not measuring transient
(cold start) performance

Using device utilizations
for performance
comparisons

Collecting too much data
but doing too little
analysis

20

https://students-hub.com

Architectural Performance Laws and Rules
of Thumb

e Measurement and Evaluation

— Architecture is an iterative process:
« Searching the space of possible designs
* Make selections
« Evaluate the selections made

— Good measurement tools are required to accurately evaluate the
selection.
 Measurement Tools
— Benchmarks, Traces, Mixes
— Cost, delay, area, power estimation
— Simulation (many levels)
* ISA, RTL, Gate, Circuit
— Queuing Theory
— Rules of Thumb
— Fundamental Laws

STUDENTS-HUB.com

https://students-hub.com

Measuring and Reporting Performance

What do we mean by one Computer is faster than
another?

— program runs less time

Response time or execution time
— time that users see the output

Elapsed time

— A latency to complete a task including disk accesses, memory accesses,
I/O activities, operating system overhead

Throughput

— total amount of work done in a given time
Performance

— We use the term “improve performance” or “ improve execution time” When we
mean increase performance and decrease execution time .

* improve performance = increase performance
* improve execution time = decrease execution time

22

STUDENTS-HUB.com

https://students-hub.com

What is time?

 Elapsed Time

— counts everything (disk and memory accesses, I/0, eic.)

— a useful number, but often not good for comparison purposes
« CPU time

— time the CPU is computing

— doesn't count I/O or time spent running other programs
— User CPU time
« CPU time spent in the program

— System CPU time

« CPU time spent in the operating system performing task requested by the
program decrease execution time

— CPU time = User CPU time + System CPU time
 Our focus: user CPU time

— time spent executing the lines of code that are "in" our
program

23

STUDENTS-HUB.com

https://students-hub.com

Performance

« System Performance
— elapsed time on unloaded system

 CPU performance
— user CPU time on an unloaded system

« Two notions of “performance

— Response Time (latency)

 Timeto do the task
— How long does it take for my job to run?
— How long does it take to execute a job?
— How long must | wait for the database query?

— Throughput (bandwidth)

« Tasks per day, hour, week, sec, ns. ..
— How many jobs can the machine run at once?
— What is the average execution rate?
— How much work is getting done?

* Response time and throughput often are in opposition

STUDENTS-HUB.com

24

https://students-hub.com

CPU Performance Evaluation

« Most computers run synchronously utilizing a CPU clock running at

< Clock cycle »

a constant clock rate: P ; i i
Cycles/sec = Hertz = Hz

\ 4 \ 4
<+ cyclel —»4 cycle2 —»4— cycle3 —»

where: Clock rate = 1/ clock cycle

« The CPU clock rate depends on the specific CPU organization
(design) and hardware implementation technology (VLSI) used

« A computer machine (ISA) instruction is comprised of a number of
elementary or micro operations which vary in number and complexity
depending on the instruction and the exact CPU organization
(Design)

— A micro operation is an elementary hardware operation that can be performed
during one CPU clock cycle.

— This corresponds to one micro-instruction in microprogrammed CPUSs.
— Examples: register operations: shift, load, clear, increment, ALU operations: add ,
subtract, etc.
« Thus a single machine instruction may take one or more CPU cycles
to complete termed as the Cycles Per Instruction (CPI).

— Average CPI of a program:_The average CPI of all instructions executed in the
program on a given CPU design.

25

STUDENTS-HUB.com

https://students-hub.com

Generic CPU Machine Instruction Execution
Steps

!

Instruction
Fetch

!

Instruction
Decode

!

Operand
Fetch

i

Execute

¥

Result
Store

!

Next
Instruction

STUDENTS-HUB.com

Obtain instruction from program storage

Determine required actions and instruction size

Locate and obtain operand data

Compute result value or status

Deposit results in storage for later use (if required)

Determine successor instruction

49/

https://students-hub.com

Computer Performance Measures:

Program Execution Time

« For a specific program compiled to run on a specific

machine (CPU) “A”, has the following parameters:
— The total executed instruction count of the program. | |

— The average number of cycles per instruction (average CPI). | CPI

— Clock cycle of machine “A” | C

« How can one measure the performance of this machine
(CPU) running this program?
— Intuitively the machine (or CPU) is said to be faster or has
better performance running this program if the total execution
time is shorter.

— Thus the inverse of the total measured program execution
time is a possible performance measure or metric:

Performance, = 1 / Execution Time,

How to compare performance of different machines?

What factors affect performance? How to improve

performance? 27

STUDENTS-HUB.com

https://students-hub.com

Comparing Computer Performance Using
Execution Time

* To compare the performance of two machines (or CPUs) “A”, “B” running a
given specific program:
Performance, = 1 / Execution Time,
Performanceg = 1 / Execution Timeg
* Machine Ais n times faster than machine B means (or slower? if n < 1)

Performance, Execution Timeg
Speedup=n= = . .
Performanceg Execution Time,
« Example: (i.e Speedup is ratio of performance, no units)

For a given program:
Execution time on machine A: Execution, = 1 second
Execution time on machine B: Executiong = 10 seconds
Speedup= Performance, / Performanceg = Execution Timeg / Execution Time,
= 10/1=10
The performance of machine A is 10 times the performance of

machine B when running this program, or: Machine A is said to be 10
times faster than machine B when running this program.

28

STUDENTS-HUB.com

https://students-hub.com

CPU Execution Time: The CPU Equation

« A program is comprised of a humber of instructions
executed , |

— Measured in: Instructions/program
« The average instruction executed takes a number of cycles

per /nstruction (CP/) to be Completed. Or Instructions Per Cycle (IPC):

IPC=1/CPI
— Measured in: cycles/instruction, CPI
« CPU has a fixed clock cycle time C = 1/clock rate
— Measured in: seconds/cycle

« CPU execution time is the product of the above three
parameters as follows:

Executed
CPUtime = Seconds = Instructions x Cycles X Seconds
Program Program Instruction Cycle
Execution Time Number of Average CPI for program CPU Clock Cycle
per program in seconds instructions executed

29
(Thic i 1 1
sroenkanS. equation is commonly known as the CPU performance equation)

https://students-hub.com

CPU Average CPI/Execution Time

For a given program executed on a given machine (CPU):

CPIl = Total program execution cycles / Instructions count
(average)

—> CPU clock cycles = Instruction count x CPI

CPU execution time =

= CPU clock cycles x Clock cycle

= Instruction count x CPI x Clock cycle
T = I X CPl X C

gexecution Time

Number of
per program in seconds

Average CPI
instructions executed

for program

(This equation is commonly known as the CPU performance equation)

STUDENTS-HUB.com

CPU Clock Cycle

30

https://students-hub.com

Improving the performance

CPUtime = Seconds = Instructions x Cycles X Seconds

Program Program Instruction Cycle

* Increase the clock frequency =
— reduce the clock period

 Reduce the number of cycles for the program
« Reduce the number of instructions

31

https://students-hub.com

Instruction = cycle?

* Is the number of cycles identical with the number of

Instructions?
— No!
« The number of cycles depends on the implementation of the
operations in hardware
— The number differs for each processor
— Why?
« Operations take different time
— Multiplication takes longer than addition
— Floating point operations take longer than integer operations

« The access time to aregister is much shorter than to memory
location

Instruction n

Instruction n+1
Instruction n+2
Instruction n+3
Instruction n+4
Instruction n

Instruction n+3
Instruction n+4

Tnstruction n+1
Tnstruction n+2

STUDENTS-HUB.com

https://students-hub.com

Aspects of CPU Execution Time

CPU Time = Instruction count x CPIl x Clock cycle

Depends on:
Program Used
Compiler

ISA
CPU Organization

STUDENTS-HUB.com

Depends on:

Program Used
Compiler
ISA

Instruction Count |

CPI

(Average
CPI)

(executed)

Clock
Cycle
C

T=1xCPlI xC

Depends on:

<: CPU Organization
Technology (VLSI)

33

https://students-hub.com

Factors Affecting CPU Performance

CPUtime = Seconds = Instructions x Cycles X Seconds
Program Program Instruction Cycle
Instruction CPI Clock Cycle C
Count | y
Program X X
Compiler X X
Instruction Set X
Architecture (ISA) X
Organization X X
(CPU Design)
Technology X
(VLSI)

STUDENTS-HUB.com

https://students-hub.com

CPU Execution Time: Example

« A Program is running on a specific machine (CPU) with the

following parameters:
— Total executed instruction count: 10,000,000 instructions

— Average CPI for the program: 2.5 cycles/instruction.
— CPU clock rate: 200 MHz. (clock cycle = 5x10° seconds)

« What is the execution time for this program:

CPUtime = Seconds = Instructions x Cycles X Seconds
Program Program Instruction Cycle

CPU time = Instruction count x CPI x Clock cycle
= 10,000,000 X 2.5 x 1/clockrate
= 10,000,000 X 2.5 x 5x107°
= .125 seconds
T=1xCPlI xC

35

STUDENTS-HUB.com

https://students-hub.com

Performance Comparison: Example

« From the previous example: A Program is running on a specific
machine (CPU) with the following parameters:

— Total executed instruction count, I: 10,000,000 instructions
— Average CPI for the program: 2.5 cycles/instruction.
— CPU clock rate: 200 MHz.

« Using the same program with these changes:

— A new compiler used: New executed instruction count, I: 9,500,000
New CPI: 3.0

— Faster CPU implementation: New clock rate = 300 MHz
 What is the speedup with the changes?

Speedup = Old Execution Time =1,4 X CPl,4 X Clock cycle,gq
New Execution Time | x CPI x Clock Cycle

new new new

Speedup = (10,000,000 x 2.5 x 5x10°) /(9,500,000 x 3 x 3.33x107?)
= .125/ .095=1.32
or 32 % faster after changes.

Clock Cycle=1/ClockRate | | T= 1 x CPl xC

36

STUDENTS-HUB.com

https://students-hub.com

Instruction Types & CPI

Given a program with 77 types or classes of instructions
executed on a given CPU with the following
characteristics:

1=1,2,...

C, = Count of instructions of type, executed
CP/. = Cycles per instruction for type,

Then:

.1l

CPlI = CPU Clock Cycles / Instruction Count |

STUDENTS-HUB.

Where: n

CPU clockcycles = Z(CP| i><Ci)

1=1

Executed Instruction Count | = X C,

com

37

https://students-hub.com

Instruction Types & CPIl: An Example

An instruction set has three instruction classes:
Instruction class CPI

A 1 For a specific
B 9 CPU design
C 3

Two code sequences have the following instruction counts:

Instruction counts for instruction class
Code Sequence A B C
1 2 1 2
2 4 1 1

CPU cycles for sequence 1 =2x1+1x2+2x3=10cycles

CPI for sequence 1 = clock cycles / instruction count
=10/5=2

CPU cycles for sequence2=4x1+1x2+1x3=9cycles

CPI for sequence2=9/6=1.5

n

CPU clock cycles = Z(CP| X Ci) CPIl =CPU Cycles/ | 38

i=1

STUDENTS-HUB.com

https://students-hub.com

Instruction Frequency & CPI

« Given a program with 7 types or classes of instructions with
the following characteristics:

C, = Count of instructions of type, 1=1,2,....n
CP/. = Average cycles per instruction of type;
F, = Frequency or fraction of instruction type, executed
= C/ total executed instruction count = C/ |
Then:

cPl =3 (CPI,<F)

1=1

CPI x F,

Fraction of total execution time for instructions of type i = =

39

STUDENTS-HUB.com

https://students-hub.com

Instruction Type Frequency & CPI.
A RISC Example

Program Profile or Executed Instructions Mix cPlix F
Base Machine (Reg / ReqQ) / Pl
Op Freq, F;, CPI, CPI. x F, % Time
Given | | ALU 50% 1 5 23% = .5/2.2
.| Load 20% 5 1.0 45% = 1/2.2
Store 10% 3 3 14% = .3/2.2
Branch 20% 2 4 18% = .4/2.2

STUDENTS-HUB.com

Typical Mix Sum = 2.2

cPl = (CPI,<F \ /

CPlI = 5x1+ 2x5 +.1x3+ 2x2 =22
= 5 + 1 + 3 + 4

40

https://students-hub.com

Computer Performance Measures
MIPS (Million Instructions Per Second) Rating

« For a specific program running on a specific CPU the MIPS rating is a
measure of how many millions of instructions are executed per
second:

MIPS Rating = Instruction count / (Execution Time x 106)
= Instruction count / (CPU clocks x Cycle time x 10°)
= (Instruction count x Clock rate) / (Instruction count x CPI x 109)
= Clock rate / (CPI x 109)

« Major problem with MIPS rating: As shown above the MIPS rating
does not account for the count of instructions executed (I).

— A higher MIPS rating in many cases may not mean higher performance or
better execution time. i.e. due to compiler design variations.

* In addition the MIPS rating:

— Does not account for the instruction set architecture (ISA) used.
« Thus it cannot be used to compare computers/CPUs with different instruction
sets.
— Easy to abuse: Program used to get the MIPS rating is often omitted.

» Often the Peak MIPS rating is provided for a given CPU which is obtained
using a program comprised entirely of instructions with the lowest CPI for the
given CPU design which does not represent real programs. 41

STUDENTS-HUB.com

https://students-hub.com

Computer Performance Measures :
MIPS (Million Instructions Per Second) Rating

« Under what conditions can the MIPS rating be used to
compare performance of different CPUs?

« The MIPS rating is only valid to compare the performance of
different CPUs provided that the following conditions are
satisfied:

1 The same program is used
(actually this applies to all performance metrics)
2 The same ISA is used

3 The same compiler is used

= (Thus the resulting programs used to run on the CPUs
and obtain the MIPS rating are identical at the machine
code level including the same instruction count)

42

STUDENTS-HUB.com

https://students-hub.com

Wrong!!!

3 significant problems with using MIPS:

— Problem 1.
* MIPS is instruction set dependent.

* (And different computer brands usually have different instruction
sets)

— Problem 2:
« MIPS varies between programs on the same computer

— Problem 3:
* MIPS can vary inversely to performance!

« Let's look at an examples of why MIPS doesn’t work...

STUDENTS-HUB.com

43

https://students-hub.com

Compiler Variations, MIPS & Performance:
An Example

* For a machine (CPU) with instruction classes:

Instruction class CPI

A 1
B 2
C 3

* For a given high-level language program, two compilers
produced the following executed instruction counts:

Instruction counts (in millions)
for each instruction class

Code from: A B C
Compiler 1 5 1 1
Compiler 2 10 1 1

« The machine is assumed to run at a clock rate of 100 MHz.

STUDENTS-HUB.com

44

https://students-hub.com

Compiler Variations, MIPS & Performance:

An Example (Continued)

MIPS = Clock rate / (CPI x 10%) = 100 MHz / (CPI x 109)

CPI = CPU execution cycles / Instructions count
n

CPU clock cycles = Z(CP| X Ci)

i=1
CPU time = Instruction count x CPI / Clock rate

 For compiler 1:
— CPl,=(5x1+1x2+1x3)/(5+1+1)=10/7=1.43
— MIPS Rating, = 100 / (1.428 x 108) = 70.0 MIPS
— CPUtime; = ((5+1+1)x10°x1.43) /(100 x 10% = 0.10 seconds

 For compiler 2:
— CPLL=(10x1+1x2+1x3)/(10+1+1)=15/12=1.25
— MIPS Rating, = 100 / (1.25 x 106) = 80.0 MIPS
— CPUtime, = ((10+ 1+ 1) x 10°% x 1.25) / (100 x 10%) = 0.15 seconds

MIPS rating indicates that compiler 2 is better
while in reality the code produced by compiler 1 is faster 45

STUDENTS-HUB.com

https://students-hub.com

MIPS (The ISA not the metric) Loop

Performance Example

For the loop:
for (i=0; i<1000; i=i+1){
X[I] =x[i] +s; }

MIPS assembly code is given by:

High Memory

$6 points here —p

X[999]
X[998]

$2 initially

points here] x[0]

1w $3, 8(S1) H load s in $3 Low Memory

addi S6, $2, 4000 ; $S6 = address of last element + 4
loop: 1w S4, 0(S2) ; load x[1] in $4

add $5, $4, S$3 ; $5 has x[i] + s

SW S5, 0($2) ; store computed x[i]

addi $2, S$2, 4 ; increment $2 to point to next x[]

bne Se6, $2, loop ; last loop iteration reached?

<«— Last element to
compute

<«4—Firstelement to
compute

element

The MIPS code is executed on a specific CPU that runs at 500 MHz (clock cycle = 2ns =

2x10-9 seconds) with followin

Instruction type CPI
ALU 4
Load 5
Store 7
Branch 3

g instruction type CPlIs :

For this MIPS code running on this CPU find:

1- Fraction of total instructions executed for each instruction type

2- Total number of CPU cycles
3- Average CPI

4- Fraction of total execution time for each instructions type

5- Execution time
6- MIPS rating, peak MIPS rating for this CPU

X[] array of words in memory, base address in $2,
s a constant word value in memory, address in $1

STUDENTS-HUBcom

46

https://students-hub.com

MIPS (The ISA) Loop Performance

Example (continued)

The code has 2 instructions before the loop and 5 instructions in the body of the loop which iterates

1000 times,

* Thus: Total instructions executed, | = 5x1000 + 2 = 5002 instructions

1 Number of instructions executed/fraction F; for each instruction type:
— ALUinstructions = 1 + 2x1000 = 2001 CPl, ,=4

— Load instructions = 1 + 1x1000 = 1001 CPl g =
— Store instructions = 1000 CPlgiore =
— Branch instructions = 1000 CPlgranch =

5
7

3 Fractiong,nen= Fgranch =

Fraction, , = F, = 2001/5002 = 0.4 = 40%
Fraction,g.q = Floag = 1001/5002= 0.2 = 20%
Fractiongge = Fere = 1000/5002 = 0.2 = 20%

2 CPU clockcycles = Zn:(CP| X Ci)

= 2001x4 + 1001x5 + 1000x7 + 1000x3 = 23009 cycles

3 Average CPI = CPU clock cycles /1 = 23009/5002 = 4.6

4 Fraction of execution time for each instruction type:
— Fraction of time for ALU instructions = CPl, , X F5 / CPI=4x0.4/4.6 = 0.348 = 34.8%
— Fraction of time for load instructions = CPl,,4 X Fload / CPI1=5x0.2/4.6 =0.217 =21.7%

— Fraction of time for store instructions = CPI

— Fraction of time for branch instructions = CPIbran,:h X Feranch / CP1=3x0.2/4.6 =0.13 = 13%

store

StO re

/ CPI=7x0.2/4.6 =0.304 = 30.4%

5 Executiontime =1 x CPI x C = CPU cycles x C = 23009 x 2x10° =

= 4.6x 10° seconds = 0.046 msec = 46 usec
6 MIPS rating = Clock rate / (CPI x 10%) =500/ 4.6 = 108.7 MIPS

— The CPU achieves its peak MIPS rating when executing a program that only has instructions of the type with
the lowest CPI. In this case branches with CPlg 1 = 3

— Peak MIPS rating = Clock rate / (CPlganen X 108) = 500/3 = 166.67 MIPS

STUDENTS-HUB.com

1000/5002= 0.2 = 20%

Instruction type

ALU
Load
Store
Branch

CPI

w g o

a7

https://students-hub.com

Computer Performance Measures :MFLOPS

A floating-point operation is an addition, subtraction,
multiplication, or division operation applied to numbers
represented by a single or a double precision floating-point
representation.

MFLOPS, for a specific program running on a specific
computer, is a measure of millions of floating point-operation
(megaflops) per second:

MFLOPS =
Number of floating-point operations / (Execution time x 109)

MFLOPS rating Is a better comparison measure between

different machines (applies even if ISAs are different) than the
MIPS rating.

— Applicable even if ISAs are different

48

STUDENTS-HUB.com

https://students-hub.com

Computer Performance Measures :MFLOPS

* Program-dependent: Different programs have different
percentages of floating-point operations present. i.e
compilers have no floating- point operations and yield a
MFLOPS rating of zero.

« Dependent on the type of floating-point operations
present in the program.

— Peak MFLOPS rating for a CPU: Obtained using a program
comprised entirely of the simplest floating point
Instructions (with the lowest CPI) for the given CPU design
which does not represent real floating point programs.

49

SSSSSSSSSSSSSSSS

https://students-hub.com

Quantitative Principles of Computer Design

« Amdahl’s Law:

— The performance gain from improving some portion of
a computer is calculated by:

Speedup = Performance for entire task using the enhancement

Performance for the entire task without using the enhancement

or Speedup = Execution time without the enhancement
Execution time for entire task using the enhancement

50

STUDENTS-HUB.com

https://students-hub.com

Performance Enhancement Calculations:
Amdahl's Law

 The performance enhancement possible due to a given design

Improvement is limited by the amount that the improved feature is
used

« Amdahl’s Law:
— Performance improvement or speedup due to enhancement E:

Execution Time without E Performance with E
Speedup(E) = -------mmmmmmmmmm s =

Execution Time with E Performance without E

— Suppose that enhancement E accelerates a fraction F of the execution
time by a factor S and the remainder of the time is unaffected then:

Execution Time with E = ((1-F) + F/S) X Execution Time without E
Hence speedup is given by:

| me without E 1

SPEEAUP(E) = ---m-mmmmmmm e oo e S —
((1- F)+F/S)XME (1-F) + FIS

F (Fraction of execution time enhanced) refers
to original execution time before the enhancement is applied Sl

STUDENTS-HUB.com

https://students-hub.com

Pictorial Depiction of Amdahl’'s Law

Enhancement E accelerates fraction F of original execution time by a factor of S

Before:
Execution Time without enhancement E: (Before enhancement is applied)

* shown normalizedto 1 = (1-F) + F=1

Unaffected fraction: (1- F) Affected fraction: F
| | ////
| :
| Unchanged | el
| | -
v v e
Unaffected fraction: (1- F) F/S
After:
Execution Time with enhancement E:
Execution Time without enhancement E 1
Speedup(E) = -----mmmmmmmmmme e ceeeees = memmeeeeemeeeeeee-
Execution Time with enhancement E (1-F) + F/S

52

STUDENTS-HUB.com

https://students-hub.com

Example of Amdahl's Law

* Floating point instructions improved to run 2X;
but only 10% of actual instructions are FP

ExTime,,, = ExTime 4 X (0.9 + .1/2) = 0.95 x EXTime,4

new —

Speed UPoverall = 1 = 1.053
0.95

53

SSSSSSSSSSSSSSSS

https://students-hub.com

Performance Enhancement Example

STUDENTS-HUB.com

For the RISC machine with the following instruction mix given
earlier:

Op Freq Cycles CPI({i) % Time
ALU 50% 1 5 23% CPI1 =22
Load 20% 5 1.0 45%
Store 10% 3 3 14%
Branch 20% 2 4 18%

If a CPU design enhancement improves the CPI of load instructions
from 5 to 2, what is the resulting performance improvement from
this enhancement:

Fraction enhanced = F = 45% or .45

Unaffected fraction = 1- F = 100% - 45% = 55% or .55
Factor of enhancement=S= 5/2= 2.5

Using Amdahl’s Law:

Speedupg) = -----m-mmmmmmee- T e = 1.37
(1-F) + F/S 55 + .45/2.5
54

https://students-hub.com

An Alternative Solution Using CPU Equation

Op Freq Cycles CPI(i) % Time
ALU 50% 1 5 23%
Load 20% 5 1.0 45% CP1 =22
Store 10% 3 3 14%
Branch 20% 2 4 18%

« If a CPU design enhancement improves the CPI of load instructions
from 5 to 2, what is the resulting performance improvement from
this enhancement:

Old CPI =2.2
New CPl= 5x1+.2x2+ 1x3+.2x2 =1.6

Original Execution Time Instructi ount x old CPlI x clo cle
Speedup(E) = ---------m-mmmmmmemeeee s e -
New Execution Time Instructiertcount x new CPl x cloc cle

new CPI 1.6

Which is the same speedup obtained from Amdahl’s Law in the
first solution. 55

STUDENTS-HUB.com

https://students-hub.com

Performance Enhancement Example

* A program runs in 100 seconds on a machine with multiply
operations responsible for 80 seconds of this time. By how much
must the speed of multiplication be improved to make the program
four times faster?

Desired speedup = 4 = —mmmmmmmmmm o
Execution Time with enhancement

— Execution time with enhancement = 100/4 = 25 seconds
25 seconds = (100 - 80 seconds) + 80 seconds/ S

25 seconds = 20 seconds + 80 seconds /S
— 5 = 80seconds /S
- S = 80/5= 16

Alternatively, it can also be solved by finding enhanced fraction of
execution time:

F = 80/100 = .8 | |

1 1 1 Solving for S gives S= 16
Speedup(E) = ------------------ R — S
(1-F) + F/S (1-.8) +.8/S 2 + .8/s

and then solving Amdahl’s speedup equation for desired enhancement factor
S Hence multiplication should be 16 times faster to get an overall speedu%6
of 4.

STUDENTS-HUB.com

https://students-hub.com

Performance Enhancement Example

* For the previous example with a program running in 100 seconds on
a machine with multiply operations responsible for 80 seconds of
this time. By how much must the speed of multiplication be
Improved to make the program five times faster?

Desired speedup = 5= —mmmmmmmmmm o
Execution Time with enhancement

— Execution time with enhancement = 100/5 = 20 seconds
20 seconds = (100 - 80 seconds) + 80 seconds /s
20 seconds = 20 seconds + 80 seconds /s
- O = 80seconds /s

No amount of multiplication speed improvement can achieve this.

57

STUDENTS-HUB.com

https://students-hub.com

Extending Amdahl's Law To Multiple
Enhancements

« Suppose that enhancement E; accelerates a fraction F; of the
original execution time by a factor S; and the remainder of the time

IS unaffected then:
((1—Zi F)+Y E i) XOriginal -Exeeution Time

Unaffected fraction /

Speedup =

1

((1_Zi = i)+Zi I;.)

Speedup =

Note: All fractions F; refer to original execution time before the

enhancements are applied.
58

STUDENTS-HUB.com

https://students-hub.com

Amdahl's Law With Multiple Enhancements:
Example

* Three CPU performance enhancements are proposed with the following
speedups and percentage of the code execution time affected.:

Speedup, =S, = 10 Percentage, = F, = 20%
Speedup,=S,= 15 Percentage, = F, = 15%
Speedup; = S; = 30 Percentage, = F; = 10%

« While all three enhancements are in place in the new design, each
enhancement affects a different portion of the code and only one
enhancement can be used at a time.

 What is the resulting overall speedup?
1

((1_Zi - i) + Zi I;I)

.+ Speedup= 1/ [(1-.2-.15 -.1) + .2/10 + .15/15 + .1/30)]
= 1/ 55 + 0333]
=1/ 5833 = 1.71

Speedup =

59

STUDENTS-HUB.com

https://students-hub.com

Pictorial Depiction of Example

Before:
Execution Time with no enhancements: 1

S,=10 S,=15 S;= 30
Unaffected, fraction: .55 F,=.15 |F,=.
/10 /15 /30

Unchanged

D
-

Unaffected, fraction: .55

After:
Execution Time with enhancements: .55+ .02 + .01 + .00333 = .5833

Speedup = 1/.5833= 1.71

Note: All fractions refer to original execution time.

60

STUDENTS-HUB.com

https://students-hub.com

Performance and Power

* Power is a key limitation
— Battery capacity has improved only slightly over time

* Need to design power-efficient processors

* Reduce power by
— Reducing frequency
— Reducing voltage
— Putting components to sleep

* Energy efficiency
— Important metric for power-limited applications
— Defined as performance divided by power consumption

SSSSSSSSSSSSSSSS

https://students-hub.com

Dynamic Energy and Power

* Dynamic energy
— Transistor switch from0->10or1->0
— Y, x Capacitive load x Voltage?

« Dynamic power
— Y, x Capacitive load x Voltage? x Frequency switched

* Reducing clock rate reduces power, not energy

SSSSSSSSSSSSSSSS

https://students-hub.com

Power & Clock Rate

(snep) 1emod

— 120
+ 100

o
(o0}
|
T

L
(0))

3600 2667

2000

Clock Rate o

o (@
(o} <
| 1
1 1

Power

29.1

[

66
O

£ 20

4.9

@
™

(£002)
playsiuay
2 2l0)H
(+002)
Joosald
¥ wnnuad

(Lo0Z2)
SHETETY
¥ wninuad

(2661) 01d
wniuad

(c661)
wniuad

(6861)
98108

(G861)
98£08

(c861)
98208

10000
1000 +

!

1
o
s

100 +

(ZHIN) 8rey »20|D

STUDENTS-HUB.com

https://students-hub.com

Performance and Power

Relative Performance

STUDENTS-HUB.com

B Pentium M @ 1.6/0.6 GHz
B Pentium 4-M @ 2.4/1.2 GHz
B Pentium 11I-M @ 1.2/0.8 GHz

SPECINT2000|SPECFP2000 |[SPECINT2000|SPECFP2000 [SPECINT2000|SPECFP2000

Always on / maximum clock |Laptop mode /adaptive clock [Minimum power / min clock

Benchmark and Power Mode

https://students-hub.com

Energy Efficiency

[]PentiumM @ 1.6/0.6 GHz
[1Pentium 4-M @ 2.4/1.2 GHz

> 5 | OdPentium l-M @ 1.2/0.8 GHz
c
O
E 4 Energy efficiency of the Pentium M is
'-'i highest for the SPEC2000 benchmarks
D 5
O
c
LL
L 2 -
=
©
L 1-
o
0

SPECINT 2000 | SPECFP 2000 | SPECINT 2000 | SPECFP 2000 | SPECINT 2000 | SPECFP 2000

Always on / maximum clock | Laptop mode / adaptive clock | Minimum power / min clock

Benchmark and power mode

STUDENTS-HUB.com

https://students-hub.com

Chip Manufacturing Process

Blank wafers

Silicon ingot
30 cm 1 mm thick
diameter ‘
Tested dies Individual dies Patterned wafer
IZEIZEIZEI Di IZEIZEIZEIZ
X e .
XOXOOD < Tester < DEEEE <= | Dicer | €= @
DEXE DEEE
XXM HEE
‘ Packaged dies Tested Packaged
Bond die to L i i Part = Ship to
- [EHE —> = X EE —>
ackage Tester Customers
i B [[i [[

STUDENTS-HUB.com

https://students-hub.com

Effect of Die Size on Yield

Good Die

[Defective Die

120 dies, 109 good 26 dies, 15 good

Dramatic decrease In yield with larger dies

Yield = (Number of Good Dies) / (Total Number of Dies)
1

(1 + (Defect per area x Die area / 2))?

Yield =

Die Cost = (Wafer Cost) / (Dies per Wafer x Yield)

STUDENTS-HUB.com

https://students-hub.com

Integrated Circuit Cost

* Integrated circuit

Cost of die + Cost of testing die + Cost of packaging and final test

Cost of integrated circuit = : :
Final test yield

Cost of wafer
Dies per wafer x Die yield

Cost of die =

. 7 % (Wafer diameter/2)” T x Wafer diameter
Dies per wafer = - - - _ .
Die area 2% Die area

Yield = (Number of Good Dies) / (Total Number of Dies)
1

(1 + (Defect per area x Die area / 2))?

Yield =

STUDENTS-HUB.com

https://students-hub.com

Things to Remember

« Performance is specific to a particular program
— Any measure of performance should reflect execution time

— Total execution time Is a consistent summary of
performance

* For a given ISA, performance improvements come
from
— Increases in clock rate (without increasing the CPI)
— Improvements in processor organization that lower CPI

— Compiler enhancements that lower CPI and/or instruction
count

— Algorithm/Language choices that affect instruction count
 Pitfalls (things you should avoid)

— Using a subset of the performance equation as a metric

— Expecting improvement of one aspect of a computer to
Increase performance proportional to the size of
improvement

STUDENTS-HUB.com

https://students-hub.com

You are going to enhance a machine and there are two
types of possible improvements: either (i) make multiply
Instructions run 4 times faster, or (i) make memory access
Instructions run two times faster than before. You repeatedly
run a program that takes 100 seconds to execute (on the
original machine) and find that of this time 25% is used for
multiplication, 50% for memory access instructions, and
25% for other tasks.

1. What will the speedup be if you improve both multiplication and
memory access?

2. Assume the program you run has 10 billions instructions and runs on
the machine that has a clock rate of 1GHz. Calculate the CPI for this
machine. Assume further that the CPI for multiplication instructions is
20 cycles and the CPI for memory access instructions is 6 cycles.
Compute the CPI for all other instructions.

3. What is the CPI for the improved machine when improvements on both
multiplication and memory access instructions are made?

STUDENTS-HUB.com

https://students-hub.com

