ARM Assembly Language
Programming &
Architecture

Muhammad Ali Mazidi
Sarmad Naimi
Sepehr Naimi
Janice Mazidi

$r
AN e
; 4 4 .:n-n_:z*.". ' RCSSON &
o paoHm og
— : (\%% ‘%
QE— . -

ARM Assembly Language

Programming & Architecture
Muhammad Ali Mazidi
Sarmad Naimi

Sepehr Naimi

Janice Mazidi

S

STUDENTS-HUB.com Uploaded By: anonymous

Copyright © 2013 Mazidis and Naimis
All rights reserved

(A portion of this book was taken from “The 80x86 IBM PC & Compatible
Computers Vol 1 &2: 4th edition” and was previously published by Pearson Education,
Inc.)

STUDENTS-HUB.com Uploaded By: anonymous

“Regard man as a mine rich in gems of inestimable value.
Education can, alone, cause it to reveal its treasures, and enable
mankind to benefit therefrom.”

Baha’u’llah

STUDENTS-HUB.com Uploaded By: anonymous

Dedication

To the faculty, staff, and students of BIHE university for their dedication and
steadfastness.

STUDENTS-HUB.com Uploaded By: anonymous

Preface

The ARM processor is becoming the dominant CPU architecture in the computer
industry. It is already the leading architecture in cell phones and tablet computers. With
such a large number of companies producing ARM chips, it is certain that the architecture
will move to the laptop, desktop and high-performance computers currently dominated by
x86 architecture from Intel and AMD. Currently the PIC and AVR microcontrollers
dominate the 8-bit microcontroller market. The ARM architecture will have a major
impact in this area too as designers become more familiar with its architecture. This book
is intended as an introduction to ARM assembly language programming and architecture.
We assume no prior background in assembly language programming with other CPUs.
However, we urge you to study Chapter 0 covering the fundamentals of digital systems
such as hexadecimal numbers, various types of memory, memory and I/O interfacing, and
memory address decoding. Chapter 0 is available free of charge on our website

http://www.MicroDigitalEd.com/ARM/ARM_books.htm
Universities and colleges

This book is intended for both academic and industry readers. The answers to
review questions at end of each section are provided at end of the chapter. If you are using
this book for a university course there are end-of-chapter problems that can be found on

www.MicroDigitalEd.com/ARM/ARM_books.htm
Our upcoming books in the ARM series

This book covers the Assembly language programming of the ARM chip. The ARM
Assembly language is standard regardless of who makes the chip. The ARM licensees are
free to implement the on-chip peripheral (ADC, Timers, /O, ...) as they choose. Since
the ARM peripherals are not standard among the various vendors, we have dedicated a
separate book to each vendor. The following books are planned in this series:

TI ARM Peripheral Programming and Interfacing

Freescale ARM Peripheral Programming and Interfacing
NXP ARM Peripheral Programming and Interfacing

Atmel ARM Peripheral Programming and Interfacing

The above books use C language to program the peripherals.

Finally, we would like to thank professors Shujen Chen, Rabah Aoufi, and Clyde
Knight for their reading of the book before publication. We sincerely appreciate their
insights and inputs. We would also like to thank Fada Mahmoudi, Mozhde Amiri, Keyvan
Roshani, Azalia Yaghini, Arash Zamani, Parham Fazlali, and Ashkan Farivar for sharing
their comments on the prepublication version of this e-book.

Contact us at the following email address:

STUDENTS-HUB.com Uploaded By: anonymous

http://www.MicroDigitalEd.com/ARM/ARM_books.htm

mdebooks@yahoo.com

and please place ARM book in subject line of your email.

STUDENTS-HUB.com Uploaded By: anonymous

mailto:mdebooks@yahoo.com

Table of Contents

Chapter 1: The History of ARM and Microcontrollers

Section 1.1: Introduction to Microcontrollers

Section 1.2: The ARM Family History

Problems

Answers to Review Questions

Chapter 2: ARM Architecture and Assembly [.anguage Programming

Section 2.1: The General Purpose Registers in the ARM
Section 2.2: The ARM Memory Map

Section 2.3: Load and Store Instructions in ARM

Section 2.4: ARM CPSR (Current Program Status Register)

Section 2.5: ARM Data Format and Directives

Section 2.6: Introduction to ARM Assembly Programming

Section 2.7: Assembling an ARM Program

Section 2.8: The Program Counter and Program ROM Space in the ARM

Section 2.9: Some ARM Addressing Modes
Section 2.10: RISC Architecture in ARM

Section 2.11: Viewing Registers and Memory with ARM Keil IDE

Problems
Answers to Review Questions

Chapter 3: Arithmetic and Logic Instructions and Programs
Section 3.1: Arithmetic Instructions

Section 3.2: Logic Instructions

Section 3.3: Rotate and Barrel Shifter

Section 3.4: Shift and Rotate Instructions in ARM Cortex (Case Study)

Section 3.5: BCD and ASCII Conversion

Problems
Answers to Review Questions

Chapter 4: Branch, Call, and Looping in ARM

Section 4.1: Looping and Branch Instructions

STUDENTS-HUB.com

Uploaded By: anonymous

Section 4.2: Calling Subroutine with BL,

Section 4.3: ARM Time Delay and Instruction Pipeline

Section 4.4: Conditional Execution

Problems

Answers to Review Questions

Chapter 5: Signed Numbers and IEEE 754 Floating Point
Section 5.1: Signed Numbers Concept
Section 5.2: Signed Number Instructions and Operations
Section 5.3: IEEE 754 Floating-Point Standards

Problems:

Answers to Review Questions

Chapter 6: ARM Memory Map, Memory Access, and Stack
Section 6.1: ARM Memory Map and Memory Access
Section 6.2: Stack and Stack Usage in ARM
Section 6.3: ARM Bit-Addressable Memory Region
Section 6.4: Advanced Indexed Addressing Mode
Section 6.5: ADR, LLDR, and PC Relative Addressing

Problems

Answers to Review Questions
Chapter 7: ARM Pipeline and CPU Evolution

Section 7.1: ARM Pipeline Evolution

Section 7.2: Other CPU Enhancements

Problems

Answers to Review Questions

Appendix A: ARM Cortex-M3 Instruction Description
Section A.1: List of ARM Cortex-M3 Instructions

Section A.2: ARM Cortex-M3 Instruction Description
Appendix B: ARM Assembler Directives
Section B.1: List of ARM Assembler Directives

Section B.2: Description of ARM Assembler Directives

Appendix C: Macros

STUDENTS-HUB.com

Uploaded By: anonymous

What is a macro and how is it used?

Macros vs. subroutines

Appendix D: Flowcharts and Pseudocode

Flowcharts

Pseudocode

Appendix E: Passing Arguments into Functions

E.1: Passing arguments through registers

E.2: Passing through memory using references

E.3: Passing arguments through stack

E.4: AAPCS (ARM Application Procedure Call Standard)
Appendix F: ASCII Codes

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Chapter 1: The History of ARM and Microcontrollers

In Section 1.1 we look at the history of microcontrollers then we introduce some of
the available microcontrollers. The history of ARM is provided in Section 1.2.

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section 1.1: Introduction to Microcontrollers

The evolution of Microprocessors and Microcontrollers

In early computers, CPUs were designed using a number of vacuum tubes. The
vacuum tube was bulky and consumed a lot of electricity. The invention of transistors,
followed by the IC (Integrated Circuit), provided the means to put a CPU on printed
circuit boards. The advances in IC technology allowed putting the entire CPU on a single
IC chip. This IC was called a microprocessor. Some of the microprocessors are the x86
family of Intel used widely in desktop computers, and the 68000 of Motorola. The
microprocessors do not contain RAM, ROM, or I/O peripherals. As a result, they must be
connected externally to RAM, ROM and I/0O, as shown in Figure 1-1.

Serial
Ganeral ROM 110 Port Timer lﬂl'm'ﬂﬂl' (;GDE
Purpose

o <II R T

Figure 1- 1: A Computer Made by General Purpose Microprocessor

In the next step, the different parts of a system, including CPU, RAM, ROM, and
I/Os, were put together on a single IC chip and it was called microcontroller. SOC
(System on Chip) and MCU (Micro Controller Unit) are other names used to refer to
microcontrollers. Figure 1-2 shows the simplified view of the internal parts of
microcontrollers.

Microcontroller

Serial

ROM IO Port Timer Inhmq:t COM
Port

<II T T T 0 0

Figure 1- 2: Simplified View of the Internal Parts of Microcontrollers (SOC)

Since the microcontrollers are cheap and small, they are widely used in many
devices.

Types of Computers

Typically, computers are categorized into 3 groups: desktop computers, servers, and
embedded systems.

Desktop computers, including PCs, tablets, and laptops, are general purpose
computers. They can be used to play games, read and edit articles, and do any other task
just by running the proper application programs. The desktop computers use
MiCroprocessors.

STUDENTS-HUB.com Uploaded By: anonymous

In contrast, embedded systems are special-purpose computers. In embedded system
devices, the software application and hardware are embedded together and are designed to
do a specific task. For example, the Kindle, digital camera, vacuum cleaner, mp3 player,
mouse, keyboard, and printer, are some examples of embedded systems. In most cases
embedded systems run a fixed program and contain a microcontroller. It is interesting to
note that embedded systems are the largest class of computers though they are not
normally considered as computers by the general public.

Servers are the fast computers which might be used as web hosts, database servers,
and in any application in which we need to process a huge amount of data such as weather
forecasting. Similar to desktop computers, servers are made of microprocessors but,
multiple processors are usually used in each server. Both servers and desktop computers
are connected to a number of embedded system devices such as mouse, keyboard, disk
controller, Flash stick memory and so on.

A Brief History of the Microcontrollers

In the 1980s and 1990s, Intel and Motorola dominated the field of microprocessors
and microcontrollers. Intel had the x86 (8088/86, 80286, 80386, 80486, and Pentium).
Motorola (now Freescale) had the 68xxx (68000, 68010, 68020, etc.). Many embedded
systems used Intel’s 32-bit chips of x86 (386, 486, Pentium) and Motorola’s 32-bit 68xxx
for high-end embedded products such as routers. For example, Cisco routers used 68xxx
for the CPU. At the low end, the 8051 from Intel and 68HC11 from Motorola were the
dominant 8-bit microcontrollers. With the introduction of PIC from Microchip and AVR
from Atmel, they became major players in the 8-bit market for microcontroller. At the
time of this writing, PIC and AVR are the leaders in terms of volume for 8-bit
microcontrollers. In the late 1990s, the ARM microcontroller started to challenge the
dominance of Intel and Motorola in the 32-bit market. Although both Intel and Motorola
used RISC features to enhance the performance of their microprocessors, due to the need
to maintain compatibility with legacy software, they could not make a clean break and
start over. Intel used massive amounts of gates to keep up the performance of x86
architecture and that in turn increased the power consumption of the x86 to a level
unacceptable for battery-powered embedded products. Meanwhile Freescale (Motorola)
streamlined the instructions of the 68xxx CPU and created a new line of microprocessors
called ColdFire, while at the same time worked with IBM to design a new RISC processor
called PowerPC. While both PowerPC and Coldfire are still alive and being used in the
32-bit market, it is ARM which has become the leading microcontroller in the 32-bit
market.

Currently Available Microcontrollers

There are many microcontrollers available in the market. Some of them are listed in
Table 1-1.

32-bit

ARM, AVR32 (Atmel), ColdFire (Freescale), MIPS32, PIC32 (Microchip), PowerPC, TriCore
(Infineon), SuperH

STUDENTS-HUB.com Uploaded By: anonymous

16-bit

MSP430 (TT), HCS12 (Freescale), PIC24 (Microchip), dsPIC (Microchip)
8-bit

8051, AVR (Atmel), HCSO08 (Freescale), PIC16, PIC18

Table 1- 1: Some Microcontrollers
Introduction to some 32-bit microcontrollers

x86: The x86 and Pentium processors are based on the 32-bit architecture of the
386. Although both Intel and AMD are pushing the x86 into the embedded market, due to
the high power consumption of these chips, the embedded market has not embraced the
x86. Intel is working hard to make a low-power version of the 386 called Atom available
for the embedded market.

PIC32: It is based on the MIPS architecture and is getting some attention due to the
fact it shares some of the peripherals with the PIC24/PIC18 chips and also using the
MPLAB for IDE. Microchip hopes the free MPLAB IDE and engineers’ knowledge of
the 8-bit PIC will attract embedded developers to the PIC32 as they move to 32-bit
systems for their high end embedded products.

ColdFire: The Freescale (formerly Motorola) is based on the venerable 680x0
(68000, 68010) so popular in the 1980s and 1990s. They streamlined the 68000
instructions to make it more RISC-type architecture and is the top seller of 32-bit
processors from the Freescale. In recent years Freescale revamped and redesigned the 8-
bit HCS08 (from the 6808) to share some of the peripherals with ColdFire and are pushing
them under the name Flexis. They hope engineers use the HCS08 at the low-end and move
to Coldfire for high-end of the embedded products with minimum learning curve.

PowerPC: This was developed jointly by IBM and Freescale. It was used in the
Apple Mac for a few years. Then Apple switched to x86 for a while and currently is using
ARM in all their products. Nowadays, both Freescale and IBM market the PowerPC for
the high-end of the embedded systems.

How to choose a microcontroller
The following two factors can be important in choosing a microcontroller:

Chip characteristics: Some of the factors in choosing a microcontroller chip are
clock speed, power consumption, price, and on-chip memories and peripherals.

Available resources: Other factors in choosing a microcontroller include the IDE
compiler, legacy software, and multiple sources of production.

Review Questions
1. True or false. Microcontrollers are normally less expensive than microprocessors.

2. When comparing a system board based on a microcontroller and a general- purpose
microprocessor, which one is cheaper?

STUDENTS-HUB.com Uploaded By: anonymous

3. A microcontroller normally has which of the following devices on-chip?
(a) RAM (b) ROM (c) I/O (d) all of the above

4. A general-purpose microprocessor normally needs which of the following devices to
be attached to it?

(a) RAM (b) ROM (c) I/O (d) all of the above
5. An embedded system is also called a dedicated system. Why?
6. What does the term embedded system mean?
7. Why does having multiple sources of a given product matter?

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section 1.2: The ARM Family History
In this section, we look at the ARM and its history.

A brief history of the ARM

The ARM came out of a company called Acorn Computers in United Kingdom in
the 1980s. Professor Steve Furber of Manchester University worked with Sophie Wilson
to define the ARM architecture and instructions. The VLSI Technology Corp. produced
the first ARM chip in 1985 for Acorn Computers and was designated as Acorn RISC
Machine (ARM). Unable to compete with x86 (8088, 80286, 80386, ...) PCs from IBM
and other personal computer makers, the Acorn was forced to push the ARM chip into the
single-chip microcontroller market for embedded products. That is when Apple Corp. got
interested in using the ARM chip for the PDA (personal digital assistants) products. This
renewed interest in the chip led to the creation of a new company called ARM (Advanced
RISC Machine). This new company bet its entire fortune on selling the rights to this new
CPU to other silicon manufacturers and design houses. Since the early 1990s, an ever
increasing number of companies have licensed the right to make the ARM chip. See Table
1-2 for the major milestones of the ARM.

Also see http://www.arm.com/about/company-profile/milestones.php for the list.

Table 1- 2: ARM Company milestones (www.ARM.com)

1982

m Acorn produced a computer for BBC named BBC micro. Good sales of the computer
motivated Acorn to decide to make its own microprocessor.

m Acorn and VLSI began designing the ARM microprocessor.

m Acorn Computer Group developed the world’s first commercial RISC processor. The
ARMyv1 had 2500 transistors, and worked with a frequency of 4MHz.

—~
O
AN

Acorn’s ARM processor debuts as the first RISC processor for low-cost PCs

—~
Ne)
o

Acorn introduced ARMv3 with a frequency of 25MHz. It had a 4KB cache as well.

I~

9

S

STUDENTS-HUB.com Uploaded By: anonymous

http://www.arm.com/about/company-profile/milestones.php
http://www.ARM.com

Advanced RISC Machines (ARM) spins out of Acorn and Apple Computer’s collaboration
efforts with a charter to create a new microprocessor standard. VLSI Technology becomes
an investor and the first licensee.

~
O
[y

m ARM introduced its first embeddable RISC core, the ARMS6 solution using ARMv3
architecture.

m GEC Plessey and Sharp licensed ARM technology

Texas Instruments licensed ARM technology

ARM introduced the ARM7 core.

~
Ne)
9

ARM announced the Thumb architecture extension, which gives 32-bit RISC performance
at 16-bit system cost and offers industry-leading code density

ARM launched Software Development Toolkit

I~
Ne)
(@)

ARM and VLSI Technology introduced the ARM810 microprocessor
ARM and Microsoft worked together to extend Windows CE to the ARM architecture

~
O
o
N

Hyundai, Lucent, Philips, Rockwell and Sony licensed ARM technology
ARMI9TDMI family announced

1998

HP, IBM, Matsushita, Seiko Epson and Qualcomm licensed ARM technology
ARM developed synthesizable version of the ARM7TDMI core
ARM Partners shipped more than 50 million ARM-powered products

—~
o]
o

LSI Logic, STMicroelectronics and Fujitsu licensed ARM technology

ARM announced synthesizable ARMOE processor with enhanced signal processing

STUDENTS-HUB.com Uploaded By: anonymous

N
=
S

Agilent, Altera, Micronas, Mitsubishi, Motorola, Sanyo, Triscend and ZTEIC licensed
ARM technology

ARM launched SecurCore family for smartcards

TSMC and UMC became members of ARM Foundry Program

N
S
S
=

ARM’s share of the 32-bit embedded RISC microprocessor market grew to 76.8 per cent
ARM announced new ARMv6 architecture

Fujitsu, Global UniChip, Samsung and Zeevo licensed ARM technology

ARM acquired key technologies and an embedded debug design team from Noral
Micrologics Ltd

2002

ARM announced that it had shipped over one billion of its microprocessor cores to date

ARM technology licensed to Seagate, Broadcom, Philips, Matsushita, Micrel, eSilicon,
Chip Express and ITRI

ARM launched the ARM11 micro-architecture

m ARM launches its Real View family of development tools

Flextronics became the first ARM Licensing Partner program member, allowing it to sub-
license ARM technology to its own customers

N
S
=
N

The ARM Cortex family of processors, based on the ARMv?7 architecture, is announced.
The ARM Cortex-M3 is announced in conjunction, as the first of the new family of
processors

ARM Cortex-M3 processor announced, the first of a new Cortex family of processor cores

MPCore multiprocessor launched, the first integrated multiprocessor

OptimoDE technology launched, the groundbreaking embedded signal processing core

N
S
S
U

ARM acquired Keil Software

ARM Cortex-A8 processor announced

N
S
S
AN

Five billionth ARM Powered processor shipped to the mobile device market

ARM Cortex-M1 processor launched — the first ARM processor designed specifically for
implementation on FPGAs

STUDENTS-HUB.com Uploaded By: anonymous

m RealView Profiler for Embedded Software Analysis introduced
m ARM unveils Cortex-A9 processors for scalable performance and low-power designs
2008
® ARM announces 10 billionth processor shipment
m ARM Mali-200 GPU Worlds First to achieve Khronos Open GL ES 2.0 conformance at
1080p HDTYV resolution
2009
®m ARM announces 2GHz capable Cortex-A9 dual core processor implementation
m ARM launches its smallest, lowest power, most energy efficient processor, Cortex-M0
2010
m ARM launches Cortex-M4 processor for high performance digital signal control
m ARM together with key Partners form Linaro to speed rollout of Linux-based devices
m Microsoft becomes an ARM Architecture Licensee
m ARM & TSMC sign long-term agreement to achieve optimized Systems-on-Chip based on
ARM processors, extending down to 20nm
m ARM extends performance range of processor offering with the Cortex-A15 MPCore
processor
®m ARM Mali becomes the most widely licensed embedded GPU architecture
m ARM Mali-T604 Graphics Processing Unit introduced providing industry-leading graphics
performance with an energy-efficient profile
2011
m Microsoft unveils Windows on ARM at CES 2011
m [BM and ARM collaborate to provide comprehensive design platforms down to 14nm
m ARM and UMC extend partnership into 28nm
m Cortex-A7 processor launched
m Big-Little processing announced, linking Cortex-A15 and Cortex-A7 processors
m ARMVS architecture unveiled at TechCon
m AMP announce license and plans for first ARMv8-based processor
m ARM Mali-T658 GPU launched
m ARM expands R&D presence in Taiwan with Hsinchu Design Center
m ARM and Avnet launch Embedded Software Store (ESS)
m ARM, Cadence and TSMC tape out first 20nm Cortex-A15 multicore processor

STUDENTS-HUB.com Uploaded By: anonymous

N
=
NS

ARM, Gemalto and G&D form joint venture to deliver next-generation mobile security
First Windows RT (Windows on ARM) devices revealed

ARM, AMD, Imagination, MediaTek and Texas Instruments founding members of
Heterogeneous System Architecture (HAS) Foundation

ARM and TSMC work together on FinFET process technology for next-generation 64-bit
ARM processors

ARM forms first UK forum to create technology blueprint “Internet of Things” devices

ARM named one of Britain’s Top Employers

MIT Technology Review named ARM in its list of 50 Most Innovative Companies

Currently the ARM Corp. receives its entire revenue from licensing the ARM to
other companies since it does not own state of the art chip fabrication facility. This
business model of making money from selling IP (intellectual property) has made ARM
one of the most widely used CPU architectures in the world. Unlike Intel or Freescale who
define the architecture and fabricate the chip, hundreds of companies who have licensed
the ARM IP feel a level playing field when it comes to competing with the originator of
the chip.

ARM and Apple

When Steve Jobs came back to run the Apple in 1996, the company was in decline.
It had lost the personal computer race that had started 20 years earlier. The introduction of
iPod in 2001 changed the fortune of that company more than anything else. Apple had
tried to sell a PDA called Newton in the 1990s but was not successful. The Newton was
using the ARM processor and it was too early for its time. The iPod used an enhanced
version of ARM called ARM7 and became an instant success. iPod brought the attention
to the ARM chip that it deserved. Since then Apple has been using the ARM chip in
iPhones and iPads. Today, the ARM microcontroller is the CPU of choice for designing
cell phone and other hand-held devices. In the future, ARM will make further in-roads
into the tablet and laptop PC market now that Microsoft Corp has introduced the ARM
version of its Windows operating system.

ARM family variations

Although the ARM7 family is the most widely used version, ARM is determined to
push the architecture into the low end of the microcontroller market where 8- and 16-bit
microcontrollers have been traditionally dominating. For this reason they have come up
with a microcontroller version of ARM called Cortex. As we will see in future chapters,
the Cortex family of ARM microcontrollers maintains compatibility with the ARM?7
without sacrificing performance. The ARM architecture is also being pushed into high-
performance systems where multicore chips such as Intel Xeon dominate.

Figure 1-3 shows some of the most widely used ARM processors. It should be
emphasized that we cannot use the terms ARM family and ARM architecture
interchangeably. For example, ARM11 family is based on ARMv6 architecture and

STUDENTS-HUB.com Uploaded By: anonymous

ARMV7A is the architecture of Cortex-A family.

e

cocs
mbedded Corlex

(" Frcosson) Coneb
Classic ARM
Processos. |

CORE {:‘_ARMHMP] (Cortex-A5 |

(ARM926 | (ARM176JZ | (Cortex-R7) (sc30 | ([scoo |

(Ascto0) [ARM968 | [ARM1136J | (Cortex-RS | (Cortex-M4 | [Cortex-M1 |

(ARMTTOMI | [ARM946 | [ARM1156T2 | (Cortex-R4 | (Cortex-M3 | [Cortex-M0 |

Family | ARM7TDMI ARMIE ARM11 Cortex-AlR Cortex-M Cortex-M

Architecture
Version ARMvAT ARMvSTJ ARMvE ARMvTAIR ARMvTM/ME ARMvEM

Figure 1- 3: ARM Family and Architecture
One CPU, many peripherals

ARM has defined the details of architecture, registers, instruction set, memory map,
and timing of the ARM CPU and holds the copyright to it. The various design houses and
semiconductor manufacturers license the IP (intellectual property) for the CPU and can
add their own peripherals as they please. It is up to the licensee (design houses and
semiconductor manufactures) to define the details of peripherals such as I/O ports, serial
port UART, timer, ADC, SPI, DAC, 12C, and so on. As a result while the CPU instructions
and architecture are same across all the ARM chips made by different vendors, their
peripherals are not compatible. That means if you write a program for the serial port of an
ARM chip made by TI (Texas Instrument), the program might not necessarily run on an
ARM chip sold by NXP. This is the only drawback of the ARM microcontroller. The good
news is the IDE (integrated development environment) such as Keil (see www.keil.com)
or IAR (see www.IAR.com) do provide peripheral libraries for chips from various vendors
and make the job of programming the peripherals much easier. It must be noted that in
recent years ARM provides the IP for some peripherals such as UART and SPI, but unlike
the CPU architecture, its adoption is not mandatory and it is up to the chip manufacturer
whether to adopt it or not. This is in contrast to the Coldfire microcontroller from
Freescale, in which the Freescale defines the architecture and peripherals, fabricates, sells,
and supports the chip. Figure 1-4 shows the ARM simplified block diagram and Table 1-3
provides a list of some ARM vendors.

STUDENTS-HUB.com Uploaded By: anonymous

Designed Designed by chip

by ARM manufacturers
O 5 i.;' E .
] System Analog m|
C mimimimimimimie! | |l Il
ol la = e =
= 5 = m || £ =1 -
= B e AT T TR R
E {:gp.:?' 2l 1= z o 5 = = O g % =
O | arwo n_:'. i % 2 5 ; g a8 & ﬁ .
=1 R E R R
C ' {ﬂcﬁ = HIEE g = m
O 4] 1) 1S 0
I F X A
0 SRR FliZxrrsl b
C * ¥ * 1 + 1 * Y + Y *]
C -<: Buses > 5
e EEEEDES Tl -
C E P Ell
C 2|2 el |E| |=] |z] |- O = O
@
d | [€]8 AELEE £ | P
C s | P
C Memory Serial interfaces u)
C N
Designed by chip
manufacturers
Figure 1- 4: ARM Simplified Block Diagram
Actel Analog Devices Atmel
Broadcom Cypress Ember
Dust Networks Energy Freescale
Fujitso Nuvoton NXP
Renesas Samsung ST
Toshiba Texas Instruments Triad Semiconductor

Table 1- 3: ARM Vendors
Review Questions

1. True or false. The ARM CPU instructions are universal regardless of who makes the
chip.

2. True or false. The peripherals of ARM microcontroller are standardized regardless of

STUDENTS-HUB.com Uploaded By: anonymous

who makes the chip.
3. An ARM microcontroller normally has which of the following devices on-chip?
(Q) RAM (b) Timer (c) /O (d) all of the above
4. For which of the followings, ARM has defined standard?
(a) RAM size (b) ROM size (c) instruction set (d) all of the above

See the following websites for ARM microcontrollers and ARM trainers:

http:/ www.ARM.com

http:// www.MicroDigitalEd.com

STUDENTS-HUB.com Uploaded By: anonymous

http://www.ARM.com
http://www.MicroDigitalEd.com

Problems

Section 1.1: Introduction to Microcontrollers
1. True or False. A general-purpose microprocessor has on-chip ROM.
2. True or False. Generally, a microcontroller has on-chip ROM.
3. True or False. A microcontroller has on-chip I/O ports.
4. True or False. A microcontroller has a fixed amount of RAM on the chip.
5

. What components are usually put together with the microcontroller onto a single
chip?

o

Intel’s Pentium chips used in Windows PCs need external and chips
to store data and code.

~

List three embedded products attached to a PC.
8. Why would someone want to use an x86 as an embedded processor?

9. Give the name and the manufacturer of some of the most widely used 8-bit
microcontrollers.

10. In Question 9, which one has the most manufacture sources?

11. In a battery-based embedded product, what is the most important factor in choosing
a microcontroller?

12. In an embedded controller with on-chip ROM, why does the size of the ROM
matter?

13. In choosing a microcontroller, how important is it to have multiple sources for that
chip?

14. What does the term “third-party support” mean?
Section 1.2: The ARM Family History
15. What does ARM stand for?
16. True or false. In ARM, architectures have the same names as families.
17. True or false. In 1990s, ARM was widely used in microprocessor world.
18. True or false. ARM is widely used in Apple products, like iPhone and iPod.
19. True or false. Currently the Microsoft Windows does not support ARM products.
20. True or false. All ARM chips have standard instructions.
21. True or false. All ARM chips have standard peripherals
22. True or false. The ARM corp. also manufactures the ARM chip.
23. True or false. The ARM IP must be licensed from ARM corp.

24. True or false. A given serial communication program is written for TI ARM chip. It

STUDENTS-HUB.com Uploaded By: anonymous

should work without any modification on Freescale ARM chip

25. True or false. A given Assembly language program is written for a given family of
ARM Cortex chip. Any other Cortex ARM chip can execute the program.

26. True or false. At the present time, ARM has just one manufacturer.
27. What is the difference between the ARM products of different manufacturers?
28. Name some 32-bit microcontrollers.

29. What is Intel’s challenge in decreasing the power consumption of the x867?

STUDENTS-HUB.com Uploaded By: anonymous

Answers to Review Questions
Section 1.1
True

A microcontroller-based system
d
d

It is dedicated because it does only one type of job.

R o

Embedded system means that the application (software) and the processor (hardware
such as CPU and memory) are embedded together into a single system.

~

Having multiple sources for a given part means you are not hostage to one supplier.
More importantly, competition among suppliers brings about lower cost for that

product.
Section 1.2
1. True
2. False
3. d
4. ¢

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Chapter 2: ARM Architecture and Assembly Language
Programming

CPUs use registers to store data temporarily. To program in Assembly language, we
must understand the registers and architecture of a given CPU and the role they play in
processing data. In Section 2.1 we look at the general purpose registers (GPRs) of the
ARM. We demonstrate the use of GPRs with simple instructions such as MOV and ADD.
Memory map and memory access of the ARM are discussed in Sections 2.2 and 2.3,
respectively. In Section 2.4 we discuss the status register’s flag bits and how they are
affected by arithmetic instructions. In Section 2.5 we look at some widely used Assembly
language directives, pseudo-code, and data types related to the ARM. In Section 2.6 we
examine Assembly language and machine language programming and define terms such
as mnemonics, opcode, operand, and so on. The process of assembling and creating a
ready-to-run program for the ARM is discussed in Section 2.7. Step-by-step execution of
an ARM program and the role of the program counter are examined in Section 2.8.
Section 2.9 examines some ARM addressing modes. The merits of RISC architecture are
examined in Section 2.10. Section 2.11 discusses the Keil IDE.

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section 2.1: The General Purpose Registers in the ARM

CPUs use registers to store data temporarily. To program in Assembly language, we
must understand the registers and architecture of a given CPU and the role they play in
processing data. In this section we look at the general purpose registers (GPRs) of the
ARM and we demonstrate the use of GPRs with simple instructions such as MOV and
ADD.

ARM microcontrollers have many registers for arithmetic and logic operations. In
the CPU, registers are used to store information temporarily. That information could be a
byte of data to be processed, or an address pointing to the data to be fetched. All of ARM
registers are 32-bit wide. The 32 bits of a register are shown in Figure 2-1. These range
from the MSB (most-significant bit) D31 to the LSB (least-significant bit) DO. With a 32-
bit data type, any data larger than 32 bits must be broken into 32-bit chunks before it is
processed. Although the ARM default data size is 32-bit many assemblers also support the
single bit, 8-bit, and 16-bit data types, as we will see in future chapters. The 32-bit data
size of the ARM is often referred as word. This is in contrast to x86 CPU in which word is
defined as 16-bit. In ARM the 16-bit data is referred to as half-word. Therefore ARM
supports byte, half-word (two byte), and word (four bytes) data types.

Woard
.:-""."'\-_
_— T
Half-Word Half-Word
- - it o "
Byte BEyte Byte Byte

P A P

el ala e el al==]=]= === [=]=]=]

Figure 2- 1: ARM Registers Data Size

In ARM there are 13 general purpose registers. They are RO—R12. See Figure 2-2.
All of these registers are 32 bits wide.

32 bits [1 weord |
D3 Dl-]‘-

RO

R

R2

R3 g

:

RS a5

R6 '8

RT ;

RB @
3

R&]
w

R10
Ri1
Ri2
Stack Painter (R13)
Link Register (R14)
Program Counter (R15)

Figure 2- 2: ARM Registers

The general purpose registers in ARM are the same as the accumulator in other

STUDENTS-HUB.com Uploaded By: anonymous

microprocessors. They can be used by all arithmetic and logic instructions. To understand
the use of the general purpose registers, we will show it in the context of three simple
instructions: MOV, ADD, and SUB. The ARM core has three special function registers of
R13, R14, and R15. We will examine their use in the next section. In some ARM
processors, we also have shadow registers in various operating modes designed to speed
up the program execution when CPU switches task.

ARM Instruction Format

The ARM CPU uses the tri-part instruction format for most instructions. One of the
most common format is:

instruction destination,sourcel,source?2

Depending on the instruction the source2 can be a register, immediate (constant)
value, or memory. The destination is often a register or read/write memory.

MOV instruction

Simply stated, the MOV instruction copies data into register or from register to
register. It has the following formats:

MOV Rn,0Op2 ;load Rn register with Op2 (Operand?2).
;Op2 can be immediate

Op2 can be an immediate (constant) number #K which is an 8-bit value that can be
0-255 in decimal, (00—FF in hex). Op2 can also be a register Rm. Rn or Rm are any of the
registers RO to R15. If we see the word “immediate”, we are dealing with a constant value
that must be provided right there with the instruction. Notice the # before immediate
values. The following instruction loads the R2 register with a value of 0x25 (25 in hex).

MOV R2,#0x25 ;load R2 with 0x25 (R2 = 0x25)

The following instruction loads the R1 register with the value 0x87 (87 in hex).
MOV R1,#0x87 ;copy 0x87 into R1 (R1 = 0x87)

The following instruction loads R5 with the value of R7.
MOV R5,R7 ;copy contents of R7 into R5 (R5 = R7)

Notice the position of the source and destination operands. As you can see, the
MOV loads the right operand into the left operand. In other words, the destination comes
first.

To write a comment in Assembly language we use ‘;’. It is the same as ‘//’ in C
language, which causes the remainder of the line of code to be ignored. For instance, in
the above examples the expressions mentioned after ;’ just explain the functionality of the
instructions to you, and do not have any effects on the execution of the instructions.

When programming the registers of the ARM microcontroller with an immediate
value, the following points should be noted:

STUDENTS-HUB.com Uploaded By: anonymous

1. We put # in front of every immediate value.

2. If we want to present a number in hex, we put a Ox in front of it. If we put nothing
in front of a number, it is in decimal. For example, in “MOV R1,#50”, R1 is loaded
with 50 in decimal, whereas in “MOV R1,#0x50”, R1 is loaded with 50 in hex (80
in decimal).

3. If values 0 to FF are moved into a 32-bit register, the rest of the bits are assumed to
be all zeros. For example, in “MOV R1,#0x5” the result will be R1=0x00000005;
that is, R1=00000000000000000000000000000101 in binary.

4. Moving an immediate value larger than 255 (FF in hex) into the register will cause
an error.

Note!

We cannot load values larger than OxFF (255) into registers RO to R12 using the MOV
instruction. For example, the following instruction is not valid:

MOV R5,#0x999999 ;invalid instruction

The reason is the fact that although the ARM instruction is 32-bit wide, only 8 bits of
MOV instruction can be used as an immediate value which can take values not larger
than OxFF (255).

ADD instruction
The ADD instruction has the following format:
ADD Rd,Rn,0Op2 ;ADD Rn to Op2 and store the result in Rd
;Op2 can be Immediate value #K (K is between 0 and 255)
;or Register Rm

The ADD instruction tells the CPU to add the value of Rn to Op2 and put the result
into the Rd (destination) register. As we mentioned before, Op2 can be an immediate
value #K between 0-255 in decimal (O0-FF in hex) or a register Rm. To add two numbers
such as 0x25 and 0x34, one can do any of the following:

MOV R1,#0x25 ;copy 0x25 into R1 (R1 = 0x25)
MOV R7,#0x34 ;copy 0x34 into R1 (R7 = 0x34)
ADD R5,R1,R7 ;add value R7 to R1 and put it in R5

;(R5=R1+R7)
or
MOV R1,#0x25 ;load (copy) 0x25 into R1 (R1 = 0x25)

ADD R5,R1,#0x34 ;add 0x34 to R1 and put it in R5
;(R5=R1 + 0x34)

STUDENTS-HUB.com Uploaded By: anonymous

Executing the above lines results in R5 = 0x59 (0x25 + 0x34 = 0x59)

SUB instruction

The SUB instruction is like ADD instruction format. It subtracts Op2 from Rn and
put the result in Rd (destination)

SUB Rd,Rn,Op2 ;Rd=Rn — Op2

To subtract two numbers such as 0x34 and 0x25, one can do the following:
MOV R1,#0x34 ;load (copy) 0x34 into R1 (R1=0x34)
SUB R5,R1,#0x25 ;R5 = R1 - 0x25 (R1 = 0x34 — 0x25)

The old format

Notice that in most of instructions like ADD and SUB, Rn can be omitted if Rd and
Rn are the same. This format is no longer recommended by Unified Assembler Language.

For example, each pair of the following instructions are the same.

SUB R1,R1,#0x25 ;R1=R1-0x25

SUB R1,#0x25 ;R1=R1-0x25
SUB R1,R1,R2 ;R1=R1-R2
SUB R1,R2 ;R1=R1-R2

ADD R1,R1,#0x25 ;R1I=R1+0x25

ADD R1,#0x25 ;R1I=R1+0x25
ADD R1,R1,R2 ;R1I=R1+R2
ADD R1,R2 ;R1I=R1+R2

Figure 2-3 shows the general purpose registers (GPRs) and the ALU in ARM. The
effect of arithmetic and logic operations on the status register will be discussed in Section
2.4. In Table 2-1 you see some of the ARM ALU instructions.

STUDENTS-HUB.com Uploaded By: anonymous

|

3

BlE(3|2|8|2|2|a

Bl
% R0 g ‘g
Ri1
o o o
e Ri2 o e
3 b — S
i Stack Painter {R13) '? '?
o o~ o
] Link Register (R14} o o

Pragram Counter (R15)

Status Flags

Status Flags

Figure 2- 3: ARM Registers and ALU

Instruction Description

ADD Rd, Rn,Op2*

ADD Rn to Op2 and place the result in Rd

ADC Rd, . .
Op2 ADD Rn to Op2 with Carry and place the result in Rd
AND Rd, . .
Op2 AND Rn with Op2 and place the result in Rd
BIC Rd, . .
Rn,0p2 AND Rn with NOT of Op2 and place the result in Rd

CMP Rn,Op2

Compare Rn with Op2 and set the status bits of CPSR**

CMN Rn,Op2

Compare Rn with negative of Op2 and set the status bits

EOR Rd,
Rn,Op2

Exclusive OR Rn with Op2 and place the result in Rd

MVN Rd,Op2

Place NOT of Op2 in Rd

STUDENTS-HUB.com Uploaded By: anonymous

MOV Rd,Op2 MOVE (Copy) Op2 to Rd

ORR Rd, Rn,0Op2 OR Rn with Op2 and place the result in Rd

RSB Rd, Rn,Op2 Subtract Rn from Op2 and place the result in Rd

RSC Rd, Rn,Op2 Subtract Rn from Op2 with carry and place the result in Rd

SBC Rd, Rn,Op2 Subtract Op2 from Rn with carry and place the result in Rd

SUB Rd, Rn,Op2 Subtract Op2 from Rn and place the result in Rd

TEQ Rn,Op2 Exclusive-OR Rn with Op2 and set the status bits of CPSR

TST Rn,Op2 AND Rn with Op2 and set the status bits of CPSR

* Op2 can be an immediate 8-bit value #K which can be 0-255 in decimal, (00-FF in hex). Op2 can also be a register Rm.
Rd, Rn and Rm are any of the general purpose registers

ok CPSR is discussed later in this chapter

Hoksk The instructions are discussed in detail in the next chapters

Table 2- 1: ALU Instructions Using GPRs
Review Questions
1. Write instructions to move the value 0x34 into the R2 register.

2. Write instructions to add the values 0x16 and 0xCD. Place the result in the R1
register.

3. True or false. No value can be moved directly into the GPRs.

4. What is the largest hex value that can be moved into a 32-bit register using MOV
instruction? What is the decimal equivalent of that hex value?

5. All of the registers in the ARM are -bit.

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section 2.2: The ARM Memory Map

In this section we discuss the memory map for ARM family members.

The Special Function Registers in ARM

In ARM the R13, R14, R15, and CPSR (current program status register) registers
are called SFRs (special function registers) since each one is dedicated to a specific
function. A given special function register is dedicated to specific function such as status
register, program counter, stack pointer, and so on. The function of each SFR is fixed by
the CPU designer at the time of design because it is used for control of the microcontroller
or keeping track of specific CPU status. The four SFRs of R13, R14, R15, and CPSR play
an extremely important role in ARM. The R13 is set aside for stack pointer. The R14 is
designated as link register which holds the return address when the CPU calls a subroutine
and the R15 is the program counter (PC). The PC (program counter) points to the address
of the next instruction to be executed as we will see in next section. The CPSR (current
program status register) is used for keeping condition flags among other things, as we will
see in Section 2.4. In contrast to SFRs, the GPRs (R0-R12) do not have any specific
function and are used for storing general data. For this reason some ARM instruction
formats (the Thumb) have only RO-7 but every variation of ARM chip has R13-R15 SFRs.
The Thumb instruction format is designed to compete with the 8- and 16-bit
microcontrollers and increase code density.

Program Counter in the ARM

One of the most important register in the ARM microcontroller is the PC (program
counter) . As we mentioned earlier, the R15 is the program counter. The program counter
is used by the CPU to point to the address of the next instruction to be executed. As the
CPU fetches the opcode from the program memory, the program counter is incremented
automatically to point to the next instruction. The wider the program counter, the more
memory locations a CPU can access. That means that a 32-bit program counter can access

a maximum of 4G (23 = 4G) bytes of program memory locations.

In ARM microcontrollers each memory location is a byte wide. In the case of a 32-

bit program counter, the code space is 4G bytes (232 = 4G), which occupies the
0x00000000—0xFFFFFFFF address range. The program counter in the ARM family is 32
bits wide. This means that the ARM family can access addresses 0x00000000 to
OxFFFFFFFF, a total of 4G bytes of locations (memory spaces). Although this 4G bytes of
memory space can be allocated to on-chip or off-chip memory; however, at the time of
this writing, none of the members of the ARM microcontroller family have the entire 4G
bytes of on-chip memory populated. See Table 2-2.

Company Device Flash (K Bytes) RAM (K Bytes) 1/O Pins
Atmel AT91SAM7X512 512 128 62
NXP LPC2367 512 58 70

STUDENTS-HUB.com Uploaded By: anonymous

ST STR750FV?2 256 16 72

TI TMS470R1A256 256 12 49

Freescale MK10DX256VML7 | 256 64 74

Table 2- 2: On-chip Memory Size for some ARM Chips
Memory space allocation in the ARM

The ARM has 4G bytes of directly accessible memory space. This memory space
has addresses 0 to OXFFFFFFFF. The 4G bytes of memory space can be divided into five
sections. They are as follows:

1. On-chip peripheral and 1/0 registers: This area is dedicated to general purpose
I/0 (GPIO) and special function registers (SFRs) of peripherals such as timers, serial
communication, ADC, and so on. In other words, ARM uses memory-mapped 1/O.
See Chapter 0 for discussion of memory-mapped I/0O. The function and address
location of each SFR is fixed by the chip vendor at the time of design because it is
used for port registers of peripherals. The number of locations set aside for GPIO
registers and SFRs depends on the pin numbers and peripheral functions supported
by that chip. That number can vary from chip to chip even among members of the
same family from the same vendor. Due to the fact that ARM does not define the
type and number of I/O peripherals one must not expect to have same address
locations for the peripheral registers among various vendors.

2. On-chip data SRAM: A RAM space ranging from a few kilobytes to several
hundred kilobytes is set aside mainly for data storage. The data RAM space is used
for data variables and stack and is accessed by the microcontroller instructions. The
data RAM space is read/write memory used by the CPU for storage of data
variables, scratch pad, and stack. The ARM microcontrollers’ data SRAM size
ranges from 2K bytes to several thousand kilobytes depending on the chip. Even
within the same family, the size of the data SRAM space varies from chip to chip. A
larger data SRAM size means more difficulties in managing these RAM locations if
you use Assembly language programming. In today’s high-performance
microcontroller, however, with over a thousand bytes of data RAM, the job of
managing them is handled by the C compilers. Indeed, the C compilers are the very
reason we need a large data RAM since it makes it easier for C compilers to store
parameters and allows them to perform their jobs much faster. The amount and the
location of the SRAM space vary from chip to chip in the ARM chips. A section of
the data RAM space is used by stack as we will see in Chapter 6. Although many of
the ARM microcontrollers used in embedded products the SRAM space is used for
data; one can also buy or design an ARM-based system in which the RAM space is
used for both data and program codes. This is what we see in the x86 PCs. In such
systems normally one connects the ARM CPU to external DRAM and the DRAM
memory is used for both code and data. Microsoft Windows 8 uses such a system for
ARM-based Tablet computers.

STUDENTS-HUB.com Uploaded By: anonymous

3. On-chip EEPROM: A block of memory from 1K bytes to several thousand bytes
is set aside for EEPROM memory. The amount and the location of the EEPROM
space vary from chip to chip in the ARM microcontrollers. Although in some
applications the EEPROM is used for program code storage, it is used most often for
saving critical data. Not all ARM chips have on-chip EEPROM.

4. On-chip Flash ROM: A block of memory from a few kilobytes to several hundred
kilobytes is set aside for program space. The program space is used for the program
code. In today’s ARM microcontroller chips, the code ROM space is of Flash type
memory. The amount and the location of the code ROM space vary from chip to
chip in the ARM products. See Table 2-2 and Examples 2-1 and 2-2. The Flash
memory of code ROM is under the control of the PC (program counter). The code
ROM memory can also be used for storage of static fixed data such as ASCII data
strings and look-up tables.

Example 2-1

A given ARM chip has the following address assignments. Calculate the space and the
amount of memory given to each section.

(a) Address range of 0x00100000 — 0x00100FFF for EEPROM
(b) Address range of 0x40000000 — 0x40007FFF for SRAM

(©) Address range of 0x00000000 — 0x0007FFFF for Flash

(d) Address range of 0xFFFC0000 — OxFFFFFFFF for peripherals

Solution:

(a) With address space of 0x00100000 to 00100FFF, we have 00100FFF — 00100000 =
OFFF bytes. Converting OFFF to decimal, we get 4,095 + 1, which is equal to 4K bytes.

(b) With address space of 0x40000000 to 0x40007FFF, we have 40007FFF — 40000000 =
7FFF bytes. Converting 7FFF to decimal, we get 32,767 + 1, which is equal to 32K bytes.

(c) With address space of 0000 to 7FFFF, we have 7FFFF — 0 = 7FFFF bytes. Converting
7FFFF to decimal, we get 524,287 + 1, which is equal to 512K bytes.

(d) With address space of FFFC0000 to FFFFFFFF, we have FFFFFFFF-FFFC0000 =
3FFFF bytes. Converting 3FFFF to decimal, we get 262,143 + 1, which is equal to 256K
bytes.

See Figure 2-4.

Example 2-2
STUDENTS-HUB.com Uploaded By: anonymous

Find the address space range of each of the following memory of an ARM chip:
(a) 2 KB of EEPROM starting at address 0x80000000

(b) 16 KB of SRAM starting at address 0x90000000

(0) 64 KB of Flash ROM starting at address 0xF0000000

Solution:

(a) With 2K bytes of on-chip EEPROM memory, we have 2048 bytes (2 x 1024 =
2048). This maps to address locations of 0x80000000 to 0x800007FF. Notice that 0 is
always the first location.

(b) With 16K bytes of on-chip SRAM memory, we have 16,384 bytes (16 x 1024 =
16,384), and 16,384 locations gives 0x90000000—0x90003FFF.

(©) With 64K we have 65,536 bytes (64 x 1024 = 65,536), therefore, the memory
space is 0xF0000000 to OxFOOOFFFF.

B bits
."—F%
4G OxFFFF FFFF
SFR
OxFFFC 0000
3G 0xC000 0000
oG 0x8000 0000
0x4000 TFFF
16 SRAM 0x4000 D000
0x0010 1000
EEPROM | 00010 0000
Ox0007 FFFF
o [Edneh 0x0000 0000

Figure 2- 4: An Example of ARM Memory Allocation

5. Off-chip DRAM space: A DRAM memory ranging from few megabytes to
several hundred mega bytes can be implemented for external memory connection.
Although many of the ARM microcontrollers used in embedded products use the
on-chip SRAM for data, one can also design an ARM-based system in which the
RAM is used for both data and program codes. This is what we see in the x86 PCs.
In such systems one connects the ARM CPU to external DRAM and the DRAM
memory is used for both code and data, just like the x86 PCs. Many ARM vendors

STUDENTS-HUB.com Uploaded By: anonymous

are pushing the ARM11 chip for the high-end of the market such as servers and
database computers. In an ARM11-based server computers, the external (off-chip)
DRAM is used and managed by the operating system while on-chip Flash,
EEPROM, and SRAM memories are used for BIOS (basic input output system),
POST (power on self test), and CPU scratch pad, respectively. In such cases the
system is not different from x86 computers currently in use, except it uses ARM
CPU instead of a Pentium chip from Intel or x86 from AMD. The Microsoft
Windows 8 uses ARM motherboard with off-chip DRAM

Notice the following differences among the on-chip Flash ROM, data SRAM, and
EEPROM memories in ARM microcontrollers used for embedded products:

a) The data SRAM is used by the CPU for data variables and stack, whereas the
EEPROMs are considered to be memory that one can also add externally to the chip. In
other words, while many ARM microcontroller chips have no EEPROM memory, it is
very unlikely for an ARM microcontroller to have no on-chip data SRAM.

b) The on-chip Flash ROM is used for program code, while the EEPROM is used
most often for critical system data that must not be lost if power is cut off. Remember that
data SRAM is volatile memory and its contents are lost if the power to the chip is cut off.
Since volatile data SRAM is used for dynamic variables (constantly changing data) and
stack. We need EEPROM memory to secure critical system data that does not change very
often and will not be lost in the event of power failure.

c) The on-chip Flash ROM is programmed and erased in block size. The block size
is 8, 16, 32, or 64 bytes or more depending on the chip technology. That is not the case
with EEPROM, since the EEPROM is byte programmable and erasable. Both the
EEPROM and Flash memories have limited number of erase/write cycles, which can be
100,000 or more. While all semiconductor memories have unlimited number of reads
(accesses), the number of times that we can erase and write to the Flash and EEPROM are
limited to around 100,000 times at the time of this writing. As this number increases, the
likelihood that we will have hard drive made out of Flash memory will also increase. We
have already seen how the Flash stick memory has replaced the floppy drives which were
so common into early 2000s.

Memory mapped 1I/0 in the ARM

Traditional CPUs such as x86 had two distinct spaces: the I/0O space and memory
space. In x86, while all of the I/O ports are accessed using IN and OUT instructions, the
memory address space is accessed using the MOV instruction. In the ARM CPU we have
only one space and it is memory space and it can be as high as 4 Giga bytes. The ARM
uses this 4 Giga bytes for both memory and I/O space. This mapping of the I/O ports to
memory space is called memory mapped I/O and was discussed in Chapter O.

Review Questions
1. True or false. The GPR registers are used for storing data.

2. The RO-R12 registers are called .

STUDENTS-HUB.com Uploaded By: anonymous

3. The GPR registers in ARM are -bit.
4. The R13-R15 registers are called .
5. The SFR registers in ARM are -bit.

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section 2.3: Load and Store Instructions in ARM

The instructions we have used so far worked with the immediate (constant) value of
K and the GPRs. They also used the GPRs as their destination. We saw simple examples
of using MOV and ADD earlier in Section 2.1. The ARM allows direct access to all
locations in the memory. In this section we show the instructions accessing various
locations of the memory. This is one of the most important sections in the book for
mastering the topic of ARM Assembly language programming. Before we embark on
studying the load and store instructions of the ARM, we must note the fact that all the
instructions of the ARM are 32-bit wide. In other words, every instruction of ARM is
fixed at 32-bit. As we will see in later section, the fixed size instruction is one of the most
important characteristics of RISC architecture. In cases where there is no need for all the
32-bit, the ARM has added zero to make the instruction fixed at 32-bit.

LDR Rd, [Rx] instruction
LDR Rd,[Rx] ;load Rd with the contents of location pointed
;to by Rx register. Rx is an address between
;0x00000000 to OxFFFFFFFF

The LDR instruction tells the CPU to load (bring in) one word (32-bit or 4 bytes)
from a base address pointed to by Rx into the GPR. After this instruction is executed, the
Rd will have the same value as four consecutive locations in the memory. Obviously since
each memory location can hold only one byte (ARM is a byte addressable CPU), and our
GPR is 32-bit, the LDR will bring in 4 bytes of data from 4 consecutive memory
locations. The locations can be in the SRAM or a Flash memory. For example, the “LDR
R2,[R5]” instruction will copy the contents of memory locations pointed to by R5 into
register R2. Since the R2 register is 32-bit wide, it expects a 32-bit operand in the range of
0x00000000 to OxFFFFFFFF. That means the R5 register gives the base address of the
memory in which it holds the data. Therefore if R5=0x80000, the CPU will fetch into
register R2, the contents of memory locations 0x80000, 0x80001,0x80002, and 0x80003.

The following instruction loads R7 with the contents of location 0x40000200. See
Figure 2-5.

;assume R5 = 0x40000200
LDR R7,[R5] ;load R7 with the contents of locations
;0x40000200-0x40000203

STUDENTS-HUB.com Uploaded By: anonymous

Assume that R5=0x40000200, and locations 0x40000200
through 0x40000203 contain 0x15, 0x28, 0xA2 and 0xC5,
respectively.

After running the following instruction;

LDR R7, [R5]

R7 will be loaded with 0xC5A22815 0xC5 0x4000 0203
OxAZ2 04000 0202
Ox28 0x4000 0201
Ox15 D000 0200

R7| oxc5 | oxA2 | ox28 | oxi5 |

Figure 2-5: Executing the LDR Instruction

STR Rx,[Rd] instruction
STR Rx,[Rd] ;store register Rx into locations pointed to by Rd

The STR instruction tells the CPU to store (copy) the contents of the GPR to a base
address location pointed to by the Rd register. Notice that the source register of STR
instruction is placed before the destination register. Obviously since GPR is 32-bit wide
(4-byte) we need four consecutive memory locations to store the contents of GPR. The
memory locations must be writable such as SRAM. See Figure 2-6. The “STR R3,[R6]”
instruction will copy the contents of R3 into locations pointed to by R6. Locations
0x40000200 through 0x40000203 of the SRAM memory will have the contents of R3
since R6 = 0x40000200.

Assume that RE=0x40000200, and B3 = 0x41526374. After
running the following instruction;

STR R3, [R6]

locations 0x40000200 through 0x40000203 will be loaded
with Ox74, 0x63, 0x52, and 0x41, respectively.

Ox41 0x4000 0203
0x52 0x4000 0202
Ox63 04000 D201

R3I| _Ox41 | 0x52 | 0x63 | Ox74 |

Figure 2-6: Executing the STR Instruction

The following instruction stores the contents of R5 into locations pointed to by R1.
Assume 0x40000340 is an address of internal RAM locations and held by register R1.

;assume R1 = 0x40000340
STR R5, [R1] ;store R5 into locations pointed to by R1.
LDRB Rd, [Rx] instruction
LDRB Rd, [Rx] ;Joad Rd with the contents of the location
; pointed to by Rx register.

The LDRB instruction tells the CPU to load (copy) one byte from an address
pointed to by Rx into the lower byte of Rd. After this instruction is executed, the lower

STUDENTS-HUB.com Uploaded By: anonymous

byte of Rd will have the same value as memory location pointed to by Rx. It must be
noted that the unused portion (the upper 24 bits) of the Rd register will be all zeros, as
shown in Figure 2-7.

Assume that R5=0x40000200, and location 0x40000200
contains 0x74.

After running the following instruction:

LDREB R7, [R5]

RY will be loaded with 0x00000074

! (w4000 0203
= OxA000 0202
D’fﬂ b0 D’fﬂ o S o
/
R7 | 0x00 | Diﬂﬂ | 0x00 | Ox74 |
Figure 2- 7
LDR vs. LDRB

As we mentioned earlier, we can use the LDR instruction to copy the contents of
four consecutive memory locations into a 32-bit GPR. There are situations that we do not
need to bring 4 bytes of data into GPR. An UART register is such a case. The UART
registers are generally 8-bit and take only one memory space location (memory mapped
I/0). Using LDRB, we can bring into GPR a single byte of data from UART registers.
This is a widely used instruction for accessing the 8-bit I/O and peripheral ports.

STRB Rx,[Rd] instruction
STRB Rx, [Rd] ;store the byte in register Rx into
;location pointed to by Rd

The STRB instruction tells the CPU to store (copy) the byte value in Rx to an
address location pointed to by the Rd register. After this instruction is executed, the
memory locations pointed to by the Rd will have the same byte as the lower byte of the
Rx, as shown in Figure 2-8.

Assume that R5=0x40000200, and R1 = 0x41526374,
After running the following instruction;

STRE R1, [R5]

locations 0x40000200 will be loaded with 0x74.

5 0x4000 0203
- %4000 0202
- 0x4000 0201
/ Ox74 0x4000 0200
Rt x | x | x | oxta |
Figure 2- 8

The following program first loads the R1 register with value 0x55, then stores this
value into location 0x40000100:

;assume R5 = 0x40000100
STUDENTS-HUB.com Uploaded By: anonymous

MOV R1,#0x55 ;R1 =55 (in hex)
STRB RI1,[R5] ;copy R1 location pointed to by R5

General purpose I/0 (GPIO) are part of the special function registers in the memory-
mapped I/O. They are connected to the I/O pins of the ARM microcontroller. See the
datasheet of your ARM microcontroller. We can also store the contents of a GPR into any
location in the SRAM region of the data space. See Examples 2-3 and 2-4.

Example 2-3

State the contents of RAM locations 0x92 to 0x96 after the following program is
executed:

MOV R1,#0x99 ;R1 =0x99

MOV R6,#0x92 ;R6 = 0x92

STRB R1,[R6] ;store R1 into location pointed to by R6

;(location 0x92)

ADD R6,R6,#1 ;RE=R6 + 1

MOV R1,#0x85 ;R1 = 0x85

STRB R1,[R6] ;store R1 into location pointed to by R6

;(location 0x93)

ADD R6,R6,#1 ;RE=R6 + 1

MOV R1,#0x3F ;R1 = 0x3F

STRB R1,[R6] ;store R1 into location pointed to by R6

ADD R6,R6,#1 ;R6=R6+1

MOV R1,#0x63 ;R1 = 0x63

STRB R1,[R6] ;store R1 into location pointed to by R6

ADD R6,R6,#1 ;R6=R6 + 1

MOV R1,#0x12 ;R1 =0x12

STRB RI1,[R6]
Solution:
After the execution of STRB R1,[R6] data memory location 0x92 has value 0x99;
after the execution of STRB R1,[R6] data memory location 0x93 has value 0x85;

after the execution of STRB R1,[R6] data memory location 0x94 has value 0x3F; and so
on, as shown in the chart.

Address Data

STUDENTS-HUB.com Uploaded By: anonymous

0x92 0x99
0x93 0x85
0x94 0x3F
0x95 0x63
0x96 0x12

Example 2-4

State the contents of R2, R1, and memory location 0x20 after the following program:

MOV
MOV
ADD
ADD
MOV
STRB

Solution:

R2,#0x5

R1,#0x2
R2, R1,R2
R2,R1,R2

R5,#0x20
R2,[R5]

;Joad R2 with 5 (R2 = 0x05)

;Joad R1 with 2 (R1 = 0x02)
;R2=R1+R2
;R2=R1+R2

;R5 = 0x20

;store R2 into location pointed to by R5

The program loads R2 with value 5. Then it loads R1 with value 2. Then it adds the R1
register to R2 twice. At the end, it stores the result in location 0x20 of memory.

Location Data

R2

5

R1

0x20

Location Data

R2

5

R1

2

STUDENTS-HUB.com

After MOV R2,#0x05

After MOV R1,#0x02

Uploaded By: anonymous

‘ 0x20 ‘

Location Data

R2 7
R1 2
0x20

Location Data

R2 9
R1 2
0x20

Location Data

After ADD R2,R1,R1

After ADD R2,R1,R1

After STRB [R5],R2

R2 9

R1 2

0x20 9
STR vs. STRB

As we mentioned earlier, we can use the STR instruction to copy the contents of 32-
bit GPR into four consecutive memory locations. The I/O ports are generally 8-bit and
take only one memory space location (memory mapped I/0O). Using STRB, we can send a
byte of data from GPR to memory location such as an I/O port. Again, this is a widely
used instruction for accessing the 8-bit I/O and peripheral ports.

LDRH Rd, [Rx] instruction

STUDENTS-HUB.com

Uploaded By: anonymous

LDRH Rd, [Rx]
; to by Rx register

;Joad Rd with the half-word pointed

The LDRH instruction tells the CPU to load (copy) half-word (16-bit or 2 bytes)
from a base address pointed to by Rx into the lower 16-bits of Rd Register. After this
instruction is executed, the lower 16-bit of Rd will have the same value as two consecutive

locations in the memory pointed to by base address of Rx.

It must be noted that the

unused portion (the upper 16 bits) of the Rd register will be all zeros, as shown in Figure

2-9.

Assume that R5=0x40000200, and locations 0x40000200
through Ox40000203 contain 0x74, 0x63, 0x52 and Ox41,
respectively.

After running the following instruction:

LDRH R7, [R5]

R7 will be loaded with Dx00006374 Oxd1 04000 0203
Ox52 04000 D202
Ox63 Dx4000 D201
0x00 0x00 ” 0x74 0%4000 0200
R7| 0x00 | O0x00 | o0x63 | Ox74 |
Figure 2- 9

Table 2-3 compares LDRB, LDRH, and LDR.

Hexadecimal

Decimal

Data Size Bits

Load instruction

used
Byte 8 0 —255 0 - OXFF LDRB
Half-word 16 0-65535 |0 - OXFFFF LDRH
Word 32 0-2%-1 0 - OXFFFFFEFF LDR

Table 2- 3: Unsigned Data Range in ARM and associated Load Instructions

STRH Rx,[Rd] instruction
STRH Rx, [Rd]

;store half-word (2-byte) in register Rx

;into locations pointed to by Rd

The STRH instruction tells the CPU to store (copy) the lower 16-bit contents of the Rx to
an address location pointed to by the Rd register. After this instruction is executed, the
memory locations pointed to by the Rd will have the same value as the lower 16-bit of Rx
Register. The locations are part of the data read/write memory space such as on-chip
SRAM. For example, the “STRH R3,[R6]” instruction will copy the 16-bit lower
contents of R3 into two consecutive locations pointed to by base register R6. As you can
see in Figure 2-10, locations 0x2000 and 0x2001 of the SRAM memory will have the

contents of the lower half word of R3 since R6 = 0x2000.

STUDENTS-HUB.com

Uploaded By: anonymous

Assume that R6=0x2000, and R3 = 0x41526374. After
running the following instruction:

STRH R3, [RE]

locations 0x2000 through 0x2001 will be loaded with 0x74 and
Ox63, respectively,

- 0x2003
- 2002
Ox63 0x2001
% 0x74 0x2000
R3] x | x | ox63 | ox74 |
Figure 2- 10

In Table 2-4 you see a comparison between STRB, STRH, and STR.

Load instruction

Data Size Decimal Hexadecimal used
Byte 8 0-255 0 - OXFF STRB
Half-word 16 0-65535 0 - OxFFFF STRH
Word 32 0-2%-1 0- OxFFFFFFFF STR

Table 2-4: Unsigned Data Range in ARM and associated Store Instructions
Review Questions
1. True or false. No 32-bit value can be loaded directly into internal R0-R12.
2. Write instructions to load value 0x95 into location with address 0x20.

3. Write instructions to move the contents of R2 to memory location pointed to by
R8.

4. Write instructions to load values from memory locations 0x20-0x23 to R4 register.

v

What is the largest hex value that can be moved into a single location in the data
memory? What is the decimal equivalent of the hex value?

6. “LDR R6, [R3]” puts the result in .
What does “STRB R1, [R2]” do?

>

8. What is the largest hex value that can be moved into four consecutive locations in
the data memory? What is the decimal equivalent of the hex value?

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section 2.4: ARM CPSR (Current Program Status Register)

Like all other microprocessors, the ARM has a flag register to indicate arithmetic
conditions such as the carry bit. The flag register in the ARM is called the current
program status register (CPSR). In this section, we discuss various bits of this register and
provide some examples of how it is altered. Chapters 3 and 4 show how the flag bits of the
status register are used.

ARM current program status register

The status register is a 32-bit register. See Figure 2-11 for the bits of the status
register. The bits C, Z, N, and V are called conditional flags, meaning that they indicate
some conditions that result after an instruction is executed. Each of the conditional flags
can be used to perform a conditional branch (jump), as we will see in Chapter 4.

D31 D30 D29 D28 e DT D6 D5 D4 D3 D2 D1 DO
|N|z|c|v|Ruaumu|||F|T|M4|M3|M2|M1[H-:]|

Figure 2- 11: CPSR (Current Program Status Register)

The following is a brief explanation of the flag bits of the current program status
register (CPSR). The impact of instructions on this register is then discussed.

C, the carry flag

This flag is set whenever there is a carry out from the D31 bit. This flag bit is
affected after a 32-bit addition or subtraction. Chapter 4 shows how the carry flag is used.

Z, the zero flag

The zero flag reflects the result of an arithmetic or logic operation. If the result is
zero, then Z = 1. Therefore, Z = 0 if the result is not zero. See Chapter 4 to see how we use
the Z flag for looping.

N, the negative flag

Binary representation of signed numbers uses D31 as the sign bit. The negative flag
reflects the result of an arithmetic operation. If the D31 bit of the result is zero, then N = 0
and the result is positive. If the D31 bit is one, then N = 1 and the result is negative. The
negative and V flag bits are used for the signed number arithmetic operations and are
discussed in Chapter 5.

V, the overflow flag

This flag is set whenever the result of a signed number operation is too large,
causing the high-order bit to overflow into the sign bit. In general, the carry flag is used to
detect errors in unsigned arithmetic operations while the overflow flag is used to detect
errors in signed arithmetic operations. The V and N flag bits are used for signed number
arithmetic operations and are discussed in Chapter 5.

The T flag bit is used to indicate the ARM is in Thumb state. The I and F flags are
used to enable or disable the interrupt. See the ARM manual.

STUDENTS-HUB.com Uploaded By: anonymous

S suffix and the status register

Most of ARM instructions can affect the status bits of CPSR according to the result.
If we need an instruction to update the value of status bits in CPSR, we have to put S
suffix at the end of instructions. That means, for example, ADDS instead of ADD is used.

ADD instruction and the status register

Next we examine the impact of the SUBS and ADDS instructions on the flag bits C
and Z of the status register. Some examples should clarify their meanings. Although all the
flag bits C, Z, V, and N are affected by the ADDS and SUBS instruction, we will focus on
flags C and Z for now. The other flag bits are discussed in Chapter 5, because they relate
only to signed number operations. Examine Example 2-5 to see the impact of the ADDS
instruction on selected flag bits. See also Example 2-6 to see the impact of the SUBS
instruction on selected flag bits.

Example 2-5
Show the status of the C and Z flags after the addition of
a) 0x0000009C and OxFFFFFF64 in the following instruction:
;assume R1 = 0x0000009C and R2 = OxFFFFFF64
ADDS R2,R1,R2 ;add R1 to R2 and place the result in R2

b) 0x0000009C and OxFFFFFFG69 in the following instruction:

;assume R1 = 0x0000009C and R2 = OxFFFFFF69
ADDS R2,R1,R2 ;add R1 to R2 and place the result in R2

Solution:

a)

0000 0000 0000 0000 0000 0000 1001

0x0000009C 1100

ol + 1111171171111 13171111 1111 0110
OxFFFFFF64 0100

1 0000 0000 0000 0000 0000 0000

0x100000000 0000 0000

STUDENTS-HUB.com Uploaded By: anonymous

C = 1 because there is a carry beyond the D31 bit.
Z = 1 because the R2 (the result) has value 0 in it after the addition.

b)
0x0000009C 0000 0000 0000 0000 0000 0000 1001
1100
ul + 1111 1111 1111 1111 1111 1111 0110
OxFFFFFF69 1001
0x100000005 1 0000 0000 0000 0000 0000 0000 0000

0101

C =1 because there is a carry beyond the D31 bit.

Z = 0 because the R2 (the result) does not have value 0 in it after the addition.
(R2=0x00000005)

Example 2-6
Show the status of the Z flag during the execution of the following program:
MOV R2#4 ;R2=4
MOV R3,#2 ;R3=2
MOV R4#4 ;R4=4
SUBS R5,R2,R3 ;R5=R2-R3(R5=4-2=2)
SUBS R5,R2,R4 ;R5=R2-R4(R5=4-4=0)
Solution:

The Z flag is raised when the result is zero. Otherwise, it is cleared (zero). Thus:

After Value of R5 Z flag

SUBS R5,R2,R3 2 0

SUBS R5,R2,R4 0 1

Not all instructions affect the flags

STUDENTS-HUB.com Uploaded By: anonymous

Some instructions affect all the four flag bits C, Z, V, and N (e.g., ADDS). But some

instructions affect no flag bits at all. The branch instructions are in this category. Some
instructions affect only some of the flag bits. The logic instructions (e.g., ANDS) are in

this category.

ANDS

C 7Z,N

ORRS

C,Z, N

MOVS

C,Z, N

ADDS

C,Z,N,V

SUBS

CZN,V

B

No flags

Note that we cannot put S after B instruction.

Table 2-5 shows the instructions and the flag bits affected by them. Appendix A
provides a complete list of all the instructions and their associated flag bits.

Instruction Flags Affected

Table 2- 5: Flag Bits Affected by Different Instructions

Flag bits and decision making

There are instructions that will make a conditional jump (branch) based on the status

of the flag bits. Table 2-6 provides some of these instructions. Chapter 4 discusses the

conditional branch instructions and how they are used.

Instruction Flags Affected
BCS Branchif C=1
BCC Branchif C=0
BEQ Branchif Z =1
BNE Branchif Z =0
BMI Branchif N =1
BPL Branchif N=0
BVS Branchif V=1
BVC Branch if V=0

Review Questions

Table 2- 6: ARM Branch (Jump) Instructions Using Flag Bits

STUDENTS-HUB.com

Uploaded By: anonymous

1. The flag register in the ARM is called the

2. What is the size of the flag register in the ARM?
3. Find the C and Z flag bits for the following code:
;assume R2 = OxFFFFFFOF

;assume R1 = 0x00000061

ADDS R2,R1, R2

4. Find the Z flag bit for the following code:
;assume R7 = 0x22

;assume R3 = 0x22

ADDS R7,R3,R7

5. Find the C and Z flag bits for the following code:
;assume R2 = 0x67

;assume R1 = 0x99

ADDS R2,R1, R2

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section 2.5: ARM Data Format and Directives

In this section we look at some widely used data formats and directives supported by
the ARM assembler.

ARM data type

ARM has four data types. They are bit, byte (8-bit), half-word (16-bit) and word (32
bit). Due to the fact that ARM registers are 32-bit it is the job of programmer/compiler to
break down data larger than 32 bits to be processed by the CPU. The data types used by
the ARM can be positive or negative. A discussion of signed numbers is given in Chapter
5.

Data format representation

There are several ways to represent a byte of data in the ARM assembler. The
numbers can be in hex, binary, decimal, or ASCII formats. The following are examples of
how each works.

Hex numbers

To represent Hex numbers in an ARM assembler we put 0x (or 0X) in front of the
number like this:

MOV R1,#0x99

Here are a few lines of code that use the hex format:

MOV R2#0x75 ;R2 = 0x75
MOV R1,#0x11
ADD R2,R1,R2 ;R2=R1 + R2 =0x75 + 0x11 = 0x86

Decimal numbers

To indicate decimal numbers in some ARM assemblers such as Keil we simply use
the decimal (e.g., 12) and nothing before or after it. Here are some examples of how to use
it:

MOV R7,#12 ;R7 =00001100 or OC in hex
MOV R1,#32 ;R1=32=0x20

Binary numbers

To represent binary numbers in an ARM assembler we put 2_ in front of the
number. It is as follows:

MOV R6,#2_10011001 ;R6 = 10011001 in binary or 99 in hex
Numbers in any base between 2 and 9

To indicate a number in any base n between 2 and 9 in an ARM assembler we
simply use the n__in front of it. Here are some examples of how to use it:

STUDENTS-HUB.com Uploaded By: anonymous

MOV R7,#8_33 ;R7 =33 in base 8 or 011011 in binary format
MOV R6,#2 10011001 ;R6 = 10011001 in base 2 or 99 in hex

ASCII characters
To represent ASCII data in an ARM assembler we use single quotes as follows:
LDR R3#2 ;R3 =00110010 or 32 in hex (See Appendix F)

This is the same as other assemblers such as the 8051 and x86. Here is another
example:

LDR R2#9’ ;R2 = 0x39, which is hex number for ASCII ‘9’

To represent a string, double quotes are used; and for defining ASCII strings (more
than one character), we use the DCB directive.

Assembler directives

While instructions tell the CPU what to do, directives (also called pseudo-
instructions) give directions to the assembler. For example, the MOV and ADD
instructions are commands to the CPU, but EQU, END, and ENTRY are directives to the
assembler. The following section presents some widely used directives of the ARM and
how they are used. The directives help us develop our program easier and make our
program legible (more readable). Table 2-7 shows some assembler directives.

Directive Description

AREA Instructs the assembler to assemble a new code or data section

END Informs the assembler that it has reached the end of a source file.

ENTRY Declares an entry point to a program.

Gives a symbolic name to a numeric constant, a register-relative value or a PC-

EQU relative value.

INCLUDE It adds the contents of a file to our program.

Table 2- 7: Some Widely Used ARM Directive
AREA

The AREA directive tells the assembler to define a new section of memory. The
memory can be code (instruction) or data and can have attributes such as ReadOnly,
ReadWrite, and so on. This is widely used to define one or more blocks of indivisible
memory for code or data to be used by the linker. Every Assembly language program has
at least one AREA. The following is the format:

AREA sectionname, attribute, attribute, ...

The following line defines a new area named MY_ASM_PROG1 which has CODE
and READONLY attributes:

STUDENTS-HUB.com Uploaded By: anonymous

AREA MY_ASM_PROGI, CODE, READONLY

Among widely used attributes are CODE, DATA, READONLY, READWRITE,
COMMON, and ALIGN. The following describes these widely used attributes.

READWRITE is an attribute given to an area of memory which can be read from
and written to. Since it is READWRITE section of the program it is by default for DATA.
In ARM Assembly language we use this area to set aside SRAM memory for scratch pad
and stack. The Assembler puts the READWRITE sections next to each other in the SRAM
memory.

READONLY is an attribute given to an area of memory which can only be read
from. Since it is READONLY section of the program it is by default for CODE. In ARM
Assembly language we use this area to write our instructions for machine code execution.
The READONLY sections are put next to each other in the flash memory.

Note

In Keil, The memory space of READONLY and READWRITE are defined in the
Linker and Target tabs of the Project\Options. Keil sets the values according to the
memory map of the chosen chip.

CODE is an attribute given to an area of memory used for executable machine
instruction. Since it is used for code section of the program it is by default READONLY
memory. In ARM Assembly language we use this area to write our instructions. The
following line defines a new area for writing programs:

AREA OUR_ASM_PROG, CODE, READONLY

DATA is an attribute given to an area of memory used for data and no instruction
(machine instructions) can be placed in this area. Since it is used for data section of the
program it is by default a READWRITE memory. In ARM Assembly language we use
this area to set aside SRAM memory for scratch pad and stack. The following line defines
a new area for defining variables:

AREA OUR_VARIABLES, DATA, READWRITE
To define constant values in the flash memory we write the following:
AREA OUR_CONSTS, DATA, READONLY

COMMON is an attribute given to an area of DATA memory section which can be
used commonly by several program codes. We do not initialize the COMMON section of
the memory since it is used by compiler exclusively. The compiler initializes the
COMMON memory area with all zeros.

ALIGN is another attribute given to an area of memory to indicate how memory
should be allocated according to the addresses. When the ALIGN is used for CODE and
READONLY it aligned in 4-bytes address boundary by default since the ARM instructions

are all 32-bit (4-bytes) word. The ALIGN attribute of AREA has a number after like
ALIGN=3 which indicates the information should be placed in memory with addresses of

STUDENTS-HUB.com Uploaded By: anonymous

23 that is 0x50000, 0x50008, 0x50010, 0x50020, and so on. We will see more about that
soon. The usage and importance of ALIGN attribute is discussed in Chapter 6.

ENTRY

Another important pseudocode is the ENTRY directive. This indicates to the
assembler the beginning of the executable code. The ENTRY directive is the first line of
the ARM Assembly language code section of the program, meaning that anything after the
ENTRY directive in the source code is considered actual machine instruction to be
executed by the CPU. For a given ARM Assembly language program we can have only
one ENTRY point. Having multiple ENTRY directive in an Assembly language program
will give you an error by assembler.

END directive

Another important pseudocode is the END directive. This indicates to the assembler
the end of the source (asm) file. The END directive is the last line of the ARM Assembly
language program, meaning that anything after the END directive in the source code is
ignored by the assembler. Program 2-1 shows how the AREA, ENTRY and END
directives are used.

Program 2-1
;ARM Assembly Language Program To Add Some Data and Store the SUM in R3.

AREA PROG_2_1, CODE, READONLY
ENTRY
MOV R1, #0x25 ;R1 =0x25
MOV R2, #0x34 ;R2 = 0x34
ADD R3,R2,R1 ;R3=R2 +R1
B HERE ;stay here forever
END

an)
=
=
f

LDR

In the last section, we stated that one cannot load values larger than OxFF into the
32-bit registers of ARM since only 8 bits are used for the immediate value. The ARM
assembler provide us a pseudo-instruction of “LDR Rd,=32-bit_immidiate_vlaue” to load
value greater than OxFF. We will examine how this pseudo-instruction works in Chapter 6.
For now, just notice the = sign used in the syntax. The following pseudo-instruction loads
R7 with 0x112233.

LDR R7,=0x112233

We will use this pseudo-instruction to load 32-bit value into register extensively
throughout the book. To load values less than OxFF, we still use the “MOV Rd,#8-

STUDENTS-HUB.com Uploaded By: anonymous

bit_immidiate value” instruction since it is a real instruction of ARM, therefore more
efficient in code size.

EQU (equate)

This is used to define a constant value or a fixed address. The EQU directive does
not set aside storage for a data item, but associates a constant number with a data or an
address label so that when the label appears in the program, its constant will be substituted
for the label. The following uses EQU for the counter constant, and then the constant is
used to load the R2 register:

COUNT EQU 0x25

MOV R2, #COUNT ;R2 = 0x25

When executing the above instruction “MOV R2, #COUNT”, the register R2 will be
loaded with the value 0x25. What is the advantage of using EQU? Assume that a constant
(a fixed value) is used throughout the program, and the programmer wants to change its
value everywhere. By the use of EQU, the programmer can change it once and the
assembler will change all of its occurrences throughout the program. This allows the
programmer to avoid searching the entire program trying to find every occurrence.

Using EQU for fixed data assignment

To get more practice using EQU to assign fixed data, examine the following:

DATA1 EQU 0x39 ;the way to define hex value

DATA2 EQU 2_00110101 ;the way to define binary value (35 in hex)
DATA3 EQU 39 ;decimal numbers (27 in hex)

DATA4 EQU ‘2’ ;ASCII characters

Using EQU for SFR address assignment

EQU is also widely used to assign SFR addresses. Examine the following code:

PORTB EQU 0xF0018 ;SFR Port B address
MOV R6,#0x01 ;R6 = 0x01
LDR R2,=PORTB ;R2 = 0xF0018
STRB R6,[R2] ;Port B now has 0x01

Using EQU for RAM address assignment

Another common usage of EQU is for the address assignment of the internal SRAM.
It is exactly like using EQU for SFR address assignment. Examine the following code:

SUM EQU 0x40000120 ;assign RAM loc to SUM
MOV R2,#5 ;load R2 with 5

STUDENTS-HUB.com Uploaded By: anonymous

MOV R1,#2 ;Joad R1 with 2

ADD R2, R2,R1 ;R2=R2 +R1
LDR R3,=SUM ;Joad R3 with 0x40000120
STRB R2,[R3] ;store the result SUM

This is especially helpful when the address needs to be changed in order to use a
different ARM chip for a given project. It is much easier to refer to a name than a number
when accessing RAM address locations.

RN (equate)

This is used to define a name for a register. The RN directive does not set aside a
seperate storage for the name, but associates a register with that name. It improves the
clarity. Program 2-2 shows how we use SUM name for R3.

Program 2-2: An ARM Assembly L.anguage Program Using RN Directive
;ARM Assembly Language Program To Add Some Data
;and store the SUM in R3.

VAL1 RN R1 ;define VAL1 as a name for R1
VAL2 RN R2 ;define VAL?2 as a name for R2
UM RN R3 ;define SUM as a name for R3

AREA PROG_2_2, CODE, READONLY
ENTRY
MOV VALI, #0x25 ;R1 = 0x25
MOV VAL2, #0x34 ;R2 = 0x34
ADD SUM, VAL1,VAL2 ;R3=R2 +R1
HERE B HERE
END

INCLUDE directive

The include directive tells the ARM assembler to add the contents of a file to our
program (like the #include directive in C language).

Assembler data allocation directives

In most Assembly languages there are some directives to allocate memory and
initialize its value. In ARM Assembly language DCB, DCD, and DCW allocate memory
and initialize them. The SPACE directive allocates memory without initializing it.

STUDENTS-HUB.com Uploaded By: anonymous

DCB directive (define constant byte)

The DCB directive allocates a byte size memory and initializes the values.
MY VALUE DCB 5 ;sMYVALUE =5
MYMSAGE DCB “HELLO WORLD” ;string
DCW directive (define constant half-word)

The DCW directive allocates a half-word size memory and initializes the values.
MYDATA DCW 0x20, 0xF230, 5000, 0x9CD7
DCD directive (define constant word)

The DCD directive allocates a word size memory and initializes the values.
MYDATA DCD 0x200000, 0xF30F5, 5000000, 0XFFFF9CD7

See Tables 2-8 and 2-9.

Directive Description

DCB Allocates one or more bytes of memory, and defines the initial runtime contents of
the memory
DCW Allocates one or more halfwords of memory, aligned on two-byte boundaries, and
defines the initial runtime contents of the memory.
Allocates one or more halfwords of memory, and defines the initial runtime contents
DCwWU . .
of the memory. The data is not aligned.
DCD Allocates one or more words of memory, aligned on four-byte boundaries, and
defines the initial runtime contents of the memory.
DCDU Allocates one or more words of memory and defines the initial runtime contents of
the memory. The data is not aligned.

Table 2- 8: Some Widely Used ARM Memory Allocation Directives

Data Size Decimal Hexadecimal Directive Instruction
Byte 8 0-255 0 - OxFF DCB STRB/LDRB
Half-word 16 0 — 65535 0 - OxFFFF DCW STRH/LDRH
Word 32 0-2%1 0 - OXFFFFFFFF DCD STR/LDR

Table 2- 9: Unsigned Data Range in ARM and associated Instructions

In Program 2-3A you see an example of storing constant values in the program
memory using the directives. Figure 2-12 shows how the data is stored in memory. In the
example, the program goes to locations 0x00 to OxOF. The DCB directive stores data in
addresses 0x10—0x17. As you see one byte is allocated for each data. The DCD allocates 4

STUDENTS-HUB.com Uploaded By: anonymous

bytes for each data. As a result the lowest byte of 0x23222120 (which is 0x20) is stored in
location 0x18 and the next bytes are stored in the next locations.

Program 2-3A: Sample of Storing Fixed Data in Program Memory
;storing data in program memory.
AREA LOOKUP_EXAMPLE,READONLY,CODE
ENTRY
LDR R2,=OUR_FIXED_DATA ;point to OUR_FIXED_DATA
LDRB RO,[R2?] ;load RO with the contents

;of memory pointed to by R2
ADD R1,R1,R0 ;add RO to R1
B HERE ;stay here forever

s
F
=
&

@)
c
lFU
=
<
&5
IU
2
—
>

DCB 0x55,0x33,1,2,3,4,5,6
DCD 0x23222120,0x30
DCW 0x4540,0x50

END

st | *
ME3S. —
¥ |_|
0x00000000: 1C 20 9F E5 00 00 D2 E5 00 10 81 EO FE FF FF EA
oxooooooio: EEIE3I01]ozo3To2osToel[Z0 21 25 Z3)[50 oo oo ool
ox00000020: [20_25)[EC_00] 10 00 00 00 00 00 00 00 00 OO0 00 0O

0x00000030: 00 00 00 OO0 OO0 OO0 OO OO 00 00 00 00 00 00 00 00
0x00000040: 00 00 00 OO0 OO0 OO OO OO 0O 00 00 00 00 00 00 00 -

n;ghiall Stack + Lacals | [Memaory 1

Figure 2- 12: Memory Dump for Program 2-3A

The DCW directive allocates 2 bytes for each data. For example, the low byte of
0x4540 is located in address 0x20 and the high byte of it goes to address 0x21. Similarly
the low byte of 0x50 is located in address 0x22 and the high byte of it in address 0x23.

In the program to access the data, first the R2 register is loaded with the address of
OUR_FIXED_DATA. In this example, OUR_FIXED_DATA has address 0x10. So, R2 is
loaded with 0x10. Then, the contents of location 0x10 is loaded into register RO, using the
LDRB instruction.

SPACE directive

Using the SPACE directive we can allocate memory for variables. The following
lines allocate 4 and 2 bytes of memory and name them as LONG_VAR and OUR_ALFA:

STUDENTS-HUB.com Uploaded By: anonymous

LONG_VAR SPACE 4 ;Allocate 4 bytes
OUR_ALFA SPACE 2 ;Allocate 2 bytes

In the following program 3 variables are defined: A, B, and C. Then A and B are
initialized with 5 and 4, respectively. In the next step A and B are added together and the
result is put in C:

Program 2-3B
AREA OUR_PROG,CODE,READONLY

ENTRY

>
[l
ul

LDR RO,=A ;R0 = Addr. of A
MOV R1#5 ;R1=5
STR R1,[RO] ;init. A with 5

&
[l
NN

LDR R0,=B ;R0 = Addr. of B
MOV R1,#4 ;R1=4
STR R1,[RO] ;init. B with 4

LDR R0,=A ;R0 = Addr. of A

LDR R1,[RO] ;R1 = value of A
;R2=B
LDR R0,=B ;R0 = Addr. of A

LDR R2,[RO] ;R2 = value of A
;C=R1+R2(C=A+B)
ADD R3,R1,R2;R3=A+B
LDR R0O,=C ;RO = Addr. of C

STR R3,[RO] ;C=R3

oop B loop

AREA OUR_DATA,DATA,READWRITE
;Allocates the followings in SRAM memory
SPACE 4

STUDENTS-HUB.com Uploaded By: anonymous

B SPACE 4

C SPACE 4

END

ADR directive

To load registers with the addresses of memory locations we can also use the ADR
pseudo-instruction which has a better performance. See Chapter 6 for more. ADR has the
following syntax:

ADR Rn,label

For example, in Program 2-3A we can load R2 with the address of
OUR_FIXED_DATA using the following pseudo-instruction:

ADR R2, OUR_FIXED_DATA ;point to OUR_FIXED_DATA
ALIGN

This is used to make sure data is aligned in 32-bit word or 16-bit half word memory
address. The following uses ALIGN to make the data 32-bit word aligned:

ALIGN 4 ;the next instruction is word (4 bytes) aligned

ALIGN 2 ;the next instruction is half-word (2 bytes) aligned

Example 2-7 shows the result of using the ALIGN directive.

Example 2-7

Compare the result of using ALIGN in the following programs:
a)

AREA E2_7A,READONLY,CODE

ENTRY

ADR R2,DTA

LDRB RO,[R2]

ADD R1,R1,RO
H1 B H1

DTA DCB 0x55

STUDENTS-HUB.com Uploaded By: anonymous

DCB 0x22
END
b)
AREA E2_7B,READONLY,CODE
ENTRY
ADR R2,DTA
LDRB RO,[R2]
ADD R1,R1,R0O
H1 B H1

DTA DCB 0x55

ALIGN 2
DCB 0x22
END

C)
AREA E2_7C,READONLY,CODE
ENTRY
ADR R2,DTA
LDRB RO,[R2]
ADD R1,R1,R0
H1 B H1

DTA DCB 0x55

ALIGN 4

DCB 0x22

END
Solution:

a)

When there is no ALIGN directive the DCB directive allocates the first empty location for
its data. In this example, address 0x10 is allocated for 0x55. So 0x22 goes to address 0x11.

STUDENTS-HUB.com

Uploaded By: anonymous

STUDENTS-HUB.com

Memory 1 @

Address: |D :| =

0x00000000: O8 20 8F E2 00 00 D2 ES
0x00000008: 00 10 81 EO FE FF FF Ei
0x00000010: 00 00 00 00 00 00 ;-

@ Call Stack = Locals | (E] Memory 1

b)

In the example the ALIGN is set to 2 which means the data should be put in a location
with even address. The 0x55 goes to the first empty location which is 0x10. The next
empty location is 0x11 which is not a multiple of 2. So, it is filled with 0 and the next data
goes to location 0x12.

Memory 1 @

Address: |D :| =

0x00000000: O8 20 8F E2 00 00 D2 ES
0x00000008: 00 10 81 EO FE FF FF EA
0x00000010: oo [22] oo oo oo oo oo =

@ Call Stack = Locals | (E] Memory 1

C)

In the example the ALIGN is set to 4 which means the data should go to locations whose
address is multiple of 4. The 0x55 goes to the first empty location which is 0x10. The next
empty locations are 0x11, 0x12, and 0x13 which are not a multiple of 4. So, they are filled
with Os and the next data goes to location 0x14.

Memory 1 @

Address: |I]I :I =3

0x00000000: O8 20 8F E2 00 00 D2 ES
0x00000008: 00 10 81 EO FE FF FF EA
0x00000010: oo oo oo [22] oo oo oo ;-

@ Call Stack = Locals | (E] Memory 1

Rules for labels in Assembly language

By choosing label names that are meaningful, a programmer can make a program
much easier to read and maintain. There are several rules that names must follow. First,
each label name must be unique. The names used for labels in Assembly language
programming consist of alphabetic letters in both uppercase and lowercase, the digits 0
through 9, and the special characters question mark (?), period (.), at (@), underline (_),
and dollar sign ($). The first character of the label must be an alphabetic character. In
other words, it cannot be a number. Every assembler has some reserved words that must
not be used as labels in the program. Foremost among the reserved words are the
mnemonics for the instructions. For example, “MOV” and “ADD” are reserved because
they are instruction mnemonics. In addition to the mnemonics there are some other

Uploaded By: anonymous

reserved words. Check your assembler for the list of reserved words.

Review Questions
1. Give an example of hex data representation in the ARM assembler.

2. Show how to represent decimal 20 in formats of (a) hex, (b) decimal, and (c)
binary in the ARM assembler.

3. What is the advantage in using the EQU directive to define a constant value?
4. Show the hex number value used by the following directives:
(a) ASC_DATA EQU ‘4> (b) MY_DATA EQU 2_00011111

5. Give the value in R2 for the following:
MYCOUNT EQU 15

MOV R2,#MYCOUNT

6. Give the value in data memory location 0x200000 for the following:
MYCOUNT EQU 0x95
MYMEM EQU 0x200000

MOV RO, #MYCOUNT

LDR R2, =MYMEM

STRB RO, [R2]

7. Give the value in data memory 0x630000 for the following:

MYDATA EQU 12
MYMEM EQU 0x00630000
FACTOR EQU 0x10

MOV R1, #MYDATA
MOV R2, #FACTOR
LDR R3, =MYMEM
ADD R1 R2,R1
STRB RI1,[R3]

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section 2.6: Introduction to ARM Assembly Programming

In this section we discuss Assembly language format and define some widely used
terminology associated with Assembly language programming.

While the CPU can work only in binary, it can do so at a very high speed. It is quite
tedious and slow for humans, however, to deal with Os and 1s in order to program the
computer. A program that consists of Os and 1s is called machine language. In the early
days of the computer, programmers coded programs in machine language. Although the
hexadecimal system was used as a more efficient way to represent binary numbers, the
process of working in machine code was still cumbersome for humans. Eventually,
Assembly languages were developed, which provided mnemonics for the machine code
instructions, plus other features that made programming faster and less prone to error. The
term mnemonic is frequently used in computer science and engineering literature to refer
to codes and abbreviations that are relatively easy to remember. Assembly language
programs must be translated into machine code by a program called an assembler.
Assembly language is referred to as a low-level language because it deals directly with the
internal structure of the CPU. To program in Assembly language, the programmer must
know all the registers of the CPU and the size of each, as well as other details.

Today, one can use many different programming languages, such as BASIC, Pascal,
C, C++, Java, and numerous others. These languages are called high-level languages
because the programmer does not have to be concerned with the internal details of the
CPU. Whereas an assembler is used to translate an Assembly language program into
machine code (sometimes also called object code or opcode for operation code), high-
level languages are translated into machine code by a program called a compiler. For
instance, to write a program in C, one must use a C compiler to translate the program into
machine language. Next we look at ARM Assembly language format.

Structure of Assembly language

An Assembly language program consists of, among other things, a series of lines of
Assembly language instructions. An Assembly language instruction consists of a
mnemonic, optionally followed by two or three operands. The operands are the data items
being manipulated, and the mnemonics are the commands to the CPU, telling it what to do
with those items. See Program 2-4.

Program 2-4: Sample of an ARM Assembly I.anguage Program

;ARM Assembly language program to add some data and store the SUM in R3.

AREA PROG_2_4, CODE, READONLY
ENTRY

MOV RI1, #0x25 ;R1 = 0x25
MOV R2, #0x34 ;R2 = 0x34

STUDENTS-HUB.com Uploaded By: anonymous

ADD R3, R2,R1 ;R3=R2 +R1

An Assembly language program is a series of statements, or lines, which are either
Assembly language instructions, such as ADD and MOV, or statements called directives.
While instructions tell the CPU what to do, directives (also called pseudo-instructions)
give directions to the assembler. For example, in Program 2-4, while the MOV and ADD
instructions are commands to the CPU, ENTRY and END are directives to the assembler.
The directive END tells the assembler that it is the end of the code, while ENTRY is
beginning of the code.

An Assembly language instruction consists of four fields:
[label] mnemonic [operands] [;comment]

Brackets indicate that a field is optional and not all lines have them. Brackets should
not be typed in. Regarding the above format, the following points should be noted:

1. The label field allows the program to refer to a line of code by name. The label
field cannot exceed a certain number of characters. Check your assembler for the
rule.

2. The Assembly language mnemonic (instruction) and operand(s) fields together
perform the real work of the program and accomplish the tasks for which the
program was written. In Assembly language statements such as

MOV R3,#0x55
MOV R2#0x67
ADD R2,R2,R3 ;R2=R2 +R3

ADD and MOV are the mnemonics that produce opcodes; the “0x55” and “0x67” are
the operands. Instead of a mnemonic and an operand, these two fields could contain
assembler pseudo-instructions, or directives. Remember that directives do not generate
any machine code (opcode) and are used only by the assembler, as opposed to instructions
that are translated into machine code (opcode) for the CPU to execute. In Program 2-4 the
commands END and ENTRY are examples of directives. Many of these pseudo-
instructions were discussed in the last section.

3. The comment field begins with a semicolon comment indicator “;”. Comments
may be at the end of a line or on a line by themselves. The assembler ignores
comments, but they are indispensable to programmers. Although comments are
optional, it is recommended that they be used to describe the program in a way
that makes it easier for someone else to read and understand.

4. Notice the label “HERE” in the label field in Program 2-4. In the B (Branch)
statement the ARM is told to stay in this loop indefinitely. If your system has a
monitor program you do not need this line and should delete it from your

STUDENTS-HUB.com Uploaded By: anonymous

program. In the next section we will see how to create a ready-to-run program.

Note!

The first column of each line is always considered as label. Thus, be careful to press a
Tab at the beginning of each line that does not have label; otherwise, your instruction is
considered as a label and an error message will appear when compiling.

Review Questions

1. What is the purpose of pseudo-instructions?

2. are translated by the assembler into machine code, whereas
are not.
3. True or false. Assembly language is a high-level language.

4. Which of the following instructions produces opcode? List all that do.

(a) MOV R6,#0x25 (b) ADD R2,R1,R3 (c) END (d) HERE B HERE

Ut

Pseudo-instructions are also called

=

True or false. Assembler directives are not used by the CPU itself. They are simply
a guide to the assembler.

7. In Question 4, which one is an assembler directive?

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section 2.7: Assembling an ARM Program

Now that the basic form of an Assembly language program has been given, the next
question is: How it is created, assembled, and made ready to run? The steps to create an
executable Assembly language program (Figure 2-13) are outlined as follows:

Editor Program

myfile.a $

Assembler Program

—

[scriptFile_scr] [otherFiles.o] myfile.o myfile.lst
Linker

\ \

myfile.map myfile hex —

Downloaded to the
Program Memory

Figure 2- 13: Steps to Create a Program

1. First we use a text editor to type in a program similar to Program 2-4. In the
case of ARM, we can use the Keil IDE, which has a text editor, assembler,
simulator, and much more all in one software package. It is an excellent
development software that supports all the ARM chips and is free for university
students. See www.keil.com for evaluation version of the software for students.
Many editors or word processors are also available that can be used to create or
edit the program. A widely used editor is the Notepad in Windows, which comes
with all Microsoft operating systems. Notice that the editor must be able to
produce an ASCII file. For assemblers, the file names follow the usual DOS

conventions, but the source file has the extension “.a” or “.asm”. The “a”
extension for the source file is used by an assembler in the next step.

2. The “a” source file containing the program code created in step 1 is fed to the
ARM assembler. The assembler produces an object file, and a list file. The object
file has the extension “.0”, and the list file has “.Ist” extension.

3. The object file plus a script file are used by the linker to produce map file and
hex file. The map file has the extension “.map”, and the hex file has “.hex”
extension. The script file is optional and can be replaced with some command
line options. After a successful link, the hex file is ready to be burned into the
ARM’s program ROM and is downloaded into the ARM chip.

More about asm and object files

€€~

The asm file is also called the source file and must have the “a” or “asm” extension.
As mentioned earlier, this file is created with a text editor such as Windows Notepad.

STUDENTS-HUB.com Uploaded By: anonymous

Many assemblers come with a text editor. The assembler converts the asm file’s Assembly
language instructions into machine language and provides the o (object) file. The object
file, as mentioned earlier, has an “0” as its extension. The object file is used as input to a
simulator or an emulator.

Before we can assemble a program to create a ready-to-run program, we must make
sure that it is error free. The Keil uVision IDE provides us error messages and we examine
them to see the nature of syntax errors. The assembler will not assemble the program until
all the syntax errors are fixed. A sample of an error message is shown in Figure 2-14.

Build target ‘Target 1’
assembling al.asm...al.asm(7): error: A1163E: Unknown opcode MOVE, expecting opcode or Macro

Target not created

Figure 2- 14: Sample of an Error Message
“Ist” and “map” files

The map file shows the labels defined in the program together with their values.
Examine Figure 2-15. It shows the Map file of Program 2-4.

Memory Map of the image

Image Entry point : 0x00000000

Load Region LR_1 (Base: 0x00000000, Size: 0x00000010, Max: 0xffffffff, ABSOLUTE)

Execution Region ER_RO (Base: 0x00000000, Size: 0x00000010, Max: 0xffffffff, ABSOLUTE)

Base Addr Size Type Attr Idx E Section Name Object
0x00000000 0x00000010 Code RO 1 *PROG_2_1 a2.o

Execution Region ER_RW (Base: 0x40000000, Size: 0x00000000, Max: Oxffffffff, ABSOLUTE)

*#** No section assigned to this execution region ****

Execution Region ER_ZI (Base: 0x40000000, Size: 0x00000000, Max: 0xffffffff, ABSOLUTE)

**** No section assigned to this execution region ****

Figure 2- 15: Sample of a Map File

The Ist (list) file, which is optional, is very useful to the programmer. The list shows
the binary and source code; it also shows which instructions are used in the source code,
and the amount of memory the program uses. See Figure 2-16.

ARM Macro Assembler Page 1
1 00000000 ;ARM Assembly Language Program To Add Some Data and Store the SUM in R3.

2

STUDENTS-HUB.com Uploaded By: anonymous

00000000

3 00000000

4 00000000

500000000

6 00000004

7 00000008

8 0000000C

900000010

E3A01025

E3A02034

E0823001

EAFFFFFE HERE

AREA PROG_2_4, CODE, READONLY

ENTRY

MOV R1,#0x25 ;R1=0x25
MOV R2,#0x34 ;R2=0x34
ADD R3,R2R1 ;R3=R2+RI1
B HERE

END

Figure 2- 16: Sample of a List File for ARM

Many assemblers assume that the list file is not wanted unless you indicate that you
want to produce it. These files can be accessed by a text editor such as Notepad and
displayed on the monitor, or sent to the printer to get a hard copy. The programmer uses
the list and map files to locate syntax error.

There are many different ARM assemblers available for evaluation nowadays. If
you use the Windows operating system, ARM IAR IDE and Keil uVision can be used.
They have great features and nice environments.

Review Questions

1. True or false. The ARM uVision IDE and Windows Notepad text editor both

produce an ASCII file.

2. True or false. The extension for the source file is “a”.

3. Which of the following files can be produced by a text editor?

(a) myprog.a (b) myprog.obj (c) myprog.hex (d) myprog.lst

4. Which of the following files is produced by an assembler?

(a) myprog.asm (b) myprog.obj (c) myprog.hex (d) myprog.lst

STUDENTS-HUB.com

Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section 2.8: The Program Counter and Program ROM Space in the ARM

In this section we discuss the role of the program counter (PC) in executing a
program and show how the code is fetched from ROM and executed. We will also discuss
the program (code) ROM space for various ARM family members. Finally, we examine
the Harvard architecture of the ARM.

Program counter in the ARM

The most important register in ARM is the PC (program counter). As we mentioned
earlier the R15 is the program counter in ARM. The program counter is used by the CPU
to point to the address of the next instruction to be executed. As the CPU fetches the
opcode from the program ROM, the program counter is incremented automatically to
point to the next instruction. The wider the program counter, the more memory locations a
CPU can access. That means that a 32-bit program counter can access a maximum of 4G

(232 = 4G) bytes program memory locations.

In most microcontrollers each memory location is 1 byte wide. In the case of a 32-

bit program counter, the memory space is 4G (232 = 4G) bytes, which occupies the
0x00000000 —OxFFFFFFFF address range since it is byte-addressable. The program
counter in the ARM family is 32 bits wide. This means that the ARM family can access
addresses 00000000 to OxFFFFFFFF, a total of 4G byte of memory space locations. The
4G bytes of memory space locations are allocated among the I/O peripherals, SRAM, and
Flash ROM. However, at the time of this writing, none of the members of the ARM family
have the entire 4G bytes of memory space populated with on-chip peripherals, SRAM, and
Flash.

Power up location for ARM

One question that we must ask about any microcontroller (or microprocessor) is: “At
what address does the CPU wake up when power is applied?” Each microprocessor is
different. In the case of the ARM microcontrollers (that is, all members regardless of the
family and variation), the microcontroller wakes up at memory address 0x00000000 when
it is powered up. By powering up we mean applying VCC or activating RESET pin. In
other words, when the ARM is powered up, the PC (program counter) has the value of
0x00000000 in it. This means that it expects the first opcode to be stored at ROM address
0x00000000. For this reason, in the ARM system, the first opcode must be burned into
memory location 0x00000000 of program ROM because this is where it looks for the first
instruction when it is booted. Next we discuss the step-by-step action of the program
counter in fetching and executing a sample program.

Placing code in program ROM

To get a better understanding of the role of the program counter in fetching and
executing a program, we examine the action of the program counter as each instruction is
fetched and executed. First, we examine once more the list file of the sample program and
show how the code is placed into the Flash ROM of the ARM chip. As we can see in
Figure 2-16, the opcode and operand for each instruction are listed on the left side of the

STUDENTS-HUB.com Uploaded By: anonymous

list file.

After the program is burned into ROM of an ARM chip, the opcode and operand are
placed in ROM memory locations starting at 0x00000000 as shown in the Program 2-4 list
file.

The list shows that address 00000000 contains E3A01025, which is the opcode for
moving a value into register, and the operand (in this case 0x25) to be moved to another
operand (in this case R1). Therefore, the instruction “MOV R1, #0x25” has a machine
code of “E3A01025”, where E3A is the opcode and 01025 is the operands. See Figure 2-
16. Similarly, the machine code “E3A02034” is located in ROM memory location
00000004 and represents the opcode and the operands for the instruction “MOV R2,
#0x34”. In the same way, machine code “E0813002” is located in memory location
00000008 and represents the opcode and the operand for the instruction “ADD
R3,R1,R2”. The opcode for “HERE B HERE” and its target address are located in
locations 0000000C. Notice that all the instructions in this program are 4-byte
instructions.

Executing a program instruction by instruction

Assuming that the above program is burned into the ROM of an ARM chip, the
following is a step-by-step description of the action of the ARM upon applying power to
it:

1. When the ARM is powered up, the PC (program counter) has 00000000 and
starts to fetch the first instruction from location 00000000 of the program ROM.
In the case of the above program the first code is E3A01025, which is the code
for moving operand 0x25 to R1. Upon executing the code, the CPU places the
value of 25 in R1. Now one instruction is finished. The program counter is now
incremented to point to 00000004 (PC = 00000004), which contains code
E3A02034, the machine code for the instruction “MOV R2, #0x34”.

2. Upon executing the machine code E3A02034, the value 0x34 is loaded to R2.
The program counter is incremented to 00000008.

3. ROM location 00000008 has the machine code for instruction “ADD
R3,R2,R1”. This instruction is executed and now PC = 0000000C.
4, Now PC = 0000000C points to the next instruction, which is “HERE B

HERE”. After the execution of this instruction, PC = 0000000C. This keeps the
program in an infinite loop.

The fact that the program counter points at the next instruction to be executed
explains why some microprocessors (notably the x86) call the program counter the
instruction pointer.

The steps of running a code in ARM is slightly different from what mentioned
above because of the use of pipeline in ARM architecture. We will examine pipelines later
in Chapter 7. Also in ARM Cortex M chips the power-on Reset location value is different
as we will see in Chapter 8.

STUDENTS-HUB.com Uploaded By: anonymous

Instruction formation of the ARM

Recall that the ARM instructions are always 4-byte. Next we explore the instruction
formation for a few of the instructions we have used in this chapter. This should give you
some insight into the instructions of the ARM.

ADD instruction formation

The ADD is a 4-byte (32-bit) instruction. See Figure 2-17. Of the 32 bits, the first 4
bits are set aside for the condition field which will be discussed more in Chapter 4. Bits 26
and 27 are always 0 in ADD instruction. Bit 25 which is indicated by I defines the type of
second operand. As we mentioned before, the second operand can be either a register or an
immediate value between 0-255. If I = 1, the second operand is an immediate value
otherwise it should be a register. Bits 24 to 21 are the operation code of ADD instruction.
When these bits are 0100 the CPU knows that it should run the ADD instruction. Bit 20
which is indicated by S defines either the instruction should update the flag bits or not. In
ADD instruction this bit is zero while in ADDS instruction it is one. Bits 19 to 16 define
the first operand (Rn). It can be a register number between RO to R15. Likewise, bits 15 to
12 define the destination register (Rd). Finally, bits 11 to O define the second operand. As
we mentioned before, bit 25 (I) defines that either the second operand should be a register
or an immediate value. We will discuss the bits of Operand 2 in more detail in Chapter 3.

] 28 2726 25 24 2120 19 16 15 12 11 0
Cond 00 I 0100 |S Rn Rd Operand 2

Figure 2- 17: ADD Instruction Formation
SUB instruction formation

The SUB is a 4-byte (32-bit) instruction. Of the 32 bits, the first 4 bits are set aside
for the condition field. Bits 26 and 27 are always O in SUB instruction. Bit 25 which is
indicated by I defines the type of second operand. If I = 1, the second operand is an
immediate value otherwise it should be a register. Bits 24 to 21 are the operation code of
SUB instruction. When these bits are 0010 the CPU knows that it should run the SUB
instruction. Bit 20 which is indicated by S defines either the instruction should update the
flag bits or not. In SUB instruction this bit is zero while in SUBS instruction it is one. Bits
19 to 16 define the first operand (Rn). It can be a register number between RO to R15.
Likewise, bits 15 to 12 define the destination register (Rd). Finally, bits 11 to 0 define the
second operand. As we mentioned before, bit 25 (I) defines that either the second operand
should be a register or an immediate value. The formation of SUB instruction is shown in
Figure 2-18.

31 28 2726 25 24 2120 19 16 15 12 11 0
Cond 00 I 0010 |S Rn Rd Operand 2

Figure 2- 18: SUB Instruction Formation
General formation of data processing instructions

As you may have noticed, the formation of ADD and SUB instructions are the same

STUDENTS-HUB.com Uploaded By: anonymous

except bits 24 to 21 which are called the operation code and tells the CPU what instruction
it should execute. In ARM, all of the data processing instructions have the same format.
Figure 2-19 shows the general formation of data processing instructions. Each of the data
processing instruction has a unique operation code. In Table 2-10 you see the list of all
data processing instructions and their opcodes.

a1 28 2T 26 25 24 21 20 19 16 15 12 11 0

Cond 00 I OpCode |S Rn Rd Operand 2

Figure 2- 19: General Formation of Data Processing Instructions
Branch instruction formation

The B is a 4-byte (32-bit) instruction. See Figure 2-20. Of the 32 bits, the first 4 bits
are set aside for the condition field which will be discussed more in Chapter 4. Bits 27 to
25 are always 101 in B instruction. Bit 24 which is indicated by L is zero in B instruction
and one in BL instruction. Bits 23 to 0 give us branch target location relative to the current
address. These will be discussed further in Chapter 4.

31 28 27 25 24 23 0

Cond 101 L Offset

Figure 2- 20: Branch Instruction Formation

ROM width in the ARM

As we have seen so far in this section, each location of the address space holds 1

byte. If we have 32 address lines, this will give us 23 locations, which is 4G bytes of
memory location with an address map of 0x00000000—-0xFFFFFFFF. To bring in more
information (code or data) into the CPU in each bus cycle, ARM increased the width of
the data bus to 32 bits. In other words, the ARM is word-addressable. In contrast, the 8051
CPU is byte-addressable only. In a sense, the data bus is like traffic lanes on the highway
where each lane is 8 bits wide. The more lanes, the more information we can bring into the
CPU for processing. For the ARM, the internal data bus between the code memory and the
CPU is 32 bits wide, as shown in Figure 2-21. Therefore, the 4G memory space is shown
as 1G x 32 using a 32-bit word data bus size. The widening of the data path between the
program ROM and the CPU is another way in which the ARM designers increased the
processing power of the ARM family. Another reason to make the code memory 32 bits
wide is to match it with the instruction width of the ARM because all of the instructions
are 4-byte wide. This way, the CPU brings in an instruction from memory every time it
makes a trip to the program memory. That will make instruction fetch a single cycle, as we
will see in the Chapter 4 when instruction timing is discussed.

The ARM designers have made all instructions fixed at 4-byte; there are no 1-byte,
2-byte, or 3-byte instructions, as is the case with the x86 and 8051 chips. This is part of
the RISC architectural philosophy, which will be discussed later in this chapter. It must
also be noted that the data memory SRAM in the ARM microcontroller are also 4-byte.

Harvard and von Neumann architectures in the ARM

STUDENTS-HUB.com Uploaded By: anonymous

In Chapter 0, we discussed Harvard and Von Neumann architecture. ARM 9 and
newer architectures use Harvard architecture, which means that there are separate buses
for the code and the data memory. See Figure 2-21. The program bus provides access to
the program memory whereas the data bus is used for bringing data to the CPU.

ET)

Address bus

ARMT Core Memary

F
Drata bus 7
Fa¥]

{a) Vion Meumann

Instruction Bus N
a2

Data
Memaory

anil'l.lElll}r‘l dress bus 10 BCCEsS Iﬂ'!\[ﬂ.l'!‘.‘llﬂl‘l!-_.'r ﬂiﬂMg ‘Address bus ko access data

Memaory

l L) ;
[Data bus to sccess nstnictions] Dala bus to access dala/
T 7

(b) Harvard

Figure 2- 21: Harvard vs. Von Neumann Architecture

As we can see in Figure 2-21, in the program bus, the data bus is 32 bits wide and
the address bus is as wide as the PC register to enable the CPU to address the entire
program memory.

In Sections 2-2 and 2-3, we learned about data memory space and how to use the
STR and LDR instructions. When the CPU wants to execute the “LDR Rd,[Rx]”
instruction, it puts Rx on the address bus of the data bus, and receives data through the
data bus. For example, to execute “LDR R2,[R5]”, assuming that R5 = 0x40000200, the
CPU puts the value of R5 on the address bus. The location 0x40000200 is in the SRAM
(see Figure 2-4). Thus, the SRAM puts the contents of location 0x40000200 on the data
bus. The CPU gets the contents of location 0x40000200 through the data bus and brings
into CPU and puts it in R2.

The “STR Rx,[Rd]” instruction is executed similarly. The CPU puts Rd on the
address bus and the contents of Rx on the data bus. The memory location whose address is
on the address bus receives the contents of data bus.

Little endian vs. big endian war

Examine the placing of the code in the ARM program memory, shown in Figure 2-
22. The low byte goes to the low memory location, and the high byte goes to the high
memory address. This convention is called little endian to contrast it with big endian.
Figure 2-23 shows storing the same data using big endian convention. The origin of the
terms big endian and little endian is from an argument in a Gulliver’s Travels story over
how an egg should be opened: from the big end or the little end. In the big endian method,
the high byte goes to the low address, whereas in the little endian method, the high byte
goes to the high address and the low byte to the low address. All Intel microprocessors and

STUDENTS-HUB.com Uploaded By: anonymous

many microcontrollers use the little endian convention. Freescale (formerly Motorola)
microprocessors, along with some mainframes, use big endian. The difference might seem
as trivial as whether to break an egg from the big end or the little end, but it is a nuisance
in converting software from one camp to be run on a computer of the other camp. Many
microprocessors, including the ARM, let the software designer choose little endian or big
endian convention.

Value Memory Address

E0 | 0000 000B
82 | 0000 000A

B0 8230019 5571 0000 0009
01 | 0000 0008

E3 | 00000007

A0 | 00000006

E3A020349 5571 0000 0005
[34 | 00000004

'ITE3 | 00000003

A0 | 0000 0002

E3ADT025 9 9571 0000 0001
25 | 0000 0000

Figure 2- 22: ARM Program Memory Contents for Program 2-4 List File (Little Endian)

Value Memory Address

01 | 0000 000B
30 | 0000 000A

B0 8230019 51 0000 0009
E0 | 00000008

34 | 0000 0007

20 | 0000 0006

E3A020349 201 0000 0005
[E3 | 0000 0004

‘725 | 00000003

10 | 00000002

E3ADT025 9 2571 0000 0001
E3 | 00000000

Figure 2- 23: Big Endian Convention
Review Questions

1. Inthe ARM, the program counter is bits wide.

2. True or false. Every member of the ARM family wakes up at memory 0x00000000
when it is powered up.

3. At what ROM location do we store the first opcode of an ARM program?

4. True or false. All the instructions in the ARM are 4-byte instructions.

STUDENTS-HUB.com Uploaded By: anonymous

5. True or false. ARM9 and newer architectures use von Neumann architecture.

6. True or false. ARMY7 and older architectures use von Neumann architecture.

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section 2.9: Some ARM Addressing Modes

The CPU can access operands (data) in various ways, called addressing modes. The
number of addressing modes is determined when the microprocessor is designed and
cannot be changed. Using advanced addressing modes the accessing of different data types
and data structures (e.g. arrays, pointers, classes) are discussed in Chapter 6. Some of the
simple ARM addressing modes are:

1. register
2. immediate

3. register indirect (indexed addressing mode)

Register addressing mode

The register addressing mode involves the use of registers to hold the data to be
manipulated. Memory is not accessed when this addressing mode is executed; therefore, it
is relatively fast. See Figure 2-24.

Registers
4 bits RO 0
[Op. Code | |"l d =|
—— Rd d
R15 15

Figure 2- 24: Register Addressing Mode

Examples of register addressing mode are as follow:

MOV R6,R2 ;copy the contents of R2 into R6
ADD R1,R1,R3 ;add the contents of R3 to contents of R1
SUB R7,R7,R2 ;subtract R2 from R7

Immediate addressing mode

In the immediate addressing mode, the source operand is a constant. In immediate
addressing mode, as the name implies, when the instruction is assembled, the operand
comes immediately after the opcode. For this reason, this addressing mode executes
quickly. See Figure 2-25. Examples:

MOV R9,#0x25 ;move 0x25 into R9
MOV R3,#62 ;load the decimal value 62 into R3
ADD R6,R6,#0x40 ;add 0x40 to R6
8 bits
- >
[(Op-Code | | K |

Figure 2- 25: Immediate Addressing Mode

In the first two addressing modes, the operands are either inside the microprocessor

STUDENTS-HUB.com Uploaded By: anonymous

or tagged along with the instruction. In most programs, the data to be processed is often in
some memory location outside the CPU. There are many ways of accessing the data in the
data memory space. The following describes one of the methods.

Register Indirect Addressing Mode (Indexed addressing mode)

In the register indirect addressing mode, the address of the memory location where
the operand resides is held by a register. See Figure 2-26. For example:

STR R5,[R6] ;move R5 into the memory location
;pointed to by R6
LDR R10,[R3] ;move into R10 the contents of the
;memory location pointed to by R3.
Memory Space
31 0 0

[RnREGISTER __ }——

Figure 2- 26: Register Indirect Addressing Mode

Sample Usage: Register indirect addressing mode

Using register indirect addressing mode we can implement the different pointers. Since
the registers are 32-bit they can address the entire memory space. Here you see a simple
code in C and its equivalent in Assembly:

C Language:
char *ourPointer;
ourPointer = (char*) 0x12456; //Point to location 12456
*ourPointer = 25; //store 25 in location 0x12456

ourPointer ++; //point to next location

Assembly Language:
LDR R2,=0x12456 ;point to location 0x12456
MOV RO#25 ;R0O=25
STRB RO,[R2] ;store RO in location 0x12456

ADD R2,R2#1 ;increment R2 to point to next location

Depending on the data type that the pointer points to, STR/LDR,
STRH/LDRH, or STRB/LDRB might be used. In the above example, since it
points to char (which is 8-bit) STRB is used.

STUDENTS-HUB.com Uploaded By: anonymous

See Chapter 6 for more advanced addressing modes.
Review Questions
1. Can the ARM programmer make up new addressing modes?
2. Which registers can be used for the register indirect addressing mode?

3. Where is the data located in immediate addressing mode?

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section 2.10: RISC Architecture in ARM

There are three ways available to microprocessor designers to increase the
processing power of the CPU:

1. Increase the clock frequency of the chip. One drawback of this method is
that the higher the frequency, the more power and heat dissipation. Power and
heat dissipation is especially a problem for hand-held devices.

2. Use Harvard architecture by increasing the number of buses to bring more
information (code and data) into the CPU to be processed. While in the case of
x86 and other general purpose microprocessors this architecture is very
expensive and unrealistic, in today’s microcontrollers this is not a problem. As
we saw in Section 2.8, some of the ARM chips have Harvard architecture.

3. Change the internal architecture of the CPU and use what is called RISC
architecture.

ARM has used all three methods to increase the processing power of the ARM
microcontrollers. In this section we discuss the merits of RISC architecture.

In the early 1980s, a controversy broke out in the computer design community,
but unlike most controversies, it did not go away. Since the 1960s, in all mainframes
and minicomputers, designers put as many instructions as they could think of into the
CPU. Some of these instructions performed complex tasks. An example is adding data
memory locations and storing the sum into memory. Naturally, microprocessor
designers followed the lead of minicomputer and mainframe designers. Because these
microprocessors used such a large number of instructions, many of which performed
highly complex activities, they came to be known as CISC (complex instruction set
computer) processors. According to several studies in the 1970s, many of these
complex instructions etched into CPUs were never used by programmers and
compilers. The huge cost of implementing a large number of instructions (some of
them complex) into the microprocessor, plus the fact that a good portion of the
transistors on the chip are used by the instruction decoder, made some designers think
of simplifying and reducing the number of instructions. As this concept developed, the
resulting processors came to be known as RISC (reduced instruction set computer).

Features of RISC

The following are some of the features of RISC as implemented by the ARM
microcontroller.

Feature 1

RISC processors have a fixed instruction size. In a CISC microprocessors such as
the x86, instructions can be 1, 2, 3, or even 5 bytes. For example, look at the following
instructions in the x86:

CLR C ;clear Carry flag, a 1-byte instruction

ADD Accumulator, #mybyte ;a 2-byte instruction
STUDENTS-HUB.com Uploaded By: anonymous

LJMP target_address ;a 5-byte instruction

This variable instruction size makes the task of the instruction decoder very
difficult because the size of the incoming instruction is never known. In a RISC
architecture, the size of all instructions is fixed. Therefore, the CPU can decode the
instructions quickly. This is like a bricklayer working with bricks of the same size as
opposed to using bricks of variable sizes. Of course, it is much more efficient to use
bricks of the same size. In the last section we saw how the ARM uses 4-byte
instructions and if not all the 32 bits are needed to form the instruction it fills with
Zeros.

Feature 2

One of the major characteristics of RISC architecture is a large number of
registers. All RISC architectures have at least 8 or 16 registers. Of these 16 registers,
only a few are assigned to a dedicated function. One advantage of a large number of
registers is that it avoids the need for a large stack to store parameters. Although a stack
is implemented on a RISC processor, it is not as essential as in CISC because so many
registers are available. In ARM the use of a large number of general purpose registers
(GPRs) satisfies this RISC feature. The stack for the ARM is covered in Chapter 6.

Feature 3

RISC processors have a small instruction set. RISC processors have only basic
instructions such as ADD, SUB, MUL, LOAD, STORE, AND, OR, EOR, CALL,
JUMP, and so on. The limited number of instructions is one of the criticisms leveled at
the RISC processor because it makes the job of Assembly language programmers much
more tedious and difficult compared to CISC Assembly language programming. This is
one reason that RISC is used more commonly in high-level language environments
such as the C programming language rather than Assembly language environments. It
is interesting to note that some defenders of CISC have called it “complete instruction
set computer” instead of “complex instruction set computer” because it has a complete
set of every kind of instruction. How many of these instructions are used and how often
is another matter. The limited number of instructions in RISC leads to programs that
are large. Although these programs can use more memory, this is not a problem
because memory is cheap. Before the advent of semiconductor memory in the 1960s,
however, CISC designers had to pack as much action as possible into a single
instruction to get the maximum bang for their buck. In the ARM we have around 50
instructions. We will examine more of the instruction set for the ARM in future
chapters.

Feature 4

At this point, one might ask, with all the difficulties associated with RISC
programming, what is the gain? The most important characteristic of the RISC
processor is that more than 99% of instructions are executed with only one clock cycle,
in contrast to CISC instructions. Even some of the 1% of the RISC instructions that are
executed with two clock cycles can be executed with one clock cycle by juggling

STUDENTS-HUB.com Uploaded By: anonymous

instructions around (code scheduling). Code scheduling is discussed in Chapter 7. We
will examine the instruction cycle time and pipelining of the ARM in Chapter 7.

Feature 5

RISC processors have separate buses for data and code. In all the x86 processors,
like all other CISC computers, there is one set of buses for the address (e.g., AO—A31 in
the 80386) and another set of buses for data (e.g., DO—D31 in the 80386) carrying
opcodes and operands in and out of the CPU. To access any section of memory,
regardless of whether it contains code or data operands, the same address bus and data
bus are used. In many RISC processors, there are four sets of buses: (1) a set of data
buses for carrying data (operands) in and out of the CPU, (2) a set of address buses for
accessing the data, (3) a set of buses to carry the opcodes, and (4) a set of address buses
to access the opcodes. The use of separate buses for code and data operands is
commonly referred to as Harvard architecture. We examined the Harvard architecture
of the ARM in the previous section.

Feature 6

Because CISC has such a large number of instructions, each with so many
different addressing modes, microinstructions (microcode) are used to implement them.
The implementation of microinstructions inside the CPU employs more than 40-60%
of transistors in many CISC processors. RISC instructions, however, due to the small
set of instructions, are implemented using the hardwire method. Hardwiring of RISC
instructions takes no more than 10% of the transistors.

Feature 7

RISC uses load/store architecture. In CISC microprocessors, data can be
manipulated while it is still in memory. For example, in instructions such as “ADD
Reg, Memory”, the microprocessor must bring the contents of the external memory
location into the CPU, add it to the contents of the register, then move the result back to
the external memory location. The problem is there might be a delay in accessing the
data from external memory. Then the whole process would be stalled, preventing other
instructions from proceeding in the pipeline. In RISC, designers did away with these
kinds of instructions. In RISC, instructions can only load from external memory into
registers or store registers into external memory locations. There is no direct way of
doing arithmetic and logic operations between a register and the contents of external
memory locations. All these instructions must be performed by first bringing both
operands into the registers inside the CPU, then performing the arithmetic or logic
operation, and then sending the result back to memory. This idea was first implemented
by the Cray 1 supercomputer in 1976 and is commonly referred to as load/store
architecture. In the last section, we saw that the arithmetic and logic operations are
between the GPRs registers, but none involves a memory location. For example, there
isno “ADD R1, RAM-Loc” instruction in ARM.

In concluding this discussion of RISC processors, it is interesting to note that
RISC technology was explored by the scientists at IBM in the mid-1970s, but it was

STUDENTS-HUB.com Uploaded By: anonymous

David Patterson of the University of California at Berkeley who in 1980 brought the
merits of RISC concepts to the attention of computer scientists. It must also be noted
that in recent years CISC processors such as the Pentium have used some RISC
features in their design. This was the only way they could enhance the processing
power of the x86 processors and stay competitive. Of course, they had to use lots of
transistors to do the job, because they had to deal with all the CISC instructions of the
x86 processors and the legacy software of DOS/Windows.

Review Questions
1. What do RISC and CISC stand for?

2. True or false. The CISC architecture executes the vast majority of its instructions
in 2, 3, or more clock cycles, while RISC executes them in one clock.

3. RISC processors normally have a (large, small) number of general-purpose
registers.

4. True or false. Instructions such as “ADD R16, ROMmemory” do not exist in RISC
microprocessors such as the ARM.

5. How many instructions of ARM are 32-bit wide?

6. True or false. While CISC instructions are of variable sizes, RISC instructions are
all the same size.

7. Which of the following operations do not exist for the ADD instruction in RISC?
(a) register to register (b) immediate to register (c) memory to memory

8. True or false. Harvard architecture uses the same address and data buses to fetch
both code and data.

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section 2.11: Viewing Registers and Memory with ARM Keil IDE

The ARM microprocessor has great tools and support systems, many of them free
or inexpensive. ARM Keil uVision is an assembler and simulator provided for free by
Keil Corporation and can be downloaded from the www.keil.com website. See
http://www.MicroDigitalEd.com for tutorials on how to use the Keil ARM uVision
assembler and simulator.

Many assemblers and C compilers come with a simulator. Simulators allow us to
view the contents of registers and memory after executing each instruction (single-
stepping). It is strongly recommended to use a simulator to single-step some of the
programs in this chapter and future chapters. Single-stepping a program with a
simulator gives us a deeper understanding of microcontroller architecture, in addition to
the fact that we can use it to find the errors in our programs.

Figures 2-27 and 2-28 show screenshots for ARM simulators from ARM Keil

uVision.
File Edit View Progedt Flash Debug Peripherals - Tools 5WCS Window Melp
SH@| L anw | o | = | 8 moowsseconsaLHla [o & @l[E
FEolwen v CEEEREIEIS 8- 3-8 -
Register a Cizatiembly 2 B smech LR~
Flegister [Vaoe | 5: HOV Bl, #0%25 B o= Do g [
DxOG000000 EIA01025 MOV R1, $OX0000002S
S r— ¢
e D0000000 62 MOV RZ, #0n34 R2 = O3 Hame (A [Toe |
A1 00 3000004 EIR02034 MOV A2, #Ox00000034 + [=
o 00000 Tz ADD R3, R2,R1 radd B2 Bge
B3 000000 0x00000008 E0E23001 ADD R3,R2,R1 Ay - R Aopks
v Fl " =
1] CeD0000000 —
RS OxcO0000000 [#] akasm - %
L] ReD0000000 - — - - -
R (00000000 1 FARM Aasgszbly Lasaguags Progra= To Add Soms Data and .-':.j
2 DxD0000000 %
By B0000000 3 AEER PROG_2_1, CODE, READOMLY
R0 DeD0000000 4 ENIRY
a1 P — gs Moy R, #0x2S JHI = BeEs
R12 DR00000000 & | M B2, #ix3s ;B2 = Ou3d
B13 (5P DxC0000000 7 ADD R3, R2,R1 radd A2 Eo Rl
RIERR OxDI000000 8 HERE B HERE
RSP (e00o00M El Lol
= CPSR; ReD0000003
*- 5P5R CD0000000
+ - User/System
- Fasl intemust
+ nteeupt
* Superviser
- Foor
* - Unahsfined
= inteenal
| essian e
Elraier | B aegien I Ll il
Commund o B Memon i 2 B3
=== Restricted Verslon with 321766 Byte Code Size Limic T o] e
sse Currently used: 148 Bytes (0%) Address. | Dot 0000000 ||-;|

- |0%40000000: 00 0D 00 OO OO0 0O OO0 OO0 GO OO
3 o0 00 o0 00 00 90 Q0 OO0 OO
» 0x400000%4: 00 00 Q0 00 00 O0 O0 00 00 00
> Oa400000LE: 00 o0 03 00 00 00 0D 00 00 OO =
| o Cali Stack ‘a--' I Memoey 1
Real-Tise Agent: Taged Stopped Simulatian 11 000000002 sec

o] ¥

Figure 2- 27: Keil uVision Screenshot

STUDENTS-HUB.com Uploaded By: anonymous

http://www.MicroDigitalEd.com

L4 ENSarmadSynciha

File Edit WView Project Flash Debug Peripheral ool SWCS . Window Help
DSd@| ca@dloc] - nnnlEenmg e
PR e R nroa H& b=

e v T

TARN Assambly Language Frogzas To Add Some Dabe and Score cthe SUN in R2.

AREA FROG 2 1, CODE, READONLY

ENTRY
R1, #0x25 2RI = Ox23E5
B2, #0x34 SRE = Ox34¥

W O S O AN e RS s

g0

Build cargee "Targes 1°
assenbling AZ.ASE...

Progrzam Size: Code=16 RO-data=0 RW-daca=0 II-deca=0
"azpri.axt® - 0 Erroris), 0 Warningi(s).

Figure 2- 28: Keil uVision Screenshot

STUDENTS-HUB.com Uploaded By: anonymous

Problems

Section 2.1: The General Purpose Registers in the ARM

ARM s a(n) _____-bit microprocessor.

The general purpose registers are ______ bits wide.

The value in MOV R2,#valueis __ bits wide.

The largest number that an ARM GPR register can haveis __ in hex.

ok W

What is the result of the following code and where is it kept?
MOV R2,#0x15
MOV R1,#0x13
ADD R2,R1,R2
6. Which of the followings is (are) illegal?
(a) MOV R2,#0x50000 (b) MOV R2,#0x50 (c) MOV R1,#0x00
(d) MOV R1,255 (e) MOV R17,#25 (f) MOV R23,#0xF5
(g) MOV 123,0x50
7. Which of the following is (are) illegal?
(a) ADD R2,#20,R1 (b) ADD R1,R1,R2 (c) ADD R5,R16,R3
8. What is the result of the following code and where is it kept?
MOV R9,#0x25
ADD R8,R9,#0x1F
9. What is the result of the following code and where is it kept?
MOV R1,#0x15
ADD R6,R1,#0xEA
10. True or false. We have 32 general purpose registers in the ARM.

Section 2.2: The ARM Memory Map
11. True or false. R13 and R14 are special function registers.
12. True or false. The peripheral registers are mapped to memory space.
13. True or false. The On-chip Flash is the same size in all members of ARM.
14. True or false. The On-chip data SRAM is the same size in all members of ARM.
15. What is the difference between the EEPROM and data SRAM space in the ARM?
16. Can we have an ARM chip with no EEPROM?

STUDENTS-HUB.com Uploaded By: anonymous

17. Can we have an ARM chip with no data RAM?
18. What is the maximum number of bytes that the ARM can access?

19. Find the address of the last location of on-chip Flash for each of the following,
assuming the first location is 0:

(a) ARM with 32 KB (b) ARM with 8 KB
(c) ARM with 64 KB (d) ARM with 16 KB
(e) ARM with 128 KB (f) ARM with 256 KB

20. Show the lowest and highest values (in hex) that the ARM program counter can
take.

21. A given ARM has Ox7FFF as the address of the last location of its on-chip ROM.
What is the size of on-chip Flash for this ARM?

22. Repeat Question 21 for 0x3FFF.

23. Find the on-chip program memory size in K for the ARM chip with the following
address ranges:

(a) 0x0000—0x 1FFF (b) 0x0000~0x3FFF
(c) 0x0000—0x7FFF (d) 0x0000—OxFFFF
(e) 0x0000-0x1FFFF (f) 0x00000-0x3FFFF

24. Find the on-chip program memory size in K for the ARM chips with the following
address ranges:

(2) 0x00000-0xFFFFFF (b) 0x00000—0x7FFFF
(¢) 0x00000-0x7FFFFF (d) 0x00000~0xFFFFF
(e) 0x00000-0x1FFFFF (f) 0x00000—0x3FFFFF

Section 2.3: Load and Store Instructions in ARM

25. Show a simple code to store values 0x30 and 0x97 into locations 0x20000015 and
0x20000016, respectively.

26. Show a simple code to load the value 0x55 into locations 0x20000030—
0x20000038.

27. True or false. We cannot load immediate values into the data SRAM directly.

28. Show a simple code to load the value 0x11 into locations 0x20000010—
0x20000015.

29. Repeat Problem 28, except load the value into locations 0x20000034—
0x2000003C.

STUDENTS-HUB.com Uploaded By: anonymous

Section 2.4: ARM CPSR (Current Program Status Register)

30.
31.
32.
33.
34.
35.

The status register is a(n)

-bit register.

Which bits of the status register are used for the C and Z flag bits, respectively?

Which bits of the status register are used for the V and N flag bits, respectively?

In the ADD instruction, when is C raised?

In the ADD instruction, when is Z raised?

What is the status of the C and Z flags after the following code?

LDR RO,=0xFFFFFFFF
LDR R1,=0xFFFFFFF1
ADDS R1,RO,R1

36. Find the C flag value after each of the following codes:

(a) LDR RO,=0xFFFFFF54 (b) MOV R3,#0
LDR R5,=0xFFFFFFC4
ADDS R2,R5,R0

LDR R6,=0xFFFFFFFF
ADDS R3,R3,R6

(c) LDR R3,=0xFFFFFFFF
LDR R8,=0xFFFFFF05
ADDS R2,R3,R8

37. Write a simple program in which the value 0x55 is added 5 times.

Section 2.5: ARM Data Format and Directives

38. State the value (in hex) used for each of the following data:

MYDAT 1 EQU 55
MYDAT 2 EQU 98
MYDAT_3 EQU ‘G’
MYDAT_4 EQU 0x50
MYDAT_5 EQU 200
MYDAT_6 EQU ‘A’
MYDAT_ 7 EQU 0xAA
MYDAT_8 EQU 255
MYDAT_9 EQU 2_10010000
MYDAT 10 EQU 2_01111110
MYDAT_11 EQU 10
MYDAT 12 EQU 15

STUDENTS-HUB.com

Uploaded By: anonymous

39. State the value (in hex) for each of the following data:
DAT_1 EQU 22
DAT_2 EQU 0x56
DAT_3 EQU 2_10011001
DAT_4 EQU 32
DAT_5 EQU 0xF6
DAT_6 EQU 2_11111011

40. Show a simple code to load the value 0x10102265 into locations 0x40000030—
0x4000003F.

41. Show a simple code to (a) load the value 0x23456789 into locations 0x40000060—
0x4000006F, and (b) add them together and place the result in R9 as the values are
added. Use EQU to assign the names TEMPO-TEMP3 to locations 0x40000060—
0x4000006F.

Section 2.6: Introduction to ARM Assembly Programming and

Section 2.7: Assembling an ARM Program

42. Assembly language is a (low, high)-level language while C is a
(low, high)-level language.

43. Of C and Assembly language, which is more efficient in terms of code generation
(i.e., the amount of program memory space it uses)?

44. Which program produces the obj file?

45. True or false. The source file has the extension “asm”.

46. True or false. The source code file can be a non-ASCII file.

47. True or false. Every source file must have EQU directive.

48. Do the EQU and END directives produce opcodes?

49. Why are the directives also called pseudocode?

50. The file with the extension is downloaded into ARM Flash ROM.
51. Give three file extensions produced by ARM Keil.

Section 2.8: The Program Counter and Program ROM Space in the ARM

52. Every ARM family member wakes up at address when it is powered
up.
53. A programmer puts the first opcode at address 0x100. What happens when the

STUDENTS-HUB.com Uploaded By: anonymous

microcontroller is powered up?
54. ARM instructions are bytes.

55. Write a program to add each of your 5-digit ID to a register and place the result
into memory location 0x4000100. Use the program listing to show the Flash
memory addresses and their contents.

56. Show the placement of data in following code:
LDR R1,=0x22334455
LDR R2,=0x20000000
STR R1,[R2]
Use a) little endian and b) big endian.
57. Show the placement of data in following code:
LDR R1,=0xFFEEDDCC
LDR R2,=0x2000002C
STR R1,[R2]
Use a) little endian and b) big endian.
58. How wide is the memory in the ARM chip?

59. How wide is the data bus between the CPU and the program memory in the ARM7
chip?

60. In “ADD Rd,Rn,operand2”, explain how many bits are set aside for Rd and how it
covers the entire GPRs in the ARM chip.

Section 2.9: Some ARM Addressing Modes

61. Give the addressing mode for each of the following:

(a) MOV R5,R3 (b) MOV RO,#56
(c) LDR R5,[R3] (d) ADD R9,R1,R2
(e) LDR R7,[R2] (f) LDRB R1,[R4]

62. Show the contents of the memory locations after the execution of each instruction.

(a) LDR R2,=0x129F (b) LDR R4,=0x8C63
LDR R1,=0x1450 LDR R1,=0x2400
LDR R2,[R1] LDRH R4,[R1]

0x1450 = (.......) 0x2400 = (.......)

STUDENTS-HUB.com Uploaded By: anonymous

0x1451=(.......) 0x2401 = (.......)

Section 2.10: RISC Architecture in ARM

63. What do RISC and CISC stand for?

64. In___ (RISC, CISC) architecture we can have 1-, 2-, 3-, or 4-byte instructions.

65. In___ (RISC, CISC) architecture instructions are fixed in size.

66. In__ (RISC, CISC) architecture instructions are mostly executed in one or
two cycles.

67. In___ (RISC, CISC) architecture we can have an instruction to ADD a register

to external memory.

68. True or false. Most instructions in CISC are executed in one or two cycles.

STUDENTS-HUB.com Uploaded By: anonymous

Answers to Review Questions

Section 2.1
1. MOV R2#0x34
2.

MOV R1,#0x16

MOV R2,#0xCD

ADD R1,R1,R2

or

MOV R1,#0x16

ADD R1,R1,#0xCD

3. False

4. FF in hex and 255 in decimal
5. 32

Section 2.2
1. True

2. general-purpose registers

3. 32
4. Special function registers (SFRs)
5 32
Section 2.3
1. True
2.

MOV R1,#0x20

MOV R2,#0x95

STRB R2,[R1]

3. STR R2,[R8]

4.

MOV R1,#0x20

LDR R4,[R1]

5. FFin hex or 255 in decimal
6. R6

STUDENTS-HUB.com Uploaded By: anonymous

7. It copies the lower 8 bits of R1 into location pointed to by R2.
8. FFFEFFFF in hex or 4,294,967,295 in decimal (232-1)
Section 2.4

1. CPSR (current program status register)
2. 32 bits
3.
Hex Binary
FFFFFFOF 1111 1111 11171 1111 1111 1111 1001 1111

+00000061 +_.0000 0000 0000 0000 0000 0000 0110 0001

1 00000000 1 0000 0000 0000 0000 0000 0000 0000 0000

ThisleadstoC=1and Z = 1.

4.

Hex Binary
00000022 0000 0000 0000 0000 0000 0000 0010
0010
+00000022 +_.0000 0000 0000 0000 0000 0000 0010
0010
0 00000000 0000 0000 0000 0000 0000 0000 0100
0100

This leads to Z = 0.
S.

Hex Binary

0000 0067 0000 0000 0000 0000 0000 0000 0110 0111

+ 0000 0099 +_.0000 0000 0000 0000 0000 0000 1001 1001

0000 0100 0000 0000 0000 0000 0000 0001 0000 0000

This leadsto C =0 and Z = 0.

Section 2.5
1. MOV R1,#0x20

STUDENTS-HUB.com Uploaded By: anonymous

N

(a) MOV R2,#0x14 (b) MOV R2,#20 (c) MOV R2,#2_00010100

w

If the value is to be changed later, it can be done once in one place instead of at
every occurrence and the code becomes more readable, as well.

4. (a) 0x34 (b) Ox1F

5. 15in decimal (OxOF in hex)

6. Value of location 0x00000200 = 0x95

7. 0x0C + 0x10 = 0x1C will be in data memory location 0x00000630.

Section 2.6

1. The real work is performed by instructions such as MOV and ADD. Pseudo-
instructions, also called Assembly directives, direct the assembler in doing its job.

2. The instruction mnemonics, pseudo-instructions
3. False
4. All except (c)
5. Assembler directives
6. True
7. (0)
Section 2.7
1. True
2. True
3. (a)
4. (b)and (d)
Section 2.8
1. 32
2. True
3. 0x00000000
4. True
5. False
6. True
Section 2.9
1. No

2. The general purpose registers (RO to R15)

STUDENTS-HUB.com Uploaded By: anonymous

3. [Itis a part of the instruction

Section 2.10

1. RISC is reduced instruction set computer; CISC stands for complex instruction set
computer.

True

Large

True

All of them
True

(c)

False

© N o bk W

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Chapter 3: Arithmetic and Logic Instructions and Programs

In this chapter, most of the arithmetic and logic instructions are discussed and
program examples are given to illustrate the application of these instructions. Unsigned
numbers are used in this discussion of arithmetic and logic instructions. In Section 3.1 we
examine the arithmetic instructions for unsigned numbers. The logic instructions and
programs are covered in Section 3.2. Section 3.3 is dedicated to rotate and shift
operations. We examine loading fixed (constant) values into registers using rotate options,
as well. In Section 3.4 we discuss the ARM Cortex instructions for rotate and shift.
Section 3.5 is dedicated to BCD and ASCII data conversion.

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section 3.1: Arithmetic Instructions

Unsigned numbers are defined as data in which all the bits are used to represent data
and no bits are set aside for the positive or negative sign. This means that the operand can
be between 00 and OxFF (0 to 255 decimal) for 8-bit data and between 0x0000 and
OxFFFF (0 to 65535 decimal) for 16-bit data. For the 32-bit operand it can be between 0

and OXFFFFFFFF (0 to 232 -1). See Table 3-1. This section covers the ADD, SUB, and
multiply instructions for unsigned number.

IDEIEINIVAS Bits Decimal Hexadecimal Load instruction used
Byte 8 0-255 0 - OxFF STRB

Half-word 16 0 — 65535 0 - OXFFFF STRH

Word 32 0-2%-1 0 — OxXFFFFFFFF STR

Table 3-1: Unsigned Data Range Summary in ARM
Affecting flags in ARM instructions

A unique feature of the execution of ARM arithmetic instructions is that it does not
affect (updates) the flags unless we specify it. This is different from other microcontrollers
and CPUs such as 8051 and x86. In the x86 and 8051 the arithmetic instructions
automatically change the Z and C flags regardless of we want it or not. This is not the case
with ARM. The default for the ARM instruction is not to affect these flags after the
execution of arithmetic instructions such as ADD and SUB. The ARM assembler gives us
the option of telling the CPU to update the flag bits in the CSPR register to reflect the
result. We override the default by having letter S in the instruction. For example, we must
use SUBS instead of SUB since the SUB instruction will not update the flags. The SUBS
means subtract and set the flags, while the SUB simply subtracts without having any effect
on the flags. See Table 3-2 and Figure 3-1.

k3| 28 2T 26 25 24 21 20 19 16 15 12 1" 0
Cond 00 [I| OpCode |S Rn Rd Operand 2

5=0, do not update flag {default). S=1 update flags

Figure 3- 1: General Formation of Data Processing Instruction

Instruction (Flags unchanged) Instruction (Flags updated)

ADD Add ADDS Add and set flags

ADC Add with carry ADCS Add with carry and set flags
SUB SUBS SUBS Subtract and set flags

SBC Subtract with carry SBCS Subtract with carry and set flags
MUL Multiply MULS Multiply and set flags

STUDENTS-HUB.com Uploaded By: anonymous

UMULL | Multiply long UMULLS | Multiply Long and set flags

RSB Reverse subtract RSBS Reverse subtract and set flags

Reverse subtract with carry and set

RSC Reverse subtract with carry | RSCS
flags

Note: The above instruction affect all the Z, C, V and N flag bits of CPSR (current program status register) but the N and V flags are
for signed data and are discussed in Chapter 5.

Table 3-2: Arithmetic Instructions and Flag Bits for Unsigned Data
Addition of unsigned numbers
The form of the ADD instruction is
ADD Rd,Rn,Op2 ;Rd = Rn + Op2

The instructions ADD and ADC are used to add two operands. The destination
operand must be a register. The Op2 operand can be a register or immediate. Remember
that memory-to-register or memory-to-memory arithmetic and logic operations are never
allowed in ARM Assembly language since it is a RISC processor. The instruction could
change any of the Z, C, N, or V bits of the status flag register, as long as we use the ADDS
instead of ADD. The effect of the ADDS instruction on the overflow (V) and N (negative)
flags is discussed in Chapter 5 since they are used in signed number operations. Look at
Examples 3-1 and 3-2 for the effect of ADDS instruction on Z and C flags.

Example 3-1

Show the flag bits of status register for the following cases:

a) LDR R2,=0xFFFFFFF5 ;R2=0xFFFFFFF5 (notice the = sign)
MOV R3,#0x0B
ADDS R1,R2,R3 ;R1=R2 + R3 and update the flags

b) LDR R2,=0xFFFFFFFF
ADDS R1,R2,#0x95 ;R1=R2 + 95 and update the flags

Solution:

a)

1111 1111 1111 1111 1117 1111 1111

OxFFFFFFF5 0101

STUDENTS-HUB.com Uploaded By: anonymous

+ +_0000 0000 0000 0000 0000 0000
0x0000000B 0000 1011

1 0000 0000 0000 0000 0000 0000

0x100000000 0000 0000

First, notice how the “LDR R2,=0xFFFFFFF5” pseudo-instruction loads the 32-bit value
into R2 register. Also notice the use of ADDS instruction instead of ADD since the ADD
instruction does not update the flags. Now, after the addition, the R1 register (destination)

contains 0 and the flags are as follows:
C = 1, since there is a carry out from D31

Z = 1, the result of the action is zero (for the 32 bits)

b)
OxFFFFFFFF 1111 1111 1117 1111 11711 1111 1111 1111

+ +_0000 0000 0000 0000 0000 0000 1001
0x00000095 0101

1 0000 0000 0000 0000 0000 0000 1001

0x100000094 0100

After the addition, the R1 register (destination) contains 0x94 and the flags are as follows:

C = 1, since there is a carry out from D31

Z = 0, the result of the action is not zero (for the 32 bits)

Example 3-2

Show the flag bits of status register for the following case:

LDR R2,=0xFFFFFFF1 ;R2 = OxFFFFFFF1

MOV R3,#0x0F

ADDS R3,R3,R2 ;R3 = R3 + R2 and update the flags
ADD R3,R3,#0x7 ;R3 = R3 + 0x7 and flags unchanged
MOV R1,R3

Solution:

OxFFFFFFF1 1111 1111 1111 11171 1111 1111 1111 0001

STUDENTS-HUB.com

Uploaded By: anonymous

+__0x0000000F +_0000 0000 0000 0000 0000 0000 0000
1111

1 0000 0000 0000 0000 0000 0000 0000

0x100000000 0000

After the ADDS addition, the R3 register (destination) contains 0 and the flags are as
follows:

C =1, since there is a carry out from D31

Z = 1, the result of the action is zero (for the 32 bits)

After the “ADD R3,R3,#0x7” addition, the R3 register (destination) contains 0x7 (0x + 07
= 07) and the flags are unchanged from previous instruction since we used ADD instead of
ADDS. Therefore, the Z =1 and C = 1. If we use “ADDS R3,R3,#0x7” instruction instead
of “ADD R3,R3,#0x7”, we will have Z = 0 and C = 0. Use the Keil ARM simulator to
verify this.

Comment

Microsoft Windows comes with a calculator. Use it to verify the calculations in this
and future chapters. The calculator supports data size of up to 64-bit

No increment instruction in ARM

There is no increment instruction in the ARM processor. Instead we use ADD to
perform this action. The instruction “ADDS R4,R4,#1” will increment the R4 and places
the result in R4 register. The RISC processors eliminate the unnecessary instructions and
use an existing instruction to perform the operation.

ADC (add with carry)

This instruction is used for multiword (data larger than 32-bit) numbers. The form of
the ADC instruction is

ADC Rd,Rn,Op2 ;RA=Rn+0p2+C
In discussing addition, the following two cases will be examined:
1. Addition of individual word data

2. Addition of multiword data

CASE 1: Addition of individual word data

STUDENTS-HUB.com Uploaded By: anonymous

In previous examples, in programs regarding addition, the total sum was purposely
kept less than OxFFFFFFFF, the maximum value a 32-bit register can hold. In real world
to calculate the total sum of any number of operands, the carry flag should be checked
after the addition of each operand to see if the total sum is greater than OXFFFFFFFF. See
Example 3-3 and Program 3-1.

Example 3-3

Show the flag bits of status register for the following case:

LDR R2,=0xFFFFFFF1 ;R2 = OXFFFFFFF1
MOV R3#0x0F
ADDS R3,R3,R2 ;R3 = R3 + R2 and update the flags
ADD R3,R3,#0x7 ;R3 = R3 + 0x7 and flags unchanged
MOV R1,R3

Solution:

1111 1111 11171 11171 1111 1111 1111

OxFFFFFFF1 0001

+_0000 0000 0000 0000 0000 0000 0000
1111

+_0x0000000F

1 0000 0000 0000 0000 0000 0000 0000

0x100000000 0000

After the ADDS addition, the R3 register (destination) contains 0 and the flags are as
follows:

C =1, since there is a carry out from D31

Z = 1, the result of the action is zero (for the 32 bits)

After the “ADD R3,R3,#0x7” addition, the R3 register (destination) contains 0x7 (0x0 +
0x7 = 0x7) and the flags are unchanged from previous instruction since we used ADD
instead of ADDS. Therefore, the Z = 1 and C = 1. If we use “ADDS R3,R3,#0x7”
instruction instead of “ADD R3,R3,#0x7”, we will have Z = 0 and C = 0. Use the Keil
ARM simulator to verify this.

STUDENTS-HUB.com Uploaded By: anonymous

Program 3-1

Write a program to calculate the total sum of five words of data. Each data value represents the mass of a
planet in integer. The decimal data are as follow: 1000000000, 2000000000, 3000000000, 4000000000, and
4100000000.

AREA PROG3_1, CODE, READONLY
ENTRY

LDR R1, =1000000000
LDR R2,=2000000000
LDR R3, =3000000000
LDR R4, =4000000000
LDR R5, =4100000000

MOV R8,#0 ; R8 = 0 for saving the lower word
MOV R9,#0 ; R9 = 0 for accumulating the carries

ADDS R8,R8,R1 ; R8B=R8 + R1

ADC R9,R9,#0 ; R9=R9 + 0 + Carry

;(increment R9 if there is carry)

ADDS R8,R8,R2 ; R8B=R8 + R2

ADC R9,R9,#0 ; R9=R9 + 0 + Carry

ADDS R8,R8,R3 ; R8B=R8 + R3

ADC R9,R9,#0 ; R9=R9 + 0 + Carry

ADDS R8,R8,R4 ; R8=R8 + R4

ADC R9,R9,#0 ; R9=R9 + 0 + Carry

ADDS R8,R8,R5 ; R8B=R8 + R5

ADC R9,R9,#0 ; R9=R9 + 0 + Carry
HERE B HERE

END ; Mark end of file

CASE 2: Addition of multiword numbers
Assume a program is needed that will add the total U.S. budget for the last 100 years

STUDENTS-HUB.com Uploaded By: anonymous

or the mass of all the planets in the solar system. In cases like this, the numbers being
added could be up to 8 bytes wide or more. Since ARM registers are only 32 bits wide (4
bytes), it is the job of the programmer to write the code to break down these large numbers
into smaller chunks to be processed by the CPU. If a 32-bit register is used and the
operand is 8 bytes wide, that would take a total of two iterations. See Example 3-4.
However, if a 16-bit register is used, the same operands would require four iterations. This
obviously takes more time for the CPU. This is one reason to have wide registers in the
design of the CPU.

Example 3-4
Analyze the following program which adds 0x35F62562FA to 0x21F412963B:

LDR R0O,=0xF62562FA ;RO = OxF62562FA

LDR R1,=0xF412963B ;R1 = 0xF412963B

MOV R2,#0x35 ;R2 = 0x35

MOV R3,#0x21 ;R3 = 0x21

ADDS R5,R1,R0 ;R5 = 0xF62562FA + 0xF412963B
;now C =1

ADC R6,R2,R3 ;R6E=R2+R3+C

; =0x35+21+1=0x57
Solution:

After the R5 = RO + R1 the carry flag is one. Since C = 1, when ADC is executed, R6 =
R2 +R3+ C=0x35+ 0x21 + 1 = 0x57.

Carry is added because of Carry is generated because of

using ADC RE.R2ZR3 —» using ADDS R5,R0,R1

[0 [0 | 0 [35 | [F6 | 25 | 62 | FA |
+ +

[& [6 | o | 29 | | F4 | 12 | 96 | 3B |
[0] 0 [0 [5 | [@I[EA 3 [F9 [3 |

Microsoft Windows calculator support data size of up 64-bit (double word). Use it to
verify the above calculations.

Subtraction of unsigned numbers
SUB Rd,Rn,Op2 ;Rd = Rn - Op2

In subtraction, the ARM microprocessors (indeed, almost all modern CPUs) use the
2’s complement method. Although every CPU contains adder circuitry, it would be too

STUDENTS-HUB.com Uploaded By: anonymous

cumbersome (and take too many logic gates) to design separate subtractor circuitry. For
this reason, the ARM uses internal adder circuitry to perform the subtraction operation.
Assuming that the ARM is executing simple subtract instructions, one can summarize the
steps of the hardware of the CPU in executing the SUB instruction for unsigned numbers
as follows:

1. Take the 2’s complement of the subtrahend (Op2 operand).
2. Add it to the minuend (Rn operand).

3. Place the result in destination Rd.

4. Set the carry flag if there is a carry.

These four steps are performed for every SUBS instruction by the internal hardware
of the ARM CPU. It is after these four steps that the result is obtained and the flags are set.
Examples 3-5 through 3-7 illustrates the four steps.

Example 3-5

Show the steps involved for the following cases:
a)

MOV R2#0x4F ;R2 = 0x4F

MOV R3,#0x39 ;R3 =0x39

SUBS R4,R2,R3 ;R4=R2-R3
b)

MOV R2,#0x4F ;R2 = 0x4F

SUBS R4,R2#0x05 ;R4 = R2 — 0x05

Solution:

a)
0x4F 0000004F
—0x39 + FEFFFFFC7 2’s complement of 0x39

16 100000016 (C =1 step4)

The flags would be set as follows: C = 1, and Z = 0. The programmer must look at the
carry flag (not the sign flag) to determine if the result is positive or negative.

STUDENTS-HUB.com Uploaded By: anonymous

b)

O0x4F 0000004F

—0x05 +_FFFFFFFB 2’s complement of 0x05

0x4A 10000004A (C=1 step 4)

Example 3-6
Analyze the following instructions:
LDR R2,=0x88888888 ;R2 = 0x88888888
LDR R3,=0x33333333 ;R3 = 0x33333333
SUBS R4,R2,R3 ;R4=R2-R3

Solution:

Following are the steps for “SUB R4,R2,R3”:

88888888 88888888

(2’s complement of

--33333333 + LLCLLLLD) 33333333

55555555 1 55555555 (C =1 step 4) result is positive

Notice that, unlike x86 CPUs, ARM does not invert the carry flag after SUBS so
C=0 when there is borrow and C=1 when there is no borrow. It means that after the
execution of SUBS, if C=1, the result is positive; if C = 0, the result is negative and the
destination has the 2’s complement of the result. Normally, the result is left in 2’s
complement, but you can take the 2’s complement of the result by inverting it and adding
one to it.

Example 3-7
Analyze the following instructions:
MOV R1,#0x4C ;R1 = 0x4C
MOV R2,#0x6E ;R2 = Ox6E
SUBS RO,R1,R2 ;RO0=R1-R2

STUDENTS-HUB.com Uploaded By: anonymous

Solution:

Following are the steps for “SUB R0,R1,R2”:

4C 0000004C

—6E + FFFFFF92 (2’s complement of 0X6E)

_20 oFFFFFFDE (© = U step 4 resultis
negative

SBC (subtract with borrow)
SBC Rd,Rn,Op2 ;RA=Rn-0p2-1+C

This instruction is used for subtraction of multiword (data larger than 32-bit)
numbers. Notice that in some other architectures, the CPU inverts the C flag after
subtraction so the content of carry flag is the borrow bit of subtract operation. In those
architectures the subtract with borrow is implemented as “Rd = Rn — Op2 — C” but in
ARM the carry flag is not inverted after subtraction and carry flag is invert of borrow. To
invert the carry flag while running the subtract with borrow instruction it is implemented
as “Rd=Rn—-0Op2 -1 + C” See Example 3-8.

Example 3-8
Analyze the following program which subtracts 0x21F62562FA from 0x35F412963B:

LDR R0,=0xF62562FA ;RO = 0xF62562FA,
; notice the syntax for LDR

LDR R1,=0xF412963B ;R1 = 0xF412963B
MOV R2,#0x21 ;R2 = 0x21

MOV R3,#0x35 ;R3 = 0x35

SUBS R5,R1,R0 ;R5=R1-RO

; = 0xF412963B — 0xF62562FA, and C = 0

SBC R6,R3,R2 ;G R6E=R3-R2-1+C

; =0x35-0x21-1+0=0x13

Solution:

After the R5 = R1 — RO there is a borrow so the carry flag is cleared. Since C = 0, when
SBC is executed, R6 = R3-R2 -1+ C=0x35-0x21 -1+ 0 = 0x35 — 0x21 — 1= 0x13.

STUDENTS-HUB.com Uploaded By: anonymous

'/P{G = (50 there is borrow
SBCRER3R2 =>R6=C-1+R3-R2 + [0] SUBS R5.R1,R0 =>

RE = C -1+ R3 + { s complement of B2) -1 R5=R1+({2's complement of RO)
[0 | 0 | 0 [3 | +1_ F4 | 12 | 9% [3B |
+
| FF [FF [FF [DF | [09 | DA [9 | 06 |
[0 [0 [0 [13] [O[Fo [ED [33 [41 |

No decrement instruction in ARM

There is no decrement instruction in the ARM processor. Instead we use SUB to
perform the action. The instruction “SUB R4,R4,#1” will decrement one from R4 and
places the result in R4 register. The RISC processors eliminate the unnecessary
instructions and use an existing instruction to perform the desired operation.

RSB (reverse subtract)
The format for the RSB instruction is
RSB Rd,Rn,Op2 ;Rd = 0p2 - Rn

Notice the difference between the RSB and SUB instruction. They are essentially
the same except the way the source operands are subtracted is reversed. This instruction
can be used to get 2’s complement of a 32-bit operand. See Example 3-9.

Example 3-9

Find the result of RO for the followings:
a)

MOV R1,#0x6E ;R1=0x6E

RSB RO,R1,#0 ;RO=0-R1
b)

MOV R1,#0x1 ;R1=1

RSB RO,R1,#0 ;RO=0-R1=0-1
Solution:

a) Following are the steps for “RSB RO,R1,#0”:

0 0000000

—6E + FFFFFF92 (2’s complement)

STUDENTS-HUB.com Uploaded By: anonymous

—6E FFFFFF92 (C = 0) result is negative

b) This is one way to get a fixed value of OXFFFFFFFF in a register. Therefore, we have
RO=0xFFFFFFFF.

RSC (reverse subtract with carry)
The form of the RSC instruction is
RSC Rd,Rn,Op2 ;RA=0p2-Rn-1+C

Notice the difference between the RSB and RSC instructions. They are essentially
the same except the way the source operands are subtracted is reversed. This instruction
can be used to get the 2’s complement of the 64-bit operand. See Example 3-10.

Example 3-10

Show how to create 2’s complement of a 64-bit data in RO and R1 register. The RO hold
the lower 32-bit.

Solution:
LDR R0,=0xF62562FA ;RO = 0xF62562FA
LDR R1,=0xF812963B ;R1 = 0xF812963B
RSB R5,R0,#0 ;R5=0-R0
; = 0—0xF62562FA = 9DA9D06 and C=0
RSC R6,R1,#0 ;G R6=0-R1-1+C

; =0-0xF812963B -1+ 0 = 7ED69C4

Use Microsoft Windows calculator to verify the above calculations.

Multiplication and division of unsigned numbers

Not all CPUs have instructions for multiplication and division. All the ARM
processors have a multiplication instruction but not the division. Some family members
such as ARM Cortex have both the division and multiplication instructions. In this section
we examine the multiplication of unsigned numbers. Signed numbers multiplication is
treated in Chapter 5.

Multiplication of unsigned numbers in ARM

The ARM gives you two choices of unsigned multiplication: normal multiply and
long multiply. The normal multiply instruction (MUL) is used when the result is less than
32-bit, while the long multiply (MULL) must be used when the result is greater than 32-
bit. See Table 3-3. In this section we examine both of them.

STUDENTS-HUB.com Uploaded By: anonymous

Instruction Source 1 Source 2 Destination Result

MUL Rn Op2 Rd (32 bits) Rd=RnxOp2

UMULL Rn Op2 RdLo,RdHi (64 bits) RdLo:RdHi=RnxOp2

Note 1: Using MUL for word x word multiplication provides only the lower 32-bit result in Rd and the rest are dropped if the result is
greater than 32-bit. If the result is greater than OxFFFFFFFF, then we must use UMULL (unsigned Multiply Long) instruction.

Note 2: in word-by-word multiplication using MUL instruction, if the result is greater than 32-bit only the lower 32-bit is saved by ARM
and the upper part is dropped without setting any flag. In some CPUs the C flag is used to indicate the result is greater than 32-bit but
this is not the case with ARM.

Table 3- 3: Unsigned Multiplication (UMUL Rd,Rn,Op2) Summary
MUL (multiply)
MUL Rd,Rn,Op2 ;Rd = Rn x Op2

In normal multiplication, the operands must be in registers. After the multiplication,
the destination registers will contain the result. See the following example:

MOV R1,#0x25 ;R1=0x25
MOV R2#0x65 ;R2=0x65
MUL R3,R1,R2 ;R3 =R1 x R2 = 0x65 x 0x25

Note that in the case of half-word times half-word or smaller sources since the
destination register is 32-bit there is no problem in keeping the result of 65,535 x 65,535,
the highest possible unsigned 16-bit data. That is not the case in word times word
multiplication because 32-bit x 32-bit can produce a result greater than 32-bit. If the MUL
instruction is used, the destination register will hold the lower word (32-bit) and the
portion beyond 32-bit is dropped. So it is not safe to use MUL for multiplication of
numbers greater than 65,536. In many microprocessors when the result goes beyond the
destination register size, the C flag is raised to indicate that. This is not the case with
ARM. See the following example:

LDR R1,=100000 ;R1=100,000

LDR R2,=150000 ;R2=150,000

MUL R3,R2,R1 ;R3 is not 15,000,000,000 because
;it cannot fit in 32 bits.

For this reason we must use UMULL (unsigned multiply long) instruction if the
result is going to be greater than OXFFFFFFFF.

UMULL (unsigned multiply long)
UMULL RdLo,RdHi,Rn,0Op2
;RdHi:RdLoRd = Rn x Op2

In unsigned long multiplication, the operands must be in registers. After the
multiplication, the destination registers will contain the result. Notice that the left most

STUDENTS-HUB.com Uploaded By: anonymous

register, RdLo in our case, will hold the lower word and the higher portion beyond 32-bit
is saved in the second register, RdHi. See the following example:

LDR R1,=0x54000000 ;R1 = 0x54000000
LDR R2,=0x10000002 ;R2 = 0x10000002
UMULL R3,R4,R2,R1 ;0x54000000 x 0x10000002
; = 0x054000000A 8000000
;R3 = 0xA8000000, the lower 32 bits
;R4 = 0x05400000, the higher 32 bits

Notice that it is the job of programmer to choose the best type of multiplication
depending on the size of operands and the result. See Example 3-11.

Example 3-11
Write a short program to multiply OXFFFFFFFF by itself.

Solution:
MOV RO,#1 ;RO=1
RSB R1,R0,#0 ;R1=0-R0
; = OXFFFFFFFF
RSB R2,R0,#0 ;R2 = OxFFFFFFFF

UMULL R3,R4,R1,R2

Since OxFFFFFFFF x OxFFFFFFFF = OxFFFFFFFE00000001, then R4=0xFFFFFFFE
and R3=0x00000001. If we had used MUL instruction, then the OXFFFFFFFF would have
been dropped and only 0x00000001 would have been kept by the destination register.

Multiply and Accumulate Instructions in ARM

In some application such as digital signal processing (DSP) we need to multiply two
registers and add the result with another register. The ARM has an instruction to do both
jobs in a single instruction. The format of MLA (multiply and add) instruction is as
follows:

MLA Rd,Rm,Rs,Rn ;Rd=Rm x Rs + Rn

In multiplication and add, the operands must be in registers. After the multiplication
and add, the destination register will contain the result. See the following example:

MOV R1,#100 ;R1 =100
MOV R2,#5 ;R2=5
STUDENTS-HUB.com Uploaded By: anonymous

MOV R3,#40 :R3 =40
MLA R4,R1,R2,R3 ;R4=R1 xR2+R3 =100 %5+ 40 =540

Notice that multiply and add can produce a result greater than 32-bit, if the MLA
instruction is used, the destination register will hold the lower word (32-bit) and the
portion beyond 32-bit is dropped. For this reason we must use UMLAL (unsigned
multiply and add long) instruction if the result is going to be greater than OxFFFFFFFF.
The format of UMLAL instruction is as follows:

UMLAL RdLo,RdHi,Rn,0p2 ;RdAHi:RdLo = Rn x Op2 + RdHi:RdLo

In multiplication and add, the operands must be in registers. Notice that the addend
and the high word of the destination use the same registers, the two left most registers in
the instruction. It means that the contents of the registers which have the addend will be
changed after execution of UMLAL instruction. See the following example:

LDR R1,=0x34000000 ;R1 = 0x34000000

LDR R2,=0x2000000 ;R2 = 0x2000000

EOR R3,R3,R3 ;R3 = 0x00

LDR R4,=0x00000BBB ;R4 = 0x00000BBB
UMLAL R4,R3,R2,R1 ;0x34000000%x0x2000000+0xBBB
; = 0x068000000000000BBB

Division of unsigned numbers in ARM

Some ARM families do not have an instruction for division of unsigned numbers
since it takes too many gates to implement it. We can use SUB instruction to perform the
division. In the next chapter, after explaining conditional branches, we will show an
example of unsigned division using subtract operation.

Review Questions
1. Explain the difference between ADDS and ADD instructions.

2. The ADC instruction that has the syntax “ADC Rd, Rn, Op2” means

3. Explain why the Z=0 for the following:
MOV R2#0x4F

MOV R4, #0xB1

ADDS R2,R4,R2

4. Explain why the Z=1 for the following:
MOV R2#0x4F

LDR R4,=0xFFFFFFB1

STUDENTS-HUB.com Uploaded By: anonymous

ADDS R2,R4,R2

5. Show how the CPU would subtract 0x05 from 0x43.
6. If C=1,R2 =0x95, and R3 = 0x4F prior to the execution of “SBC R2,R2,R3”,
what will be the contents of R2 after the subtraction?

7. Inunsigned multiplication of “MUL R2,R3,R4”, the product will be placed in

register

8. In unsigned multiplication of “MUL R1,R2,R4”, the R2 can be maximum of

if R4 = OxFFFFFFFF.

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section 3.2: Logic Instructions

In this section we discuss the logic instructions AND, OR, and Ex-OR in the context
of many examples. Just like arithmetic instruction, we must use the S in the instruction
syntax if we want to update the flags. If the S syntax is used the Z flag will be set if and
only if the result is all zeros, and the N flag will be set to the logical value of bit 31 of the
result. The V flag in the CPSR will be unaffected, and the C flag will be set to the carry

out from the barrel shifter which is discussed in the next section. See Table 3-4.

Instruction Instruction
Action Hexadecimal
(Flags Unchanged) (Flags Changed)
AND ANDing ANDS Anding and set flags
ORR ORRing ORS Oring and set flags
EOR Exclusive-ORing | EORS Exclusive Oring and set flags
BIC Bit Clearing BICS Bit clearing and set flags

Table 3-4: Logic Instructions and Flag Bits
The instruction format of logic instructions in ARM is similar to the format of other
data processing instructions. See Figure 3-2.
21 20 18 16 15 12 1N 0

OpCode |S Rn Rd

N 28 2726 25 24

Cond 00 ||

Operand 2

S=0, do not update flag (default). 5=1 update flags

Figure 3-2: General Formation of Data Processing Instruction
AND

AND Rd, Rn, Op2

;Rd = Rn ANDed Op2

0 0 0
o —
AANDY
0 1 0 G|
1 0 0
1 1 1

This instruction will perform a bitwise logical AND on the operands and place the
result in the destination. The destination and the first source operands are registers. The
second source operand can be a register or an immediate value of less than OxFF.

STUDENTS-HUB.com Uploaded By: anonymous

If we use ANDS instead of AND it will change the C and Z flags according to the
result. As seen in Example 3-12, AND can be used to mask certain bits of the operand.

Example 3-12

Show the results of the following cases
a)

MOV R1,#0x35

AND R2,R1,#0x0F ;R2=R1 ANDed with 0xOF
b)

MOV RO0,#0x97

MOV R1,#0xF0

AND R2,RO,R1 ;R2= RO ANDed with R1
Solution:
a)
0x35 00110101
AND 0x0F 00001111
0x05 00000101
b)
0x97 10010111
AND 0xF0 11110000
0x90 10010000
ORR

ORR Rd, Rn, Op2 ;Rd = Rn ORed Op2

STUDENTS-HUB.com Uploaded By: anonymous

The operands are ORed and the result is placed in the destination. ORR can be used
to set certain bits of an operand to one. The destination and the first source operands are
registers. The second source operand can be either a register or an immediate value of less
than OxFF.

If we use ORRS instead of ORR, the flags will be updated, just the same as for the
ANDS instruction. See Example 3-13.

Example 3-13

Show the results of the following cases:
a)

MOV R1,#0x04 ;R1 = 0x04

ORRS R2,R1,#0x68 ;R2=R1 ORed 0x68
b)

MOV RO0,#0x97

MOV R1,#0xF0

ORR R2, RO,R1 ;:R2= R0 ORed with R1
Solution:
a)
0x04 0000 0100
OR 0x68 0110 1000 Flag will be: Z =0

0x6C 01101100

b)
0x97 1001 0111
OR 0xFOQ 1111 0000 Flag will be unchanged
OxF7 11110111

The ORR instruction can also be used to test for a zero operand. For example,
“ORRS R2,R2,#0” will OR the register R2 with zero and make Z =1 if R2 is zero.

STUDENTS-HUB.com Uploaded By: anonymous

EOR
EOR Rd,Rn,Op2 ;Rd = Rn Ex-ORed with Op2

The EOR instruction will Exclusive-OR the operands and place the result in the
destination register. EOR sets the result bits to 1 if they are not equal; otherwise, they are
reset to 0. The flags are updated if we use EORS instead of EOR. The rules for the
operands are the same as in the AND and OR instructions. See Examples 3-14 and 3-15.

Example 3-14
Show the results of the following:
MOV R1,#0x54
EOR R2,R1,#0x78 ;R2 = R1 ExOred with 0x78

Solution:
0x54 01010100
XOR 0x78 01111000

0x2C 00101100

Example 3-15

The EOR instruction can be used to clear the contents of a register by Ex-ORing it with
itself.

Show how “EORS R1,R1,R1” clears R1, assuming that R1 = 0x45.

Solution:
0x45 01000101
STUDENTS-HUB.com Uploaded By: anonymous

XOR 0x45 01000101

0x00 00000000

EOR can also be used to see if two registers have the same value. “EORS
R2,R3,R4” will make Z = 1 if both registers R4 and R3 have the same value, and if they
do, the result (00000000) is saved in R2, the destination.

Another widely used application of EOR is to toggle bits of an operand. For
example, to toggle bit 2 of register R2:

EOR R2,R2,#0x04 ;EOR R2 with 0000 0100

This would cause bit 2 of R2 to change to the opposite value; all other bits would
remain unchanged.

BIC (bit clear)

BIC Rd,Rn,Op2 ;clear certain bits of Rn specified by
;the Op2 and place the result in Rd

Output
X AND (NOT
Y)
0 0 0
0 1 0
1 0 1
1 1 0

The BIC (bit clear) instruction is used to clear the selected bits of the Rn register.
The selected bits are held by Op2. The bits that are HIGH in Op2 will be cleared and bits
with LOW will be left unchanged. For example, assuming that R3 = 00001000 the
instruction “BIC R2,R2,R3” will clear bit 3 of R2 and leaves the rest of the bits
unchanged. In reality, the BIC instruction performs AND operation on Rn register with the
complement of Op2 and places the result in destination register. Look at the following
example:

MOV R1,#0x0F
MOV R2,#0xAA
BIC R3,R2,R1 ;now R3 = 0xAA ANDed with 0xF0 = 0xA0

If we want the flags to be updated, then we must use BICS instead of BIC.

STUDENTS-HUB.com Uploaded By: anonymous

MVN (move negative)
MVN Rd, Rn ;move negative of Rn to Rd

The MVN (move negative) instruction is used to generate one’s complement of an
operand. For example, the instruction “MVN R2,#0” will make R2=0xFFFFFFFF. Look at
the following example:

LDR R2,=0xAAAAAAAA ;R2 = 0xAAAAAAAA
MVN R2,R2 ;R2 = 0x55555555

We can also use Ex-OR instruction to generate one’s complement of an operand. Ex-
ORing an operand with OxFFFFFFFF will generate the 1’s complement. See the following

code:
LDR R2,=0xAAAAAAAA ;R2 = 0xAAAAAAAA
MVN RO,#0 ;RO = OXFFFFFFFF
EOR R2,R2,R0 ;R2 = R2 ExORed with OXFFFFFFFF
; = 0x55555555

It must be noted that the instruction “MVN Rd,#0” is widely used to load the fixed
value of OxFFFFFFFF into destination register. We can use the “LDR Rd,=0xFFFFFFFF”
pseudo-instruction to do the same thing, but the ARM assembler will substitute several
real ARM instructions in its place and therefore it takes more code space.

Review Questions
1. Use operands 0x4FCA and 0xC237 to perform:
(a) AND (b) OR (c) XOR

2. ANDing a word operand with OxXFFFFFFFF will result in what value for the word
operand? To set all bits of an operand to 0, it should be ANDed with

To set all bits of an operand to 1, it could be ORed with
XORing an operand with itself results in what value for the operand?

Write an instruction that sets bit 4 of R7.

L

Write an instruction that clears bit 3 of R5.

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section 3.3: Rotate and Barrel Shifter

Although ARM Cortex has shift and rotate instruction, for the ARM7 we can
perform the shift and rotate operations as part of other instructions such as MOV. In
previous sections we discussed that as the second argument of process instructions
(arithmetic and logic instructions) we can use register or immediate values. In other
words, the process instructions can be used in one of the following forms:

1. opcode Rd, Rn, Rs (e.g. ADD R1,R2,R3)
2. opcode Rd, Rn, immediateValue (e.g. ADD R2,R3,#5)

ARM is able to shift or rotate the second argument before using it as the argument.
In this section we first discuss shifting and rotating on registers and then we cover shifting
immediate values.

Barrel Shifter

There are two kinds of shifts: logical and arithmetic. The logical shift is for unsigned
operands and the arithmetic shift is for signed operands. Logical shift will be discussed in
this section and the discussion of arithmetic shift is covered in Chapter 5. Using MOV
instructions in ARM one can shift the contents of a register right or left. The number of
times (or bits) that the operand is shifted can be specified directly or through a register.

LSR

0 —m=|MSB——»|SB |—»| C

This is the logical shift right. The operand is shifted right bit by bit, and for every
shift the LSB (least significant bit) will go to the carry flag (C) and the MSB (most
significant bit) is filled with 0. One can use an immediate operand or a register to hold the
number of times it is to be shifted. Examples 3-16 and 3-17 should help to clarify LSR.

Example 3-16
Show the result of LSR in the following:
MOV RO,#0x9A ;RO = 0x9A
MOVS RI1,R0O,LSR #3 ;shift RO to right 3 times
;and then move (copy) the result to R1

Solution:

0x9A = 00000000 00000000 0000000 00000000 10011010

first shift: 00000000 00000000 0000000 00000000 01001101 C=0
second shift: 00000000 00000000 0000000 00000000 00100110 C=1
third shift: 00000000 00000000 0000000 00000000 00010011 C=0

STUDENTS-HUB.com Uploaded By: anonymous

After shifting right three times, R1 = 0x00000013 and C = 0. Another way to write the
above code is:

MOV RO0,#0x9A
MOV R2,#0x03
MOV R1,RO,LSRR2 ;shift RO to right R2 times

;and move the result to R1

Example 3-17
Show the results of LSR in the following:

TIMES EQU 0x4
LDR R1,=0x777 ;R1=0x777
MOV R2#TIMES ;R2=0x04
MOVS R3,R1,LSR R2 ;shift R1 right R2 number of times
;and place the result in R3
Solution:

After four shifts, the R3 will contain 0x77. The four LSBs are lost through the carry, one
by one, and Os fill the four MSBs.

Although LSR does affect the S and Z flags, they are not important in this case. But
notice that if you want the flags to be set, use the MOVS instruction instead of MOV.

One can use the LSR to divide a number by 2. See Example 3-18.

Example 3-18
Show the results of LSR in the following:
LDR R0,=0x88 ;R0=0x88
MOVS R1,RO,LSR #3 ;shift RO right three times (R1 = 0x11)

Solution:

After the three shifts, the R1 will contain 0x11. This divides the number by 8 since 2 to the
power 3 is 8.

STUDENTS-HUB.com Uploaded By: anonymous

LSL

Eq—- MSB ¢——LSB |«— 0

Shift left is also a logical shift. It is the reverse of LSR. After every shift, the LSB is
filled with 0 and the MSB goes to C. All the rules are the same as for LSR. One can use an
immediate operand or a register to hold the number of times it is to be shifted left. See
Example 3-19. One can use the LSL to multiply a number by 2. See Example 3-20.

Example 3-19
Show the effects of LSL in the following:
LDR R1,=0x0F000006
MOVS R2,R1,LSL #8

Solution:

00001111 00000000 00000000 00000110

C=0 00011110 00000000 00000000 00001100 (shifted left once)
C=0 00111100 00000000 00000000 00011000

C=0 01111000 00000000 00000000 00110000

C=0 11110000 00000000 00000000 01100000

C=1 11100000 00000000 00000000 11000000

C=1 11000000 00000000 00000001 10000000

C=1 10000000 00000000 00000011 00000000

C=1 00000000 00000000 00000110 00000000 (shifted eight times)

After eight shifts left, the R2 register has 0x00000600 and C = 1. The eight MSBs are lost
through the carry, one by one, and Os fill the eight LSBs. Another way to write the above
code is:

LDR R1,=0x0F000006
MOV RO0,#0x08
MOV R2,R1,LSL RO

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com

Example 3-20
Show the results of LSL in the following:
TIMES EQU 0x5
LDR R1,#0x7 ;R1=0x7
MOV R2#TIMES ;R2=0x05
MOV R1,R1,LSL R2 ;shift R1 left R2 number of times
;and place the result in R1

Solution:

After the five shifts, the R1 will contain 0x000000EQ. 0xEOQ is 224 in decimal. Notice that
it multiplies number by power of 2. 7x32 = 224 = 0xEO since 2 to the power of 5 is 32.

Table 3-5 lists the logical shift operations in ARM.

Operation Destination Source Number of shifts
LSR (Shift Right) Rd Rn Immediate value
LSR (Shift Right) Rd Rn register Rm
LSL (Shift Left) Rd Rn Immediate value
LSL (Shift Left) Rd Rn register Rm

Note: Number of shift cannot be more than 32.

Table 3- 5: Logic Shift operations for unsigned numbers in ARM

Arithmetic shift right ASR
The arithmetic shift ASR is used for signed numbers and is discussed in Chapter 5.
Rotating the bits of an operand right and left

There are two types of rotations. One is a simple rotation of the bits of the operand,
and the other is a rotation through the carry. Each is explained below.

ROR (rotate right)

—| M1SB ——» 5B | C

Uploaded By: anonymous

In rotate right, as bits are shifted from left to right they exit from the right end (LSB)
and enter the left end (MSB). In addition, as each bit exits the LSB, a copy of it is given to
the carry flag. In other words, in ROR the LSB is moved to the MSB and is also copied to
C flag, as shown in the diagram. One can use an immediate operand or a register to hold
the number of times it is to be rotated.

MOV R1,#0x36

;R1 =0000 0000 0000 0000 0000 0000 0011 0110

MOVS R1,R1,ROR #1

;R1 =0000 0000 0000 0000 0000 0000 0001 1011 C=0

MOVS R1,R1,ROR #1

;R1 =1000 0000 0000 0000 0000 0000 0000 1101 C=1

MOVS R1,R1,ROR #1

;R1 = 1100 0000 0000 0000 0000 0000 0000 0110 C=1
or:

MOV R1,#0x36

;R1 =0000 0000 0000 0000 0000 0000 0011 0110

MOV RO,#3

;RO = 3 number of times to rotate

MOVS R1,R1,ROR RO

;R1 = 1100 0000 0000 0000 0000 0000 0000 0110 C=1
also look at the following case:

LDR R2,=0xC7E5

;R2 =0000 0000 0000 0000 1100 0111 1110 0101

MOV R4,#0x06

;R4 = 6 number of times to rotate

MOVS R3,R2,ROR R4

;R3 =1001 0100 0000 0000 0000 0011 0001 1111 C=1

Rotate left

There is no rotate left option in ARM?7 since one can use the rotate right (ROR) to
do the job. That means instead of rotating left n bits we can use rotate right 32—n bits to do
the job of rotate left. Using this method does not give us the proper carry if actual
instruction of ROL was available. Look at the following examples:

LDR R0,=0x00000072

STUDENTS-HUB.com Uploaded By: anonymous

;RO = 0000 0000 0000 0000 0000 0000 0111 0010
MOVS RO,RO,ROR #31
;RO = 0000 0000 0000 0000 0000 0000 1110 0100 C=0
MOVS RO,RO,ROR #31
;R0 = 0000 0000 0000 0000 0000 0001 1100 1000 C=0
MOVS RO,RO,ROR #31
;RO = 0000 0000 0000 0000 0000 0011 1001 0000 C=0
MOVS RO,RO,ROR #31
;RO = 0000 0000 0000 0000 0000 0111 0010 0000 C=0
or:
MOV RO0,#0x72 ;RO=0111 0010
MOV R1,#28 ;R1=32-4=28
MOVS RO,RO,RORR1 ;R0=01110010 0000 C=0
;assume R2 = 0x672A
LDR R2,=0x671A
;R2 =0000 0000 0000 0000 0110 0111 0010 1010
MOVS R2,R2,ROR #27
;R2 =0000 0000 0000 1100 1110 0101 0100 0000
;C=0

RRX rotate right through carry

L | MSB—»LSB | C >|

In RRX, as bits are shifted from left to right, they exit from the right end (LSB) to
the carry flag, and the carry flag enters the left end (MSB). In other words, in RRX the
LSB is moved to C and C is moved to the MSB. In reality, C flag acts as if it is part of the
operand. That means the RRX is like 33-bit register since the C flag is 33th bit. The RRX
takes no arguments and the number of times an operand to be rotated is fixed at one.

;assume C=0

MOV R2,#0x26

;R2 =0000 0000 0000 0000 0000 0000 0010 0110
MOVS R2,R2,RRX

;R2 = 0000 0000 0000 0000 0000 0000 0001 0011 C=0

STUDENTS-HUB.com Uploaded By: anonymous

MOVS R2,R2,RRX

;R2 =0000 0000 0000 0000 0000 0000 0000 1001 C=1

MOVS R2,R2,RRX

;R2 = 1000 0000 0000 0000 0000 0000 0000 0100 C=1

MOV R2,#0x0F

;R2 = 0000 0000 0000 0000 0000 0000 0000 1111

MOVS R2,R2,RRX

;R2 =0000 0000 0000 0000 0000 0000 0000 0111 C=1

MOVS R2,R2,RRX

;R2 = 1000 0000 0000 0000 0000 0000 0000 0011 C=1

MOVS R2,R2,RRX

;R2 = 1100 0000 0000 0000 0000 0000 0000 0001 C=1
Table 3-6 lists the rotate instructions of the ARM.

Operation Destination Source Number of Rotates
ROR (Rotate Right) Rd Rn Immediate value
ROR (Rotate Right) Rd Rn register Rm

RRX (Rotate Right Through Rd Rn 1 bit

Carry)

Table 3- 6: Rotate operations for unsigned numbers in ARM

Shifting Immediate Arguments

We just examined the rotate and shift operations. One can use the rotate operation to
load fixed (constant) values into ARM register, as well. Examine the MOV instruction bit
assignment in Figure 3-3. Of the 32-bit opcode, the upper 12 bits (D31-D20) are used for
the opcode itself. The lowest 8 (D7-D0) bits are used for fixed values and 4 bits (D11-
D8) are used for the number of times rotate operation is performed before loaded into the
register. The 8 bits for the fixed value gives us 00 to 255 (00 to OxFF in hex) range and the
4 bits of the rotate number gives us 0 to 15 (0 to OxF in hex) range. The MOV instructions
can be constructed to rotate an 8-bit fixed value to the right a number of times and then
loaded into the register. The number of times rotated right is always twice the number in
the rotate portion of the instruction. Since rotate value can be 0—15 that gives number of
rotations between 0-30. This means that whenever the second operand is an immediate
value the number of rotation is an even number.

3 28 25 24 21 20 1% 16 15 12 11 8 T 0
Cond 00 H 1101 |S Rn Rd Rotate Immediate

STUDENTS-HUB.com Uploaded By: anonymous

Figure 3- 3: MOV Instruction

As we mentioned earlier, the ARM supports the rotate right only and there is no
rotate left option. So to do rotate left we must use 32-n for the number of rotation right.
Therefore, “MOV RO,#0xFF,#30” is the same as rotating left 2 times and “MOV
RO,#0xFF,#28” is the same as rotating left 4 times. See Examples 3-21 through 3-23.

Example 3-21

Show all the possible cases of using MOV instruction for OxFF value and rotate options.

Solution:

MOV RO, #0xFF, #0

;RO = OxFF is rotated right 0 times. RO = 0x000000FF
MOV RO, #0xFF, #2

;RO = OxFF is rotated right 2 times. RO = 0xC0O00003F
MOV RO, #0xFF, #4

;RO = OxFF is rotated right 4 times. RO = 0OxFOOOOOOF
MOV RO, #0xFF, #6

;RO = OxFF is rotated right 6 times. RO = 0xFC000003
MOV RO, #0xFF, #8

;RO = OxFF is rotated right 8 times. RO = 0xFF000000
MOV RO, #0xFF, #10

;RO = OxFF is rotated right 10 times. RO = 0x3FC00000
MOV RO, #0xFF, #12

;RO = OxFF is rotated right 12 times. RO = 0OxOFF00000
MOV RO, #0xFF, #14

;RO = OxFF is rotated right 14 times. RO = 0x03FC0000
MOV RO, #0xFF, #16

;RO = OxFF is rotated right 16 times. RO = 0x00FF0000
MOV RO, #0xFF, #18

;RO = OxFF is rotated right 18 times. RO = 0x003FC000
MOV RO, #0xFF, #20

;RO = OxFF is rotated right 20 times. RO = 0x000FF000

STUDENTS-HUB.com Uploaded By: anonymous

MOV RO, #0xFF, #22
;RO = OxFF is rotated right 22 times. RO = 0x0003FC00
MOV RO, #0xFF, #24
;RO = OxFF is rotated right 24 times. RO = 0x0000FF00
MOV RO, #0xFF, #26
;RO = OxFF is rotated right 26 times. RO = 0x00003FCO0
MOV RO, #0xFF, #28
;RO = OxFF is rotated right 28 times. RO = 0x00000FFO0
MOV RO, #0xFF, #30
;RO = OxFF is rotated right 30 times. RO = 0x000003FC

Example 3-22

Using MOV instruction, show how to rotate left the fixed value of 0x99 total of (a) 4, (b)
8, and (c) 16 times. Also give the value in the register after the rotation.

Solution:

Since we do not have rotate left operation we must use rotate right 32—n times.
MOV R1,#0x99,#28
;rotating right 28 times is the same as rotate left 4 times
MOV R2#0x99,#24
;rotating right 24 times is the same as rotate left 8 times
MOV R3,#0x99,#16

;rotating right 16 times is the same as rotate left 16 times

Now, we have (a) R1 = 000000990, (b) R2 = 0x00009900, and (c) R3=0x00990000

Example 3-23
STUDENTS-HUB.com Uploaded By: anonymous

Using the Keil IDE, assemble the program in Example 3-21 and examine the list file.
Compare and contrast the count value in the instruction with count value of the opcodes.

Solution:

GE
Ox00000000
4:
Ox00000004
51
Ox00000005
-
Dx00000000C
7es
Ox00000010
t=1H
Ox00000014
=2
Ox00000015
10:
Dx0000001C
112
Dx00000020
122
Ox0000002 4
133
Ce0x0000002 &
14:

*

MOV RO, #0xFF, #0

MOV RO, #0xFF, #2

MOV RO, #0xFF, #4

MOV RO, #0xFF, #6

MOV RO, #0xFF, #8

MOV RO, #0xFF, 0 :RO = OxF
E3LOOOFF MOW RO, #0x00O000OFF
MOV RO, #0xFF, #2 :RO = OxF
E3LOOLIFF MOV RO, #O0xCOODOOQ3F
MOV RO, #0xFF, #4 :RO = OxF
EZLOOZFF MOV RO, #O0xFOOOOOOF
MOV RO, #0xFF, #6 :RO = OxF
E3LOOZFF MOV RO, #O0xFCOOOOO3
MOV RO, #0xFF, #5 :RO = OxF
E3LOO4FF MOV RO, #O0xFFOOOOOO
MOV RO, #0xFF,#10 :RO = OxFF
E3LOOSFF MOV RO, #O0x3FCOOO000
MOV RO, #0xFF,#12 ;RO = OxFF
E3LOOGFF MOV RO, #O0xOFFOOOOO
MOV RO, #0xFF,#14 :RO = OxFF
E3LOOTFF MOV RO, #0x03FCOO00
MOV RO, #0xFF,#16 ;RO = OxFF
E3LOOSFF MOV RO, #0x0OOFFOOOO
MOV RO, #0xFF,#18 :RO = OxFF
E3LOOSFF MOV RO, #0x003FCOO0
MOV RO, #0xFF, #20 ;RO = OxFF
EZLOOAFF MOA RO, #0x0O0OFFOO0
MOV RO, #0xFF, #22 :RO = OxFF
Edl 15 12 11 87 o
E3AQ 3 o] FF
Opcode Rd Rotate Immediate
3 15 12 11 87 o
E3A0 3 |1 | FfF |
Opcode Rd Rotate Immediate
il 15 12 11 87 L]
E3A0 | 3 | 2] FF
Opcode Rd Rotate Immediate
il 15 12 11 87 0
| E3A0 a |3 | FF
Opcode Rd Rotate Imi ia
bl 15 12 11 B 7 0
E3A0 3 | 4 | FF
Opcode Fd FRofafe Immediate

As expected, the number of times rotated right is twice the number of rotate field.

Also see Example 3-24 for further examples of rotate operation.

Example 3-24

Give the register value for each of the following instructions after it is executed.

STUDENTS-HUB.com

Uploaded By: anonymous

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

Solution:

MOV

RO,#0xAA,#2
R1,#0x20,#28
R4,#0x99,#6
R2,#0x55,#24
R3,#0x01,#20
R7,#0x80,#12
R10,#0x0F,#14
R5,#0x66,#2

RO,#0xAA,#2

;RO = OxAA is rotated right 2 times. RO = 0x8000002A

MOV

R1,#0x20,#28

;R1 = 0x20 is rotated right 28 times. RO = 0x00000200

MOV

R4,#0x99,#6

;R4 = 0x99 is rotated right 6 times. RO = 0x64000002

MOV

R2,#0x55,#24

;R2 = 0x55 is rotated right 24 times. RO = 0x00005500

MOV

R3,#0x01,#20

;R3 = 0x01 is rotated right 20 times. RO = 0x00001000

MOV

R7,#0x80,#12

;R7 = 0x80 is rotated right 12 times. RO = 0x08000000

MOV

;R10 = 0xOF is rotated right 14 times. RO = 0x003C0000

MOV

R10,#0x0F,#14

R5,#0x66,#2

;R5 = 0x66 is rotated right 2 times. RO = 0x80000019

We can use the concept of rotate with other data processing instructions of the ARM
to load fixed values into the ARM register. See Example 3-25.

Example 3-25

Give the register value for each of the following instructions after it is executed.

STUDENTS-HUB.com

Uploaded By: anonymous

MVN RO,#0xAA,#2
MVN R1,#0x20,#28
MVN R4,#0x99,#6
MVN R2#0x55,#24
MVN R3,#0x01,#20
MVN R7,#0x80,#12
MVN R10,#0x0F,#14
MVN R5,#0x66,#2
Solution:
MVN RO,#0xAA,#2
;0xAA rotated right 2 times = 0x8000002A; RO = 0x7FFFFFD5
MVN R1,#0x20,#28
;0x20 is rotated right 28 times = 0x00000200; R1 = OxFFFFFDFF
MVN R4,#0x99,#6
;0x99 is rotated right 6 times = 0x64000002; R4 = Ox9BFFFFFD
MVN R2,#0x55,#24
;0x55 is rotated right 24 times = 0x00001A40; R2 = OxFFFFAAFF
MVN R3,#0x01,#20
;0x01 is rotated right 20 times = 0x00001000; R3 = OXxFFFFEFFF
MVN R7,#0x80,#12
;0x80 is rotated right 12 times = 0x08000000; R7 = OxF7FFFFFF
MVN R10,#0x0F,#14
;0xOF is rotated right 14 times = 0x003C0000; R10=0xFFC3FFFF
MVN R5,#0x66,#2
;0x66 is rotated right 2 times = 0x80000019; R5 = 0x7FFFFFEG6

General Formation of Process instruction

Next we will show how the different operands are supported by ARM. In Figure 3-4
you see the general formation of process instructions.

STUDENTS-HUB.com Uploaded By: anonymous

k5] o8 27 &5 oo a9 21 20 T e 15 T T]

Cond 00 11| OpCode |5 Rn Rd Operand 2

Destination register
151 operand register
Set condition codes
Operation Code

) = AN - P AND) Ol

Immadiate Operand

Shift Rm

2ril operand rogesber
shift applied 1o Rm

Raotate Imm

Uinsigrad & bil immadiate value

shifl appliad & femim

Condition field

Figure 3- 4: Data Process Instructions

In all ARM instructions bits 28-31 are put aside for condition field which is covered
in Chapter 4.

Bits 26 and 27 are 0 in process instructions showing that the instruction is a process
instruction and the opcode is represented by bits 24-21. Using 4 bits 16 different
instructions are provided as shown in Figure 3-4.

The S bit (bit 20) shows if the flags should be updated. When we add an S (e.g.
MOVS) the bit will be set which shows that the flags should be updated by the CPU.

Bits 12—15 contain the destination register. Using 4 bits we can select registers RO—
R15.

Bits 16—19 represent the first operand register.

Bit 25 (I) shows the type of second operand. The bit is 1 when the second operand is
an immediate value. Whenever the second operand is a register this bit is zero.

Immediate values: In the case that I is 1, bits 0—7, contain an immediate value
which can be a number between 0—0xFF.

Second register: In the case that I is 0, bits 0—11 represent the second operand
register, together with the amount of shift/rotate and type of shift/rotate. As mentioned
earlier the shift amount can be provided either by a register or an immediate value.
Whenever the I bit is cleared, bit 4 shows the way shift amount is provided. See Figure 3-
5.

STUDENTS-HUB.com Uploaded By: anonymous

1) Instructions with Immediate operand
Syntax: Instruction Rd, Rn, Immediate, rotate

31 282726 25 24 21 20 19 16 15 12 11 8 7 L
Cond 00§11 Opcode |5 Rn Rd Rotate Immediate

2) Instructions with Register operand
A) a register represents the shift amount
Syntax: Instruction Rd, Rn, Rm, ShiftType Rs

31 28 25 24 21 20 19 16 15 12 11 876543 0
Cond 00 j0] Opcode |S Rn Rl Rs OB Tvpe]l REm
Y
00: LSL
01: LSR
B) shifted fixed amount 10: ASR
Syntax: Instruction Rd, Rn, Rm, ShiftType shiftAmount 11: ROR
31 28 25 24 21 20 19 16 15 12 11 8 7 ﬁ+5 4 3 0
Cond 00 0] Opcode |5 Rn Rd Shift amount | Type |0 Rm

Figure 3- 5: Data Process Instructions

Example 3-26 should help to clarify this.

Example 3-26

Using the Keil IDE, assemble the following program and compare the instruction with the
process instruction format.

AREA EX3_26,CODE,READONLY
ENTRY
ADD RO,R1,R5,LSR #2
ADD RO,R1,R5,LSR R2
ADD RO,R1,R5,LSL R2
ADD RO,R1,R5
ADD RO,R1,#5,#2
ADD RO,R1,#5
H1 B H1
END

STUDENTS-HUB.com Uploaded By: anonymous

Disassemby 9

3: ADD RO,R1,R5,LSR #2 ~
0x00000000 EOS10125 ADD RO,R1,R5, L3R #2
4; ADD RO,R1,R5,LSR R
0x00000004 EOS10235 ADD RO,R1,R5,L3R B2
5: ADD RO,R1,R5,LSL R
0x00000008 EOS10215 ADD RO,R1,R5,L3L B2
61 ADD RO, R1,R5
0x0000000¢C EOS10005 ADD RO, R1,R5
7 ADD RO, R1,#5, #2
0x00000010 EZ810105 ADD RO, R1, #0x40000001
g: ADD RO, R1,#5
0x00000014 EZ510005 ADD RO, R1, #0x00000005

Solution:

Shift Arg.
Condition I Opeode 8§ Rn Rd Shift amount Type T¥pe Rm

1t11o0fjoojojoroojojooorjoooojoooroforfojoroi
ADD R1 RO 2bits LSR RS
In “ADD RO,R1,R5,L.SR #2” the second operand is a register. Therefore, the I bit is

cleared. Since the shift amount is an immediate value, the bit 4 is cleared, as well. The
shift type is set to 01 representing LSR.

Shift Arg.
Condition | Opeode S Bn Rd Rs Lype Type Rm
Il110j00j0j0o100 04000 1TJO0O0OO0OO0OD)JOO0OTITOYOJOTIjOT DI
ADD R1 RO R2 LSR R5

In “ADD RO,R1,R5,LSR R2” the second operand is a register. Therefore, the I bit is
cleared. As a register provides the shift amount, the bit 4 is set.

Shift Arg.
Condition | Opeode S Kn Rd Rs Iype Type Rm
Il110j00j0j0o100 04000 1TJO0OO0OO0OO0OD)OO0OTOYOJOOJTIJOTDI1
ADD R1 RO R2 LSL R5

The “ADD RO,R1,R5,LSL R2” instruction is the same as “ADD R0,R1,R5,LSR R2”
except that the shift type is set to 00 to represent LSL.

Shift Arg.
Condition I Opeode S Rn Rd Shift amount Type T¥pe Rm
l11o0jo0jojo1oo0j0ojo001Ij00DO0OO0OC)O0O0OQCO0O0QOQC OO 0OJ0OTIOI1
ADD Rl Rl 0 bits LSL RS

The machine code represents in fact the instruction “ADD RO,R1,R5,LSL #0”. But, if we
shift a number 0 bits to left, the number remains unchanged. As a result, it represents
“ADD RO,R1,R5”.

Condition I Opeode S Rn Rd Rotate Immediate
1110001 }J01 00 JOjJOOCOTJOO0OO0OO0O]0DDI 00000101
ADD Rl R0 2 bits #5

STUDENTS-HUB.com Uploaded By: anonymous

In “ADD RO,R1,#5,#2” the second operand is immediate. Therefore, the I bit is
set. In immediate operands the value is shifted twice the rotate field. That is why the rotate
field is 1.

Condition | Opeode 5 Rn Rd Rotate Immediate
l110j00j1j0100 JOJO0COCITIJO0ODO0OQO0OD)0O0CODOD) OOOQDO0DODTO0I1
ADD Rl R {} bits #5

In “ADD RO,R1,#5”, the immediate value is rotated 0 bits. Therefore, the immediate value
remains unchanged.

Loading fixed values into Registers

In this section, we examined loading fixed values into registers. However, as we
have seen so far, it is not possible to create every constant value by using the rotate option
of the instructions.

Another way is to use combination of these instructions such as MVN, MOV, ADD,
AND, OR, and so on to load any value into a register. For example the following program
loads R1 with 0x87654321:

MOV R1,#0x21 ;R1 =0x00000021

ORR R1,R1,#0x43,#24

;R1 =0x00000021 ORed 0x00004300 = 0x00004321
ORR R1, R1,#0x65,#16

;R1 =0x00004321 ORed 0x00650000 = 0x00654321
ORR R1, R1,#0x87,#8

;R1 = 0x00654321 ORed 0x87000000 = 0x87654321

But it is very tedious and time consuming to come up with such combination of
instructions to get the result we need. For this reason the ARM assembler has pseudo-
instruction such as LDR. The LDR is not a real instruction like MOV and ADD since you
will not find the opcode for it in the ARM manual. When the ARM assembler assembles a
program with the LDR it replaces the LDR with a group of instructions to do the job of
loading a fixed value in the most efficient way possible. As we have seen in previous
chapters, the LDR uses = sign for the immediate value instead of # used by the MOV
instruction. Indeed this is the way we distinguish between them. Examine the following
codes to see the differences in syntaxes:

MOV R1,#0x55 ;R1 = 0x55
LDR R2,=0x5555 ;R2 = 0x5555

It needs to be emphasized that we must use the MOV instruction for loading fixed

STUDENTS-HUB.com Uploaded By: anonymous

value of less than (or equal to) OxFF and use the LDR pseudo-instruction only for loading
values larger than OxFF. This is due to the fact that MOV is a real instruction and takes
less memory space when it is compiled. See Chapter 6 for more on LDR and ADR
pseudo-instructions.

Review Questions
1. Find the contents of R3 after executing the following code:
MOV RO0,#0x04
MOV R3,R0,LSR #2
2. Find the contents of R4 after executing the following code:
LDR R1,=0xA0F2
MOV R2,#0x3
MOV R4,R1,LSR R2
3. Find the contents of R3 after executing the following code:
LDR R1,=0xA0F2
MOV R2,#0x3
MOV R3,R1,LSL R2
4. Find the contents of R5 after executing the following code:
SUBS RO,RO0,RO
MOV RO,#0xAA
MOV R5,R0,ROR #4
5. Find the contents of RO after executing the following code:
LDR R2,=0xA0F2
MOV R1,0x4
MOV RO,R2,RRX R1
6. Give the result in R1 for the following:
MVN R1,#0x01, #2
7. Give the result in R2 for the following:
MVN R2,#0x02, #28

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section 3.4: Shift and Rotate Instructions in ARM Cortex (Case Study)

ARM Cortex has new instructions specifically for shift and rotate. In this section,
we discuss these instructions. For full instruction set see Appendix A. For the purpose of
comparison we have copied this section from Appendix A.

LSL Logical Shift Left
LSL Rd, Rm, Rn

Function: As each bit of Rm register is shifted left, the MSB is removed and the empty
bits are filled with zeros. The number of bits to be shifted left is given by Rn and the result
is placed in Rd register. The LSL does not updates the flags.

C | 4—MSB «——VLSB |[«— 0

Example 1:
LDR R2,=0x00000010
LSL RO,R2,#8 ;R0=R2 is shifted left 8 times
;now, RO= 0x00001000, flags not updated

Example 2:
LDR R0,=0x00000018
MOV R1, #12

LSL R2,R0,R1 ;R2=R0 is shifted left R1 number of times
;now, R2= 0x000018000, flags not updated
Example 3:
LDR R0,=0x0000FF18
MOV RI1, #16
LSL R2,R0,R1 ;R2=R0 is shifted left R1 number of times
;now, R2= 0xFF180000, flags not updated

LSLS Logical Shift Left (update the flags)
LSLS Rd, Rm, Rn
Function: As each bit of Rm register is shifted left, the MSB is copied to C flag and

the empty bits are filled with zeros. The number of bits to be shifted left is given by Rn
and the result is placed in Rd register. The LSLS updates the flags.

Example 1:
LDR R2,=0x00000010
LSLS RO,R2 #8 ;RO=R2 is shifted left 8 times

STUDENTS-HUB.com Uploaded By: anonymous

;now, RO= 0x00001000, C=0, N=0, Z=0

Example 2:
LDR R0,=0x00000018
MOV R1, #12

LSLS R2,R0,R1 ;R2=R0 is shifted left R1 number of times
;now, R2=0x000018000, C=0, N=0, Z=0
Example 3:
LDR R0,=0x000FFF18
MOV R1, #16
LSLS R2,R0,R1 ;R2=R0 is shifted left R1 number of times
;now, R2= 0xFF180000, C=1, Z=0, N=0

The logical shift left is used for shifting unsigned numbers. LSLS essentially multiplies
Rm by a power of 2 after each bit is shifted.

LSR Logical Shift Right
LSR Rd, Rm, Rn

Function: As each bit of Rm register is shifted right, the LSB is removed and the
empty bits are filled with zeros. The number of bits to be shifted left is given by Rn and
the result is placed in Rd register. The LSR does not update the flags.

0 —| MSB—»LSB | C

Example 1:
LDR R2,=0x00001000
LSR RO,R2,#8 ;R0=R2 is shifted right 8 times
;now, RO= 0x00000010, C=0

Example 2:
LDR R0,=0x000018000
MOV R1, #12

LSR R2,R0,R1 ;R2=RO0 is shifted right R1 number of times
;now, R2= 0x00000018, C=0
Example 3:
LDR R0,=0x7F180000
MOV R1, #16

STUDENTS-HUB.com Uploaded By: anonymous

LSR R2,R0,R1 ;R2=R0 is shifted right R1 number of times
;now, R2=0x00007F18, C=0

The logical shift right is used for shifting unsigned numbers. LSR essentially divides Rm
by a power of 2 after each bit is shifted.

LSRS Logical Shift Right (update the flags)
LSRS Rd, Rm, Rn

Function: As each bit of Rm register is shifted right, the LSB is copied to C flag
and the empty bits are filled with zeros. The number of bits to be shifted left is given by
Rn and the result is placed in Rd register. The LSRS updates the flags.

Example 1:
LDR R2,=0x00001FFF
LSRS RO,R2,#8 ;R0=R2 is shifted right 8 times
;now, RO= 0x0000001F, C=1, N=0, Z=0

Example 2:
LDR R0,=0x00000018
MOV R1, #12

LSRS R2,R0,R1 ;R2=RO0 is shifted right R1 number of times
;now, R2=0x000000000, C=0, N=0, Z=1,
Example 3:
LDR R0,=0x000FFF18
MOV R1, #16
LSRS R2,R0,R1 ;R2=RO0 is shifted right R1 number of times
;now, R2= 0x0000000F, C=1, Z=0,N=0

The logical shift right is used for shifting unsigned numbers. LSRS essentially
divides Rm by a power of 2 after each bit is shifted.

ROR Rotate Right
ROR Rd,Rm,Rn ;Rd=rotate Rm right Rn bit positions
Function: As each bit of Rm register is shifted from left to right, they exit from the

end (LSB) and entered from left end (MSB). The number of bits to be rotated right is
given by Rn and the result is placed in Rd register. The ROR does not update the flags.

—| MSB ——» LSB | C

STUDENTS-HUB.com Uploaded By: anonymous

Example 1:
LDR R2,=0x00000010
ROR RO,R2,#8 ;RO=R2 is rotated right 8 times
;now, RO = 0x10000000, C=0

Example 2:
LDR R0,=0x00000018
MOV R1, #12

ROR R2,R0,R1 ;R2=RO is rotated right R1 number of times
;now, R2 = 0x01800000, C=0
Example 3:
LDR R0,=0x0000FF18
MOV R1, #16
ROR R2,R0,R1 ;R2=RO is rotated right R1 number of times
;now, R2 = 0xFF180000, C=0

RORS Rotate Right (update the flags)
RORS Rd,Rm,Rn ;Rd=rotate Rm right Rn bit positions
Function: As each bit of Rm register shifts from left to right, they exit from the

right end (LSB) and enter from the left end (MSB). In addition as each bit exits the LSB, a
copy of it is given to C flag. The number of bits to be rotated right is given by Rn and the
result is placed in Rd register. The RORS updates the flags.

—| M1SB ——» 5B | C

Example 1:
LDR R2,=0x00000010
RORS RO,R2,#8 ;R0=R2 is rotated right 8 times
;now, RO= 0x01000000, C=0, N=0, Z=0

Example 2:
LDR R0,=0x00000018
MOV R1, #12

RORS R2,R0,R1 ;R2=RO is rotated right R1 number of times
;now, R2=0x01800000, C=0, N=0, Z=0

STUDENTS-HUB.com Uploaded By: anonymous

Example 3:
LDR R0,=0x0000FF18
MOV R1, #16
RORS R2,R0,R1 ;R2=R0 is rotated right R1 number of times
;now, R2= 0xFF180000, C=1, N=0, Z=0
RRX Rotate Right with extend
RRX Rd,Rm ;Rd=rotate Rm right 1 bit position

Function: Each bit of Rm register is shifted from left to right one bit. The RRX does not
update the flags.

L | MSB—»LSB | C >|

Example:
LDR R2,=0x00000002
RRX RO,R2 ;R0=R2 is shifted right one bit
;now, RO=0x00000001

RRXS Rotate Right with extend (update the flags)

RRXS Rd,Rm ;Rd=rotate Rm right 1 bit position
Function: Each bit of Rm register is shifted from left to right one bit. The RRXS
updates the flags.

L | MSB—»LSB | C >|

Example 1:
LDR R2,=0x00000002
RRXS RO,R2 ;R0=R2 is shifted right one bit
;now, RO=0x00000001

Review Questions
1. True or false. ARM Cortex has its own instruction for rotate and shift.
2. Find the contents of R3 after executing the following code:
MOV R1,#0x08
ROR R2,R1,#2

STUDENTS-HUB.com Uploaded By: anonymous

3. Find the contents of R4 after executing the following code:
MOV R2,#0x3
LSL R5,R3,#2

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section 3.5: BCD and ASCII Conversion

This section covers binary, BCD, and ASCII conversions with some examples.

BCD number system

BCD stands for binary coded decimal. BCD is needed because we use the digits 0 to
9 for numbers in everyday life. BCD system is widely used in real-time clock (RTC) of the
embedded systems. Binary representation of 0 to 9 is called BCD. In computer literature
one encounters two terms for BCD numbers: (1) unpacked BCD, and (2) packed BCD.

Digit BCD

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
Table 3-9: BCD Codes
Unpacked BCD

In unpacked BCD, the lower 4 bits of the number represent the BCD number and the
rest of the bits are 0. For example, “0000 1001” and “0000 0101 are unpacked BCD for
9 and 5, respectively. In the case of unpacked BCD it takes 1 byte of memory location or
a register of 8 bits to hold the number.

Packed BCD

In the case of packed BCD, a single byte has two BCD numbers in it, one in the
lower 4 bits and one in the upper 4 bits. For example, “0101 1001” is packed BCD for 59.
It takes only 1 byte of memory to store the packed BCD operands. This is one reason to
use packed BCD since it is twice as efficient in storing data.

ASCII numbers

In ASCII keyboards, when key “0” is pressed, “011 0000” (0x30) is provided to the
computer. In the same way, 0x31 (011 0001) is provided for key “1”, and so on, as shown

STUDENTS-HUB.com Uploaded By: anonymous

in the following list:

Key ASCII Binary(hex) BCD (unpacked)
0 30 011 0000 0000 0000
1 31 011 0001 0000 0001
2 32 011 0010 0000 0010
3 33 011 0011 0000 0011
4 34 011 0100 0000 0100
5 45 011 0101 0000 0101
6 36 011 0110 0000 0110
7 37 011 0111 0000 0111
8 38 011 1000 0000 1000
9 39 011 1001 0000 1001

It must be noted that although ASCII is standard in the United States (and many
other countries), BCD numbers have universal application. Now since the keyboard,
printers, and monitors are all in ASCII, how does data get converted from ASCII to BCD,
and vice versa? These are the subjects covered next.

ASCII to unpacked BCD conversion

To convert ASCII data to unpacked BCD, the programmer must get rid of the tagged
“011” in the upper 4 bits of the ASCII. To do that, each ASCII number is ANDed with
“0000 11117 (OxOF).

ASCII to packed BCD conversion

To convert ASCII to packed BCD, it is first converted to unpacked BCD (to get rid
of the 3) and then combined to make packed BCD. For example, for 2 and 7 the keyboard
gives 0x32 and 0x37, respectively. The goal is to produce 0x27 or “0010 0111”, which is
called packed BCD, as discussed earlier. This process is illustrated in detail below.

Key ASCII Unpacked BCD Packed BCD

2 32 00000010

7 37 00000111 00100111 (0x27)
MOV R1,#0x37 ;R1 = 0x37

STUDENTS-HUB.com Uploaded By: anonymous

MOV R2,#0x32 ;R2 = 0x32

AND R1,R1,#0x0OF ;mask 3 to get unpacked BCD

AND R2,R2,#0x0F ;mask 3 to get unpacked BCD

MOV R3,R2,LSL #4 ;shift R2 4 bits to left to get R3 = 0x20
ORR R4,R3,R1 ;OR them to get packed BCD, R4 = 0x27

Packed BCD to ASCII conversion

For data to be displayed on the monitor or be printed by the printer, it must be in
ASCII format. Conversion from packed BCD to ASCII is discussed next. To convert
packed BCD to ASCII, it must first be converted to unpacked and then the unpacked BCD
is tagged with 011 0000 (0x30). The following shows the process of converting from
packed BCD to ASCII.

Packed BCD Unpacked BCD ASCII
0x29 0x02 & 0x09 0x32 & 0x39
0010 1001 0000 0010 & 0000 1001 011 0010 & 011 1001

MOV RO0,#0x29
AND R1,R0,#0x0F ;mask upper four bits
ORR R1,R1,#0x30 ;combine with 30 to get ASCII
MOV R2,RO,LSR #04 ;shift right 4 bits to get unpacked BCD
ORR R2,R2,#0x30 ;combine with 30 to get ASCII

Review Questions

1. For the following decimal numbers, give the packed BCD and unpacked BCD
representations in binary

(a)15 (b) 99

2. For the following packed BCD numbers, give the decimal and unpacked BCD
representations.

(a) 0x41 (b) 0x09
3. Repeat question 2 for ASCILI.

STUDENTS-HUB.com Uploaded By: anonymous

Problems

Section 3.1: Arithmetic Instructions

1. Find C and Z flags for each of the following. Also indicate the result of the
addition and where the result is saved.

(a)

MOV R1#0x3F
MOV R2,#0x45
ADDS R3,R1,R2

(9
LDR RO,=0xFFFFFFFF
ADDS RO,RO,#1

(e)

LDR RO,=0xFFFFFFFE
ADDS RO,RO,#2

ADC R1,R0,#0x0

(b)
LDR
LDR

ADDS

(d)
LDR
LDR
ADDS
ADCS

R0,=0x95999999
R1,=0x94FFFF58
R1,R1,R0

R2,=0x00000001
R1,=0XxFFFFFFFF
RO,R1,R2
RO,RO0,#0

2. State the three steps involved in a SUB and show the steps for the following data.
(a) 0x23 —0x12 (b) 0x43 —0x51 (c) 0x99 — 0x99

Section 3.2: Logic Instructions

3. Assume that the following registers contain these hex contents: RO = 0xF000, R1 =
0x3456, and R2 = 0xE390. Perform the following operations. Indicate the result

and the register where it is stored.

Note: the operations are independent of each other.

(a) AND R3,R2,R0

(c) EOR RO,R0,#0x76
(e) EOR RO,RO,RO

(g) AND R3,RO,#0xFF

(i) EOR R3,R1,R0

STUDENTS-HUB.com

(b) ORR R3,R2,R1

(d) AND R3,R2,R2

(f) ORR R3,R0,R2

(h) ORR R3,R0,#0x99

(j) EOR R3,R1,R1

Uploaded By: anonymous

4. Give the value in R2 after the following code is executed:
MOV RO,#0xFO0

MOV R1,#0x55

BIC R2,R1,R0

5. Give the value in R2 after the following code is executed:
LDR R1,=0x55555555

MVN RO0,#0

EOR R2,R1,R0

Section 3.3: Rotate and Barrel Shifter
6. Assuming C = 0, what is the value of R1 after the following?
MOV R1,#0x25
MOVS R1,R1,ROR #4
7. Assuming C = 0, what are the values of RO and C after the following?
LDR RO0,=0x3FA2
MOV R2,#8
MOVS RO,R0,ROR R2
8. Assuming C = 0 what is the value of R2 and C after the following?
MOV R2,#0x55
MOVS R2,R2,RRX
9. Assuming C = 0 what is the value of R1 after the following?
MOV R1,#0xFF
MOV R3,#5
MOVS R1,R1, ROR R3

10. Give the register value for each of the following instructions after it is executed.

a) MOV R1,#0x88,#4 b) MOV RO,#0x22,#22
c) MOV R2 #0x77,#8 d) MOV R4,#0x5F,#28
e) MOV R6,#0x88,#22 f) MOV R5,#0x8F,#16
g) MOV R7,#0xF0,#20 h) MOV R1,#0x33,#28

11. Give the register value for each of the following instructions after it is executed.

a) MVN R2 #0x1 b) MVN R2 #0xAA,#20

STUDENTS-HUB.com Uploaded By: anonymous

¢) MVN R1,0x55,#4
) MVN R1,#0x80,#24

g) MVN R7,#0xF0,#24

d) MVN RO,#0x66,#28
f) MVN R6,#0x10,#20

h) MVN R4,#0x99,#4

12. Find the contents of registers and C flag after executing each of the following

codes:

a)

MOV RO0,#0x04
MOVS R1,R0,LSR #2
MOVS R3,R0,LSR R1

c)

LDR R1,=0xB085
MOV R2#3

MOVS R4,R1,LSR R2

b)

LDR R1,=0xA0F2
MOV R2,#0x3

MOVS R3,R1,LSL R2

13. Find the contents of registers and C flag after executing each of the following

codes:

a)

SUBS R2,R2,R2
MOV RO,#0xAA
MOVS R1,R0,ROR #4

C)

LDR R1,=0x1234
MOV R2,#0x010,#2
MOVS R1,R0,ROR R2

b)

MOV R2 #0xAA,#4
MOV RO,#1

MOVS R1,R2,ROR RO

d)
MOV RO,#0xAA
MOVS R1,R0,RRX

14. Using MOV instruction, show how you rotate left the fixed value of 0x33 total of
a) 4, b) 8, and c) 12 times. Also give the value in the register after the rotation.

Section 3.5: BCD and ASCII Conversion

15. Write a program to convert 0x76 from packed BCD number to ASCII. Place the

ASCII codes into R1 and R2.

16. For 3 and 2 the keyboard gives 0x33 and 0x32, respectively. Write a program to
convert 0x33 and 0x32 to packed BCD and store the result in R2.

STUDENTS-HUB.com

Uploaded By: anonymous

Answers to Review Questions

Section 3.1: Arithmetic Instructions
1. The ADDS instruction updates the flag bits while ADD does not do that.
2. Rd=Rn+0p2+C

3. 0x4F + 0xB1 = 0x100, since it is a byte addition and result is less than 32-bit the C
=0and Z =0.

4. 0x4F + 0xFFFFFFB1 = 00000000, since it is a word addition and result is greater
than 32-bit,the C=1and Z = 1.

S.
0x43 0100 0011 00000000000000000000000001000011
=0x05 0000 0101 2’s complement = +11111111111111111111111111111011
0x3E 1 00000000000000000000000000111110

C = 1; therefore, the result is positive
6. R2=R2-R3-C +1=0x95-0x4F -1 + 1 =0x46
7. R2
8. R2=1

Section 3.2: Logic Instructions

1. (a) 0x4202 (b) 0xCFFF (c) 0x8DFD

2. The operand will remain unchanged; all zeros

3. All ones

4. All zeros

5. ORR R7,R7#0x10 ;R7 = R7 ORed 0001 0000
6. AND R5,R5#0x8 ;R5 = R5 ORed 0000 1000

Section 3.3: Rotate and Barrel Shifter Operation
1. R3=1
2. R4 =0x0000141E
3. R3=0x00050790
4. R5 = 0xA000000A
5. RO =0x00005079
6. OxBFFFFFFF
7. OxFFFFFFDF

STUDENTS-HUB.com Uploaded By: anonymous

Section 3.4: Shift and Rotate Instructions in ARM Cortex

1. True
2. 0x01
3. 0x0C

Section 3.5: BCD and ASCII Conversion
1. (a) 15=0001 0101 packed BCD = 0000 0001 0000 0101 unpacked BCD
(b) 99 = 1001 1001 packed BCD = 0000 1001 0000 1001 unpacked BCD
2. (a) 0x41 = 0000 0100 0000 0001 unpacked BCD = 41 in decimal
(b) 0x09 = 0000 0000 0000 1001 unpacked BCD =9 in decimal
3. (a) 0x34,0x31
(b) 0x30,0x39

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Chapter 4: Branch, Call, and Looping in ARM

In the sequence of instructions to be executed, it is often necessary to transfer
program control to a different location. (e.g. when a function is called, execution of a loop
is repeated, or an instruction executes conditionally) There are many instructions in ARM
to achieve this. This chapter covers the control transfer instructions available in ARM
Assembly language. In Section 4.1, we discuss instructions used for looping, as well as
instructions for conditional and unconditional branches (jumps). In the second section, we
examine the instructions associated with calling subroutine. In Section 4.3, instruction
pipelining of the ARM is examined. Instruction timing and time delay subroutines are also
discussed in Section 4.3. In Section 4.4, we examine the conditional execution of the
ARM instructions which is a unique feature of ARM.

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section 4.1: Looping and Branch Instructions

In this section we first discuss how to perform a looping action in ARM and then the
branch (jump) instructions, both conditional and unconditional.

Looping in ARM

Repeating a sequence of instructions or an operation a certain number of times is
called a loop. The loop is one of the most widely used programming techniques. In the
ARM, there are several ways to repeat an operation many times. One way is to repeat the
operation over and over until it is finished, as shown below:

MOV RO,#0 RO =0
MOV R1,#9 R1=9

ADD RO,RO,RI ‘RO = RO + R1, add 9 to RO (Now RO is 0x09)
ADD RO,RO,RI ‘RO = RO + R1, add 9 to RO (Now RO is 0x12)
ADD RO,RO,RI ‘RO = RO + R1, add 9 to RO (Now RO is 0x1B)
ADD RO,RO,RI ‘RO = RO + R1, add 9 to RO (Now RO is 0x24)
ADD RO,RO,RI ‘RO = 0x2D

ADD RO,RO,RI :RO = 0x36

In the above program, we add 0x9 to RO six times. That makes 6 x 9 = 54 = 0x36.
One problem with the above program is that too much code space would be needed to
increase the number of repetitions to 50 or 1000. A much better way is to use a loop.
Next, we describe the method to do a loop in ARM.

Using instruction BNE for looping

The BNE (branch if not equal) instruction uses the zero flag in the status register.
The BNE instruction is used as follows:

BACK ;start of the loop
......... ;body of the loop
......... ;body of the loop
SUBS Rn,Rn,#1 ;Rn=Rn -1, setthe flagZ=1if Rn=0
BNE BACK sbranch if Z =0

In the last two instructions, the Rn (e.g. R2 or R3) is decremented,; if it is not zero, it
branches (jumps) back to the target address referred to by the label. Prior to the start of the
loop, the Rn is loaded with the counter value for the number of repetitions. Notice that the
BNE instruction refers to the Z flag of the status register affected by the previous
instruction, SUBS. This is shown in Example 4-1.

Example 4-1

STUDENTS-HUB.com Uploaded By: anonymous

Write a program to (a) clear RO, (b) add 9 to RO a thousand times, then
(c) place the sum in R4.

Use the zero flag and BNE instruction.

Solution:
;— this program adds value 9 to the R0 a 1000 times —
AREA EXAMPLE4 1, CODE, READONLY

ENTRY
LDR R2,=1000 ;R2 = 1000 (decimal) for counter
MOV RO,#0 ;RO =0 (sum)

AGAIN ADD RO,R0,#9 ;RO=RO0 + 9 (add 09 to R1, R1 = sum)
SUBS R2,R2,#1 ;R2 = R2 - 1 and set the flags. Decrement counter
BNE AGAIN ;repeat until COUNT = 0 (when Z = 1)
MOV R4,R0 ;store the sum in R4

HERE B HERE ;stay here
END

INSTRUCTIONS
LOAD c;umsn LDR R2. =1000
CLEAR RO MOV RO, #0
ADD VALUE AGAIN ADD RO, RO, #9
DECREMENT COUNTER SUBS R2,R2.#1
o el BNE AGAIN
PLACE THE RESULT IN R4 MOV R4. RO

In the program in Example 4-1, register R2 is used as a counter. The counter is first
set to 1000. In each iteration, the SUBS instruction decrements the R2 and sets the flag
bits accordingly. If R2 is not zero (Z = 0), it jumps to the target address associated with the

STUDENTS-HUB.com Uploaded By: anonymous

label “AGAIN”. This looping action continues until R2 becomes zero. After R2 becomes
zero (Z = 1), it falls through the loop and executes the instruction immediately below it, in
this case “MOV R4,R0”.

It must be emphasized again that we must use SUBS instead of SUB since the SUB
instruction will not change (update) the flags. Since we are monitoring the Z flag for the
loop counter we must use SUBS instruction for the decrementing the counter. As we
mentioned in Chapter 3, many of the ARM instructions have the option of affecting the
flags. In these instructions the default is not to affect the flags. Therefore to make them to
effect the flag we must add letter S to the instruction. That means SUBS and ADDS
instructions are different from SUB and ADD, as far as the flags are concerned. As
another example see Example 4-2.

Example 4-2

Write a program to place value 0x55 into 100 bytes of RAM locations.

Solution:
AREA EXAMPLE4 2, CODE, READONLY
ENTRY
RAM_ADDR EQU 0x40000000 ;change the address for your ARM
MOV R2,#25 ;counter (25 times 4 = 100 byte block size)
LDR R1,=RAM_ADDR ;R1 = RAM Address
LDR R0,=0x55555555 ;RO = 0x55555555
OVER STR RO,[R1] ;send it to RAM
ADD R1,R1,#4 ;R1 = R1 + 4 to increment pointer
SUBS R2,R2,#1 ;R2 = R2 — 1 for dec. counter
BNE OVER ;keep doing it
HERE B HERE
END

Looping a trillion times with loop inside a loop

As shown in Example 4-3, the maximum count is 232-1. What happens if we want to
repeat an action more times than that? To do that, we use a loop inside a loop, which is

STUDENTS-HUB.com Uploaded By: anonymous

called a nested loop. In a nested loop, we use two registers to hold the count. See
Example 4-3.

Example 4-3

Explain what is the maximum number of times that the loop in Example 4-1 can be
repeated? Now, write a program to (a) load the RO register with the value 0x55, and (b)
complement it 16,000,000,000 (16 billion) times.

Solution:

Because Rx is a 32-bit register, it can hold a maximum of OXFFFFFFFF (232 — 1 decimal);
therefore, the loop can be repeated a maximum of 232 — 1 times. This example shows how
to create a nesting loop to go beyond 4 billion times. Because 16,000,000,000 is larger
than OXFFFFFFFF (the maximum capacity of any RO—R12 registers), we use two registers
to hold the count. The following code shows how to use R2 and R1 as a register for

counters in a nesting loop.

AREA EXAMPLE4_3, CODE, READONLY

ENTRY
MOV RO,#0x55 ;RO = 0x55
MOV R2,#16 ;load 16 into R2 (outer loop count)
L1 LDR R1,=1000000000 ;R1 =1,000,000,000 (inner loop count)
L2 EOR RO,R0,#0xFF ;complement RO (RO = RO Ex-OR 0xFF)
SUBS R1,R1,#1 ;R1 =R1 -1, dec. R1 (inner loop)
BNE L2 ;repeat it until R1 =0
SUBS R2,R2,#1 ;R2 = R2 -1, dec. R2 (outer loop)
BNE L1 ;repeat it until R2 =0
HERE B HERE ;stay here
END

In this program, R1 is used to keep the inner loop count. In the instruction “BNE L2”,
whenever R1 becomes 0 it falls through and “SUBS R2,R2,#1” is executed. The next
instructions force the CPU to load the inner count with 1,000,000,000 if R2 is not zero,
and the inner loop starts again. This process will continue until R2 becomes zero and the
outer loop is finished. If you use the Keil IDE to verify the operation of the above program

STUDENTS-HUB.com Uploaded By: anonymous

use smaller values for counter to go through the iterations. See Figure 4-1.

INSTRUCTIONS
Load RO (RO = 0x55) MOV RO,#0x55
Load R2 (outer loop counter) MOV R2#16
Load R1 (inner loop counter) L1 LDR R1,=1000000000
Complement RO L2 EOR RO,RO0,0xFF
Decrement R1
(inner loop counter) SUBS R1,R1.#1
Is R1 {inner loop
counter) zero? BNE L2
Decrement R2
(outer loop counter) SUBS R2 R2.#1
NO Is R2 (outer loop
counter) zero? BNE L1
END HERE B HERE
END

Figure 4- 1: Flowchart for Example 4-3
Other conditional Branches

As we mentioned in Chapter 3, C and Z flags reflect the result of calculation on
unsigned numbers. Table 4-1 lists available conditional branches for unsigned numbers
that use C and Z flags. More details of each instruction are provided in Appendix A. In
Table 4-1 notice that the instructions, such as BEQ (Branch if Z = 1) and BCS (Branch if

STUDENTS-HUB.com Uploaded By: anonymous

carry set, C = 1), jump only if a certain condition is met. Next, we examine some
conditional branch instructions with examples. The other conditional branch instructions
associated with the signed numbers are discussed in Chapter 5 when arithmetic operations
for signed numbers are discussed.

Instruction Action

BCS/BHS branch if carry set/branch if higher or same Branchif C=1
BCC/BLO branch if carry clear/branch lower Branchif C=0

BEQ branch if equal Branchif Z =1

BNE branch if not equal Branchif Z =0

BLS branch if less or same Branchif Z=10orC=0
BHI branch if higher Branchif Z=0and C=1

Table 4-1: ARM Conditional Branch Instructions for Unsigned Data
BCC (branch if carry clear, branch if C = 0)

In this instruction, the carry flag bit in program status registers (CPSR) is used to
make the decision whether to branch. In executing “BCC label”, the processor looks at the
carry flag to see if it is cleared (C = 0). If it is, the CPU starts to fetch and execute
instructions from the address of the label. If C = 1, it will not jump but will execute the
next instruction below BCC. See Example 4-4.

Example 4-4

Examine the following code and give the result in registers R0, R1, and R2.
MOV R1,#0 ;clear high word (R1 = 0)
MOV RO,#0 ;clear low word (RO = 0)
LDR R2,=0x99999999 ;R2 = 0x99999999
ADDS RO,RO,R2 ;RO = RO + R2 and set the flags
BCC L1 ;if C =0, jump to L1 and add next number
ADDS RI1,R1,#1 ;ELSE, increment (R1 = R1 + 1)

L1 ADDS RO,R0,R2 ;RO = RO + R2 and set the flags
BCC L2 ;if C = 0, add next number
ADDS RI1,R1,#1 ;if C =1, increment

L2 ADDS RO,R2 ;RO = RO + R2 and set the flags
BCC L3 ;if C = 0, add next number

STUDENTS-HUB.com Uploaded By: anonymous

ADDS RI1,R1,#1 ;C =1, increment

L3 ADDS RO,R2 ;RO = RO + R2 and set the flags
BCC L4 ;if C = 0, add next number
ADDS RI1,R1,#1 ;if C =1, and set the flags

L4

Solution:

This program adds 0x99999999 together four times.

R1 (high byte) RO (low byte)

At first 0 0
Just before L1 0 0x99999999
Just before L2 1 0x33333332
Just before L3 1 0xCCCCCCCB
Just before L4 2 0x66666664

Here is the loop version of the above program that runs 10 times.

AREA EXAMPLE4_4,CODE, READONLY

ENTRY

MOV R1,#0 ;clear high word (R1 = 0)

MOV RO,#0 ;clear low word (RO = 0)

LDR R2,=0x99999999 ;R2 = 0x99999999

MOV R3,#10 ;counter
L1 ADDS RO,R2 ;RO = RO + R2 and set the flags

BCC NEXT ;if C =0, add next number

ADD R1,R1,#1 ;if C = 1, increment the upper word
NEXT SUBS R3,R3,#1 ;R3 = R3 -1 and set the flags

;(Decrement counter)

BNE L1 ;nextround if Z =0

STUDENTS-HUB.com Uploaded By: anonymous

HERE B HERE ;stay here
END

Note that there is also a “BCS label” instruction. In the BCS instruction, if C = 1 it
jumps to the target address. We will give more examples of these instructions in the
context of applications.

Comparison of unsigned numbers
CMP Rn,Op2 ;compare Rn with Op2 and set the flags

The CMP instruction compares two operands and changes the flags according to the
result of the comparison. The operands themselves remain unchanged. There is no
destination register and the second source operands can be a register or an immediate
value not larger than OxFF. It must be emphasized that “CMP Rn,Op2” instruction is really
a subtract operation. Op2 is subtracted from Rn (Rn — Op2) and the result is discarded and
flags are set accordingly. The contents of Rn and Op2 remain unchanged after the
execution of CMP instruction. Although all the C, S, Z, and V flags reflect the result of the
comparison, only C and Z are used for unsigned numbers, as outlined in Table 4-2.

Instruction C Z
Rn > Op2 1 0
Rn = Op2 1 1
Rn < Op2 0 0

Table 4- 2: Flag Settings for Compare (CMP Rn, Op2) of Unsigned Data

Look at the following case:

LDR R1,=0x35F ;R1 = 0x35F

LDR R2,=0xCCC ;R2 = 0xCCC

CMP RI1,R2 ;compare 0x35F with 0xCCC
BCC OVER ;branch if C=0

MOV R1,#0 ;if C =1, then clear R1

OVER ADD R2,R2#1 ;R2=R2+1=0xCCC+1=0xCCD

Figure 4-2 shows the diagram and the C language version of the code.

Pseudo code: In C:
R1 = 0x35F R1L=0x35F;
R2 = 0xCCC R2 = 0xCCG;

STUDENTS-HUB.com Uploaded By: anonymous

if (R1 >=R2) R1 = 0x35F

R2 = 0xCCC

IF (R1 >= R2) THEN {

R1=0 R1=0;

ENDIF }

R1=0

R2=R2+1 R2=R2+1; 'f'

R2=R2+1

Figure 4- 2: Flowchart of if Instruction

In the above program, R1 is less than the R2 (0x35F < 0xCCC); therefore, C = 0 and
BCC (branch if carry clear) will go to target OVER. In contrast, look at the following:

LDR R1,=0xFFF
LDR R2,=0x888
CMP R1,R2 ;compare OXFFF with 0x888
BCC NEXT
ADD R1,R1,#0x40
NEXT ADD RI1,R1,#0x25

In the above, R1 is greater than R2 (OxFFF > 0x888), which sets C = 1, making
“BCC NEXT?” fall through so that “ADD R1,R1,0x40” is executed.

Again, it must be emphasized that in CMP instructions, the operands are unaffected
regardless of the result of the comparison. Only the flags are affected. This is despite the
fact that CMP uses the SUB operation to set or reset the flags. It also may be noted that,
unlike other arithmetic and logic instructions, there is no need to put S in the CMP
instruction to update the flags. In other words, the CMP instruction automatically updates
the flags.

Program 4-1 uses the CMP instruction to search for the highest byte in a series of 5
data bytes. To search for the highest value the instruction “CMP R1,R3” works as follows,
where R1 is the contents of the memory location brought into R1 register by the [R2]
pointer.

a) If R1 <R3, then C = 0 and R3 becomes the basis of the new comparison.

b) If R1 > R3, then C = 1 and R1 is the larger of the two values and remains the
basis of comparison.

Program 4-1
Assume that there is a class of five people with the following grades: 69, 87, 96, 45, and 75.
Find the highest grade.

STUDENTS-HUB.com Uploaded By: anonymous

;searching for highest value
OUNT RN RO ;COUNT is the new name of RO
MAX RN R1 ;MAX is the new name of R1
;(MAX has the highest value)
OINTER RN R2 ;POINTER is the new name of R2
NEXT RN R3 ;NEXT is the new name of R3

AREA PROG_4_1D, DATA, READONLY
MYDATA DCD 69,87,96,45,75
AREA PROG_4_1, CODE, READONLY
ENTRY
MOV COUNT#5 ;COUNT =5
MOV MAX,#0 sMAX =0
LDR POINTER,=MYDATA
;POINTER = MYDATA (address of first data)
AGAIN LDR NEXT,[POINTER]
;load contents of POINTER location to NEXT
CMP MAX,NEXT
;compare MAX and NEXT
BHS CTNU
;if MAX > NEXT branch to CTNU
MOV MAX,NEXT ;MAX = NEXT
TNU ADD POINTER,POINTER,#4
;POINTER=POINTER+4 to point to the next
SUBS COUNT,COUNT,#1 ;decrement counter
BNE AGAIN ;branch AGAIN if counter is not zero

@)

HERE B HERE
END

Program 4-1 searches through five data items to find the highest value. The program
has a variable called “MAX” that holds the highest grade found so far. One by one, the
grades are compared to Highest. If any of them is higher, that value is placed in MAX.

STUDENTS-HUB.com Uploaded By: anonymous

This continues until all data items are checked. A REPEAT-UNTIL structure was chosen
in the program design. Figure 4-3 shows the flowchart for Program 4-1. This design could
be used to code the program in many different languages.

Pseudo code:

Count =5
Highest =0

REPEAT
IF (Next > MAX)
THEN
MAX = Next

Increment pointer

Decrement Count

UNTIL Count =0

Count=5
MAX =0

; now MAX is the Highest

MAX = next

In C:

//TIn Keil, long is 32-bit wide

Dacrement count
Increment pointer

unsigned long myData[5]= {69,87,96,45,75};

unsigned long count = 5;

e @ Yes unsigned long max = 0;

MAX is the unsigned long next;
Highest

unsigned long *pointer = myData;

=D |

{

next = *pointer;

if (max < next)

STUDENTS-HUB.com Uploaded By: anonymous

max = next;

pointer ++;

count —;

}while(count != 0);

Figure 4- 3: Flowchart and Pseudocode for Program 4-1

Using CMP followed by conditional branches we can make any comparison on
unsigned numbers, as shown in Table 4-3. Although BCS (branch carry set) and BCC
(branch carry clear) check the carry flag and can be used after a compare instruction, it is
recommended that BHS (branch higher or same) and BLO (branch below) be used for two
reasons. One reason is that assemblers will unassemble BCS as BLO, and BCC as BHS,
which may be confusing to beginner programmers. Another reason is that “branch higher”
and “branch below” are easier to understand than “branch carry set” and “branch carry
clear,” since it is more immediately apparent that one number is larger than another, than
whether a carry would be generated if the two numbers were subtracted.

Instruction Action

BCS/BHS branch if carry set/branch if higher or same Branch if Rn > Op2
BCC/BLO branch if carry clear/branch lower Branch if Rn < Op2
BEQ branch if equal Branch if Rn = Op2
BNE branch if not equal Branch if Rn # Op2
BLS branch if less or same Branch if Rn < Op2
BHI branch if higher Branch if Rn > Op2

Table 4- 3: ARM Conditional Branch Instructions for Unsigned Data
Division of unsigned numbers in ARM

The older ARM family members do not have an instruction for division of unsigned
numbers since it took too many gates to implement it. However, many of the ARM Cortex
chips implement the divide instruction. In ARMs with no divide instructions we can use
SUB instruction to perform the division. Program 4-2 shows an example of unsigned
division using subtract operation. In the program the numerator is placed in a register and
the denominator is subtracted from it repeatedly. The quotient is the number of times we
subtracted and the remainder is in the register upon completion. See Figure 4-4.

Program 4-2: Division by Repeated Subtractions

AREA PROG_4_2, CODE, READONLY ;Division by subtractions

ENTRY

STUDENTS-HUB.com Uploaded By: anonymous

LDR R0,=2012 ;RO = 2012 (numerator)
;it will contain remainder
MOV R1,#10 ;R1 =10 (denominator)
MOV R2,#0 ;R2 =0 (quotient)
1 CMP RO,R1 ;Compare RO with R1 to see if less than 10
BLO FINISH ;if RO < R1 jump to finish
SUB RO,RO,R1 ;RO = RO - R1 (division by subtraction)
ADD R2,R2,#1 ;R2 = R2 + 1 (quotient is incremented)

B L1 ;8oto L1 (B is discussed in the next section)
INISH B FINISH

Pseudo code:

NUM = 2012
DENOM =10
m WHILE NUM >= DENOM
Subtract DENOM from NUM
RO = 2012
R1=10 Increment QUOTIENT
END WHILE
8

¢ Yes In C:
W () |ro-ao

R1 =10;
RO =R0 - R1
Increment R2 (Quotient)
S— while (RO >= R1)

{
RO =RO - R1;
R2=R2+ 1;

}

Figure 4- 4: Flowchart and Pseudo-code for Program 4-2

STUDENTS-HUB.com Uploaded By: anonymous

TST (Test)
TST Rn,Op2 ;Rn AND with Op2 and flag bits are updated

The TST instruction is used to test the contents of register to see if any bit is set to
HIGH. After the operands are ANDed together the flags are updated. After the TST
instruction if result is zero, then Z flag is raised and one can use BEQ (branch equal) to
make decision. Look at the following example:

MOV R0,#0x04 ;R0=00000100 in binary
LDR R1,=myport ;port address
OVER LDRB R2,J[R1] ;Joad R2 from myport
TST R2,R0 ;is bit 2 HIGH?
BEQ OVER ;keep checking

In TST, like other logic or arithmetic data processing instructions, the Op2 can be an
immediate value of less than OxFF. Look at the following example:

LDR R1,=myport ;port address

OVER LDRB R2,[R1] ;load R2 from myport
TST R2,#0x04 ;is bit 2 HIGH?
BEQ OVER ;keep checking

See Example 4-5.

Example 4-5

Assume address location 0x200000 is assigned to an input port address and connected to 8
DIP switches. Write a simple short program to check the PORT and whenever both pins 4
or 6 are LOW, R4 register is incremented.

Solution:
MYPORT EQU 0x200000
MOV RO0,#2_01010000 ;R0=0x50 (01010000 in binary)
LDR R1,=MYPORT ;R1 = port address
OVER LDRB R2,J[R1] ;get a byte from PORT and place it in R2
TST R2,R0O ;are bits 4 and 6 LOW?
BNE OVER ;keep checking

ADD R4,R4,#1

STUDENTS-HUB.com Uploaded By: anonymous

TEQ (test equal)
TEQ Rn,Op2 ;Rn EX-ORed with Op2 and flag bits are set

The TEQ instruction is used to test to see if the contents of two registers are equal.
After the source operands are Ex-ORed together the flag bits are set according to the
result. After the TEQ instruction if result is 0, then Z flag is raised and one can use BEQ
(branch zero) to make decision. Recall that if we Exclusive-OR a value with itself, the
result is zero. Look at the following example for checking the temperature of 100 on a

given port:
TEMP EQU 100
MOV RO#TEMP ;RO = Temp
LDR R1,=myport ;port address
OVER LDRB R2,[R1] ;load R2 from myport
TEQ R2,R0 ;18 it 1007
BNE OVER ;keep checking

Unconditional branch (jump) instruction

The unconditional branch is a jump in which control is transferred unconditionally
to the target location. In the ARM there are two unconditional branches: B (branch) and
BX (branch and exchange). This is discussed next.

B (Branch)

B (branch) is an unconditional jump that can go to any memory location in the 32M
byte address space of the ARM. Another syntax for B instruction is BAL (branch always).

B has different usages like implementing if/else, while, and for instructions. In the
following code you see an example of implementing the if/else instruction:

//in C
if(R1 <R2)
CMP R1,R2 {
BHS L1 R3=2
MOV R3#2
B OVER }
L1 MOV R3#5 o else
OVER {
R3 =5;
}

In the above code, R3 is initialized with 2 when R1 is lower than R2. Otherwise, it is
initialized with 5.

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com

As an example of implementing the while instruction see the following program. It
calculates the sum of numbers between 1 and 5:

//in C
unsigned long R1 = 1;

MOV R1#1
MOV R2#0

L1 CMP RL#5 unsigned long R2 = 0;

o while (R1 <=5)
ADD R2,R2,R1
ADD RI,RL#1 RZ=RZ+RI {
R1=R1+1
B L1 T R2 =R2 + R1;
L2 MOV R3#5 ; R1=R1+ 1:
}

The for instruction can be implemented the same way as the while instruction. For
example, the above assembly program can be considered as a for loop.

In cases where there is no operating system or monitor program, we use the Branch
to itself in order to keep the microcontroller busy. A simple way of doing that is shown
below:

HERE B HERE ;stay here
Another syntax for the B instruction is BAL (branch always) as shown below:

HERE BAL HERE ;stay here

Since ARM instruction is 32-bit, 8 bits are used for the opcode, and the other 24 bits
represent the address of the target location. The 24-bit target address is shifted left twice
and that allows a jump to —32M to +32M bytes of memory locations from the address of
current instruction. Next, we explain the reason for this.

All branches are short branches (jumps)

It must be noted that all branch instructions (conditional and unconditional) are short
jumps, meaning the address of the target must be within 32M bytes of the program counter
(PC). That means the short jumps cannot cover the entire address space of 4G bytes
(0x00000000 to OxFFFFFFFF).

Calculating the short branch address

All conditional branches such as BCC, BEQ, and BNE are short branches. This is
due to the fact that the ARM instructions are 32-bit and some of the 32-bit must be used
for opcode and therefore it cannot cover the entire 4G bytes address space of ARM. In the
branch instruction the opcode is 8 bits and the relative address is 24 bits. See Figure 4-5.
The target address is relative to the value of the program counter. If the relative address is
positive, the jump is forward. If the relative address is negative, then the jump is
backwards. The relative address can cover memory space of —32Mbytes to +32Mbytes

Uploaded By: anonymous

from current location of program counter. The reason for 32MB is the fact that 24 bits are
shifted left twice (multiplied by 4) by the ARM CPU automatically. That gives us 26 bits.
Now, since one bit is used for positive or negative sign, we have only 25 bits for

magnitude. The 25 bits magnitude gives us 32M bytes (22> = 32M) in each direction. That
is —32Mbytes if it is backward and +32MB if it is forward jump. Therefore, to calculate
the target address, the relative address is shifted left twice and added to the address of the
next instruction to be fetched [target address = relative address shifted left twice + address
of the next instruction to be fetched]. It must be noted that the next instruction to be
fetched is two instructions below the current branch instruction. The reason is the
instruction right below the branch is already in the pipeline. See Figure 4-5.

24 bits

P

Offset '|

6 I:uri/

.
TROOD0000S | (00000002 | OenooonT || o | | [Offset |(} [IEI|
TROO000007 | Crop0000006 | (0000008 || IO000000H

Ox0000000E | DxO000D00A | DxC0000009 | Ow00000008
T DO00000F | OxD000000E | 0x00000000 | (0000000 - L ;
TND0000013 | Gw00000012 | Gwo00000T1 | OxD000001a Sign or direction bit

Instruction: |

-

DNFFFFEFFT | OXFFFFFFFG | GRFFFFFFES | OXFFFFFFFA
OXFFFEFFFD | (XFFFFFFFA | GXFFFFFEFG | ONFFFFFFED
TWFFFFFFFF | NFFFFFFFE | GRFFFFFFFD | OXFFFFFFECG

Program memory (Addresses are word-aligned)

OFFFFFFF3 | UXFEFFFEEZ | OXFFFFFEF] | O«FFFFEFFD *
PC

Figure 4- 5: B (Branch) Instruction

You might ask why we add the relative address to the address of two instructions
below the current instruction. (why don’t we add the relative address to the address of the
instruction right below the current instruction as it is in other CPUs). This is due to the
pipeline issues as we will see in next section and Chapter 7.

Now, to calculate the target address of the branch we add address of the next
instruction to be fetched to the offset shifted left twice (multiplied by 4). The reason for
shifting left twice is to make sure it is word aligned. Given the fact that all the ARM

instructions are 4-byte (word) long and are word aligned, with 22> = 32M bytes address
space for the forward and backward jumps the target address of jump (branch) can be up
to 8M instructions (32MBytes / 4byes = 8M instructions) from the current instruction in
each direction. Although this does not cover the entire 1G instructions (4GBytes /4byes =
1G instructions) of ARM memory space, it is more than adequate for many applications.
See Example 4-6.

Example 4-6

In ARM7, the next instruction to be fetched is 2 instructions below the current executing
instruction. Using the following list file verify the jump forward address calculation.

STUDENTS-HUB.com Uploaded By: anonymous

LINE ADDRESS Machine Mnemonic Operand

1 00000000 AREA EXAMPLE_4 6, CODE, READONLY
2 00000000 ENTRY

3 00000000 E3A01015 MOV R, #0x15 ;R1=0x15
4 00000004 EA000002 B THERE

5 00000008 E3A01025 MOV R, #0x25 ;R1=0x25
6 0000000C E3A02035 MOV R2, #0x35 ;R2 = 0x35
7 00000010 E3A03045 MOV R3, #0x45 :R3 = 0x45
8 00000014 E3A04055 THERE MOV R4, #0x55 ;R4 = 0x55
9 00000018 EAFFFFFE HERE B HERE

10 END

Solution:

First notice that the B instruction in line 4 jumps forward. To calculate the target address,
the relative address (offset) is shifted left twice and added to the PC of the next instruction
to be fetched. The position of the next instruction to be fetched is 2 instructions below the
current instruction. Recall that each instruction of ARM takes 4 bytes. So the next
instruction to be fetched is 2 x 4 bytes = 8 bytes below the current instruction address
(00000004). So the address of the next instruction to be fetched is 0000004 + 8 =
000000C (the position of MOV instruction in line 6). In line 4 the instruction “B THERE”
has the machine code of EA000002. To distinguish the operand and opcode parts, we
should compare the machine code with the B instruction format. In the following, you see
the format of the B instruction. In this example the machine code is EA000002. If we
compare it with the B format, we see that, the operand is 000002 and the opcode is EA.
The 000002 is the offset, relative to the address of the next instruction. Recall that to
calculate the target address, the relative address (offset) is shifted left twice and added to
the current value of the PC (Program Counter). Shifting the offset (000002) left twice
results in 000008 and then adding it to the address of the next instruction to be fetched
(0000000C) we have 000008 + 0000000C = 00000014 which is exactly the address of
THERE label. All the jump instructions, whose mnemonics begin with B, have the same
instruction format, and the opcode changes from instruction to instruction. So, we can
calculate the short branch address for any of them, as we just did in this example.

£ 24 I3]

Opcode Offset
' '
EA 000002

It must also be noted that for the backward branch the relative value is negative (2’s
complement). That is shown in Example 4-7.

STUDENTS-HUB.com Uploaded By: anonymous

Example 4-7

Verify the calculation of backward jumps for the listing of Example 4-1, shown below.

LINE ADDRESS

5 00000000
6 00000004
7 00000008
8 0000000C
9 00000010
10 00000014
11 00000018
12 0000001C
Solution:

Machine

E3A02FFA
E3A00000
E2800009
E2522001
1AFFFFFC
E1A04000
EAFFFFFE

Mnemonic

LDR
MOV

AGAIN ADD

HERE

SUBS

MOV
B
END

Operand
R2,=1000 ;R2 = 1000

RO,#0

;RO =0, sum

RO,R0,#9 ;RO=R0 +9

R2,R2#1;R2=R2-1

BNE
R4,R0
HERE

AGAIN ;repeat
;store the sum in R4

;stay here

In the program list, “BNE AGAIN” in line 9 has machine code 1AFFFFFC. To specify the
operand and opcode, we compare the instruction with the branch instruction format, which
you saw in the previous example. The opcode is 1A and the operand (relative offset

address) is FFFFFC. The FFFFFC gives us —4, which means the displacement is (—4 x 4 =

16 = -0x10).

The branch is located in address 0x0010. The address of the next instruction to be fetched
is two instructions ahead of current branch instruction, and each instruction is 4-byte wide.
Therefore, address of the next instruction to be fetched = 0x0010 + (2 x 4) = 0x0018

When the relative address of —0x10 is added to 00000018, we have —0x0010 + 0x0018 =

0x08

Notice that 00000008 is the address of the label AGAIN.

FFFFFC is a negative number and that means it will branch backward. For further
discussion of the addition of negative numbers, see Chapter 5.

Branching beyond 32M byte limit

To branch beyond the address space of 32M bytes, we use BX (branch and
exchange) instruction. The “BX Rn” instruction uses register Rn to hold target address.

STUDENTS-HUB.com

Uploaded By: anonymous

Since Rn can be any of the RO-R14 registers and they are 32-bit registers, the “BX Rn”
instruction can land anywhere in the 4G bytes address space of the ARM. In the
instruction “BX R2” the R2 is loaded into the program counter (R15) and CPU starts to
fetch instructions from the target address pointed to by R15, the program counter. See
Figure 4-6. Since the instructions are word aligned, we must make sure that the lower two

bits of the Rn are Os.

kY|

Opcode

Rn

Bn

Y

PC

Figure 4- 6: BX (Branch and exchange) Instruction Target Address

The BX instruction is also used to switch to THUMB version of the ARM CPU. For

more information see the ARM manual.

Review Questions

1. The mnemonic BNE stands for

2. True or false. “BNE BACK” makes its decision based on the last instruction

affecting the Z flag.
3. “BNE HERE” isa___ -byte instruction.

4. In “BEQ NEXT”, which flag bit is checked to see if it is high?

o

B(ranch) is a(n) __ -byte instruction.

6. Compare B and BX instructions.

STUDENTS-HUB.com

Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section 4.2: Calling Subroutine with BL

Another control transfer instruction is the BL (branch and link) instruction, which is
used to call a subroutine. Subroutines are often used to perform tasks that need to be
performed frequently. This makes a program more structured in addition to saving
memory space. In the ARM there is only one instruction for call and that is BL (branch
and link). To use BL instruction for call, we must leave the R14 register unused since that
is where the ARM CPU stores the address of the next instruction where it returns to
resume executing the program.

BL (Branch and Link) instruction and calling subroutine

In the 32-bit instruction BL, 8 bits are used for the opcode and the other 24 bits,
k23-k0, are used for the address of the target subroutine, just like in the Branch
instruction. Therefore, BL. can be used to call subroutines located anywhere within the
32M address space of the ARM, as shown in Figure 4-7.

C Tha L bit makes the diffarence butween the B and BL instructions.
In

BL instruction, the L bif is one. If L bit is one, the CPU copies PC to R14

24 bits
BL Instruction: | Opcode [L| | Offset |
""v..‘ 26 bits
‘rA
[] Offset [o]o]
Sign or direction bit @

v

[PC

|
|
l l A
| | Address of next instruction to be fetched
|
|
|
I

Step 1 Step 2

Figure 4- 7: BL (Branch and Link) Instruction

To make sure that the ARM knows where to come back to after execution of the
called subroutine, the ARM automatically saves in the link register (LR), the R14, the
address of the instruction immediately below the BL. When a subroutine is called by the
BL instruction, control is transferred to that subroutine, and the processor saves the PC
(program counter) in the R14 register and begins to fetch instructions from the new
location. After finishing execution of the subroutine, we must use “BX LR“ instruction to
transfer control back to the caller. Every subroutine needs “BX LR” as the last instruction
for return address.

BL instruction and the role of linker register

When a subroutine is called using BL instruction, first the processor saves the
address of the instruction just below the BL instruction on the R14 register (LR, linker
register), and then control is transferred to that subroutine. This is how the CPU knows

STUDENTS-HUB.com Uploaded By: anonymous

where to resume when it returns from the called subroutine.

The linker register and returning from subroutine

There is no RETurn instruction in ARM?7. Therefore at the end of the subroutine we
must copy the linker register, R14, to the program counter (R15). When the BL instruction
is executed the address of the instruction below the BL instruction is placed into R14
register, so, when the execution of the function finishes, the address of the instruction
below the BL must be reloaded back into the PC, and so the CPU can resume the

execution of instructions below the BL instruction.

To understand the role of the R14 register in BL instruction and the return, examine
the Examples 4-8. The following points should be noted for the Example 4-8:

1. Notice the DELAY subroutine. Upon executing the first “BL. DELAY”, the
address of the instruction right below it, “MOV RO0,#0xAA”, is saved onto the
R14 register, and the ARM starts to execute instructions at DELAY subroutine.

2. Inthe DELAY subroutine, first the counter R3 is set to 5 (R3 = 5); therefore, the
inner loop is repeated 5 times. When R3 becomes 0, control falls to the “BX LR”
instruction, which restores the address into the program counter and returns to
main program to resume executing the instructions after the BL.

Example 4-8

Write a program to toggle all the bits of address 0x40000000 by sending to it the values
0x55 and O0xAA continuously. Put a time delay between each issuing of data to address

location.
Solution:
AREA EXAMPLE4_8, CODE, READONLY
ENTRY
RAM_ADDR EQU 0x40000000 ;change the address for your ARM
LDR R1,RAM_ADDR ;R1 = RAM address
AGAIN MOV RO0,#0x55 ;RO = 0x55
STRB RO,[R1] ;send it to RAM
BL DELAY ;call delay (R14 = PC of next instruction)
MOV RO,#0xAA ;RO = 0xAA
STRB RO,[R1] ;send it to RAM
BL DELAY ;call delay
B AGAIN ;keep doing it

;——DELAY SUBROUTINE
STUDENTS-HUB.com

Uploaded By: anonymous

DELAY LDR R3,=5 ;R3 =5, modify this value for different size delay

L1 SUBS R3,R3,#1 ;G R3=R3-1
BNE L1
BX LR ;return to caller
;——end of DELAY subroutine
END ;notice the place for END directive

Use Keil IDE simulator for ARM to simulate the above program and examine the registers
and memory location 0x40000000. You might have to change the address 0x40000000 to
some other value depending on the RAM address of the ARM chip you use.

In above program, in place of “BX LR” for return, we could have used “BX R14”,
“MOV R15,R14”, or “MOV PC, LR” instructions. All of them do the same thing; but it is
recommended to use the “BX LR” instruction.

The amount of time delay in Example 4-8 depends on the frequency of the ARM
chip. How to calculate the time will be explained in the last section of this chapter.

Main Program and Calling Subroutines

In real world projects we divide the programs into small subroutines (also called
functions) and the subroutines are called from the main program. Figure 4-8 shows the

format.
;MAIN program calling subroutines
AREA PogramName, CODE, READONLY
ENTRY
MAIN BL SUBR_1 ;Call Subroutine 1
BL SUBR_2 ;Call Subroutine 1
BL SUBR_3 ;Call Subroutine 1
HERE BAL HERE ;stay here. BAL is the same as B
;—-end of MAIN
;—SUBROUTINE 1
SUBR_1
BX LR ;return to main
;— end of subroutine 1

STUDENTS-HUB.com Uploaded By: anonymous

;—SUBROUTINE 2
SUBR_2

BX LR ;return to main

;— end of subroutine 2

;—SUBROUTINE 3
SUBR_3

BX LR ;return to main
;— end of subroutine 3

END ;notice the END of file

STUDENTS-HUB.com

Figure 4- 8: ARM Assembly Main Program That Calls Subroutines
Program 4-3 shows an example of the main program calling subroutine.
Program 4-3
;This program fills a block of memory with a fixed value and
;then transfers (copies) the block to new area of memory
AREA PROGRAM4_3, CODE, READONLY
ENTRY

0x40000000 ;Change the address for your ARM
0x40000100 ;Change the address for your ARM
BL FILL ;call block fill subroutine
BL COPY ;call block transfer subroutine
HERE BAL HERE ;BAL(branch always) is the same as B
;——BLOCK FILL SUBROUTINE
LDR R1,-RAM1_ADDR ;R1 = RAM Address pointer
MOV R0,#10 ;counter
LDR R2,=0x55555555
STR R2,[R1] ;send it to RAM
ADD R1,R1,#4 ;R1 =R1 + 4 to increment pointer
SUBS RO,RO,#1 ;RO = RO - 1 for dec counter

e
Sl =
> i >
wl
wl
el e
=l =
ORO
CRC

FILL

=
[EN

;keep doing it

Uploaded By: anonymous

BX LR ;return to caller
; BLOCK COPY SUBROUTINE
OPY LDR R1,=RAM1_ADDR ;R1 = RAM Address pointer (source)
LDR R2,=RAM2_ADDR ;R2 = RAM Address pointer (dest.)
MOV R0O,#10 ;counter
LDR R3,[R1] ;get from RAM1
STR R3,[R2] ;send it to RAM?2
ADD R1,R1,#4 ;R1 =R1 + 4 to increment pointer for RAM1
ADD R2,R2,#4 ;R2 = R2 + 4 to increment pointer for RAM?2
SUBS RO,RO,#1 ;RO = RO — 1 for decrementing counter
N

0

w3
&5
=

;keep doing it

vy
>~
—
7

;return to caller

&5
)

;notice the place of END directive

There are cases in which we need to call a subroutine within a call (nested call). To
do that we must use stack since the ARM CPU can support only one call at a time since
there is only one linker register (R14).

Review Questions
1. The mnemonic BL stands for

2. True or false. “BL DELAY” saves the address of the instruction below BL in LR
register.

3. “BL DELAY”isa___ -byte instruction.
4. LRisan___ -bitregister.

5. LR is the same as register.

6.

Explain the difference between B and BL instructions.

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section 4.3: ARM Time Delay and Instruction Pipeline

In this section we discuss how to generate various time delays and calculate time
delays for the ARM. We will also discuss instruction pipelining and its impact on
execution time.

Delay calculation for the ARM

In creating a time delay using Assembly language instructions, one must be mindful
of two factors that can affect the accuracy of the delay:

1. The crystal frequency: The frequency of the crystal oscillator connected to the
CPU is one factor in the time delay calculation. The duration of the clock period for
the instruction cycle is a function of this crystal frequency.

2. The ARM design: Since the 1970s, both the field of IC technology and the
architectural design of microprocessors have seen great advancements. Due to the
limitations of IC technology and limited CPU design experience for many years, the
instruction cycle duration was longer. Advances in both IC technology and CPU
design in the 1980s and 1990s have made the single instruction cycle a common
feature of many microprocessors. Indeed, one way to increase performance without
losing code compatibility with the older generation of a given family is to reduce the
number of instruction cycles it takes to execute an instruction. One might wonder
how microprocessors such as ARM are able to execute an instruction in one cycle.
There are three ways to do that: (a) Use Harvard architecture to get the maximum
amount of code and data into the CPU, (b) use RISC architecture features such as
fixed-size instructions, and finally (c) use pipelining to overlap fetching and
execution of instructions. We have examined the Harvard and RISC architectures in
Chapter 2. Next, we give a brief discussion of pipelining. Chapter 7 covers the ARM
pipeline in much more detail.

Pipelining

In early microprocessors such as the 8085, the CPU could either fetch or execute at
a given time. In other words, the CPU had to fetch an instruction from memory, decode,
and then execute it, and then fetch the next instruction, decode and execute it, and so on as
shown in Figure 4-9. The idea of pipelining in its simplest form is to allow the CPU to

fetch and execute at the same time. That is an instruction is being fetched while the
previous instruction is being executed.

T1 T2 T3 T4 T5 TG
I Fetch inst. 1 I Execute inst. 1 I Fatch inst. 2 I Execute inst. 2 | Fetch inst. 3 I Execute inst. 3 |

Figure 4- 9: Non-pipeline execution

We can use a pipeline to speed up execution of instructions. In pipelining, the
process of executing instructions is split into small steps that are all executed in parallel.
In this way, the execution of many instructions is overlapped. One limitation of pipelining
is that the speed of execution is limited to the slowest stage of the pipeline. Compare this
to making pizza. You can split the process of making pizza into many stages, such as

STUDENTS-HUB.com Uploaded By: anonymous

flattening the dough, putting on the toppings, and baking, but the process is limited to the
slowest stage, baking, no matter how fast the rest of the stages are performed. What
happens if we use two or three ovens for baking pizzas to speed up the process? This may
work for making pizza but not for executing programs, because in the execution of
instructions we must make sure that the sequence of instructions is kept intact and that
there is no out-of-step execution.

ARM multistage execution pipeline

As shown in Figure 4-10, in the ARM, each instruction is executed in 3 stages:
Fetch, Decode, and Execute.

T T2 T3 T4 T5 TG Time

T =

| Fetchinst.1 | Decode Inst. 1 | Execute inst. 1
Fetch inst. 2 | Decode Inst. 2 | Execute inst. 2
Fetch inst. 3 | Decode Inst. 3 [Execute inst. 3

' Fetch inst. 4 | Decode Inst. 4 | Execute inst, 4

B oW K =

Instruction

Figure 4- 10: Pipeline in ARM

In step 1, the opcode is fetched. In step 2, the opcode is decoded. In step 3, the
instruction is executed and result is written into the destination register. This 3-stage
pipeline was used in the original ARM. The newer version of ARM may have more stages
of pipeline. See Chapter 7 and your ARM manual.

Instruction cycle time for the ARM

It takes a certain amount of time for the CPU to execute an instruction. This amount
of time is referred to as machine cycles. Thanks to the RISC architecture, ARM executes
most instructions in one machine cycle. In the ARM family, the length of the machine
cycle depends on the frequency of the oscillator connected to the ARM system. The
crystal oscillator, along with on-chip circuitry, provide the clock source for the ARM
CPU. In the ARM, one machine cycle consists of one oscillator period, which means that
with each oscillator clock, one machine cycle passes. Therefore, to calculate the machine
cycle for the ARM, we take the inverse of the crystal frequency, as shown in Example 4-9.

Example 4-9

The following shows the crystal frequency for four different ARM-based systems. Find
the period of the instruction cycle in each case.

(a) 80 MHz (b) 160 MHz (c) 100 MHz (d) 50 MHz

Solution:

(a) instruction cycle is 1/80 MHz = 0.0125 ms (microsecond) = 12.5 ns (nanosecond)

STUDENTS-HUB.com Uploaded By: anonymous

(b) instruction cycle = 1/160 MHz = 0.00625 ms = 6.25 ns
(c) instruction cycle = 1/100 MHz = 0.01 ms = 10 ns
(d) instruction cycle = 1/50 MHz = 0.02 ms = 20 ns

Branch penalty

The overlapping of fetch and execution of the instruction is widely used in today’s
microprocessors such as ARM. For the concept of pipelining to work, we need a buffer or
queue in which an instruction is prefetched and ready to be executed. In some
circumstances, the CPU must flush out the queue. For example, when a branch instruction
is executed, the CPU starts to fetch codes from the new memory location and the code in
the queue that was fetched previously is discarded. In this case, the execution unit must
wait until the fetch unit fetches the new instruction. This is called a branch penalty. The
penalty is an extra instruction cycle to fetch the instruction from the target location instead
of executing the instruction right below the branch. Remember that the instruction below
the branch has already been fetched and is next in line to be decoded when the CPU
branches to a different address. This means that while the vast majority of ARM
instructions take only one machine cycle, some instructions take three machine cycles.
These are Branch, BL (call), and all the conditional branch instructions such as BNE,
BLO, and so on. The conditional branch instruction can take only one machine cycle if it
does not jump. For example, the BNE will jump if Z = 0 and that takes three machine
cycles. If Z = 1, then it falls through and it takes only one machine cycle. See Examples 4-
10 and 4-11.

Example 4-10
For an ARM system of 100 MHz, find how long it takes to execute each of the following

instructions:

(a) MOV (b) SUB (©B

(d) ADD (e) NOP (f) BHI

(g) BLO (h) BNE () EQU
Solution:

The machine cycle for a system of 100 MHz is 10 ns, as shown in Example 4-9.
Therefore, we have:

Instruction Instruction cycles Time to execute
(a) MOV 1 1x10ns=10ns
STUDENTS-HUB.com Uploaded By: anonymous

(b) SUB 1 1x10ns=10ns

(c)B 3 3 x 10 ns = 30 ns
(d) ADD 1 1 x10ns =10ns
(e) NOP 1 1x10ns=10ns

For the following, due to branch penalty, 3 clock cycles if taken and 1 if it falls through:

(f) BHI 3/1 3x10ns=30ns
(g) BLO 3/1 3 x 10 ns =30 ns
(h) BNE 3/1 3 x 10 ns =30 ns
(i) EQU 0 (directives do not produce machine instructions)

Notice that ARM chip does not have the NOP instruction. The ARM Assembler replaces it
with some other 1-cycle instruction. On your ARM Assembler, you might get a warning
that NOP does not exist, but it still compiles the program. It does not give an error.

Delay calculation for ARM

A delay subroutine consists of two parts: (1) setting a counter, and (2) a loop. Most
of the time delay is performed by the body of the loop, as shown in Example 4-11.

Example 4-11

Find the size of the delay of the code snippet below if the crystal frequency is 100 MHz:
DELAY MOV RO0,#255
AGAIN NOP

NOP

SUBS RO,RO,#1

BNE AGAIN

MOV PC,LR ;return

Solution:

We have the following machine cycles for each instruction of the DELAY subroutine:

Instruction Machine Cycle

STUDENTS-HUB.com Uploaded By: anonymous

DELAY MOV RO0,#255 ; 1

AGAIN NOP ; 1
NOP ; 1
SUBS RO,R0,#1 ; 1
BNE AGAIN ; 3/1
MOV PC,LR ; 1

Therefore, we have a time delay of [1 + ((1+1+1+3) x 255) + 1] X 10 ns = 15,320 ns.

Notice that BNE takes three instruction cycles if it jumps back, and takes only one cycle
when falling through the loop. That means the above number should be 153.0 ns. Because
the last time, when RO is zero, the BNE takes only one cycle because it falls through the
loop

Very often we calculate the time delay based on the instructions inside the loop and
ignore the clock cycles associated with the instructions outside the loop.

In Example 4-11, the largest value the RO register can take is 23° = 4G. One way to
increase the delay is to use NOP instructions in the loop. NOP, which stands for “no
operation,” simply wastes time, but takes 4 bytes of program memory and that is too
heavy a price to pay for just one instruction cycle. A better way is to use a nested loop.

Loop inside a loop delay

Another way to get a large delay is to use a loop inside a loop, which is also called a
nested loop. See Example 4-12.

Example 4-12

In a given ARM trainer an I/O port is connected to 8 LEDs. The following program
toggles the LEDs by sending to it 0x55 and OxAA values continuously. Calculate the time
delay for toggling of LEDs. Assume the system clock frequency of 100 MHz.

Solution:
AREA Example4_12, CODE, READONLY
ENTRY

PORT_ADDR EQU 0x40000000 ;change the address for your ARM
LDR R1,=PORT_ADDR ;R1 = port address

AGAIN MOV RO0,#0x55 ;RO = 0x55

STUDENTS-HUB.com Uploaded By: anonymous

STRB RO,[R1] ;send it to LEDs

BL DELAY ;call delay

MOV RO,#0xAA ;RO = 0xAA

STRB RO,[R1] ;send it to LEDs

BL DELAY ;call delay

BAL AGAIN ;keep doing it forever (BAL is the same as B)

;—DELAY SUBROUTINE

DELAY

MOV R3,#100 ;R3 = 100,modify this value for different size delay
L1 LDR R4,=250000 ;R4 = 250,000 (inner loop count)
L2 SUBS R4,R4,#1 ;1 clock

BNE L2 ;3 clock

SUBS R3,R3,#1 ;R3=R3-1

BNE L1

MOV PC,LR ;return to caller

END

Ignoring the delay associated with the outer loop, we have the following time delay:
[(1 +3) x 250,000 x 100] x 10 ns = 1 second since 1/100 MHz = 10 ns.

Examine the working frequency for your ARM trainer, change the above address
0x40000000 to your ARM trainer port address and verify the time delay using
oscilloscope.

From these discussions we conclude that the use of instructions in generating time
delay is not the most reliable method. To get more accurate time delay Timers are used.
All ARM microcontrollers come with on-chip Timers. We can use Keil uVision’s
simulator to verify delay time and number of cycles used. Meanwhile, to get an accurate
time delay for a given ARM microcontroller, we must use an oscilloscope to measure the
exact time delay.

Review Questions

1. True or false. In the ARM, the machine cycle lasts 1 clock period of the crystal
frequency.

STUDENTS-HUB.com Uploaded By: anonymous

2. The minimum number of machine cycles needed to execute an ARM instruction is

3. Find the machine cycle for a crystal frequency of 66 MHz.

4. Assuming a crystal frequency of 100 MHz, find the time delay associated with the
loop section of the following DELAY subroutine:

DELAY LDR R2,=50000000
HERE NOP

NOP

NOP

NOP

NOP

SUBS R2,R2#1

BNE HERE

MOV PC,LR

5. Find the machine cycle for an ARM if the crystal frequency is 50 MHz.

6. True or false. In the ARM, the instruction fetching and execution are done at the
same time.

7. True or false. B and BL will always take 2 machine cycles.

8. True or false. The BNE instruction will always take 3 machine cycles.

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section 4.4: Conditional Execution

Every microprocessor has the conditional branch (jump) instruction based on the
status of flag bits such as Z and C. Instructions such as BEQ (branch equal, Z = 1) or BNC
(branch if no carry, C = 0) are common in all CPUs. The ARM CPU has a unique feature
that we do not see in other microprocessors. In ARM, the concept of conditional execution
is implemented for all instruction and not just for branch which makes you able to decide
to run or ignore each single instruction depending on the status of flag bits. In other words,
not only the branch instruction but all of the ARM instructions can be conditional. As we
discussed in Chapters 2 and 3, the ADD, SUB, and other arithmetic instruction do not
affect the flag bits in CPSR (current program status register) register unless they have
letter S in the syntax. The default is not to update the flags. We override the default by
having letter S in the instruction. The same thing is true about conditional field of each
instruction. If we do not add a condition after an instruction, it will be executed
unconditionally because the default is not to check the flags and execute unconditionally.
If we want an instruction to be executed only when a condition is met, we put the
condition syntax right after the instruction.

This feature of ARM allows the execution of an instruction conditionally based on
the status of Z, C, V and N flags. To do that, the ARM instructions have set aside the most
significant 4 bits of the instruction field for the conditions. See Figure 4-11. The 4 bits
gives us 16 possible conditions. Table 4-4 shows the list of all the 16 possible conditions.

k| 28 27 26]

Cond Instruction

Figure 4- 11: Condition Field in ARM Instructions

Bits Mnemonic Extension Meaning Flag
0000 EQ Equal Z=1

0001 NE Not equal Z=0

0010 CS/HS Carry Set/Higher or Same C=1

0011 CC/LO Carry Clear/Lower C=0

0100 MI Minus/Negative N=1

0101 PL Plus N=0

0110 VS V Set (Overflow) V=1

0111 VC V Clear (No Overflow) V=0

1000 HI Higher C=1landZ=0
1001 HS Lower or Same C=landZ=1

STUDENTS-HUB.com Uploaded By: anonymous

1010 GE Greater than or Equal N=V

1011 LT Less than N#V

1100 GT Greater than Z=0and N=V
1101 LE Less than or Equal Z=0orN#V
1110 AL Always (unconditional)

111 - Not Valid

Table 4- 4: ARM Condition codes for the Opcode bits [31-28]

Note!

By default, all the instructions are executed unconditionally. As a result the AL
(Always) suffix has no effect on the instruction. For example, BAL (Branch Always) is
exactly the same as B (Branch). The same is true for all instructions.

To make an instruction conditional, simply we put the condition syntax from Table
4-4 in front of it. See the following examples:

MOV R1,#10 ;R1=10
MOV R2#12 ;R2=12
CMP R2,R1 ;compare 12 with 10, Z = 0 because they are not equal
MOVEQ R4,#20 ;this line is not executed because
; the condition EQ is not met

The following code adds 10 to R1 if it is not zero:
CMP R1,#0 ;compare R1 with 0
ADDNE R1,R1,#10 ;this line is executed if Z = 0

;(if in the last CMP operands were not equal)

Note that we can add both S and condition to syntax of an instruction. It is common
to put S after the condition. See the following examples:

ADDNES R1,R1,#10
;this line is executed and set the flags if Z =0

One advantage of using conditional execution is it saves time in the execution of an
instruction by avoiding branch penalty. As we discussed earlier, each instruction goes
through three pipeline stages of fetch, decode, and execution. When a branch instruction
such as BCC (branch if C cleared) enters the pipeline, the instruction below is also fetched
into the CPU not knowing whether the C flag is high or low. If the C = 0, the branch will
jump to new location resulting in emptying the instruction pipeline queue which was
working on the instruction below the BCC instruction. This penalty can be avoided by

STUDENTS-HUB.com Uploaded By: anonymous

using conditional execution feature of the ARM. We can make the execution of many of
the ARM instructions conditional by simply adding a mnemonic extension to the end of it.
For example, we can use ADDCS instead of ADD. The ADDCS means add if C=1.
(ADDCS: Add if Carry Set). By the same token the ADDEQ means add only if Z=1.

Example 4-13 shows two versions of the Example 4-4 we covered earlier. In the
new version, we use the conditional execution instructions. Simulate and compare both
versions to see how the conditional instructions are executed.

Example 4-13

The following program adds 0x99999999 together 10 times. Compare the code syntax to
see how the conditional execution of the code is used.

Code 1: (Example 4-4 without conditional execution)

AREA EXAMPLE4_4, CODE, READONLY

ENTRY
MOV R1,#0 ;clear high word (R1 = 0)
MOV RO0,#0 ;clear low word (RO = 0)
LDR R2,=0x99999999 ;R2 = 0x99999999
MOV R3,#10 ;counter
L1 ADDS RO,RO,R2 ;RO = RO + R2 and update the flags
BCC NEXT ;if C = 0, go to next number
ADD R1,R1,#1 ;if C = 1, increment the upper word
NEXT SUBS R3,R3,#1 ;R3 = R3 - 1 and update the flags
BNE L1 :nextround if z=0
HERE B HERE ;stay here
END

Code 2: (Example 4-4 with conditional execution)

AREA EXAMPLE4_ 13, CODE, READONLY

ENTRY

MOV R1,#0 ;clear high word (R1 = 0)
MOV RO,#0 ;clear low word (RO = 0)
LDR R2,=0x99999999 ;R2 = 0x99999999
MOV R3,#10 ;counter

STUDENTS-HUB.com Uploaded By: anonymous

L1 ADDS RO,R0,R2 ;RO = RO + R2 and update the flags

ADDCS R1,R1,#1 ;if C set (C = 1),increment the upper word
NEXT SUBS R3,R3,#1 ;R3 = R3 - 1 and update the flags
BNE L1 ;next round if z =0
HERE B HERE ;stay here
END

See also Examples 4-14 and 4-15.

Example 4-14

Rewrite the main part of Program 4-1 using conditional execution of ARM instructions

Solution:
MOV COUNT#5 ;COUNT =5
MOV MAX,#0 sMAX =0

LDR POINTER,=MYDATA
;POINTER = MYDATA (address of first data)
AGAIN
LDR NEXT,[POINTER]
;load contents of POINTER location to NEXT
CMP MAX,NEXT ;compare MAX and NEXT
MOVLO MAX,NEXT
;if MAX is lower than NEXT then MAX=NEXT
ADD POINTER,POINTER,#4
;POINTER = POINTER + 4 to point to next
SUBS COUNT,COUNT,#1 ;decrement counter
BNE AGAIN ;branch AGAIN if counter is not zero

Example 4-15

STUDENTS-HUB.com Uploaded By: anonymous

Using rotation, write a program that counts the number of 1s in RO.

Solution:
AREA EXAMPLE4_15, CODE, READONLY
ENTRY
LDR R0,=0x34F37D36
MOV R1, #0 ;number of 1s
MOV R2, #32 ;counter
BEGIN MOV RO,RO,RRX ;Rotate right with carry the RO register
ADDCS R1,R1,#1 ;if C = 1 then increment R1
SUBS R2,R2,#1 ;decrement counter
BNE BEGIN ;if counter is not equal to zero branch BEGIN
END

Review Questions
1. True or false. All the ARM instructions have the conditional execution feature.
2. How many bits of the ARM instruction are set aside for the condition codes?
3. The ADDAL stands for................. .
4. True or false. MOVVC is a valid instruction in ARM
5. True or false. SUBEQS is a valid instruction in ARM

STUDENTS-HUB.com Uploaded By: anonymous

Problems

Section 4.1: Looping and Branch Instructions

1. Inthe ARM, looping action using a single register is limited to iterations.

2. If a conditional branch is not taken, what is the next instruction to be executed?

3. In calculating the target address for a branch, a displacement is added to the

contents of register

The mnemonic BNE stands for

What is the advantage of using BX over B?

N e oA

address space.

True or false. The target of a BNE can be anywhere in the 4G word address space.
True or false. All ARM branch instructions can branch to anywhere in the 4G byte

8. Dissect the B instruction, indicating how many bits are used for the operand and

the opcode, and indicate how far it can branch.

9. True or false. All conditional branches are 2-byte instructions.

10. Show code for a nested loop to perform an action 10,000,000,000 times.

11. Show code for a nested loop to perform an action 200,000,000,000 times.

12. Find the number of times the following loop is performed:

MOV RO,#0x55

MOV R2#40

L1 LDR R1,=10000000
L2 EOR RO,R0,#0xFF
SUB R1,R1,#1

BNE L2

SUB R2,R2#1

BNE L1

13. Indicate the status of Z and C after CMP is executed in each of the following cases.

(a))
MOV RO,#50

MOV R1,#0xFF
MOV R1,#40

MOV R2,#0x6F
CMP RO,R1

CMP RI1,R2

STUDENTS-HUB.com

(©)

MOV R2,#34
MOV R3,#88
CMP R2,R3

Uploaded By: anonymous

(d)
SUB R1,R1,R1

(e) ()

EOR R2,R2,R2 EOR RO,RO,RO
MOV R2#0

MOV R3,#0xFF EOR R1,R1,R1
CMP R1,R2

CMP R2,R3 CMP RO,R1
() (h)
MOV R4,#0x78 MOV RO,#0xAA
MOV R2,#0x40 AND RO,R0,#0x55
CMP R4,R2 CMP RO,#0

14. Rewrite Program 4-1 to find the lowest grade in that class.

15. The target address of a BNE is backward if the relative address portion of opcode
is (negative, positive).

16. The target address of a BNE is forward if the relative address portion of opcode is
(negative, positive).

Section 4.2: Calling Subroutine with BL
17. BL is a(n) ___-byte instruction.
18. In ARM, which register is the linker register?
19. True or false. The BL target address can be anywhere in the 4G byte address space.
20. Describe how we can return from a subroutine in ARM.

21. In ARM, which address is saved when BL instruction is executed.

Section 4.3: ARM Time Delay and Instruction Pipeline

22. Find the oscillator frequency if the machine cycle = 1.25 ns.
23. Find the machine cycle if the crystal frequency is 200 MHz.
24. Find the machine cycle if the crystal frequency is 100 MHz.
25. Find the machine cycle if the crystal frequency is 160 MHz.

26. Find the time delay for the delay subroutine shown below if the system has an
ARM with a frequency of 80 MHz:

MOV R8,#200
BACK LDR R1,=400000000

STUDENTS-HUB.com Uploaded By: anonymous

HERE NOP
SUBS RI1,R1,#1
BNE HERE
SUBS R8,R8,#1
BNE BACK

27. Find the time delay for the delay subroutine shown below if the system has an
ARM with a frequency of 50 MHz:

MOV R2#100
BACK LDR R0,=50000000

HERE NOP
NOP
SUBS RO,R0,#1
BNE HERE
SUBS R2,R2#1
BNE BACK

28. Find the time delay for the delay subroutine shown below if the system has a ARM
with a frequency of 40 MHz:

MOV R1,#200
BACK LDR R0,#20000000

HERE NOP
NOP
NOP
SUBS RO,R0,#1
BNE HERE
SUBS RI1,R1,#1
BNE BACK

29. Find the time delay for the delay subroutine shown below if the system has an
ARM with a frequency of 100 MHz:

STUDENTS-HUB.com Uploaded By: anonymous

MOV R8,#500
BACK LDR R1,=20000
HERE NOP

NOP

NOP

SUBS RI1,R1,#1

BNE HERE

SUBS R8,R8,#1

BNE BACK

30. The ARM chip does not have the NOP instruction. Examine the list file generated
by your ARM assembler to see what instruction is used in place of the NOP.

Section 4.4: Conditional Execution

31. Which bits of the ARM instruction are set aside for condition execution?

32. True or false. Only ADD and MOV instructions have conditional execution
feature.

33. True or false. In ARM, the conditional execution is default.

34. Which flag bit is examined before the MOVEQ instruction is executed?

35. State the difference between the ADDEQ and ADDNE instructions.

36. State the difference between the BAL and B instructions .

37. State the difference between the SUBCC and SUBCS instructions.

38. State the difference between the ANDEQ and ANDNE instructions.

39. True or false. The decision to execute the SUBCC is based on the status of Z flag.

40. True or false. The decision to execute the ADDEQ is based on the status of Z flag.

STUDENTS-HUB.com Uploaded By: anonymous

Answers to Review Questions
1. Branch if not Equal
True
4
Z flag of CPSR (status register)
4

o v oA W N

The B can only branch to an address location within 32 MB address space, while
the BX can go anywhere in the 4 GB address space of ARM.

Section 4.2: Calling Subroutine with BL
1. Branch and Link

True

4

32

R14

R i

In both of them the target address is relative to the value of the program counter
and the relative address can cover memory space of —32MB to +32MB from current
location of program counter. The BL instruction saves the address of the next
instruction in the LR register before jumping, while the B instruction just jumps
without saving anything.

Section 4.3: ARM Time Delay and Instruction Pipeline

1. True

2. 1

3. MC=1/66 MHz = 0.015 ms = 15 ns

4. [50,000,000 x(1+1+1+1+1+1+3)]x10ns=4.5seconds

5. Machine Cycle =1/50 MHz = 0.02 ms = 20 ns

6. True

7. False

8. False. It takes 3 cycles, only if it branches to the target address.
Section 4.4: Conditional Execution

1. True

2. 4 bits

3. ADD always regardless of the status flag.

STUDENTS-HUB.com Uploaded By: anonymous

4. True
5. True

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Chapter 5: Signed Numbers and IEEE 754 Floating Point

This chapter deals with signed number instructions and operations. In Section 5.1,
we focus on the concept of signed numbers in software engineering. Signed number
arithmetic operations and instructions are explained along with examples in Section 5.2.
The IEEE 754 floating point will be explained in Section 5.3.

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section 5.1: Signed Numbers Concept

All data items used so far have been unsigned numbers, meaning that the entire 8-
bit, 16-bit or 32-bit operand was used for the magnitude. Many applications require signed
data. In this section the concept of signed numbers is discussed.

Concept of signed numbers in computers

In everyday life, numbers are used that could be positive or negative. For example, a
temperature of 5 degrees below zero can be represented as -5, and 20 degrees above zero
as +20. Computers must be able to accommodate such numbers. To do that, computer
scientists have devised the following arrangement for the representation of signed positive
and negative numbers: The most significant bit (MSB) is set aside for the sign (+ or -) and
the rest of the bits are used for the magnitude. The sign is represented by 0 for positive (+)
numbers and 1 for negative (-) numbers. Signed byte and word representations are
discussed below.

Signed byte operands

In signed byte operands, D7 (MSB) is the sign and DO to D6 are set aside for the
magnitude of the number. If D7 = 0, the operand is positive, and if D7 = 1, it is negative.

D7 De Do

H magnitude

The range of positive numbers that can be represented by the above format is 0 to
+127.

Dec. Binary Dec. Binary
0 0000 0000 -0 1000 0000
+1 0000 0001 -1 1000 0001
+5 0000 0101 -5 1000 0101

+127 0111 1111 -127 1111 1111

Negative numbers using 2’s complement

To save ALU circuitry, we use 2’s complement method to implement the negative
numbers. For negative numbers, D7 is 1 but the non-sign (magnitude) portion is
represented in 2’s complement. Although the assembler does the conversion, it is still
important to understand how the conversion works. To convert to negative number
representation (2’s complement), follow these steps:

STUDENTS-HUB.com Uploaded By: anonymous

1. Write the magnitude of the number in 8-bit binary (no sign).

2. Invert each bit.

3. Add1toit.

Dec. Binary

Dec. Binary
0 0000 0000

0 0000 0000
1 1111 1111

+1 0000 0001
-------- -5 1111 1011

+5 00000101

-127 1000 0001
+127 0111 1111

-128 1000 0000

Examples 5-1, 5-2, and 5-3 demonstrate these three steps.

Example 5-1

Show how the computer would represent -5.

Solution:

1. 0000 0101 5 in 8-bit binary
2.1111 1010 invert each bit
3.1111 1011 add 1 (OxFB)

This is the signed number representation in 2’s complement for -5.

Example 5-2

Show -34 hex as it is represented internally.

Solution:

STUDENTS-HUB.com Uploaded By: anonymous

1. 0011 0100
2.1100 1011

3.1100 1100

(which is 0xCC)

Show the representation for -128,,.

Solution:

1. 1000 0000
2.0111 1111

3. 1000 0000 Notice that this is not negative zero (-0).

Example 5-3

From the examples above it is clear that the range of byte-sized negative numbers is
-1 to -128. The following lists byte-sized signed number ranges:

Decimal Binary Hex
-128 1000 0000 80
-127 1000 0001 81
-126 1000 0010 82

-2 1111 1110 FE
-1 1111 1111 FF
0 0000 0000 00

0000 0001 01
+2 0000 0010 02

STUDENTS-HUB.com

Uploaded By: anonymous

‘ +127

0111 1111 7F ‘

Halfword-sized signed numbers

In ARM CPU a half-word is 16 bits in length. Setting aside the MSB (D15) for the
sign leaves a total of 15 bits (D14-D0) for the magnitude. This gives a range of —32,768 (—

215y to +32,767 (21>-1).

D15 D14

Do

magnitude

If a number is larger than 16-bit, it must be treated as a 32-bit word operand. The
following shows the range of signed half-word operands. To convert a negative number to
its half-word operand representation, the steps discussed in negative byte operands are

used.
Decimal Binary Hex
-32,768 1000 0000 0000 0000 8000
-32,767 1000 0000 0000 0001 8001
-32,766 1000 0000 0000 0010 8002
-2 1111 1111 1111 1110 FFFE
-1 1111 1111 1111 1111 FFFF
0 0000 0000 0000 0000 0000
+1 0000 0000 0000 0001 0001
+2 0000 0000 0000 0010 0002
+32,766 0111 1111 1111 1110 7FFE
+32,767 0111 1111 1111 1111 7FFF

Using Microsoft Windows calculator for signed numbers

All Microsoft Windows operating systems come with a handy calculator. Use it to

verify the signed number operations in this section.

Word-sized signed numbers

In ARM CPUgs, a word is 32 bits in length. Setting aside the MSB (D31) for the sign
leaves a total of 31 bits (D30-D0) for the magnitude. This gives a range of -(23!) to +(231-

1).

STUDENTS-HUB.com

Uploaded By: anonymous

D31 D30

[en] mognitude

To convert a negative number to its word operand representation, the three steps
discussed in negative byte operands are used. See Example 5-4.

Example 5-4

Show how the computer would represent -5 for (a) 8-bit, (b) 16-bit, and (c) 32-bit data
sizes.

Solution:

(a) 8-bit
1. 0000 0101 5 in 8-bit binary
2.1111 1010 invert each bit
3.1111 1011 add1 (0xFB)

(b) 16-bit
1. 0000 0000 0000 0101 5 in 16-bit binary
2. 1111 1111 1111 1010 invert each bit
3. 1111 1111 1111 1011 add 1 (OXFFFB)
(c) 32-bit

1. 0000 0000 0000 0000 0000 0000 0000 0101 5 in 32-bit binary
2.1111 1111 11171 1111 17111 1111 1111 1010 invert each bit
3.1111 11171 1111 1111 1111 1111 1111 1011 add1 (OxFFFFFFFB)

Use the Windows calculator to verify these examples.

If a number is larger than 32-bit, it must be treated as a 64-bit doubleword operand
and be processed chunk by chunk the same way as unsigned numbers. The following
shows the range of signed word operands.

Decimal Binary Hex

STUDENTS-HUB.com Uploaded By: anonymous

-2,147,483,648 10000000000000000000000000000000 80000000
-2,147,483,647 10000000000000000000000000000001 80000001
-2,147,483,646 10000000000000000000000000000010 80000002
-2 11111111111111111111111111111110 FFFFFFFE

-1 11111111111111111111111111111111 FFFFFFFF

0 00000000000000000000000000000000 00000000

+1 00000000000000000000000000000001 00000001

+2 00000000000000000000000000000010 00000002
+2,147,483,646 01111111111111111111111111111110 7FFFFFFE
+2,147,483,647 0111117111111711111111111111111111 7FFFFFFF

Table 5-1 shows a summary of signed data ranges.

Data Size Bits P Decimal Hexadecimal
Byte 8 -27to+27-1 -128 to +127 0x80-0x7F
: 515 15
Half 16 "2 to+2 -32,768 t0 +32,767 0x8000—0x7FEF
word 1
-2.147,483,648 to 0x80000000—
931 31 ,147,483,
Word 32 -2"to+27-1 +2,147 483,647 0x7FFFFFFF

Table 5-1: Signed Data Range Summary
Review Questions

1. In an 8-bit operand, bit is used for the sign bit, whereas in a 16-bit operand,
bit is used for the sign bit. Repeat for 32-bit signed data.

2. Compute the byte-sized 2’s complement of 0x16.

3. The range of byte-sized signed operands is - to + . The range of half
word-sized signed operands is - to +

4. The range of word-sized signed operands is - to +

5. Compute the 2’s complement of 0x500000.

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section 5.2: Signed Number Instructions and Operations

In this section we examine issues associated with signed number arithmetic
operations. We will also discuss the ARM instructions for signed numbers and how to use
them. It must be noted that in ARM the N flag bit in CSPR is the sign bit. N=0 is for
positive and N=1 for negative numbers.

Overflow problem in signed number operations

When using signed numbers, a serious problem arises that must be dealt with. This
is the overflow problem. The CPU indicates the existence of the problem by raising the V
(oVerflow) flag, but it is up to the programmer to take care of it. The CPU understands
only Os and 1s and ignores the human convention of positive and negative numbers. Now
what is an overflow? If the result of an operation on signed numbers is too large for the
register, an overflow occurs and the programmer must be notified. Look at Example 5-5.

Example 5-5
Look at the following case for 8-bit data size:
+96 0110 0000

+70 +01000110

+166 1010 0110

According to the CPU, this is -90, which is wrong. (V=1,N=1, C =0)

In the example above, +96 is added to +70 and the result according to the CPU is -
90. Why? The reason is that the result was more than 8 bits could handle. The 8-bit
registers can only contain up to +127. The designers of the CPU created the overflow flag
specifically for the purpose of informing the programmer that the result of the signed
number operation is erroneous.

When the overflow flag is set in 8-bit operations

In 8-bit signed number operations, V is set to 1 if either of the following two
conditions occurs:

1. There is a carry from D6 to D7 but no carry out of D7 (C = 0).
2. There is a carry from D7 out (C = 1) but no carry from D6 to D7.

In other words, the overflow flag is set to 1 if there is a carry from D6 to D7 or from
D7 out, but not both. This means that if there is a carry both from D6 to D7 and from D7
out, V = 0. In Example 5-5, since there is only a carry from D6 to D7 and no carry from
D7 out, V = 1. Examples 5-6, 5-7, and 5-8 give further illustrations of the overflow flag in
signed number arithmetic.

STUDENTS-HUB.com Uploaded By: anonymous

Example 5-6
Examine the following case:
-128 1000 0000

+_ -2 +1111 1110

-130 0111 1110 V=1, N=0 (positive), C=1

According to the CPU, the result is +126, which is wrong. The error is indicated by the
fact that V = 1.

Example 5-7
Observe the results of the following;:
;assume R3=+7 (R3=0x07)
;assume R2=+18 (R2=0x12)

ADD R2,R2,R3 ;(R2=0x19=+25, correct)
+7 0000 0111
+_+18 +0001 0010

+25 0001 1001

V=0,C=0,and N = 0 (positive).

Example 5-8
Observe the results of the following:
-2 11111110
+-5 11111011

-7 1111 1001

V=0,C=0,and N =1 (negative); the result is correct since V = 0.

STUDENTS-HUB.com Uploaded By: anonymous

Overflow flag in 16-bit operations
In a 16-bit operation, V is set to 1 in either of two cases:
1. There is a carry from D14 to D15 but no carry out of D15 (C = 0).
2. There is a carry from D15 out (C = 1) but no carry from D14 to D15.

Again the overflow flag is low (not set) if there is a carry from both D14 to D15 and
from D15 out. The V is set to 1 only when there is a carry from D14 to D15 or from D15
out, but not from both. See Examples 5-9 and 5-10.

Example 5-9
Observe the results in the following 16-bit hex numbers:
+6E2F 0110 1110 0010 1111

++13D4 0001 0011 1101 0100

= —0x7DFD = -32,253 incorrect!
+8203 1000 001000000011 V=1,C=0,N=1

Example 5-10
Observe the results in the following 16-bit hex numbers:
+542F 0101 0100 0010 1111

++12FEQ _+0001 0010 1110 0000

= +0x670F = +26,383 (correct answer);
V=0,C=0,N=0

+670F 01100111 0000 1111

Overflow flag in 32-bit operations

In a 32-bit operation, V is set to 1 in either of two cases:

1. There is a carry from D30 to D31 but no carry out of D31 (C = 0).

2. There is a carry from D31 out (C = 1) but no carry from D30 to D31.

Again the overflow flag is low (not set) if there is a carry from both D30 to D31 and
from D31 out. The V is set to 1 only when there is a carry from D30 to D31 or from D31

STUDENTS-HUB.com Uploaded By: anonymous

out, but not from both. See Examples 5-11 and 5-12.

Example 5-11
Observe the results in the following 32-bit hex numbers:
+6E2F356F 0110 1110 0010 1111 0011 0101 0110 1111

++13D49530 +0001 0011 1101 0100 1001 0101 0011 0000

+8203CASF 1000 0010 0000 0011 1100 1010 1001 1111 =-0x7DFC3561

incorrect! V=1,C=0,N=1

Example 5-12

Observe the results in the following 32-bit hex numbers:

+542F356F 0101 0100 0010 1111 0011 0101 0110 1111

+ +12E09530 0001 0010 1110 0000 1001 0101 0011 0000

+670FCAS9F 01100111 0000 1111 1100 1010 1001 1111 = +670FCASF

correct answer; V=0,C=0,N=0

Sign extension and avoiding erroneous results in signed number operations

To avoid the problems associated with signed number operations, one can sign-
extend the operand. Sign extension copies the sign bit (D7) of the lower byte of a register
into the upper bits of the 32-bit register, or copies the sign bit of a 16-bit register into 32-
bit. The LDRSB (load register signed byte) instruction loads into the register a byte from
memory and sign extends the D7 to the entire 32-bit register. The LDRSH (load register
signed half-word) instruction loads into the register a half-word from memory and sign
extends the D15 to the entire 32-bit register. They work as follows:

LDRSB loads into the destination register a byte from memory and sign extends
(copy D7, the sign flag) to all 32 bits. This is illustrated in Figure 5-1.

D31 D8 D7 D6 Do
= sign | magnitude

Figure 5-1: Sign Extending a Byte

Look at the following example:

STUDENTS-HUB.com Uploaded By: anonymous

;assume location 0x80000 has +96 = 0110 0000 and R1=0x80000
LDRSB RO,[R1] ;now RO = 00000000000000000000000001100000
;assume location 0x80000 contains -2 = 1111 1110 and R2=0x80000
LDRSB R4,[R2] ;now R4 =11111111111111111111111111111110

As can be seen in the above examples, LDRSB does not alter the lower 8 bits. The
sign of 8 bits is copied to the rest of the 32-bit register.

LDRSH loads the destination register with a 16-bit signed number and sign-extends
to the 32-bit register. It copies D15 of Rd to all bits of the Rd register. This is used for
signed half-word operand and is illustrated in Figure 5-2.

D31 D16 015 D14 Do

magnitude

upper 16-bit 16-bit
Figure 5- 2: Sign Extending a Half-word
Look at the following example:
;assume 0x80000 contains +260 = 0000 0001 0000 0100 and R1=0x80000
LDRSH RO,[R1] ;R0=0000 0000 0000 0000 0000 0001 0000 0100
Another example:
;assume location 0x20000 has -327660=0x8002 and R2=0x20000
LDRSH R1,[R2] ;R1=FFFF8002

As can be seen in the above examples, LDRSH does not alter the lower 16 bits. The
sign of 16 bits is copied to the rest of the 32-bit register. How can these instructions help
correct the overflow error? To answer that question, Example 5-13 shows Example 5-5
rewritten to correct the overflow problem.

Example 5-13

Write a program for Example 5-5 to handle the overflow problem.

Solution:
AREA EXAMPLES5_13,CODE,READONLY
ENTRY
LDR R1,=DATA1
LDR R2,=DATA2
LDR R3,=RESULT
LDRSB R4, [R1] ;R4 = +96

LDRSB RS5, [R2] ;R5 = +70
STUDENTS-HUB.com Uploaded By: anonymous

ADD R4 R4,R5 ;RA=R4+R5=96+70=+166
STR R4,[R3] ;Store +166 in location RESULT
HL B HL

DATA1 DCB +96
DATA2 DCB +70

AREA VARIABLES,DATA,READWRITE ;The following is stored in RAM
RESULTDCW 0
END

The following is an analysis of the values in Example 5-13. Each is sign-extended
and then added as follows:

Sign Binary numbers Decimal
0 000 0000 0000 0000 0000 0000 0110 0000 +96 after sign ext.

()

000 0000 0000 0000 0000 0000 0100 0110 +70 after sign ext.

o

000 0000 0000 0000 0000 0000 1010 0110 +166

As a rule, if the possibility of overflow exists, all byte-sized signed numbers should
be sign-extended into a word, and similarly, all halfword-sized signed operands should be
sign-extended to a word before they are processed. This is shown in Program 5-1.
Program 5-1 finds total sum of a group of signed number data.

Program 5-1

; This program calculates the sum of signed numbers

AREA PROG5_1,CODE,READONLY
ENTRY
LDR RO,=SIGN_DAT
MOV R3,#9
MOV R2#0
OOP LDRSB R1,[RO]

;Load into R1 and sign extend it.

STUDENTS-HUB.com Uploaded By: anonymous

ADD R2,R2,R1 ;R2=R2 +R1

ADD RO,RO,#1 ;point to next

SUBS R3,R3,#1 ;decrement counter

BNE LOOP

LDR R0,=SUM

STR R2,[RO] ;Store R2 in location SUM
HERE B HERE

SIGN_DAT DCB +13,-10,+19,+14,-18,-9,+12,-19,+16

AREA VARIABLES,DATA,READWRITE
UM DCD 0
END

Signed number multiplication

Signed number multiplication is similar in its operation to the unsigned
multiplication described in Chapter 3. The only difference between them is that the
operands in signed number operations can be positive or negative; therefore, the result
must indicate the sign. In ARM we have SMULL (signed multiply long) but no SMUL
(sign multiply). Table 5-2 summarizes signed number multiplication; it is similar to Table
3-3 in Chapter 3. See Examples 5-14 and 5-15.

Multiplication Operand 1 Operand 2 Result

wordxword Rm Rs RdHi= upper 32-bit,RdLo=lower 32-bit

Note: Using SMULL (signed multiply long) for word x words multiplication provides the 64-bit result in RdLo and RdHi register. This is
used for 32-bit x 32-bit numbers in which result can go beyond OXFFFFFFFF.

Table 5-2: Signed Multiplication (SMULL RdLo,RdHi,Rm,Rs) Summary

Example 5-14

Observe the results of the following multiplication of signed numbers:

LDR R1,=-3500 ;R1 =-3500 (OxFFFFF254)
LDR R0O,=-100 ;R0 =-100 (OxFFFFFF9C)
SMULL R2,R3,R0,R1

Solution:

STUDENTS-HUB.com Uploaded By: anonymous

-3500 x -100 = 350,000 = 55730 in hex. After executing the above program R2 and R3
will contain 0x55730 and 00000000, respectively.

Example 5-15

The following program is similar to Example 5-14. But, instead of SMULL, the UMULL
instruction is used. Observe the results of the following multiplication:

LDR R1,=-3500 ;R1 =-3500 (OxFFFFF254)
MOV R0O,#-100 ;R0 =-100 (OXFFFFFF9C)
UMULL R2,R3,R0,R1

Solution:

OxFFFFF254 x OxFFFFFFOC = OxFFFFF1F000055730. Thus, R2 and R3 will contain
0x00055730 and OxFFFFF1FO0, respectively. As you can see, the results of the programs
are completely different. In the previous program the SMULL instruction considers the
operands signed numbers and the result of two negative numbers becomes positive. As a
result, the sign bit becomes zero, but in this example the operands are considered as
unsigned numbers.

Signed number comparison

In Chapter 4 we saw that the CMP instruction affects the Z and C flags; using the
flags we compared unsigned numbers. This instruction affects the N and V flags, as well;
We can use flags Z, V, and N to compare signed numbers. The Z flag shows if the
numbers are equal or not. When the numbers are equal the Z flag is set to one. N and V
flags show if the left operand is bigger than the right operand or not. When N and V have
the same value, the first operand has a greater value.

In summary, after executing the instruction CMP Rn, OpZ2 the flags are changed as

follows:
Op2 > Rn V=N
Op2 =Rn Z=1
Op2 <Rn N#V

Table 5-3 lists the branch instructions which check the Z, V, and N flags. The
instructions can be used together with the CMP instruction to compare signed numbers.

STUDENTS-HUB.com Uploaded By: anonymous

Instruction Action

BEQ branch equal Branchif Z =1
BNE Branch not equal Branchif Z =0
BMI Branch minus (branch negative) Branch if N =1
BPL Branch plus (branch positive) Branchif N=0
BVS Branch if V set (branch overflow) Branchif V=1
BVC Branch if V clear (branch if no overflow) Branch if V=0
BGE Branch greater than or equal Branchif N=V
BLT Branch less than Branch if N #V
BGT Branch greater than Branchif Z=0and N=V
BLE Branch less than or equal Branchif Z=1orN#V

Table 5- 3: ARM Conditional Branch (Jump) Instructions for Signed Data
Program 5-2 finds the lowest number among a list of numbers.
Program 5-2
;Finding the lowest of signed numbers
AREA PROG5_2,CODE,READONLY
ENTRY
LDR R0O,=SIGN_DAT
MOV R3#8
LDRSB R2,[RO]
;bring into R2 the first sign number and sign extend it
ADD RO,RO0,#1 ;point to next
EGIN LDRSB R1, [RO] ;R1 = contents of loc. pointed to by RO
CMP R1,R2 ;compare R1 and R2
BGE NEXT
;branch to NEXT if R1 is greater than or equal to R2
MOV R2,R1

;R2 = R1 (use the new number for comparison)

Z,
=
<
—
>
)
w)

RO,RO,#1 ;point to next

STUDENTS-HUB.com Uploaded By: anonymous

SUBS R3,R3,#1 ;decrement counter
BNE BEGIN ;if R3 is not zero branch BEGIN

LDR RO,=LOWEST ;R0 = address of LOWEST
STR R2,[RO] ;store R2 in location SUM
B HERE

T
o)
5

SIGN_DAT DCB +13,-10,+19,+14,-18,-9,+12,-19,+16

AREA VARIABLES,DATA,READWRITE
OWEST DCD
N
;Notice that we use the first sign number as basis for
;comparison and keep comparing it with other numbers.

;Anytime any of the number is smaller we use it as basis

;for comparison.

CMN instruction
CMN Rn,Op2

In ARM we have two compare instructions: CMP and CMN. While the CMP
instruction sets the flags by subtracting the source operand from the destination, the CMN
sets the flags by adding source to destination. As a result CMN compares the destination
operand with the negative of the source operand:

destination > (-1 X source) V=N
destination = (-1 x source) Z=1
destination < (-1 X source) N = negation of V

When the source operand is an immediate value, the instructions can be used
interchangeably. Example 5-16 is an example of using the CMN instruction.

Example 5-16

Assuming R5 has a positive value, write a program that finds its negative match in an
array of data (OUR_DATA).

Solution:

STUDENTS-HUB.com Uploaded By: anonymous

AREA EXAMPLES5_16,CODE,READONLY

ENTRY
MOV R5#13
LDR R0,=OUR_DATA
MOV R3#9
BEGIN
LDRSB R1, [RO] ;R1 = contents of loc. pointed to by RO
;(sign extended)
CMN R1,R5 ;compare R1 and negative of R5
BEQ FOUND ;branch if R1 is equal to negative of R5
ADDS RO,RO,#1 ;increment pointer
SUBS R3,R3,#1 ;decrement counter
BNE BEGIN ;if R3 is not zero branch BEGIN
NOT_FOUND B NOT_FOUND
FOUND B FOUND

OUR_DATA DCB +13,-10,-13,+14,-18,-9,+12,-19,+16
END

In the above program R5 is initialized with 13. Therefore, it finishes searching when it
gets to —13.

Arithmetic shift

As was discussed in Chapter 3, there are two types of shifts: logical and arithmetic.
Logical shift, which is used for unsigned numbers, was discussed in Chapter 3. The
arithmetic shift is used for signed numbers. It is basically the same as the logical shift,
except that the sign bit is copied to the shifted bits.

ASR (arithmetic shift right)
MOV Rn,0Op2, ASR count

STUDENTS-HUB.com Uploaded By: anonymous

I—:ﬁﬁ > LSB|—»| C
e

As the bits of the source are shifted to the right into C, the empty bits are filled with
the sign bit. One can use the ASR instruction to divide a signed number by 2, as shown
below:

MOV RO,#-10 ;RO = -10 = OxFFFFFFF6
MOV R3,R0,ASR #1 ;RO is arithmetic shifted right once
;R3 = OxFFFFFFFB = -5

Review Questions
1. Explain the difference between an overflow and a carry.

2. Explain the purpose of the LDRSB and LDRSH instructions. Demonstrate the
effect of LDRSB on RO = 0xF6. Demonstrate the effect of LDRSH on R1 =
0x124C.

3. The instruction for signed multiplication is

4. For each of the following instructions, indicate the flag condition necessary for
each branch to occur: (a) BLE (b) BGT

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section 5.3: IEEE 754 Floating-Point Standards

In this section we study the IEEE standard for floating-point numbers.

IEEE floating-point standard

Up to the late 1970s, real numbers (numbers with decimal points) were represented
differently in binary form by different computer manufacturers. This made many programs
incompatible for different machines. In 1980, an IEEE committee standardized the
floating-point data representation of real numbers. This standard, much of which was
contributed by Intel based on the 8087 math coprocessor, recognized the need for different
degrees of precision by different applications; therefore, it established single precision and
double precision. Since almost all software and hardware companies now abide by these
standards, each one is explained thoroughly.

IEEE 754 single-precision floating-point numbers

IEEE single-precision floating-point numbers use only 32 bits of data to represent
any real number range 2% to 2°1%5 for both positive and negative numbers. This

translates approximately to a range of 1.2 x 1078 to 3.4 x 10"38 in decimal numbers, again
for both positive and negative values. In some math coprocessor terminology, these single-
precision 32-bit floating-point numbers are referred to as short real. Assignment of the 32
bits in the single-precision format is shown in Figure 5-3.

D31 D30 D23 D22 DO
Biased exponent Significand

Figure 5- 3: IEEE 754 Single-precision Floating-point Numbers

To make the hardware design of the math processors much easier and less transistor
consuming, the exponent part is added to a constant of Ox7F (127 decimal). This is
referred to as a biased exponent. Conversion from real to floating point involves the
following steps.

1. The real number is converted to its binary form.

2. The binary number is represented in scientific form: 1.xxxx E yyyy
3. Bit 31 is either O for positive or 1 for negative.
4.

The exponent portion, yyyy, is added to 7F to get the biased exponent, which is
placed in bits 23 to 30.

5. The significand, xxxx, is placed in bits 22 to 0.

Examples 5-17, 5-18, and 5-19 demonstrate this process.

Example 5-17

Convert 9.75, to single-precision (short real) floating point.

Solution:

STUDENTS-HUB.com Uploaded By: anonymous

decimal 9.75 = binary 1001.11 = scientific binary 1.00111 E 3
Sign bit 31 is O for positive.

Exponent bits 30 to 23 are 1000 0010 (3 + 7F = 82H) after biasing.
Significand bits 22 to 0 are 001110000000000000000 ...00.

Putting it all together gives the following binary form, under which is written the hex
form:

0100 0001 0001 1100 0000 0000 0000 0000
4 1 1 C 0 0 0 0

This can be verified by using an assembler such as Keil.

Example 5-18

Convert 0.078125,, to short IEEE floating-point standard real FP (single precision).

Solution:

decimal 0.078125 = binary 0.000101 = scientific binary 1.01 E —4
Sign bit 31 is O for positive.

Exponent bits 30—23 are 0111 1011 (-4 + 7F = 7B) after biasing.
Significand bits 22—0 are 01000000....000.

This number will be represented in binary and hex as

0011 1101 1010 0000 0000 0000 0000 0000
3 D A 0 0 0 0 0

STUDENTS-HUB.com Uploaded By: anonymous

Example 5-19

Convert -96.27,, to single-precision FP format.

Solution:

decimal 96.27 = binary 1100000.01000101000111101 =
scientific binary 1.10000001000101000111101E 6

Sign bit 31 is 1 for negative.

Exponent bits 30—23 are 1000 0101 (6 + 7F = 85H) after biasing,
Fraction bits 22-0 are 10000001000101000111101,

The final form in binary and hex is

1100 0010 1100 0000 1000 1010 0011 1101
C 2 C 0 8 A 3 D

It must be noted that conversion of the decimal portion 0.27 to binary can be continued
beyond the point shown above, but because the fraction part of the single precision is
limited to 23 bits, this was all that was shown. For that reason, double-precision FP
numbers are used in some applications to achieve a higher degree of accuracy.

IEEE 754 double-precision floating-point numbers

Double-precision FP (called long real by Intel) can represent numbers in the range
2.3 x 107308 t0 1.7 x 10398, both positive and negative. A total of 52 bits (bits 0 to 51) are
for the significand, 11 bits (bits 52 to 62) are for the exponent, and finally, bit 63 is for the
sign. The conversion process is the same as for single precision in that the real number
must first be represented as 1.xxxxxxx E YYYY, then YYYY is added to 3FF to get the
biased exponent. See Figure 5-4 and Example 5-20.

D63 D62 D52 D51 DO
E‘ Biased exponent Significand

Figure 5- 4: IEEE 754 Double-precision Floating-point Numbers

Example 5-20
Convert 152.1875;, to double-precision FP.

STUDENTS-HUB.com Uploaded By: anonymous

Solution:

decimal 152.1875 = binary 10011000.0011 =

scientific binary 1.00110000011 E 7

Bit 63 is 0 for positive.

Exponent bits 62—53 are 10000000110 (7 + 3FF = 406) after biasing.
Fraction bits 52—0 are 00110000011000.....000.

0100 | 0000 |[0110 |[0011 |0O000 (0110 |00OO0 | 0000 |0000 e 0000

4 0 6 3 0 6 0 0 0 0

This example will be verified by an assembler in the next section.

Math coprocessor in ARM

Using a general-purpose microprocessor such as the ARM to perform mathematical
functions such as floating point calculation, log, sine, and others is very time consuming,
not only for the CPU but also for programmers writing such programs. In the absence of a
math coprocessor, programmers must write subroutines using ARM instructions for
mathematical functions. Although some of these subroutines are already written, no matter
how good the subroutine, its CPU run time will still be quite long. To accelerate
complicated mathematical and floating point calculation, math or floating point
coprocessors are used. A simpler variation of math coprocessor is called floating point unit
(FPU) and some ARM chips come with on-chip FPU. In Keil there is a library named
fplib to do floating point calculation.

Review Questions
1. Single-precision IEEE FP standard uses bits to represent data.
2. Double-precision IEEE FP standard uses bits to represent data.

3. To get the biased exponent portion of IEEE single-precision floating-point data we
add

4. To get the biased exponent portion of IEEE double-precision floating-point data
we add

5. True or false. In the absence of a math processor, the general-purpose processor
must perform all math calculations.

6. True or false. All of the ARM chips come with the FPU.

STUDENTS-HUB.com Uploaded By: anonymous

Problems:

Section 5.1: Signed Numbers Concept

1. Show how the 32-bit computers would represent the following numbers and verify
each with a calculator.

(a) -23 (b) +12 (c) -0x28
(d) +Ox6F (e) -128 (f) +127
(g) +365 (h) -32,767

2. Show how the 32-bit computers would represent the following numbers and verify
each with a calculator.

(a) -230 (b) +1200 (c) - 0x28F
(d) +Ox6FF

Section 5.2: Signed Number Instructions and Operations

3. Find the overflow flag for each case and verify the result using an ARM IDE. Do
byte-sized calculation on them.

(a) (+15) + (-12) (b) (-123) + (-127) (€) (+0x25) + (+34)
(d) (-127) + (+127) (e) (+100) + (-100)
4. Sign-extend the following and write simple programs in using ARM IDE to verify
them.
(a) -122 (b)-0x999 (c) +0x17
(d) +127 (e) -129

5. Modify Program 5-2 to find the highest temperature. Verify your program.

Section 5.3: IEEE 754 Floating-Point Standards

6. What is the disadvantage of using a general-purpose processor to perform math
operations?

7. Show the bit assignment of the IEEE single-precision standard.

8. Convert (by hand calculation) each of the following real numbers to IEEE single-
precision standard.

(a) 15.575 (b) 89.125 (c)-1022.543 (d) —0.00075

STUDENTS-HUB.com Uploaded By: anonymous

9. Show the bit assignment of the IEEE double-precision standard.

10. In single-precision FP (floating point), the biased exponent is calculated by adding

to the portion of a scientific binary number.
11. In double-precision FP, the biased exponent is calculated by adding to
the portion of a scientific binary number.

12. Convert the following to double-precision FP.

(a) 12.9375 (b) 98.8125

STUDENTS-HUB.com Uploaded By: anonymous

Answers to Review Questions

Section 5.1
1. D7, D15, and D31 for 32-bit signed data.
2. 0x16 = 0001 0110; its 2’s complement is: 1110 1010
3. —128to +127; 32,768 to +32,767 (decimal)
4. -2,147,483,648 to +2,147,483,647
5. 0x500000 = 0101 0000 0000 0000 0000 0000;
Its 2’s complement is: 1011 0000 0000 0000 0000 0000

Section 5.2

1. C flag is raised when there is a carry out of the result, but V flag is raised when
there is a carry to the sign bit and no carry out of the sign bit or when there is no
carry to the sign bit and there is a carry out of the sign bit. C flag is used to indicate
overflow in unsigned arithmetic operations while V flag is involved in signed
operations.

2. The LDRSB instruction sign extends the sign bit of a byte into a word; the LDRSH
instruction sign extends the sign bit of a half-word into a word.

In OxF6 the sign bit is 1; thus, it is sign-extended into OxXFFFFFFF6
0x124C sign-extended into R1 would be RO = 0x0000124C.
3. SMULL

(a) BLE will jump if V is the inverse of N, or if Z = 1.
(b) BGT will jump if V equals N, and if Z = 0.
Section 5.3
1. 32
64
Ox7F
0x3FF

True

o Uk W

False

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Chapter 6: ARM Memory Map, Memory Access, and Stack

This chapter discusses the issue of memory access and the stack. Section 6.1 is
dedicated to ARM memory map and memory access. We will also explain the concepts of
align, non-align, little endian, and big endian data access. In Section 6.2, we examine the
use of the stack in ARM. We discuss the bit-addressable (bit-band) SRAM and peripherals
in Section 6.3. Advanced indexed addressing mode is explained in Section 6.4. In Section
6.5, we describe the PC relative addressing mode and its use in implementing ADR and
LDR.

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section 6.1: ARM Memory Map and Memory Access

The ARM CPU uses 32-bit addresses to access memory and peripherals. This gives
us a maximum of 4 GB (gigabytes) of memory space. This 4GB of directly accessible
memory space has addresses 0x00000000 to OxFFFFFFFF, meaning each byte is assigned

a unique address (ARM is a byte-addressable CPU). See Figure 6-1.

D31 D24

D23

D16 D15

D&

D7 Do

0x00000003

Ox00000002

0x00000001

0x00000000

0x00000007

0x00000006

0x00000005

0x00000004

0x0000000B

0x0000000A

0x00000008

0x00000008

0x0000000F

0x0000000E

0x0000000D

0x0000000C

- & " &

OxFFFFFFF3

OxFFFFFFF2

OxFFFFFFF1

OXFFFFFFFO

OXxFFFFFFF7

OXFFFFFFF6

OXFFFFFFFS

O0xFFFFFFF4

0xFFFFFFFB

OXFFFFFFFA

OXFFFFFFFY

OXFFFFFFF8

Ox00000000
0x00000004
0x00000008
O0x0000000C

OxFFFFFFFO
OxFFFFFFF4
OXFFFFFFF8

OXFFFFFFFC

loxFEFFFFFF [0xFFFFFFFE|0xFFFFFFFD|OXFFFFFFFC

Figure 6-1: Memory Byte Addressing in ARM

The 4GB of memory space is divided into three regions: code, data, and peripheral
devices. See Table 6-1.

Address range Name Description
gi(l)g(;?(g)li‘og(l):‘-li Code ROM or Flash memory

ggg%?ggg} SRAM SRAM region used for on-chip RAM
gigg%(?ggg}, Peripheral ~ On-chip peripheral address space
gigg%‘?ggg} RAM Memory, cache support

gigg%(?ggg% Device Shared and non-shared device space
giggg%ogggi: System PPB and vendor system peripherals

Table 6- 1: Memory Space Allocation in ARM Cortex

In other words, the ARM uses the memory mapped I/O. For the ARM
microcontrollers, generally the Flash ROM is used for program code, SRAM for scratch
pad data, and memory-mapped I/O ports for peripherals. While there is an absolute
standard for the ARM instructions that all licensees of ARM must follow, there is no

STUDENTS-HUB.com Uploaded By: anonymous

standard for exact locations and types of memory and peripherals. Therefore the licensees
can implement the memory and peripherals as they choose. For this reason the amount and
the address locations of memory used by Flash ROM, SRAM, and I/O peripherals varies
among the family members and chip manufacturers. The ARM manufacturer datasheet
should give you the details of the memory map for both on-chip and off-chip memory and
peripherals. Make sure to examine the memory map of a given ARM chip before you start
to program it. From Table 6-1, notice that some of the memory addresses are set aside for
the external (off-chip) memory and peripherals. At the time of this writing, no ARM
manufacturer has populated the entire 4 GB of memory space with on-chip ROM, RAM,
and I/O peripherals.

ARM-based Motherboards

In ARM systems for Microsoft Windows, Unix, and Android operating systems the
ARM motherboards use DRAM for the RAM memory, just like the x86 and Pentium PCs.
As the ARM CPU is pushed into the laptop, desktop, and tablets PCs, and the high end of
embedded systems products such as routers, we will see the use of DRAM as primary
memory to store both the operating systems and the applications. In such systems, the
Flash memory will be holding the POST (power on self test), BIOS (basic Input/output
systems) and boot programs. Just like x86 system, such systems have both on-chip and
off-chip high speed SRAM for cache. Currently, there are ARM chips on the market with
some on-chip Flash ROM, SRAM, and memory decoding circuitry for connection to
external (off-chip) memory. This off-chip memory can be SRAM, Flash, or DRAM. The
datasheet for such ARM chips provide the details of memory map for both on-chip and
off-chip memories. Next, we examine the ARM buses and memory access.

System Analog
§ O E - @ E w
(ARMT. & MENCHEIE Q s||&
A HEREEEHEIEEELE
o || E[E[IB]] [[E|[21][3 gl(e| |2
5 = £l 1= = é =
I EEEREIN | o
' YYYY VY VY v YV
12-bi Data bus
: Ti-bit Addr. bus :
- Ctrl. bus >
w
m
: ¥
& &
! a
Memory Serial interfaces

Figure 6-2: Memory Connection Block Diagram in ARM

D31-D0 Data bus
STUDENTS-HUB.com Uploaded By: anonymous

The 32-bit data bus of the ARM provides the 32-bit data path to the on-chip and off-
chip memory and peripherals. They are grouped into 8-bit data chunks, DO-D7, D8-D15,
D16-D23, and D24-D31.

A31-A0

These signals provide the 32-bit address path to the on-chip and off-chip memory
and peripherals. Since the ARM supports data access of byte (8 bits), half word (16 bits),
and word (32 bits), the buses must be able to access any of the 4 banks of memory
connected to the 32-bit data bus. The A0 and A1 are used to select one of the 4 bytes of
the D31-DO0 data bus. See Figure 6-3.

A1AD =11 A1AD0 =10 Atlal =01 A1AD =00
0x00000003 Ox00000002 0x00000001 Ox00000000
0x00000007 0x00000006 0x00000005 0x00000004
0x00000008 0x0000000A Ox00000009 0x 00000008
Ox0000000F OxD000000E 0x00000000 0x0000000C
0xFFFFFFF3 OxFFFFFFF2 OxFFFFFFF1 DxFFFFFFFD
OxFFFFFFFT OxFFFFFFFG 0xFFFFFFFS OxFFFFFFF4
DxFFFFEFFB OxFFFFFFFA 0xFFFFFFFY OxFFFFFFF8
0xFFFFFFFF OxFFFFFFFE OxFFFFFFFD OxFFFFFFFC

Figure 6-3: Memory Block Diagram in ARM

AHB and APB buses

The ARM CPU is connected to the on-chip memory via an AHB (advanced high-
performance bus). The AHB is used not only for connection to on-chip ROM and RAM, it
is also used for connection to some of the high speed I/Os (input/output) such as GPIO
(general purpose 1/0). ARM chip also has the APB (advanced peripherals bus) bus
dedicated for communication with the on-chip peripherals such as timers, ADC, serial
COM, SPI, 12C, and other peripheral ports. While we need the 32-bit data bus between
CPU and the memory (RAM and ROM), many slower peripherals are 8 or 16 bits and
there is no need for entire fast 32-bit data bus pathway. For this reason, ARM uses the
AHB-to-APB bridge to access the slower on-chip devices such as peripherals. Also since
peripherals do not need a high speed bus, a bridge between AHB and APB allows going
from the higher speed bus of AHB to lower speed bus of peripherals. The AHB bus allows
a single-cycle access. See Figure 6-4 for AHB-to-APB bridge.

STUDENTS-HUB.com Uploaded By: anonymous

ARM core
DMA
{ARMT, ARMS,
Cortar ay controller

i 1 a
Y s = N
< High Speed Bus (AHB or ASB) x < Low Speed Bus (APB) >
A | L A
I ? ? T))] T
] L | L Yy 0
i External E € Q
[]
& bus i g § 3
interfac
' Fast g
Memory peripherals Slow peripherals

Figure 6-4: AHB and APB in ARM

Bus cycle time

To access a device such as memory or I/0O, the CPU provides a fixed amount of time
called a bus cycle time. During this bus cycle time, the read or write operation of memory
or I/O must be completed. The bus cycle time used for accessing memory is often referred
to as MC (memory cycle) time. The time from when the CPU provides the addresses at its
address pins to when the data is expected at its data pins is called memory read cycle time.
While for on-chip memory the cycle time can be 1 clock, in the off-chip memory the cycle
time is often 2 clocks. If memory is slow and its access time does not match the MC time
of the CPU, extra time can be requested from the CPU to extend the read cycle time. This
extra time is called a wait state (WS). In the 1980s, the clock speed for memory cycle time
was the same as the CPU’s clock speed. For example, in the 20 MHz processors, the buses
were working at the same speed of 20 MHz. This resulted in 2 x 50 ns = 100 ns for the
memory cycle time (1/20 MHz = 50 ns). See Example 6-1.

Example 6-1
Calculate the memory cycle time of a 50-MHz bus system with
(a) 0 WS,
(b) 1 WS, and
(c) 2 WS.

Assume that the bus cycle time for off-chip memory access is 2 clocks.

Solution:

1/50 MHz = 20 ns is the bus clock period. Since the bus cycle time of zero wait states is 2
clocks, we have:

Memory cycle time with 0 WS 2x20=40ns
Memory cycle time with 1 WS 40 + 20 =60 ns

STUDENTS-HUB.com Uploaded By: anonymous

Memory cycle time with 2 WS 40 + 2 x 20 =80 ns

It is preferred that all bus activities be completed with 0 WS. However, if the read and
write operations cannot be completed with 0 WS, we request an extension of the bus cycle
time. This extension is in the form of an integer number of WS. That is, we can have 1, 2,
3, and so on WS, but not 1.25 WS.

When the CPU’s speed was under 100 MHz, the bus speed was comparable to the
CPU speed. In the 1990s the CPU speed exploded to 1 GHz (gigahertz) while the bus
speed maxed out at around 200 MHz. The gap between the CPU speed and the bus speed
is one of the biggest problems in the design of high-performance systems. To avoid the
use of too many wait states in interfacing memory to CPU, cache memory and other high-
speed DRAMs are used. These are discussed in Chapters 9 and 10.

Bus bandwidth

The rate of data transfer is generally called bus bandwidth. In other words, bus
bandwidth is a measure of how fast buses transfer information between the CPU and
memory or peripherals. The wider the data bus, the higher the bus bandwidth. However,
the advantage of the wider external data bus comes at the cost of increasing the die size for
system on-chip (SOC) or the printed circuit board size for off-chip memory. Now you
might ask why we should care how fast buses transfer information between the CPU and
outside, as long as the CPU is working as fast as it can. The problem is that the CPU
cannot process information that it does not have. In other words, the speed of the CPU
must be matched with the higher bus bandwidth; otherwise, there is no use for a fast CPU.
This is like driving a Porsche or Ferrari in first gear; it is a terrible under usage of CPU
power. Bus bandwidth is measured in MB (megabytes) per second and is calculated as
follows:

bus bandwidth = (1/bus cycle time) x bus width in bytes

In the above formula, bus cycle time can be for both memory and I/O since the
ARM uses the memory mapped I/0. Example 6-2 clarifies the concept of bus bandwidth.
As can be seen from Example 6-2, there are two ways to increase the bus bandwidth:
Either use a wider data bus or shorten the bus cycle time (or do both). That is exactly what
many processors have done. Again, it must be noted that although the processor’s speed
can go to 1 GHz or higher, the bus speed for off-chip memory is limited to around 200
MHz. The reason for this is that the signals become too noisy for the circuit board if they
are above 100 MHz.

Example 6-2
Calculate memory bus bandwidth for the following CPU if the bus speed is 100 MHz.

STUDENTS-HUB.com Uploaded By: anonymous

(a) ARM Thumb with 0 WS and 1 WS (16-bit data bus)
(b) ARM with 0 WS and 1 WS (32-bit data bus)

Assume that the bus cycle time for off-chip memory access is 2 clocks.

Solution:

The memory cycle time for both is 2 clocks, with zero wait states. With the 100 MHz bus
speed we have a bus clock of 1/100 MHz = 10 ns.

(a) Bus bandwidth = (1/(2 x 10 ns)) x 2 bytes = 100M bytes/second (MB/s)
With 1 wait state, the memory cycle becomes 3 clock cycles

3 x 10 = 30 ns and the memory bus bandwidth is = (1/30 ns) % 2 bytes = 66.6 MB/s
(b) Bus bandwidth = (1/(2 x 10 ns)) x 4 bytes = 200 MB/s

With 1 wait state, the memory cycle becomes 3 clock cycles

3 x 10 = 30 ns and the memory bus bandwidth is = (1/30 ns) % 4 bytes = 126.6 MB/s

From the above it can be seen that the two factors influencing bus bandwidth are:

1. The read/write cycle time of the CPU
2. The width of the data bus

Code memory region

The 4 GB of ARM memory space is organized as 1G % 32 bits since the ARM
instructions are 32-bit. The internal data bus of the ARM is 32-bit, allowing the transfer of
one instruction into the CPU every clock cycle. This is one of the benefits of the RISC
fixed instruction size. The fetching of an instruction in every clock cycle can work only if
the code is word aligned, meaning each instruction is placed at an address location ending
with 0, 4, 8, or C. Example 6-3 shows the placement of code in ARM memory. Notice that
the code addresses go up by 4 since the ARM instructions are fixed at 4 bytes each. While
compilers ensure that codes are word aligned, it is job of the programmer to make sure the
data in SRAM is word aligned too. We will examine this important topic soon.

Example 6-3

STUDENTS-HUB.com Uploaded By: anonymous

Compile and debug the following code in Keil and see the placement of instructions in
memory locations.

AREA ARMex, CODE, READONLY

ENTRY
MOV R2,#0x00 ;R2=0x00
MOV R3,#0x35 ;R3=0x35

ADD R4,R3,R2
END ;Mark end of file

Solution

As you can see in the figure, the first MOV instruction starts from location 0x00000000,
the second MOV instruction starts from location 0x00000004 and the ADD instruction
starts from location 0x00000008.

Disassembly n @
ki MoV EZ2,#0x00 sR2=0x00 -
CoO0x00000000 E3AQ2000 MOV R2, #0x00000000 |
4 MOV RE3, #0x35 sR3=0x35
0x00000004 E3A03035 MOV E3, #0=x00000035
e ADD E4,R3,R2
0x00000008 [EO0Q834002 ADD R4,R3,R2 -
4 | L

The following image displays the first locations of memory. The code of the first MOV
instruction is located in the first word (four bytes) of memory which is word aligned. The
same rule applies for the other instructions. Note that the code of MOV R2,0 is E3 A0 20
00 but 00 20 A0 E3 is stored in the memory. We will discuss the reason in this chapter
when we focus on the concept of big endian and little endian.

Memary 2 n

"
MMmﬁ.m E::

oxooooo000: 00 20 A0 E3JE5 30 ao E3foz 40 83 Eo]oo oo 00 00 0O 0O 0O 00 OO
0x00000015: OO0 00 0O 00 00 00 00 00 00 00 0O OO 00 00 00 00 0D 00 00 00 0O
0x0000002A: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO 00 00 OO0 00 00 0O
0x0000003F: 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x00000054: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO 00 00 00 00 00 00
0x0000006%9: 00 00 OO0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Q0 00 o

SRAM memory region

A section of the memory space is used by SRAM. The SRAM can be on-chip or off-
chip (external). The same way that every ARM chip has some on-chip Flash ROM for
code, a portion of the memory region is used by the on-chip SRAM. This on-chip SRAM
is used by the CPU for scratch pad to store parameters. It is also used by the CPU for the
purpose of the stack. We examine the stack usage by the ARM in the next section. In using

STUDENTS-HUB.com Uploaded By: anonymous

the SRAM memory for storing parameters, we must be careful when loading or storing
data in the SRAM lest we use unaligned data access. Next, we discuss this important
issue.

Data misalignment in SRAM

The case of misaligned data has a major effect on the ARM bus performance. If the
data is aligned, for every memory read cycle, the ARM brings in 4 bytes of information
(data or code) using the D31-DO0 data bus. Such data alignment is referred to as word
alignment. To make data word aligned, the least significant digits of the hex addresses
must be 0, 4, 8, or C (in hex).

While the compilers make sure that program codes (instructions) are always aligned
(Example 6-3), it is the placement of data in SRAM by the programmer that can be
nonaligned and therefore subject to memory access penalty. In other words, the single
cycle access of memory is also used by ARM to bring into registers 4 bytes of data every
clock cycle assuming that the data is aligned. To make sure that data are also aligned we
use the align directive. The use of align directive for RAM data makes sure that each word
is located at an address location ending with address of 0, 4, 8, or C. If our data is word
size (using DCDU directive) then the use of align directive at the start of the data section
guaranties all the data placements will be word aligned. When a word size data is defined
using the DCD directive, the assembler aligns it to be word aligned.

Accessing non-aligned data

As we have stated many times before, ARM defines 32-bit data as a word. The
address of a word can start at any address location. For example, in the instruction “LLDR
R1,[R0O]” if RO = 0x20000004, the address of the word being fetched into R1 starts at an
aligned address. In the case of “LDR R1,[R0]” if RO = 0x20000001 the address starts at a
non-aligned address. In systems with a 32-bit data bus, accessing a word from a non-
aligned addressed location can be slower. This issue is important and applies to all 32-bit
Processors.

In the 8-bit system, accessing a word (4 bytes) is treated like accessing four
consecutive bytes regardless of the address location. Since accessing a byte takes one
memory cycle, accessing 4 bytes will take 4 memory cycles. In the 32-bit system,
accessing a word with an aligned address takes one memory cycle. That is because each
byte is carried on its own data path of DO-D7, D8-D15, D16-D23, and D24-D31 in the
same memory cycle. However, accessing a word with a non-aligned address requires two
memory cycles. For example, see how accessing the word in the instruction “LDR R1,
[RO]” works as shown in Figure 6-5. As a case of aligned data, assume that RO =
0x80000000. In this instruction, 4 bytes contents of memory locations 0x80000000
through 0x80000003 are being fetched in one cycle. In only one cycle, the ARM CPU
accesses locations 0x80000000 through 0x80000003 and puts it in R1.

STUDENTS-HUB.com Uploaded By: anonymous

Moving a word from location 0x80000000 (Aligned Data)

Mamory
R1 0xB0000003 OxBO0O000Z QuE0000001 (xBO000O00
N [A AR B A 'IM A | ac AB I N0
BB BA AF AE OxB0000004

(xBO00000T OxBO0D000E (xB0000005 OxBODDO004

Moving a word from location 0x80000001 (Non-Aligned Data)

Stop1: Moving the first 3 Mamory
bytes
[=X| OxB0000003 0xA0000002 OxAOGH0001 OxBO000G00
- - - ¥ TAC ; ; 0xB0000000
| % T & | 7 K}@K AD AC B A | Ox
ET) BA AF [AE 0x80000004
xBOOOGO0T OxB0000006 OxSO000005 DxBOOOGN0
Step2: Moving the last Mamary
- e CxBOO0OO03 OxBO0O002 (xBOO0D001 OxBOOCNN0D
— AT [AG B A | OxBO000O00
[a2 | ao | ac | as] — A8 -
‘v *_rm:-(B8 BA A RET| oxao0000004

OxBOO00COT QuB0000006 CocBOO00005 0xBODO0O0S

Figure 6-5: Memory Access for Aligned and Non-aligned Data

Now assuming that RO = 0x80000001 in this instruction, 8 bytes contents of
memory locations 0x80000000 through 0x80000007 are being fetched in two consecutive
cycles but only 4 bytes of it are used. In the first cycle, the ARM CPU accesses locations
0x80000000 through 0x80000003 and puts them in R1 only the desired three bytes of
locations 0x800000001 through 0x80000003. In the second cycle, the contents of memory
locations 0x8000004 through 0x80000007 are accessed and only the desired byte of
0x80000004 is put into R1. See Example 6-4.

Example 6-4

Show the data transfer of the following cases and indicate the number of memory cycle
times it takes for data transfer. Assume that R2 = 0x4598F31E.

LDR R1,=0x40000000 ;R1=0x40000000

LDR R2,=0x4598F31E ;R2=0x4598F31E

STR R2,[R1] ;Store R2 to location 0x40000000
ADD R1,R1,#1 ;R1=R1 + 1 =0x40000001

STR R2,[R1] ;Store R2 to location 0x40000001
ADD R1,R1,#1 ;R1=R1 + 1 =0x40000002

STR R2,[R1] ;Store R2 to location 0x40000002
ADD R1,R1,#1 ;R1=R1+ 1 =0x40000003

STR R2,[R1] ;Store R2 to location 0x40000003

Solution:

For the first STR R2,[R1] instruction, the entire 32 bits of R2 is stored into locations with

STUDENTS-HUB.com Uploaded By: anonymous

addresses of 0x40000000, 0x40000001, 0x40000002, and 0x40000003, The 4-byte
content of register R2 is stored into memory locations with starting address of
0x40000000 via the 32-bit data bus of D31-D0. This address is word aligned since
address of the least significant digit is 0. Therefore, it takes only one memory cycle to

transfer the 32-bit data.

R2

R) —>

45 | g8

Memory
Ox40000003 0x40000002 0x40000001 0x40000000
45 a8 F3 iE
K K XK XK
O GOOO007 Ox40000006 40000005 (0000004

For the second STR R2,[R1] instruction, in the first memory cycle, the lower 24 bits of R2
is stored into locations 0x40000001, 0x40000002, and 0x40000003. In the second
memory cycle, the upper 8 bits of R2 is stored into the 0x40000004 location.

Cycle 1

45 F2

Cycle 2

Memory
O QROOO00E 0000002 40000001 Gxd 00000
98 F3 1E XX
i K xXx 45
(e Q000007 O Q000006 (e 40000005 (e 00O

For the third STR R2,[R1] instruction, in the first memory cycle, the lower 16 bits of R2 is
stored into locations 0x40000002 and 0x40000003. In the second memory cycle, the upper
16 bits of R2 is stored into locations 0x40000004 and 0x40000005.

Cycle 1

45 F3

Cycle 2

Memory
O QROOO00E 0000002 CxA0000001 Qxd 00000
Fa 1E XX e
XX X 45 98
O Q000007 O Q000006 (e 40000005 (e DO0DGMR0

For the fourth STR R2,[R1] instruction, in the first memory cycle, the lower 8 bits of to
R2 is stored into locations 0x40000003. In the second memory cycle, the upper 24 bits of
R?2 is stored into the locations 0x40000004, 0x40000005, and 0x40000006.

Cycle 1

45 F2

Cycle 2

Memory
(e 0000003 e 0000002 (e 0000001 OxA 00000
1E W w0 W
XX 45 a8 F2
O (GOOO007T OxJ Q000006 e 40000005 (e GOOO00

The lesson to be learned from this is to try not to put any words on a non-aligned
address location in a 32-bit system. Indeed this is so important that directive ALIGN is
specifically designed for this purpose. Next, we discuss the issue of aligned data.

Using LDR instruction with DCD and ALIGN directives
The DCD and DCDU directives are used for 32-bit (word) data. The DCD directive

STUDENTS-HUB.com

Uploaded By: anonymous

ensures 32-bit data types are aligned, in contrast to DCDU which does not. DCD is used
as follows:

VALUE1 DCD 0x99775533

This ensures that VALUE1, a word-sized operand, is located in a word aligned
address location. Therefore, an instruction accessing it will take only a single memory
cycle. Since performance of the CPU depends on how fast it can fetch the data we must
ensure that any memory access reading 32-bit data is done in a single clock cycle. This
means we must make sure all 32-bit data are word aligned. This is so important that ARM
has an interrupt (exception) dedicated to misaligned data, meaning any time it accesses
misaligned data, it lets us know that there is a problem. The one-time use of ALIGN
directive at the beginning of data area using DCDU makes the data aligned for that group
of data.

Using LDRH with DCW and ALIGN directives

The problem of misaligned data is also an issue when the data size is in half-words
(16-bit). In many cases using DCWU, we must use the ALIGN directive multiple times in
the data area of a given program to ensure they are aligned. This is in contrast to the DCW
directive which ensures data type to be half-word aligned. This is especially the case when
we use the LDRH instruction. See Example 6-5. Aligned data is also an issue for the
Thumb version of the ARM.

Example 6-5

Show the data transfer of the following LDRH instructions and indicate the number of
memory cycle times it takes for data transfer.

LDR R1,=0x80000000 ;R1=0x80000000
LDR R3,=0xF31E4598 ;R3=0xF31E4598
LDR R4,=0x1A2B3D4F ;R4=0x1A2B3D4F

STR R3,[R1]

;(STR R3,[R1])stores R3 to location 0x80000000
STR R4,[R1,#4]

;(STR R4,[R1+4]) stores R4 to location 0x80000004
LDRH R2,[R1]

;loads two bytes from location 0x80000000 to R2
LDRH R2,[R1,#1]

;loads two bytes from location 0x80000001 to R2
LDRH R2,[R1,#2]

;loads two bytes from location 0x80000002 to R2

STUDENTS-HUB.com Uploaded By: anonymous

LDRH R2,[R1,#3]
;loads two bytes from location 0x80000003 to R2

Solution:

In the LDRH R2,[R1] instruction, locations with addresses of 0x80000000, 0x80000001,
0x80000002, and 0x80000003 are accessed but only 0x80000000 and 0x80000001 are
used to get the 16 bits to R2. This address is halfword aligned since the least significant

digit is 0. Therefore, it takes only one memory cycle to transfer the data. Now,
R2=0x00004598

Ox30000003 0x80000002 (xB0000001 Gx30000000

[0 [o a5 93|<:—@ F3 iE a5 %

1A 2B 3D 4F
OB 0000007 CB(00005 (e E0000005 Dna000000

For the LDRH R2,[R1,#1], instruction, locations with addresses of 0x80000000,
0x80000001, 0x80000002, and 0x80000003 are accessed, but only 0x80000001 and
0x80000002 are used to get the 16 bits to R2. Therefore, it takes only one memory cycle
to transfer the data. Now, R2=0x00001E45.

Ox30000003 0x80000002 (xB0000001 (30000000

- | H F3 1E 45 3%

1A 2B 3D 4
OxE0000007 CxBO00006 (0000005 TuB0000M0

For the LDRH R2,[R1,#2], instruction, locations with addresses of 0x80000000,
0x80000001, 0x80000002, and 0x80000003 are accessed, but only 0x80000002 and
0x80000003 are used to get the 16 bits to R2. Therefore, it takes only one memory cycle
to transfer the data. Now, R2=0x0000F31E.

R OxSO000003 OuB0000002 CxB0000001 OxE000000
. < :_' { F3 1E 45 ag
0 0
I I I i IE I 1A 2B b 4F
Ox 20000007 CBQ000006 (e 0000005 DxB0D0M00

For the LDRH R2,[R1,#3] instruction, in the first memory cycle, locations with addresses
of 0x80000000, 0x80000001, 0x80000002, and 0x80000003 are accessed, but only
0x80000003 is used to get the lower 8 bits to R2. In the second memory cycle, the address
locations 0x80000004, 0x80000005, 0x80000006, and 0x80000007 are accessed where
only the 0x80000004 location is used to get the upper 8 bits to R2. Now, R2=0x00004FF3.

Cycle 1 CoeBO00000S3 . (xB0000002 (e 80000001 DuER00MR000
F3 1E 45 a8
0 4F F3
I I I I 1A 2B ao aF
Cycle2 0xE0000007 Cwd0000006 QeE0000005 OxBO0004

STUDENTS-HUB.com Uploaded By: anonymous

Using LDRB with DCB and ALIGN directives

The problem of misaligned data does not exist when the data size is bytes. In cases
such as using the string of ASCII characters with the DCB directive, accessing a byte
takes the same amount of time (one memory cycle) as an aligned word (4 bytes),
regardless of the address location of the data. The only problem with the LDRB is it brings
into the CPU only a single byte of data in each memory cycle instead of 4 bytes if LDR is.
See Example 6-6.

Example 6-6

Show the data transfer of the following LDRB instructions and indicate the number of
memory cycle times it takes for data transfer.

LDR R1,=0x80000000 ;R1=0x80000000
LDR R3,=0xF31E4598 ;R3=0xF31E4598
LDR R4,=0x1A2B3D4F ;R4=0x1A2B3D4F

STR R3,[R1]

;Store R3 to location 0x80000000

STR R4,[R1,#4]

;(STR R4,[R1+4]) Store R4 to location 0x80000004
LDRB R2,[R1]

;load one byte from location 0x80000000 to R2
LDRB R2,[R1,#1]

;(LDRB R2,[R1+1]) load one byte from location 0x80000001
LDRB R2,[R1,#2]

;(LDRB R2,[R1+2]) load one byte from location 0x80000002
LDRB R2,[R1,#3]

;(LDRB R2,[R1+3]) load one byte from location 0x80000003

Solution:

In the LDRB R2,[R1] instruction, locations with addresses of 0x80000000, 0x80000001,
0x80000002, and 0x80000003 are accessed but only 0x80000000 is used to get the 8 bits
to R2. Therefore, it takes only one memory cycle to transfer the data. Now,
R2=0x00000098.

STUDENTS-HUB.com Uploaded By: anonymous

In the LDRB R2,[R1,#1] instruction, locations with addresses of 0x80000000,
0x80000001, 0x80000002, and 0x80000003 are accessed but only 0x80000001 is used to

get the 8 bits to R2. Therefore, it takes only one memory cycle to transfer the data. Now,
R2=0x00000045.

In the LDRB R2,[R1,#2] instruction, locations with addresses of 0x80000000,
0x80000001, 0x80000002, and 0x80000003 are accessed but only 0x80000002 is used to

get the 8 bits to R2. Therefore, it takes only one memory cycle to transfer the data. Now,
R2=0x0000001E.

In the LDRB R2,[R1,#3] instruction, locations with addresses of 0x80000000,
0x80000001, 0x80000002, and 0x80000003 are accessed but only 0x80000003 is used to

get the 8 bits to R2. Therefore, it takes only one memory cycle to transfer the data. Now,
R2=0x000000F3.

Peripheral region

Table 6-1 showed a section of memory is set aside for peripherals. The type of
peripherals and memory address locations used is unique to a vendor. The ARM
manufacturers provide the details of memory map for the peripherals. If you examine the
manufacturer data sheet you will see that they use aligned addresses to make sure there is
no clock penalty for accessing them.

Little Endian vs. Big Endian war

In storing data, the ARM follows the little endian convention. The little endian
places the least significant byte (little end of the data) in the low address and the big
endian is the opposite. The origin of the terms big endian and little endian is from a
Gulliver’s Travels story about how an egg should be opened: from the big end or the little
end. ARM supports both little and big endian. In ARM little endian is the default. Some
ARM chip manufacturers provide an option for changing it to big endian. See Example 6-
7 to understand little endian and big endian data storage.

Example 6-7
Show how data is placed after execution of the following code using
a) little endian and
b) big endian.
LDR R2,=0x7698E39F ;R2=0x7698E39F
LDR R1,=0x80000000
STR R2,[R1]

Solution:

STUDENTS-HUB.com Uploaded By: anonymous

a) For little endian we have:
Location 80000000 = (9F)
Location 80000001 = (E3)
Location 80000002 = (98)
Location 80000003 = (76)

TE98 ES9F

AN

Ox&80000003 0x30000002 0x30000001 Ox80000000

b) For big endian we have:
Location 80000000 = (76)
Location 80000001 = (98)
Location 80000002 = (E3)
Location 80000003 = (9F)

TE98 ES9F
gk Ed 98 fis
Ox&80000003 0x30000002 Dx30000001 Ox80000000

In Example 6-7, notice how the least significant byte (the little end of the data) 0x9F
goes to the low address 0x80000000, and the most significant byte of the data 0x76 goes
to the high address 0x80000003. This means that the little end of the data goes in first,
hence the name little endian. In the ARM with big endian option enabled, data is stored
the opposite way: The big end (most significant byte) goes into the low address first, and
for this reason it is called big endian. Many of recent RISC processors allow selection of
mode, big endian or little endian.

Harvard Architecture and ARM

In recent years many ARM manufacturers are using the Harvard architecture for
ARM CPUs. Old ARM architectures up to ARM7 use Von Neumann architecture. The
Harvard architecture feeds the CPU with both code and data at the same time via two sets
of buses, one for code and one for data. This increases the processing power of the CPU

STUDENTS-HUB.com Uploaded By: anonymous

since it can bring in more information.

Address Bus

E Al - 31

Code Data
E SRt Memory Memory
& DO -D3
:E ¢ l ¢

Data Bus

Code Address Bus Data Address Bus

- AQ - 31 AQ - 31
L
@ Code Data
E Memory L Memory
= . DO-D31 DO-D31

I N

Code Data Bus Data Data Bus

Figure 6-6: Von Neumann vs. Harvard Architecture

Review Questions

1.

2
3.
4

In ARM, all the instructions are ___bytes?

Who makes sure that instruction are aligned on word boundary?

In ARM, the _ endian is the default.

A 66 MHz system has a memory cycle time of ___ ns if it is used with a zero
wait state.

To interface a 100 MHz processor to a 50 ns access time ROM, how many wait

states are needed?

True or false. ARM uses big endian format when is powered up.

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section 6.2: Stack and Stack Usage in ARM

The stack is a section of RAM used by the CPU to store information temporarily.
This information could be data or an address or CPU registers when calling a subroutine.
Stack is also widely used when executing an interrupt service routine (ISR). The CPU
needs this storage area because there are only a limited number of registers.

How stacks are accessed

If the stack is a section of RAM, there must be a register inside the CPU to point to
it. In the ARM CPU the register used to access the stack is R13.

The storing of CPU information such as the registers on the stack is called a PUSH,
and loading the contents of the stack back into a CPU register is called a POP. In other
words, a register is pushed onto the stack to save it and popped off the stack to retrieve it.
The following describes each process.

Pushing onto the stack

The stack pointer (SP) points to the top of the stack (TOS). In the ARM register R13
is designated as stack pointer. As we push (store) data onto the stack, the data are saved in
SRAM (where the SP points to) and SP must be decremented (or incremented) to point to
the next location. In the ARM we have a choice of either incrementing the SP or
decrementing it. Notice that this is different from many other microprocessors, notably
x86 processors, in which the SP is decremented automatically when data is pushed onto
the stack. Again it must be emphasized that while in traditional CPUs such as x86, the
stack pointer is decremented automatically by the CPU itself, in the ARM CPU we must
actually code the instruction for stack pointer decrementation (or incrementation) for that
matter. Therefore, to push a register onto stack we use the STR and SUB instructions as
shown in the following code:

STR Rr,[R13] ;Rr can be any registers (R0-R12)
SUB R13,R13,#4 ;decrement stack pointer
For example, to store the value of R1 we can write the following instructions:
STR R1,[R13] ;store R1 onto the stack,
SUB R13,R13.,#4 ;and decrement SP

Popping from the stack

Popping (loading) the contents of the stack back into a given register is the opposite
process of pushing. When the POP is executed, the SP is incremented (or decremented)
and the top location of the stack is copied (loaded) back to the register. That means the
stack is LIFO (Last-In-First-Out) memory.

To retrieve data from stack we can use the LDR instruction.
ADD R13,R13,#4 ;increment stack pointer
LDR Rr,[R13] ;Rr can any of the registers (R0-R13)

STUDENTS-HUB.com Uploaded By: anonymous

For example, the following instructions pop from the top of stack and copy to R1:
ADD R13,R13,#4 ;increment SP
LDR R1, [R13] ;load (POP) the top of stack to R1

Initializing the stack pointer in ARM

When the ARM is powered up, the R13 (SP) register contains value 0. Therefore,
we must initialize the SP at the beginning of the program so that it points to somewhere in
the internal SRAM. In ARM, we can make the stack to grow from a higher memory
location to a lower memory location. In this case when we push (store) onto the stack the
SP is decremented. We can also make the stack to grow from a lower memory location to
a higher memory location, therefore when we push (store) onto the stack, the SP is
incremented. It is common to initialize the SP to the uppermost RAM memory region,
which means as we push data onto the stack, the stack pointer must be decremented.

Different ARMs have different amounts of RAM. In some ARM assembler
Stack_Top represents the address of top of the stack. So, if we want to initialize the SP, we
can simply load Stack_Top into the SP. Notice that SP (R13) is a 32-bit register. So, we
can use any 32-bit address of SRAM as a stack section.

Example 6-8 shows how to initialize the SP and use the store and load instructions
for PUSH and POP operations.

Example 6-8

The following ARM program places some data into registers and calls a subroutine that
uses the same registers. It shows how to use the stack. Examine the stack, stack pointer,
and the registers used after the execution of each instruction.

;initialize the SP to point
;to the last location of RAM (Stack_Top)
;Assume Stack_Top = 0xFF8

LDR R13,=Stack_Top ;load SP
LDR R0,=0x125 ;RO = 0x125
LDR R1,=0x144 ;R1 =0x144
MOV R2,#0x56 ;R2 = 0x56

BL MY _SUB ;call a subroutine

ADD R3,RO,R1
;R3 =R0 + R1 = 0x125 + 0x144 = 0x269
ADD R3,R3,R2
;R3 =R3 + R2 = 0x269 + 0x56 = 0x2BF
HERE B HERE ;stay here
STUDENTS-HUB.com Uploaded By: anonymous

MY_SUB

b

;save RO, R1, and R2 on stack

;before they are used by a loop

STR RO,[R13] ;save RO on stack
SUB R13,R13,#4

;R13 = R13 - 4, to decrement the stack pointer
STR R1,[R13] ;save R1 on stack
SUB R13,R13,#4

;R13 = R13 - 4, to decrement the stack pointer
STR R2,[R13] ;save R2 on stack
SUB R13,R13,#4

;R13 = R13 - 4, to decrement the stack pointer
;—RO,R1, and R2 are changed

MOV RO,#0 ;RO=0
MOV R1,#0 ;R1=0
MOV R2#0 ;R2=0

;restore the original registers contents from stack
ADD R13,R13,#4

;R13 = R13 + 4 to increment the stack pointer
LDR R2,[R13] ;restore R2 from stack
ADD RI13,R13,#4

;R13 = R13 + 4 to increment the stack pointer
LDR R1,[R13] ;restore R1 from stack
ADD RI13,R13,#4

;R13 = R13 + 4 to increment the stack pointer
LDR RO,[R13] ;restore RO from stack

BX LR ;return to caller

STUDENTS-HUB.com Uploaded By: anonymous

Solution:

Contents of some the registers

After the (in HEX)
execution of
R1 R2 SP(R13)
FEC
0 0 0 FF8 di
LDR R13,=0xFF8
FF4
= &
FEC
LDR R0,=0x125
FFO
LDR R1,=0x144 125 144 56 FF8 poeep
LDR R2,=0x56 78 -
FEC
STRROIRIZ] 125 144 56 FF4 il
SUB R13,R13,#4 FF4 -
frs | o0 [oo | o1 | 25
FEC
STRRLIE 125 144 56 FFO g £
SUB R13,R13,#4 FF4 | oo | oo | 01 | 44
frs | 00 [o0 | 01 | 25
FEC &
STR R2,[R13] FFO | oo | oo | oo | s6
125 144 56 FEC
SUB R13,R13,#4 FF4 | oo | oo | 01 | 44
frg | o0 [o0 | o1 | 25
FEC
MOV RO,#0 -
FFO | oo | oo | oo | s6
MOV R1,#0
0 0 0 FEC FF4 | oo | oo | o1 | 44
MOV R2,#0 Frs | 00 |00 | o1 | 25
FEC
ADD R13,R13,#4 0 0 o6 FEO FFO -2
LDR R2,[R13] FF4 | oo | oo | 01 | 44
frs | 00 [o0 | 01 | 25
FEC
ADD R13,R13 #4 0 144 e EF4 FFO
LDR R1,[R13] FFa <P
frs | o0 [oo | o1 | 25

STUDENTS-HUB.com Uploaded By: anonymous

ADD R13,R13#4 125 144 56 FF8 FEC
LDR RO,[R13] e
FF4
FF8 <=

The stack limit and nested calls in ARM

As mentioned earlier, we can define the stack anywhere in the read/write memory.
So, in the ARM the stack can be as big as its RAM. In ARM, the stack is used for calls
and interrupts. We must remember that upon calling a subroutine from the main program
using the BL instruction, R14, the linker register, keeps track of where the CPU should
return after completing the subroutine. Now, if we have another call inside the subroutine
using the BL instruction, then it is our job to store the original R14 on the stack. Failure to
do that will end up crashing the program. For this reason, we must be very careful when
manipulating the stack contents.

Using LDM and STM instructions for the stack

Another way to push register contents onto the stack is to use STM (store multiple)
and LDM (load multiple) instructions. In many interrupt and multitasking applications we
need to save the contents of multiple registers on the stack and restore them back. Pushing
the registers onto the stack one register at a time is time consuming. For this reason ARM
has the STM and LDM instructions. The STM and LDM allow to store (push) and load
(pop) multiple registers with a single instruction. Next, we explain each instruction and
how it is used.

STM

Below shows the syntax for the STM. Notice we can specify the number of registers
to be stored and destination RAM address (pointer) to which the data is pushed onto.
Examine the following instructions:

STM R11,{R0-R3}

;Store RO through R3 onto memory pointed to by R11
STM R8,{R0-R7}

;Store RO through R7 onto memory pointed to by R8
STM R7,{RO,R3,R5}

;Store RO, R3, R5 onto memory pointed to by R7

STM R11,{R0-R10}

;Store RO through R10 onto memory pointed to by R11

LDM

Below shows the syntax for the LDM. Notice we can specify the number of registers

STUDENTS-HUB.com Uploaded By: anonymous

to be loaded and destination RAM address (pointer) from which the data is popped from.

Examine the following instructions:

LDM R11,{R0-R3}

;Load RO through R3 from memory pointed to by R11

LDM R8,{R0-R7}

;Load RO through R7 from memory pointed to by R8

LDM R7,{R0O,R3,R5}
;Load RO,R3,R5 from memory pointed to by R7
LDM R11,{R0-R10}

;Load RO through R10 from memory pointed to by R11

Example 6-9 shows how we can use STM and LDM to simplify a code and prevent

unwanted errors.

Example 6-9

Modify the Example 6-8 using the LDM and STM instructions.

Solution:
;initialize the SP to point to
;the last location of RAM (Stack_Top)
;Assume Stack_Top = 0xFF8
LDR R13,=Stack_Top ;load SP

LDR R0,=0x125 ;RO = 0x125
LDR R1,=0x144 ;R1 = 0x144
MOV R2#0x56 ;R2 = 0x56

BL MY _SUB ;call a subroutine

ADD R3,R0,R1 ;R3=R0O +R1
; =0x125 + 0x144 = 0x269
ADD R3,R3,R2 ;R3=R3 +R2

; = 0x269 + 0x56 = 0x2BF

HERE B HERE ;stay here

MY_SUB

STUDENTS-HUB.com

Uploaded By: anonymous

;save RO,R1, and R2 on stack

;before they are used by a loop

STM R13,{R0-R2} ;save RO,R1,R2 on stack
SUB R13,R13,#12

;—RO,R1, and R2 are changed

MOV RO0O,#0 ;RO=0
MOV R1,#0 ;R1=0
MOV R2#0 ;R2=0

b

;restore the original registers contents from stack

ADD R13,R13,#12

LDM R13,{R0-R2} ;restore RO,R1, and R2 from stack
BX LR ;return to caller

b

We can also use the PUSH and POP pseudo-instructions to do the same thing.
Copying a block of data with LDM and STM

To copy a block of data, we bring into the CPU’s register a word of data from
memory and then copy it from the register to a location in RAM. In that case we copy one
word (4 bytes) at a time. So to copy 16 words we have to set a counter to 16 for a loop
iteration. We can use the LDM and STM to do the same thing with much less coding.
Using LDM and STM instructions to copy a block of data, we need a register for the
source address and another one for the destination address. Program 6-1 uses R11 and R12
for source and destination addresses, respectively. The registers RO—R9 are used as
temporary place for data before they are copied to the destination. That gives us 10 words
(40 bytes) transfer at a time. Notice that in the STM and LDM instructions, registers are
transferred to or from memory in the order of the lowest to highest, so RO will always be
transferred to or from a location lower than the location of R1 in the memory and so on.
That is why we should not be worrying about the order of registers in the stack when we
use STM and LDM and it is not needed to PUSH and POP registers in opposite order as is
common in normal POP and PUSH instructions.

Program 6-1: Copying a Block of Memory

This program copies a block of 10 words (40 bytes) memory from source to destination.
The registers R11 and R12 are used for source and destination addresses.

STUDENTS-HUB.com Uploaded By: anonymous

ENTRY
LDM R11,{R0-R9} ;Load RO thru R9 from memory pointed to by R11
STM R12,{R0-R9} ;Store RO thru R9 to memory pointed to by R12

Review Questions

AREA PROG6_1, CODE, READONLY

1. The__ register is the default stack pointer.

2. How deep is the size of the stack in the ARM?

3. Write a program that pushes R5, R6, R7, and R8 into the stack.
4. Write a program that pops R5, R6, R7, and R8 from the stack.
5. What does the following program do?

LDR R5,=0x40000000

LDM R5,{R1,R4}

LDR R5,=0x50000000

STM R5,{R1,R4}

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section 6.3: ARM Bit-Addressable Memory Region

Many microprocessors allow programs to access memory and I/O ports in byte size
increments only. In other words, if you need to check a single bit of an I/O port, you must
read the entire byte first and then manipulate the whole byte with some logic instructions
to get hold of the desired bit. This is not the case with ARM microprocessors. Indeed, one
of the most important features of the CPU is the ability to access the RAM and I/O ports
in bits instead of bytes. This is a very important and powerful feature of the ARM used
widely in the embedded system design and applications. In this section we show address
assignment of bits of I/O and RAM, in addition to ways of programming them.

Bit-addressable (bit-band) SRAM

Of the 4GB memory space of the ARM, a number of bytes are bit-addressable. The
ARM literature refers to this region as the bit-band region. Since the ARM instruction is
32-bit and the CPU executes code one instruction at a time, the code (Flash ROM) space is
always word size and word aligned, as we have seen throughout the chapters. That means
the bit-addressable regions must be located in SRAM and I/O peripherals regions. The bit-
addressable RAM and I/O locations vary among the family members and vendors. The
ARM generic manual defines the location addresses of bit-band as 0x20000000 to
0x200FFFFF for SRAM and 0x40000000 to 0x400FFFFF for peripherals. Notice they are
located at the lowest 1 MB address space of SRAM and peripherals. See Table 6-1. It must
be also noted that the bit-band (bit-addressable) regions are the only region that can be
accessed in both bit and byte/halfword/word formats while the other area of memory must
be accessed in byte/halfword/word size. In other words, the memory space region outside
of the bit-band must always be accessed in byte/halfword/word formats only. For the
ARM Cortex-M, the bit-band SRAM has addresses of 0x20000000 to 0x200FFFFF. This
1M bytes bit-addressable region is given alias addresses of 0x22000000 to 0x23FFFFFF.
Therefore, the bit addresses 0x22000000 to 0x2200001F are for the first byte of SRAM
location 0x20000000, and 0x22000020 to 0x2200003F are the bit addresses of the second
byte of SRAM location 0x20000001, and so on. See Figure 6-7.

STUDENTS-HUB.com Uploaded By: anonymous

SRAM Bit addresses
23‘:::585?: (We use these addresses to access the individual bits)

D7 D6 DS D4 D3I D2 D1 DO
200FFFFF 23FFFFFC F8 F4 FO EC E3 E4 23FFFFEQ
200FFFFE 23FFFFDC D8 D4 DO CC €8 C4 Z23FFFFCO
200FFFFD Z23FFFFBC BB B4 BO AC AB a4 Z23FFFFAD
200FFFFC Z3FFFF9C 98 894 S0 BC 88 84 Z3FFFFBO
200FFFFB Z3FFFETC 78 74 70 6C 68 64 23FFFFG0
200FFFFA 23FFFES5C x8 x4 x0 xC xB x4 Z3FFFF40
200X X XXX ZHHHHKKEC HE X4 KO XC X8 X4 Z2XXXXXX0
20000008 2200011c 118 114 ... 104 22000100
20000007 220000FC FB F4 FO EC EB E4 220000E0
20000006 220000DC DB D4 DO CC CB C4 220000C0
20000005 220000BC BE B4 BO AC AB A4 2200C0A0
20000004 2200009C S8 94 S0 BC 88 84 22000080
20000003 2200007C 78 74 70 BC BB 64 22000060
20000002 2200005C 58 54 50 4C 4B 44 20000040
20000001 2200003C 38 34 30 2C 28 24 22000020
20000000 2200001C 18 14 10 OC 08 04 22000000

Figure 6-7: SRAM bit-addressable region and their alias addresses

Since each byte of SRAM has 8 bits we need an address for each bit. This means we
need at least 8M address locations to access 8M bits, one address for each bit. However, to
make the addresses word-aligned the ARM provides 4-byte alias address for each bit. For
example, 0x22000000 to 0x2200001F is assigned to a single byte location of 0x20000000.
That means we have 0x22000000 to Ox23FFFFFF (total of 32M locations, as alias
addresses) for 1M bytes of address.

Bit map for SRAM
From Figure 6-7 once again notice the following facts:
1. The bit address 0x22000000 is assigned to DO of SRAM location 0x20000000.
2. The bit address 0x22000004 is assigned to D1 of SRAM location 0x20000000.

3. The bit address 0x22000008 is assigned to D2 of SRAM location of
0x20000000.

4. The bit address 0x2200000C is assigned to D3 of SRAM location of
0x20000000.

5. The bit address 0x22000010 is assigned to D4 of SRAM location 0x20000000.
6. The bit address 0x22000014 is assigned to D5 of RAM location 0x20000000.

7. The bit address 0x22000018 is assigned to D6 of SRAM location 0x20000000.
8. The bit address 0x2200001C is assigned to D7 of SRAM location 0x20000000.

Notice that SRAM locations 0x20000000 — Ox200FFFFF are both byte-addressable
and bit-addressable. The only difference is when we access it in byte (or halfword or
word) we use addresses 0x20000000 to 0x200FFFFF, but when they are accessed in bit,
they are accessed via their alias addresses of 0x22000000 to Ox23FFFFFF. The reason it

STUDENTS-HUB.com Uploaded By: anonymous

is called aliases is because it is same physical location but accessed by two different
addresses. It is like a same person but different names (aliases) See Examples 6-10
through 6-12.

Example 6-10

The generic ARM chip has the following address assignments. Calculate the space and the
amount of memory given to each region.

(a) Address range of 0x20000000—200FFFFF for SRAM bit-addressable region

(b) Address range of 0x22000000-23FFFFFF for alias addresses of bit-addressable
SRAM

Solution:

(a) 200FFFFF — 20000000 = FFFFF bytes. Converting FFFFF to decimal, we get
1,048,575 + 1 = 1,048,576, which is equal to 1M bytes.

(b) 23FFFFFF — 22000000 = 1FFFFFF bytes. Converting 1FFFFFF to decimal, we
get 33,554,431 + 1 = 33,554,432, which is equal to 32M bytes.

Example 6-11

Write a program to set HIGH the D6 of the SRAM location 0x20000001 using a) byte
address and b) the bit alias address.

Solution:

a)
LDR R1,=0x20000001 ;load the address of the byte
LDRB R2,[R1] ;get the byte

ORR R2,R2,#2_01000000 ;make D6 bit high
;(binary representation in Keil for 0b01000000)
STRB R2,[R1] ;write it back

b) From Figure 6-7 we have address 0x22000038 as the bit address of D6 of SRAM

STUDENTS-HUB.com Uploaded By: anonymous

location 0x20000001.

LDR R1,=0x22000038

MOV R2#1
STRB R2,[R1]

;load the alias address of the bit
;R2=1
;Write one to D6

Example 6-12

Write a program to set LOW the DO bit of the SRAM location 0x20000005 using a) byte
address and b) the bit alias address.

Solution:

a)

LDR R1,=0x20000005

LDRB R2,[R1]

AND R2,R2#2_11111110

STRB R2,[R1]

;load the address of byte
;get the byte
;make DO bit low

;write it back

b) From Figure 6-7 we have address 0x220000A0 as the bit address of DO of

SRAM location 0x20000005.
LDR R2,=0x220000A0

MOV RO0,0
STRB RO,[R2]

;load the alias address of the bit

;RO=0

;write zero to DO

Peripheral I/0 port bit-addressable region

The general purpose I/0O (GPIO) and peripherals such as ADC, DAC, RTC, and
serial COM port are widely used in the embedded system design. In many ARM-based
trainer boards we see the connection of LEDs, switches, and LCD to the GPIO pins of the
ARM chip. In such trainers the vendor provides the details of I/O port and peripheral
connections to the ARM chip in addition to their address map. As we discussed earlier, the
ARM has set aside 1M bytes of address space to be used bit-band (bit-addressable) 1/0
and peripherals. The address space assigned to bit-band peripherals and GPIO is
0x40000000 to Ox400FFFFF with address aliases of 0x42000000 to Ox43FFFFFF.
Examine your trainer board data sheet for the bit-band addresses implemented on the

ARM chip.

STUDENTS-HUB.com

Uploaded By: anonymous

Peripherals Peripherals Bit addresses.

Byte (We use these addresses to access the individual bits)
addresses D7 D6 D5 D4 D3 D2 D1_DO
400FFFFF 43FFFFFC FEB F4 FO EC EE E4 43FFFFEOQ
400FFFFE 43FFFFDC DE D4 0O CC CB C4 43FFFFCO
400FFFFD 43FFFFBC BB B4 BO AC AB A4 43FFFFAQ
A00FFFEC 43FFFESC 28 94 S0 BC 88 B4 43FFFFEN
400FFFFB A43FFFE7C 78 74 70 6C 68 64 43FFFF60
400FFFFA 43FFFEFSC x8 x4 x0 xC xB8 x4 43FFFF40
400XX XXX AHEKEXXC X8 X4 X0 XC HB K4 4XXXEXXX0
40000008 4200011C 118 114 e 104 42000100
40000007 420000FC F8 F4 FQ EC E8 E4 420000E0Q
40000006 420000DC D8 D4 DO CC CB C4 420000C0
40000005 420000BC BE B4 BO AC A8 A4 420000K40
40000004 4200009C 98 894 90 BC 88 B4 420000820
40000003 4200007C 78 74 70 BC eE &4 42000080
40000002 4200005C 58 54 50 4C 48 44 42000040
40000001 4200003C 38 34 30 2C 28 24 42000020
40000000 4200001C 18 14 10 OC 0B 04 42000000

Figure 6-8: Peripherals bit-addressable region and their alias addresses.
Bit map for I/O peripherals
From Figure 6-8 once again notice the following facts.

1. The bit address 0x42000000 is assigned to DO of peripherals location
0x40000000.

2. The bit address 0x42000004 is assigned to D1 of peripherals location
0x40000000.

3. The bit address 0x42000008 is assigned to D2 of peripherals location of
0x40000000.

4. The bit address 0x4200000C is assigned to D3 of peripherals location of
0x40000000.

5. The bit address 0x42000010 is assigned to D4 of peripherals location
0x40000000.

6. The bit address 0x42000014 is assigned to D5 of peripherals location
0x40000000.

7. The bit address 0x42000018 is assigned to D6 of peripherals location
0x40000000.

8. The bit address 0x4200001C is assigned to D7 of peripherals location
0x40000000.

When accessing a peripheral port in a single-bit manner, we must use the address
aliases of 0x42000000 — Ox43FFFFFF. Indeed the bit-addressable peripherals are widely
used in embedded system design.

Review Questions

STUDENTS-HUB.com Uploaded By: anonymous

True or false. All bytes of SRAM in ARM are bit-addressable.
True or false. All bits of the I/O peripherals in ARM are bit-addressable.
True or false. All ROM locations of the ARM are bit-addressable.

Of the 4G bytes of memory in the ARM, how many bytes are bit-addressable? List
them.

Lo

5. How would you check to see whether bit DO of location 0x20000002 is high or
low?

6. Find out to which byte each of the following bits belongs. Give the address of the

RAM byte in hex.
(a) 0x23000030 (b) 0x23000040 (c) 0x23000048
(d) 0x4200003C (e) 0x43FFFFFC

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section 6.4: Advanced Indexed Addressing Mode

In previous chapters we showed how to use a simple indexed addressing mode in
STR, LDR, LDM and STM. The advanced addressing modes bring very important
advantages in the ARM and will be discussed in this section.

Indexed addressing mode

In the indexed addressing mode, a register is used as a pointer to the data location.
The ARM provides three indexed addressing modes. These modes are: preindex, preindex
with write back, and post index. Table 6-2 summarizes these modes. Each of these indexed
addressing mode can be used with offset of fixed value or offset of a shifted register. See
Table 6-3. In this section we will discuss each mode in detail.

Indexed Addressing Pointing Location in Rm Value After
Mode Memory Execution
Preindex LDR Rd,[Rm,#k] Rm+#k Rm

Preindex with WB* LDR Rd,[Rm,#k]! Rm+#k Rm + #k
Postindex LDR Rd,[Rm],#k Rm Rm + #k

*WB means Writeback

** Rd and Rm are any of registers and #k is a signed 12-bit immediate value between -4095 and +4095

Table 6-2: Indexed Addressing in ARM

Offset Syntax Pointing Location
Fixed value LDR Rd,[Rm,#k] Rm+#k
Shifted register LDR Rd,[Rm,Rn, Rm+(Rn shifted <shift>)

<shift>]

* Rn and Rm are any of registers and #k is a signed 12-bit immediate value between -4095 and +4095

** <shift> is any of shifts studied in Chapter3 like LSL#2

Table 6-3: Offset of Fixed Value vs. Offset of Shifted Register
Preindexed addressing mode with fixed offset

In this addressing mode, a register and a positive or negative immediate value are
used as a pointer to the data location. The value of register does not change after
instruction is executed. This addressing mode can be used with STR, STRB, STRH, LDR,
LDRB, and LDRH. See Example 6-13.

Example 6-13

Write a program to store contents of R5 to the SRAM location 0x10000000 to
0x10000000F using preindexed addressing mode with fixed offset.

STUDENTS-HUB.com Uploaded By: anonymous

Solution:
LDR R5,=0x55667788
LDR R1,=0x10000000
;load the address of first location
STR R5,[R1] ;store R5 to location 0x10000000
STR R5,[R1,#4]
;store R5 to location 0x10000000 + 4 (0x10000004)
STR R5,[R1,#8]
;store R5 to location 0x10000000 + 8 (0x10000008)
STR R5,[R1,#0x0C]
;store R5 to location 0x10000000 + 0x0C (0x1000000C)

Notice that after running this code the content of R1 is still 0x10000000

It is a common practice to use a register to point to the first location of the memory
space and access the different locations using proper offsets. For example see the
following program:

ADR RO,0OUR_DATA ;point to OUR_DATA
LDRB R2,[RO,#1] ;Jload R2 with BETA
OUR_DATA

ALFA DCB 0x30
BETA DCB 0x21

Preindexed addressing mode with write-back and fixed offset

This addressing mode is like preindexed addressing mode with fixed offset except
that the calculated pointer is written back to the pointing register. We put ! after the
instruction to tell the assembler to enable writeback in the instruction. See Example 6-14.

Example 6-14

Rewrite Example 6-13 using preindexed addressing mode with writeback and fixed offset.

Solution:

LDR R1,=0x10000000 ;load the address of first location

STUDENTS-HUB.com Uploaded By: anonymous

STR R5,[R1] ;store R5 to location 0x10000000

STR R5,[R1,#4]!

;store R5 to location 0x10000000 + 4 (0x10000004)

;writeback makes R1 = 0x10000004

STR R5,[R1,#4]!

;store R5 to location 0x10000004 + 4 (0x10000008)
;writeback makes R1 = 0x10000008

STR R5,[R1,#4]!

;store R5 to location 0x10000008 + 4 (0x1000000C)
;writeback makes R1 = 0x1000000C

Notice that after running this code the content of R1 is 0x1000000C

Postindexed addressing mode with fixed offset

This addressing mode is like preindexed addressing mode with writeback and fixed
offset except that the instruction is executed on the location that Rn is pointing to
regardless of offset value. After running the instruction, the new value of the pointer is
calculated and written back to the pointing register. Examine the following instructions:

STR R1,[R2],#4 ;store R1 onto memory pointed to by
; R2 and then writeback R2 + 4 to R2
LDRB R5,[R3],#1 ;Jload a byte from memory pointed to

; by R3 and then writeback R3 + 1 to R3

Notice that writeback is by default enabled in postindexed addressing and there is no
need to put ! after instructions because postindexing without writeback is useless as the
index is neither used in the instruction nor written back to the pointing register. See
Example 6-15.

Example 6-15

Rewrite Example 6-13 using postindexed addressing mode with fixed offset.

Solution:
LDR R1,=0x10000000 ;load the address of first location
STR R5,[R1],#4 ;store R5 to location 0x10000000 and writeback

STUDENTS-HUB.com Uploaded By: anonymous

;0x10000000 + 4 (0x10000004) to R1

STR R5,[R1],#4 ;store R5 to location 0x10000004 and writeback
;0x10000004 + 4 (0x10000008) to R1

STR R5,[R1],#4 ;store R5 to location 0x10000008 and writeback
;0x10000008 + 4 (0x1000000C) to R1

STR R5,[R1],#4 ;store R5 to location 0x1000000C and writeback

;0x1000000C + 4 (0x10000010) to R1
Notice that after running this code the content of R1 is 0x10000010.

Preindexed address mode with offset of a shifted register

This advanced addressing mode is a very important feature in the ARM. We start
describing this mode from simple case with no shift (shift = 0) and then we will focus on
more complex formats.

Simple format of preindexed address mode with offset register
The following is the simple syntax for LDR and STR.
LDR Rd,[Rm,Rn] ;Rd is loaded from location Rm + Rn of memory
STR Rs,[Rm,Rn] ;Rs is stored to location Rm + Rn of memory

This addressing mode is widely used in implementing of object oriented programs
when we want to make a dynamic array of variables. Example 6-16 shows how we use
this addressing mode in accessing different locations of an array defined in memory.

Example 6-16

Examine the value of R5 and R6 after the execution of the following program.

POINTER RN R2

ARRAY1 RN R1
AREA EXAMPLE_6_16, CODE, READONLY
ENTRY

LDR ARRAY1, = MYDATA

LDRB R4,[ARRAY1]
;Joad POINTER location of ARRAY1 to R4 (R4= 0x45)

STUDENTS-HUB.com Uploaded By: anonymous

MOV POINTER,#1 ;POINTER = 1 to point to location 1 of array
LDRB R5,[ARRAY1,POINTER]

;Load POINTER location of ARRAY1 to R5

;(R5=0x24)

MOV POINTER,#2 ;POINTER = 2 to point to location 2 of array
LDRB R6,[ARRAY1,POINTER]

;Joad POINTER location of ARRAY1 to R6

;(R6=0x18)

HERE B HERE

MYDATA DCB 0x45,0x24,0x18,0x63
END

Solution:

After running the LDRB R4,[ARRAY 1] instruction, location 0 of MYDATA is loaded to
R4. Now R4=0x45.

Next, after running the LDRB R5,[ARRAY 1,POINTER] instruction, location 1 of
MYDATA is loaded to R5. Now R5 = 0x24.

Next, after running the LDRB R6,[ARRAY 1,POINTER] instruction, location 2 of
MYDATA is loaded to R6. So the content of R6 = 0x18.

Notice that purposely we used DCB and LDRB in this example so each location of
MYDATA takes one byte.

Byte 3 of Byte 2 of Byte 1 of Byte 0 of
MYDATA MYDATA MYDATA MYDATA
ARRAY1 +3 ARRAY1 +2 ARRAY1 +1 ARRAY1 +0
: v v y
0x63 Ox18 Ox24 Ox45

In Example 6-16, we purposely used DCB and LDRB so each location of MYDATA
takes one byte. If we define an array using DCD, then we will not be able to use LDRB
R5,[ARRAY1,POINTER] to load the POINTER location of ARRAY. See Example 6-17
for clarification.

Example 6-17

In Example 6-16, change MYDATA DCB 0x45,0x24,0x18,0x63 to MYDATA DCD
0x45,0x2489ACF5 and examine the value of R5 and R6 after the execution of the

STUDENTS-HUB.com Uploaded By: anonymous

following program.

POINTER RN R2
ARRAY1 RN R1
AREA EXAMPLE_6_17, CODE, READONLY
ENTRY

LDR ARRAY1, = MYDATA

LDRB R4,[ARRAY1] ;load POINTER location of
;ARRAY1 to R4 (R4= 0x45)

MOV POINTER,#1 ;POINTER = 1 to point to
;location 1 of array

LDRB R5,[ARRAY1,POINTER]

; Load POINTER location of ARRAY1 to R5

MOV POINTER,#2 ;POINTER = 2 to point to
;location 2 of array

LDRB R6,[ARRAY1,POINTER]

; load POINTER location of ARRAY1 to R6

HERE B HERE

MYDATA DCD 0x45,0x2489ACF5
END

Solution:

After running the LDRB R4,[ARRAY 1] instruction, location 0 of MYDATA is loaded to
R4. Now R4=0x45.

Next, after running the LDRB R5,[ARRAY 1,POINTER] instruction, location 1 of
MYDATA is loaded to R5. Now R5 = 0x00.

Next, after running the LDRB R6,[ARRAY 1,POINTER] instruction, location 2 of
MYDATA is loaded to R6. So the content of R6 = 0x00.

STUDENTS-HUB.com Uploaded By: anonymous

Byte 3 of Byte 2 of Byte 1 of Byte 0 of
MYDATA MYDATA MYDATA MYDATA
ARRAY1 +3 ARRAY1 +2 ARRAY1 +1 ARRAY1 +0
Word 0 of
MYDATA C 0x00 Ox00 0x00 0x45]
Word 1 of
K24 9 A F.
a4t C 0 0x8 OXAC OxF5]
ARRAY1 +7 ARRAY1 +B ARRAY1 +5 ARRAY1 +4
Byte 7 of Byte 6 of Byte 5 of Byte 4 of
MYDATA MYDATA MYDATA MYDATA

To access locations of a word size array we have to multiply the pointer by four.
Similarly, to access locations of a half-word size array we have to multiply the pointer by
two. For example, we can correct program of Example 6-17 by replacing

MOV POINTER,#2 ;POINTER = 2 to point to location 2 of array
instruction with following instructions:

MOV POINTER,#2 ;POINTER =2

MOV POINTER,POINTER,LSL#2 ;POINTER is shifted left two bits (x4)

;to point to word 2 of the array

Notice that by shifting left a value two bits, we multiply it by four. Next we will see
how we can use indexed addressing with shifted registers to combine multiplication with
the LDR and STR instructions.

General format of preindexed address mode with offset register

The general format of indexed addressing with shifted register for LDR and STR is
as follows:

LDR Rd,[Rm,Rn,<shift>]
STR Rd,[Rm,Rn,<shift>]

;(Shifted Rn) + Rm is used as the pointer
;(Shifted Rn) + Rm is used as the pointer

In the above instructions <shift> can be any of shift instructions studied in Chapter 3
such as LSL, LSR, ASR and ROR. Examine the following instructions:

LDR R1,[R2,R3,LSL#2] ;R2 +(R3 x 4) is used as the pointer
;content of location R2+(R3%4) is loaded to R1
STR R1,[R2,R3,LSL#1] ;R2 +(R3 x 2) is used as the pointer
;R1 is stored to location R2 + (R3%2)
STRB R1,[R2,R3,LSL#2] ;R2 +(R3 x 4) is used as the pointer
;first byte of R1 is stored to location R2+(R3x4)
LDR R1,[R2,R3,LSR#2] ;R2 +(R3/ 4) is used as the pointer

STUDENTS-HUB.com Uploaded By: anonymous

;content of location R2+(R3/ 4) is

;loaded to R1

From the above codes we can see that indexed addressing with shifted register is
mostly used to multiply the pointer by a power of two and that is why it is also called
indexed addressing with scaled register. Examine Example 6-18 to see how we can use
scaled register indexing to access an array of words.

Notice that scaled register indexing is not supported for halfword load and store

instructions.

Example 6-18

Examine the value of R5 and R6 after the execution of the following program.

POINTER
ARRAY1

RN
RN

R2
R1

AREA EXAMPLE_6_18, CODE, READONLY

ENTRY
LDR

ARRAY1, = MYDATA

MOV POINTER,#0
LDR R4,[ARRAY 1,POINTER,LSL#2]

MOV POINTER#1
LDR R5,[ARRAY 1,POINTER,LSL#2]

MOV POINTER,#2

; POINTER =0

5

; POINTER =1

5

; POINTER = 2

0x45,0x2489ACf5,0x2489AC23

LDR R6,[ARRAY1,POINTER,LSL#2] ;
HERE B HERE
MYDATA DCD

END
Solution:

After running the LDR R4,[ARRAY 1,POINTER,LSL#2]] instruction, location 0 of

STUDENTS-HUB.com

Uploaded By: anonymous

MYDATA is loaded to R4. Now R4=0x45.

Next, after running the LDR R5,[ARRAY 1,POINTER,LSL#2] instruction, location 1 of
MYDATA is loaded to R5. Now R5 = 0x2489ACF5.

Next, after running the LDR R6,[ARRAY 1,POINTER,LSL#2] instruction, location 2 of
MYDATA is loaded to R6. So the content of R6 = 0x2489AC23.

Byte 3 of Byte 2 of Byle 1 of Byte 0 of
MYDATA MYDATA MYDATA MYDATA
|
v v . v
Word 0 of
MYDATA 0x00 0x00 0x00 Oxd5 = ARRAY1 + (0x4)
Word 1 of
BT 0x24 0x89 0XAC 0xFS < ARRAY1 + (1x4)
Word 2 of Ox24 0xB9 OxAC Ox23 - ARRAYT + (2x4)
MYDATA
Byte 11 of Byte 10 of Byte 9 of Byte 8 of
MYDATA MYDATA MYDATA MYDATA

Writeback sign (!) in preindexed load and store with scaled register

We can force all scaled register load and store instructions to writeback the

calculated pointer to the pointing register by putting ! after each load and store
instructions. Examine the following instructions:

LDR R1,[R2,R3,LSL#2]!
;R2 +(R3 x4) is used as the pointer
;content of location R2+(R3x%4) is loaded to R1
;R2 = R2 +(R3 x 4) (R2 is updated.)
STR R1,[R2,R3,LSL#1]!
;R2 +(R3 %2) is used as the pointer
;R1 is stored to location R2+(R3 x 2)
;R2 = R2 +(R3 x 2) (R2 is updated.)
Scaled register postindex

The following instructions are some examples of scaled register postindex in load
and store instructions:

STR R1,[R2],R3,LSL #2

;store R1 at location R2 of memory and write back
;R2 + (R3 x 4) to R2.

LDR R1,[R2],R3,LSL #2

;load location R2 of memory to R1 and write back
;R2 + (R3 x4) to R2.

STUDENTS-HUB.com Uploaded By: anonymous

Look-up table

One use of array is for implementing look-up tables. The look-up table is a widely
used concept in microcontroller programming. It allows access to elements of a frequently
used table with minimum operations. As an example, assume that for a certain application
we need 4 + x? values in the range of 0 to 9. To do so, the look-up table is stored in

program memory space and accessed as an array. This is shown in Examples 6-19 through
6-21.

Example 6-19

Write a program to get the x value from R9 and send x° + 2x + 3 to R10. Assume R9 has
the x value of 0-9. Use a look-up table instead of a multiply instruction.

Solution:

AREA LOOKUP_EXAMP6_19,READONLY,CODE

ENTRY

ADR R2,LOOKUP ;point to LOOKUP

LDRB R10,[R2,R9] ;R10 = location R9 of lookup array
HERE B HERE ;stay here forever

LOOKUP DCB 3, 6, 11, 18, 27, 38, 51, 66, 83, 102
END

Example 6-20

Write a program to get the x value from R9 and send factorial of x to R10. Assume R9 has
the x value of 0—10. Use a look-up table instead of a multiply instruction.

Solution:
AREA LOOKUP_EXAMP6_20,READONLY,CODE
ENTRY
MOV R9,#5
ADR R2,LOOKUP ;point to LOOKUP

LDR R10,[R2,R9,LSL #2] ;R10 = location R9 of lookup array
STUDENTS-HUB.com Uploaded By: anonymous

HERE B HERE ;stay here forever

LOOKUPDCD 1,1, 2,6, 24, 120, 720, 5040, 40320, 362880, 3628800
END

Example 6-21

Write a program that calculates 10 to the power of R2 and stores the result in R3. Assume
R2 has the x value of 0—6. Use a look-up table instead of a multiply instruction.

Solution:

AREA LOOKUP_EXAMP_6_21,READONLY,CODE

ENTRY

ADR R1,LOOKUP ;point to LOOKUP

LDR R3,[R1,R2,L.SL #2] ;R3 = location R2 of lookup array
HERE B HERE ;stay here forever

LOOKUP DCD 1, 10, 100, 1000, 10000, 100000, 1000000
END

Writeback options of STM and LDM

The STM and LDM instructions allow you to store and load multiple registers with
a single instruction. We can also specify the action to be taken for the pointer. The action
can be increment or decrement before or after the pop is done. This is shown in Table 6-4.

Option Description

IA Increment After

IB Increment Before

DA Decrement After

DB Decrement Before

STUDENTS-HUB.com Uploaded By: anonymous

Table 6-4: Options for LDM and STM instructions

IA stands for Increment After and adds four (the size of register in bytes) to the
pointer after load or storing each register.

IB stands for Increment Before and adds four (the size of register in bytes) to the
pointer before load or storing each register.

DA stands for Decrement After and subtracts four (the size of register in bytes) from
the pointer after load or storing each register.

DB stands for Decrement Before and subtracts four (the size of register in bytes)
from the pointer before load or storing each register.

For further clarification assume that R1 = 0x100. Figure 6-9 shows the memory after
running STM R1!,{R2,R3} with each of IA, IB, DA and DB options.

Before After
0x10C 0x10C
R1p R3 0x108 R1 0x108
] R2 0x104 R3 0x104
E 0x100 R2 0x100
@ OxFC OxFC
e OxF8 0xF8
= OxF4 OxF4
After STMIB R1', {R2,R3} After STMIA R1!, {R2,R3}
0x10C 0x10C
0x108 0x108
T 0x104 0x104
g 0x100 R3___ | 0x100
E R3 OxFC R2 OxFC
g R1 - R2 0xF8 R1 = 0xF8
OxF4 OxF4
After STMDB R1!, {R2,R3} After STMDA R1!, {R2,R3}

Figure 6- 9: Four Options of STM and LDM in ARM

Notice that generally we have four stack structure, either it is ascending or
descending. The stack is called ascending when it is incremented after each store (PUSH)
instruction and decremented after each load (POP) instruction. It is called descending
when it is decremented after each store (PUSH) instruction and incremented after each
load (POP) instruction. The stack pointer can point to the last filled location; in this case
the stack is called Full Stack. The stack pointer can point to the next available location, as
well; which is called an Empty Stack. See Figure 6-10 for more clarification.

STUDENTS-HUB.com Uploaded By: anonymous

Full Empty
0x10C 0x10C
Ri- R3 0x108 R1 0x108
E‘ Store R2 0x104 Store R3 0x104
S (push) 0x100 (push) R2 0x100
® 0XFC 0xFC
% 0xF8 0xF8
& 0xF4 0xF4
Load After LDMIB R1!, {R2,R3} | Load After LDMIA R1', {R2,R3}
(pop) or STMIB R1!, {R2,R3} |(pop) or STMIA R1!, {R2,R3}
Load 0x10C '-°E'“§} 0x10C
(Pop) 0x108 (pop 0x108
2 0x104 0x104
B 0x100 R3 0x100
§ R3 0xFC R2 0xFC
o R R2 0xF8 R OxF8
Q | Store
(PUSh) DxF4 (push) OxF4
After LOMDE R1!, {R2,R3} After LDMDA R1!, {R2 ,R3}
or STMDB R1!, {R2,R3} or STMDA R1!,{R2,R3}

Figure 6-10: Four General Stack Structure

To implement a Full Ascending stack we have to use STMIB because the stack
pointer should increment on store instruction and it should be incremented before storing
each register because it should point to full location. On the other hand we have to use
LDMDA for pop instruction because the stack pointer should decrement on load
instruction and it should be decremented before loading each full location because it was
pointing to an empty location before decrementing. Table 6-5 lists appropriate load and
store instruction for each stack structure. It is difficult and prone to error to remember
which load and store should be used with each stack structure. To solve this problem, each
of load and store options has alternate name which is easy to remember when it is used for
stack operation. The last two columns of Table 6-5 list the alternate names.

Load Store
Stack Structure
(alternate Names) (alternate Names)
Full Ascending LDMDA STMIB LDMFA STMFA
Full Descending LDMIA STMDB LDMFD STMFD
Empty Ascending LDMDB STMIA LDMEA STMEA
Empty Descending LDMIB STMDA LDMED STMED

STUDENTS-HUB.com

Uploaded By: anonymous

Table 6- 5: Options for LDM and STM instructions

Program 6-2 uses STM and LDM to simplify program of Example 6-8.
Program 6-2: Using STMFA and LDMFA for Stack (Repeat of Example 6-8)

;Using Full Ascending Load and Store for stack

AREA PROG6_2, CODE, READONLY

ENTRY

LDR R13,=Stack_Top ;load SP

LDR R0,=0x125 ;RO = 0x125

LDR R1,=0x144 ;R1 =0x144

MOV R2,#0x56 ;R2 = 0x56

BL MY _SUB ;call a subroutine

ADD R3,R0,R1 ;R3 =R0 + R1 =0x125 + 0x144 = 0x269

ADD R3,R3,R2 ;R3 =R3 + R2 = 0x269 + 0x56 = 0x2BF
HERE B HERE ;stay here

MY_SUB
; save RO, R1, and R2 on stack before they are used by a loop
STMFA R13,{R0-R2} ;save RO,R1,R2 on stack using Full Ascending
;—RO,R1, and R2 are changed
MOV RO,#0
MOV R1,#0
MOV R2#0

[l
o

d Bl E:
THLT
) Neol

- .

;—Testore the original registers contents from stack
LDMFA R13,{R0-R2}
;restore RO,R1,and R2 from stack using F. Ascending

os)
>~
=
el

;return to caller

END

It must be noted that ARM Cortex has PUSH and POP instructions. See Appendix A
for more information.

Review Questions

1. True or false. In a full stack the pointer points to the last stored location.

STUDENTS-HUB.com Uploaded By: anonymous

2. True or false. In a descending stack the pointer increments after each push.
3. Write an instruction that pushes LR (R14) into an empty descending stack.

4. Write an instruction that pops R10 from a full ascending stack.

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section 6.5: ADR, LDR, and PC Relative Addressing

In indexed addressing modes, any registers including the PC (R15) register can be
used as the pointer register. For example, the following instruction reads the contents of
memory location PC+4:

LDR RO,[PC,#4]

In this way, the data which has a known distance from the current executing line can
be accessed. As discussed in Chapter 4, the PC register points 8 bytes (2 instructions)
ahead of executing instruction. As a result, “LDR RO,[PC,#4]” accesses a memory
location whose address is 4+8 bytes ahead of the current instruction. Generally speaking,
the address of the memory location which is being accessed using “LDR RO,[PC,offset]”
can be found using this formula: the address of current instruction + 8 + offset.

For instance, if “LDR RO,[PC,#4]” is located in address 0x10 the effective address
is: 0x10 + 8 + 4 = Ox1C.

This addressing mode can be considered as a subset of indexed addressing modes. In
ARM application notes, the program relative addressing mode is considered as a separate
addressing mode.

Implementing the ADR Directive (LDR Rn,=value)

The ADR directive uses the PC relative addressing mode to load registers. For
example see the following program:

AREA LOOKUP_EXAMPLE,READONLY,CODE

ENTRY
ADR R2,0UR_FIXED_DATA ;point to OUR_FIXED_DATA
LDRB RO,[R2?] ;load RO with the contents
;of memory pointed to by R2
ADD R1,R1,RO ;add RO to R1
HERE B HERE ;stay here forever

OUR_FIXED_DATA
DCB 0x55,0x33,1,2,3,4,5,6
DCD 0x23222120,0x30
DCW 0x4540,0x50
END

See Figure 6-11. At compile time, the ADR is replaced with “ADD R2,PC,#0x08”.
Since the instruction is in address 0x00, the instruction accesses location 0 + 8 + 0x08 =
0x10. As shown in the Figure, 0x10 is the address of OUR_FIXED_DATA.

STUDENTS-HUB.com Uploaded By: anonymous

Disassembly n

25 ADR R2,0UR_FIXED DATA ;point to OUR »
o>0x00000000 EZBF2008 ADD R2,PC, #0x00000008
5= LDEE RO, [RE2] :load R0 with the contel
0x00000004 ESD20000 LDRE RO, [R2]
5 ADD R1,R1,R0O sradd RO to R1 |:|
0x00000008 EOB811000 ADD R1,R1,RO -
= b
Memory 1 n "

: o il
Address: [0 2

0x00000000: 08 20 8F EZ2 00 00 D2 E5 00 10 81 EO FE FF FF E&a
OEDDDDDDJ.D:|55 33 01 02 03 04 05 00|20 21 22 23 30 00 00 00 -

testasm | v X

1 LRELR LOOKUF EXAMPLE, READONLY, CODE

2 ENTRY |:|
= ADER R2,0UR_FIXED DATA ;point to OUR _FIXED DATA .
[t [| [t

Figure 6- 11: Memory Dump for ADR Instruction
Implementing the LDR Directive

To implement the LDR directive, assembler stores the value as a fixed data in
program memory and then accesses it using the LDR instruction and the PC relative
addressing mode. Figure 6-12 shows the implementation of Program 6-3. For example,
0x12345678 is stored in memory locations 0x10-0x13, and the LDR directive is replaced
with LDR RO,[PC,#0x08]. Since PC=0, the LDR R0, =0x1234567 is located at address
0x000000. Now we have 0+8+8=16=0x10.

Program 6-3: LDR Directive
AREA EXAMPLE,READONLY,CODE
ENTRY
LDR R0,=0x12345678

LDR R1,=0x86427531
ADD R2,R0,R1

1 B H1
END

Disassembly a Memary 1 2 &
4 LDR RO, =0x12345678 - a
=0x00000000 ES9F0008 LDR RO, [FC, #0x000g8)] Addess: fo 1
5: LR Rl,=0x86427531 0x00000000: 08 00 9F E5 08 10 %F ES
Ox00000004 ESSF1008 LDR R1, [PC, #0x0008] 0x00000008: 01 20 80 EO FE FF FF EA
&: ALD R2,RO,R1 0x00000010: 33 1 z
0x00000008 EOQB02001L ADD RZ,RO,RL 0xD000D018: OO0 00 OO0 00 OO0 00 00 00 -
7: H1 B H1 =
| ' G Call Stack - Locals | 2] Memaorny 1

Figure 6- 12: Memory Dump for LDR Instruction

STUDENTS-HUB.com Uploaded By: anonymous

The same way for the LDR R1,=0x86427531 is located in ROM address
0x00000004. Therefore we have 4+8+8=20=0x14, which is the address of the data
0x86427531.

Review Questions
1. Which register is used as the pointer in PC relative addressing mode?

2. Which directive is more optimized ADR or LDR? Why?

STUDENTS-HUB.com Uploaded By: anonymous

Problems

Section 6.1: ARM Memory Map and Memory Access
1. What is the bus bandwidth unit?
2. Give the variables that affect the bus bandwidth.
3. True or false. One way to increase the bus bandwidth is to widen the data bus.
4.

True or false. An increase in the number of address bus pins results in a higher bus
bandwidth for the system.

vt

Calculate the memory bus bandwidth for the following systems.
(a) ARM of 100 MHz bus speed and 0 WS
(b) ARM of 80 MHz bus speed and 1 WS

6. Indicate which of the following addresses is word aligned.

(a) 0x1200004A (b) 0x52000068 (c) 0x66000082
(d) 0x23FFFF86 (e) 0x23FFFFF0 (f) 0x4200004F
() 0x18000014 (h) 0x43FFFFF3 (i) 0x44FFFF05

7. Show how data is placed after execution of the following code using (a) little
endian and (b) big endian.

LDR R2,=0xFA98E322

LDR R1,=0x20000100

STR [R1],R2

8. True or false. In ARM, instructions are always word aligned.

9. True or false. In a word aligned address the lower digit of the address is 0, 4, 8, or
C.

10. Show how many memory cycles does it take to fetch the following data into
register

LDR R1,=0x20000004
LDRD [R1],R2

11. Show how many memory cycles does it take to fetch the following data into
register

LDR R1,=0x20000102
LDRD [R1],R2

12. Show how many memory cycles does it take to fetch the following data into
register

STUDENTS-HUB.com Uploaded By: anonymous

LDR R1,=0x20000103
LDRD [R1],R2

13. Show how many memory cycles does it take to fetch the following data into
register

LDR R1,=0x20000006
LDRH [R1],R2

14. Show how many memory cycles does it take to fetch the following data into
register

LDR R1,=0x20000C10
LDRB [R1],R2

Section 6.2: Stack and Stack Usage in ARM
15. True or false. In ARM the R13 is designated as stack pointer.
16. When BL is executed, how many locations of the stack are used?
17. When B is executed, how many locations of the stack are used?
18. In ARM, stack pointer is register.
19. Describe how the action associated with the return operation is performed in ARM.
20. Give the size of the stack in ARM.

21. In ARM, which address is saved when BL instruction is executed.

Section 6.3: ARM Bit-Addressable Memory Region

22. Which memory regions of ARM are bit-addressable?

23. Give the bit-addressable SRAM region address for generic ARM.
24. What bit addresses are assigned to byte address of 0x20000004?
25. What bit addresses are assigned to byte address of 0x200000107?
26. What bit addresses are assigned to byte address of 0x200FFFFF?
27. What bit addresses are assigned to byte address of 0x200000207?
28. What bit addresses are assigned to byte address of 0x40000008?
29. What bit addresses are assigned to byte address of 0x4000000C?
30. What bit addresses are assigned to byte address of 0x40000020?

31. The following are bit addresses. Indicate where each one belongs.

() 0x2200004C (b) 0x22000068 () 0x22000080

(d) 0x23FFFF80 (e) 0x23FFFF00 (f) 0x4200004C

STUDENTS-HUB.com Uploaded By: anonymous

(g) 0x42000014 (h) 0x43FFFFFO (i) 0x43FFFF00

32. Of the 4G bytes of memory locations in the ARM, how many of them are also
assigned a bit address as well? Indicate which bytes those are.

33. True or false. The bit-addressable region cannot be access in byte.
34. True or false. The bit-addressable region cannot be access in word.

35. Write a program to see whether the D7 bit of RAM location 0x20000020 is high. If
so, send a 1 to D1 of RAM location 0x20000000.

36. Write a program to see whether the D7 bit of I/O location 0x40000000 is low. If
so, send a 0 to the DO of location 0x400FFFFF.

37. Write a program to set high all the bits of RAM locations 0x2000000 using the
following methods:

(a) byte addresses (b) bit addresses
38. Write a program to see whether the SRAM location 0x20000000 is divisible by 8.
39. Explain how the LDM instruction works.
40. Explain how the STM instruction works.
41. Explain the difference between LDM and LDR instructions.
42. Explain how the difference between STM and STR instructions.
43. Explain the LDMIA operation and its impact on the SP.
44. Explain the LDMIB operation and its impact on the SP.
45. Explain the STMIA operation and its impact on the SP.
46. Explain the STMIB operation and its impact on the SP.

Section 6.4: Advanced Indexed Addressing Mode
47. True or false. Writeback is by default enabled in preindexed addressing mode.
48. Indicate the addressing mode in each of the following instructions
(a) LDR R1,[R5],R2,LSL #2 (b) STR R2,[R1,R0]
(c) STR R2,[R1,R0, LSL #2]! (d) STR R9,[R1],RO
49. What is an ascending stack?
50. What is the difference between an empty and a full stack?
51. Write an instruction that stores RO in a full descending stack.

52. Write an instruction that loads R9 from an empty descending stack.

Section 6.5: ADR, LDR, and PC Relative Addressing
53. Assuming that the instruction “LDR R2,[PC,#8] is located in address 0x300,

STUDENTS-HUB.com Uploaded By: anonymous

calculate the address of the memory location which is accessed.

54. Using PC relative addressing mode, write an LDR instruction that accesses a
memory location which is 0x20 bytes ahead of itself.

STUDENTS-HUB.com Uploaded By: anonymous

Answers to Review Questions

Section 6.1

1. 4 bytes

2. Compilers ensure that codes are word aligned.
3. little endian
4

1/66 MHz = 15.15 ns is the bus clock period. Since the bus cycle time of zero wait
states is 2 clocks, we have 2 x 15.15 = 30.3 ns

1/100 MHz = 10 ns is the bus clock period. 50 ns - 10 ns = 40 ns. The Number of
WSis40ns/10ns =4

vt

6. False
Section 6.2
1. R13

2. The stack can be as big as its RAM
3. STM R13, {R5-R8}

SUB R13, R13, #16
4. ADD RI13,R13, #16

LDM R13, {R5-R8}

5. It copies the contents of locations 0x40000000—0x4000000F into locations
0x50000000—0x5000000F using the LDM and STM instructions.

Section 6.3
1. False
2. False
3. False
4. 2MBytes; locations 0x20000000 to 0x200FFFFF of SRAM and 0x40000000 to
0x400FFFFF of GPIO
5.

LDR R0,=0x22000040
LDR R1,[RO]

CMP R1,#0

BNE L1

L1:

STUDENTS-HUB.com Uploaded By: anonymous

(a) 0x23000030 - 0x22000000 = 0x1000030; 0x1000030 / 0x20 = 0x80001;
thus it is in location 0x20000000 + 0x80001 = 0x20080001

(0x1000030 % 32) / 4 = (48 % 32) / 4 =16/ 4 = 4; it is D4 of 0x20080001.
(b) 0x1000040 / 0x20 = 0x80002; it is in location 0x20080002
(0x1000040 % 0x20) / 4 = 0; it is DO of location 0x20080002
(©) 0x1000048 / 0x20 = 80002; it is in location 0x20080002
(0x1000048 % 0x20) / 4 = 2; it is D2 of location 0x20080002
(d) 0x4200003C - 0x42000000 = 0x03C; 0x03C / 0x20 = 0x01
(0x3C % 0x20) / 4 = 0x1C / 4 = 7; it is D7 of 0x40000001

(e) 0x43FFFFFC — 0x42000000 = Ox1FFFFFC; Ox1FFFFFC / 0x20 =
OxFFFFF

(Ox1FFFFFC % 0x20) / 4 = 0x1C / 4 = 7; D7 of 0x400FFFFF

Section 6.4
1. True
2. False

3. STMED SP! {LR}
4. LDMFA SP!,{R10}

Section 6.5
1. PC(R15)

2. ADR, To implement the LDR directive the value is stored in memory; as a result, it
uses more memory while the ADR uses no memory.

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Chapter 7: ARM Pipeline and CPU Evolution

This chapter will look at pipeline evolution in ARM while examining other CPU
enhancements. In Section 7.1 the ARM’s pipelines are studied. Section 7.2 explores
various processors enhancements.

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section 7.1: ARM Pipeline Evolution

There are many ways available to processor designers to increase the processing
power of the CPU. Here we list some of them that are used in ARM.

1. Increase the clock frequency of the chip. One drawback of this method is that the
higher the frequency, the more the power dissipation and the more difficult and
expensive the design of the microprocessor and motherboard.

2. Increase the number of data buses to bring more information (code and data) into the
CPU to be processed. For example, Von Neumann architecture in ARM7 has been
replaced by Harvard architecture in newer versions. See Chapter 6.

3. Change the internal architecture of the CPU to overlap the execution of more
instructions. This requires a lot of transistors. There are two trends for this option,
superpipeline and superscalar. In superpipelining, the process of fetching and executing
instructions is split into many small steps and all are done in parallel. In this way the
execution of many instructions is overlapped. The number of instructions being
processed at a given time depends on the number of pipeline stages, commonly termed
the pipeline depth. Some designers use as many as 8 stages of pipelining. One
limitation of superpipelining is that the speed of the execution is limited to the slowest
stage of the pipeline. Compare this to making pizza. You can split the process of
making pizza into many stages, such as flattening the dough, putting on the toppings,
and baking, but the process is limited to the slowest stage, baking, no matter how fast
the rest of the stages are performed. What happens if we use two or three ovens for
baking pizzas to speed up the process? This may work for making pizza but not for
executing programs, since in the execution of instructions we must make sure that the
sequence of instructions is kept intact and that there is no out-of-step execution. The
difficulties associated with a stalled pipeline (a slowdown in one stage of the pipeline,
which prevents the remaining stages from advancing) has made CPU designers
abandon superpipelining in favor of superscaling. In superscaling, the entire execution
unit has been doubled and each unit has 5 pipeline stages. Therefore, in superscalar,
there is more than one execution unit and each has many stages, rather than one
execution unit with 8 stages as in the case of a superpipelined processor. In some
superscalar processors, there are two execution units each with 4 pipeline stages instead
of a single execution unit with 8 pipeline stages as superpipelining proponents would
have it. In other words, in superscaling we have two (or even three) execution units
and as the instructions are fetched they are issued to the various execution units. Using
the analogy of pizza, superscalar is like doubling or tripling the entire crew flattening
the dough, putting toppings on, and baking. Of course, you will need a lot more people
involved in the process and you have to have more ovens, but at the same time you are
doubling or tripling the pizza output. In cases of recent microprocessor architecture, a
vast majority of designers have chosen superscaling over superpipelining. This requires
numerous transistors to duplicate several execution units, just like needing more people
in our pizza-making analogy. Fortunately, advances in IC design have allowed
designers access to hundreds of million transistors to throw around for the

STUDENTS-HUB.com Uploaded By: anonymous

implementation of powerful superscaling. There are some problems with superscaling,
such as data dependency issues, which can be solved by the compiler.

4. Combining more than one core in a single processor is another way of improving the
speed of high end processers. Cortex-A series of ARM supports up to four cores in
combination with each other.

Next, we will examine the issue of pipelining. See Figure 7-1.

(a} No Pipeline

i1 L Feicht i : ;
.......... o A T S— [P SRR -
i2]]O Exacuta 2] ;
i;}.. il eEfj..l:;“u;:.a.."""u.ﬁ.(j. —
Cycle 1 i Cycle?2 Cycle 3 Cycle 4 Cycle 5 o
 J i i i i

(b) 8086 2 Stage Pipeline

i n Felch1]Elr}_Emculu 1_-_-;=—_,_4_)i_

__________ | R

i2) Fetch 2 | :| Execule2 |

_____ S — .. _ __

Cyde1 | Cyde2 | Cycle3 | Cycled
Y ; i ;
Figure 7-1: Non-Pipelined Instruction Execution vs. 2-stage Pipeline (8086)
More about pipelining

In the early CPUs there was no pipelining. At any given moment, it either fetched or
it executed. It could not do both at the same time. In the non-pipelined CPU, while the
buses were fetching the instructions (opcodes) and data, the CPU was sitting idle, and in
the same way, when the CPU was executing instructions, buses were sitting idle. However,
in the early pipelined CPU such as 8086 the fetch and execute were performed in parallel
by two sections inside the CPU called the BIU (bus interface unit) and EU (execution
unit).

For the concept of pipelining to work, we need a buffer or queue in which an
instruction is prefetched and ready to be executed. In some circumstances, the CPU must
flush out the queue. For example, when a branch (B, BNE, BCS, and so on) or call
instruction is executed, the CPU starts to fetch codes from the new memory location and
the code in the queue that was fetched previously is discarded. In this case, the execution
unit must wait until the fetch unit fetches the new instruction. This is called a branch
penalty. The penalty is an extra instruction cycle to fetch the instruction from the target
location instead of executing the instruction right below the branch. Remember that the
instruction below the branch has already been fetched and is next in line to be executed
when the CPU branches to a different address. Note that newer CPUs have more stages in
their pipeline. For example a 3 stage pipeline may divide the code execution to Fetch,

STUDENTS-HUB.com Uploaded By: anonymous

Decode and Execute stages. When the number of stages in a pipeline increases, more
stages should be flushed out when a branch instruction is executed. Examine Example 7-1
to see how branch penalty slows down the execution of a code. Next, you will see how
branch prediction solves the problem.

Example 7-1

How many cycles does it take for a 3 stage pipelined CPU to run 3 iteration of the
following code?

MOV R1,#0
L1 ADD R2,R2#1
B L1
MOV R3#3
MOV R4,#4
Solution:

For the first instruction (MOV R1,#0), it takes 3 cycles to pass through the stages of
pipeline and be executed. After the third cycle, one instruction is executed in each cycle.
When the Branch instruction is executed in cycle 5, the CPU flushes the pipeline because
the fetch and decode instruction in cycles 4 and 5 are not needed. It causes two clock
cycles branch penalty. The same scenario happens each time the CPU executes a branch.
As we can see in the figure, It takes 13 cycles to run 7 instructions.

[l Feien |TT i i1 ¥ r' Comuie 1) |
1] e .-L. T
Fach | .' [|
mpu " |.uc-=-:nu- " | Jmﬁmn
|rm1 'lnw:-:tlg :-unr.)'i
[one |
=]ﬂ o] 11ﬂ]5 |
J (=" i1 oemen | [T |
|nr-<>ue.-| 1| sz o)i woosze
: ;'TI a0} | | D 3] ':5' [T——— I
Al s mr Sl mw i
[T 1 i
1 WI'M.I
4 (Crel | Cyde2 | Cyded 1 Cyded Coyche 5 Cyclaf | CydeT? | Cyde@ | Cyced Cycet0 | Cydeit

Branch prediction

STUDENTS-HUB.com

Branch prediction is another new feature of the new CPUs. The penalty for
branching is very high for a high-performance pipelined microprocessor such as the ARM.
For example, in the case of the BNE (branch if not equal) instruction, if it branches, the

Uploaded By: anonymous

pipeline must be flushed and refilled with instructions from the target location. This takes
time. In contrast, the instruction immediately below the BNE is already in the pipeline and
is advancing without delay. Some processors have the capability to predict and prefetch
code from both possible locations and have them advanced through the pipeline without
waiting (stalling) for the outcome of the zero flag. The ability to predict branches and
avoid the branch penalty can result in a substantial reduction in the clock count for a given
program. Some CPUs have branch prediction, but with greater capability. When it
encounters branch instructions (such as BNE), it creates a list of them in what is called the
branch target buffer (BTB). The BTB predicts the target of the branch and starts executing
from there. When the branch is executed, the result is compared with what the prediction
section of the CPU said it would do. If they match, the branch is retired. If not, all
instructions behind the branch are removed from the pool and the correct branch target
address is provided to the BTB. From there the BTB refills the pipeline with instructions
from the new target address. See Example 7-2.

Example 7-2

Show how many cycles does it take for a 3-stage pipelined CPU to run 3 iteration of the
code in Example 7-1? Assume that the branch prediction unit has predicted all branches.

Solution:

It takes 9 cycles to run 7 instructions. In cycles 4 to 8 instructions are predicted by branch
prediction unit.

I'_] Fatch i1]] e g 'I_

| wovirie |2 l.vm-an | MOVRLE |
T Pk ‘ Dhocaxde (1) |' [
11 ADD F2 Rz A | A.xm'.:v-?n; -IDCI'-HHJI'FJ
'_ Fadeh (i3] | Dipcoda () || Esezasts 1Y) 'l
i B L1 _.; B L1 B LY
Fatch [17) | Dacreln () '§' Excute |17}
| i, DI L ADD R A 1] | ADD RERLE

gi' Fsteh (233 ' | Emcida (1)

Bil ,E 0

! |r1 Fatch () ""Il Dwcoos 03} 4 Fu -m-l:'r "
.In\nﬂl'blﬁ?l ADD TR R2EY lm“.?ﬂil!

I'l Fm iy " nm-uqm Jr] Emm:-

:. : : * : f- : - ”
¥ Cycle1t ¢ Cycle2 ! Cycled ! Cyled ! Cyle5 ! Cydef ! Cycle? * Cyde8 * Cyced

Note that stores are never performed speculatively since there is no transparent way
to undo them. Stores are also never re-ordered among themselves. A store is dispatched
only when both the address and the data are available and there are no older stores
awaiting dispatch.
3-stage pipeline in ARM7

Since the introduction of the 8086 microprocessor in 1978, processor designers have
come to rely more and more on the concept of pipelining to increase the processing power

STUDENTS-HUB.com Uploaded By: anonymous

of the CPU. ARM7 used the concept of pipelining with three stages of fetch, decode, and
execute. See Example 7-3.

Example 7-3
Show how the following code is executed in ARM?7.
MOV R4,R5
ADD R1,R2,R3
SUB R6,R7,R8

Solution:

g Fetch (i1} Decode (i1) : [Execule {i1) : E

i MOVR4RS [i|| MOVR4RS |i|| MOVR4Rs [i :

. Fatch (i2) = [Decode (i2) : Execute (i2) 1'

i2 {|) ADD R1,R2.R3 |i| | ADD R1,R2,R3 |i| | ADD R1R2,R3 /i

. ' : [Fetch (i3} : Decode (i3) : Execute (i3]

i3 i\ | SUBR6,R7 RS [i| | SUBR6,R7.RS [i| | SUB R6.R7,RE

: ; ; : -
Cycle1 | Cycle2 | Cycle3 ! Cycle4 | Cycle5

5-stage pipeline in ARM9

As we mentioned earlier the ARM7 has a 3-stage pipeline. As shown in Figure 7-2, the
ARMDO has extended the pipeline to 5 stages. They are:

Fetch
Decode
Execute
Memory
Write

(o) o) [) ()| (e

oui. & W =

* Cycle1 | Cycle2 | Cycle3 | Cycled | Cycle5

Figure 7- 2: 5-Stage Pipeline in ARM9

Fetch: In the Fetch stage the instructions are fetched from memory and placed in the
queue and wait to be decoded. In this stage the Program Counter (PC) is also incremented
by 4 since the ARM instructions are 4-bytes.

Decode: In the decode stage the instruction is decoded and the register file is also

STUDENTS-HUB.com Uploaded By: anonymous

accessed to get everything ready for the Execute stage.

Execute: In this stage, any effective address calculation and sign extending of a byte
or a half-word are done. In the instructions such as Load and Store this stage gets
everything ready for the next stage of memory access. In instructions such as “ADD
R1,R2,R3” in which all the resources needed for the execution of the instruction are ready
before it comes to this stage, the registers are added and it goes directly to the write-back
stage to write the result to the register file.

Memory: For instructions such as Load and Store in which external memory
accesses are needed, the memory stage fetches the data from the external memory and has
the data inside the CPU ready for the next stage of the write-back. If an instruction does
not need to access memory, this stage is bypassed and the result is forwarded to the last
stage of write-back. This means it becomes a 4-stage pipeline.

Write: Also called write-back is the stage in which the instruction is completed by
writing the result to the register file and retiring the instruction. As we just stated, if an
instruction does not need to access memory, write-back is the stage right after the execute
stage, meaning for many instructions we really have 4-stage pipeline.

3-stage vs. 5-stage pipeline

In the 3-stage pipeline of ARM7, the execution, the memory access, and the writing
the result to register file are all performed by the Execute stage. In the 5-stage pipeline, the
CPU decouples the memory access and execute stage. With the two new stages of memory
and write-back, the ARM9 increases the processing power of the CPU by allowing the
CPU to work concurrently on 5 instructions instead of 3 instructions at a given time. This
is a major enhancement of the ARM9 over ARM7.

Review Questions

1. What is superpipelining?

2. What is the limitation of superpipeline?
3. What is superscaling?
4

True or false. The 5-stage pipeline has better performance than the 3-stage
pipeline.

5. Give the names of the 5-stage pipeline in ARMO.

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com

Section 7.2: Other CPU Enhancements

There are many other ways available to microprocessor designers to increase the
processing power of the CPU. Next, we examine some of them.

Superscalar CPUs

Another unique feature of the many of new CPUs is its superscalar architecture. A
large number of transistors are used to put more than one execution unit inside the CPU.
As the instructions are fetched, they are issued to these execution units. Figure 7-3 shows
the concept of superscalar.

1 |([Foe) [oser)i moner)

AL b NESTEE S
i3 U Fetch 3 J{) Decode 3 H] Exscuta 3]

J L NECTE .
i5 D Fetch 3 U Decode 3]0 Execile3)

[) Decode 4 JO Execute 4)

Y Cycle1 | Cycle2 | Cycle3 | Cycled | Cycleb

Figure 7- 3: Superscalar CPUs

Issuing two instructions at the same time to different execution units can work only
if the execution of one does not depend on the other one, in other words, if there is no data
dependency. As an example, look at the following instructions.

ADD R1,R2,R3
SUB R4,R1,R5
AND R6,R7,R8
MOV R9,R10

In the above code, the ADD and SUB instructions cannot be issued to two execution
units since R1, the destination of the first instruction, is used immediately by the second
instruction. This is called read-after-write dependency since the SUB instruction wants to
read the R1 contents, but it must wait until after the ADD is finished writing it into R1.
The problem is that ADD will not write into R1 until the last stage of the pipeline, and by
then it is too late for the pipeline of the SUB instruction. This prevents the SUB
instruction from advancing in the pipeline, therefore causing the pipeline to be stalled until
the ADD finishes writing and then the SUB instruction can advance through the pipeline.
This kind of data dependency raises the clock count for the SUB instruction. What if the
instructions are rescheduled? We will discuss out of order execution next in this chapter.

ADD R1,R2,R3
AND R6,R7,R8

Uploaded By: anonymous

SUB R4,R1,R5
MOV R9,R10

If they are rescheduled as shown above, each can be issued to separate execution
units, allowing parallel execution of both instructions by two different units of the CPU.
Since the clock count for each instruction is one, having two execution units leads to
executing two instructions by pairing them together, thereby using only one clock count
for two instructions. In the case of the above program, if it is run on the CPU with
superscalar it will take only 2 clocks instead of 4, assuming that two instructions are
paired together. This reordering of instructions to take advantage of the two internal
execution units of the CPU can be done by compiler or CPU itself and is called instruction
scheduling. Currently, some compilers are being equipped to do instruction scheduling to
remove dependencies. The process of issuing two instructions to the two execution units is
commonly referred to as instruction pairing.

Superpipelined and superscalar

Some microprocessors use a 10-stage pipeline for the CPU. In contrast to the 5-
pipestage, although each pipe stage of the 10-pipestage performs less work, there are more
stages. This means that in such processors, more instructions can be worked on and
finished at a time. These CPUs with their 10- or 12-stage pipeline are referred to as
superpipelined. Since they also have multiple execution units capable of working in
parallel, they are also superscalar. Another advantage of the superpipelined concept is that
it can achieve a higher clock rate (frequency) with the given transistor technology. They
also use what is called out-of-order execution to increase the performance of the CPU.
This is explained next.

Decoupling and out-of-order execution

In CPU architecture, when one of the pipeline stages is stalled, the prior stages of
fetch and decode are also stalled. In other words, the fetch stage stops fetching instructions
if the execution stage is stalled, due, for example, to a delay in memory access. This
dependency of fetch and execution has to be resolved in order to increase CPU
performance. That is exactly what many designers have done with the CPU and is called
decoupling the fetch and execution phases of the instructions. In these processors,
instructions are fetched from memory and placed into a pool called the instruction pool.
See Figure 7-4.

Instruction Fetch / Decode Dispatch / Retire/Write
Cache - Unit Execute Unit » back Unit

N4

Instruction
Pool

Figure 7- 4: CPU Instruction Execution

This fetch/decode of the instructions is done in the same order as the program was

STUDENTS-HUB.com Uploaded By: anonymous

coded by the programmer (or compiler). However, when they are placed in the instruction
pool they can be executed in any order as long as the data needed is available. In other
words, if there is no dependency, the instructions are executed out of order, not in the same
order as the programmer coded them. Such a speculative execution can go 20-30
instructions deep into the program. It is the job of the retire unit to provide the results to
the programmer’s (visible) registers (e.g., RO, R1) according to the order in which the
instructions were coded. Again, it is important to note that the instructions are fetched in
the same order that they were coded, but executed out of order if there is no dependency,
and ultimately retired in the same order as they were coded. This out-of-order execution
can boost performance in many cases. Look at Example 7-4.

Example 7-4

The following ARM code (a) sets the pointer for three different arrays, and the counter
value, (b) gets each element of ARRAY_1, adds a fixed value of 100 to it, and stores the
result in ARRAY_2, and (c) complements the element and stores it in ARRAY_3. Analyze
the execution of the code in light of the out-of-order execution and branch prediction
capabilities of an ARM CPU.

(i1) LDR R1,=ARRAY_1 ;load pointer

(i2) LDR R2,=ARRAY_2 ;load pointer

(i3) LDR R3,=ARRAY_3 ;load pointer

(i4) MOV R4#COUNT ;load the counter
(i5) AGAIN LDR R5,[R1] ;load the element
(i6) ADD R5,R5,#100 ;add the fix value
(i7) ADD R1,R1,#4 ;update the pointer
(i8) STR R5,[R2] ;store the result
(i9) ADD R2,R2,#4 ;update the pointer
(i10) MVN R5,R5 ;complement the result
(i11) STR R5,[R3] ;and store it

(i12) ADD R3,R3,#4 ;update the pointer
(i13) SUBS R4,R4,#4 ;

(i14) BNE AGAIN ;stay in the loop
(i15)

Solution:

STUDENTS-HUB.com Uploaded By: anonymous

The fetch/decode unit fetches and puts instructions into the pool. Since there is no
dependency for instructions il through i5, they are dispatched, executed, and retired
except for i5. Notice that the pointer values of il to i4 are immediate values; therefore,
they are embedded into the instruction when the fetch/decode unit gets them. Now i5 is a
memory fetch that can take many clocks, depending on whether the needed data is located
in cache or main memory. Meanwhile i6, i8, i10, and i11 must wait until the data is
available. However i7, i9, and i12 can be executed out of order. More importantly, the
BNE instruction is predicted to go to the target address of AGAIN and i5, i6, ... are
dispatched once more for the next iteration. This time the memory fetch will take very few
clocks since in the previous data fetch, the CPU read some bytes of data into the cache.
This process will go on until the last round of looping where R4 becomes zero and falls
through. At this time, due to misprediction, all the instructions belonging to instructions
i5, 6, i7, ... (start of the loop) are removed and the whole pipeline restarts with
instructions belonging to i15, i16, and so on.

Due to the fact that memory fetches (due to cache misses) can take many clock
cycles and result in underutilization of the CPU, out-of-order execution is a way of finding
something to do for the CPU. Simply put, the idea of out-of-order execution is to look
deep into the stream of instructions and find the ones that can be executed ahead of others,
provided that resources are available. Again, it is important to note that these processors
will not immediately provide the results of out-of-order executions to programmer-visible
registers such as RO, R1, and so on, since it must maintain the original order of the code.
Instead, the results of out-of-order executions are stored in the pool and wait to be retired
in the same order as they were coded. Therefore, programmer-visible registers are updated
in the same sequence as expected by the programmer.

Register renaming

There are some cases in which instructions are not really dependent on each other
but there is a kind of implicit dependency called register dependency. See Example 7-5.

Example 7-5
For the following code, indicate the instructions that can be executed in parallel or out of
order.
(i1) LDR R4,[R2] ;Jload R4 from memory pointed to by R2
(i2) ADD R3,R4,R7 ;R4+R7—>R3
(i3) ADD R6,R8,R10 ;R8+R10—>R6
(i4) SUB R5,R1,R9 ;R1-R9—>R5

(i5) ADD R6,R12#1 ;R12+1—->R6

STUDENTS-HUB.com Uploaded By: anonymous

Solution:

Instruction i2 cannot be executed until the data is brought in from memory (either cache or
main memory DRAM). Therefore, i2 is dependent on il and must wait until the R4
register has the data. However, instructions i3 and i4 can be executed out of order and
parallel with each other since there is no dependency among them. Notice that i5 is not
really dependant on i3 because i5 does not use any of data generated by i3. But i5 and i3
cannot be executed out of order or in parallel because R6 is modified by both of i3 and i5.
This kind of dependency is called register dependency and is solved by a method called
register renaming.

In the following code none of the instructions can be executed in parallel because of
using R1 in all instructions:

MOV R1#5
ADD R3,R1,#2
MOV R1,#6

ADD R4,R1,#2

If you examine the above code carefully you will see that the first two lines of code
are independent from the second two lines of code and we can remove the implicit
dependency by changing R1 to another register such as R2 in the last two lines of code:

MOV R1#5
ADD R3,R1,#2
MOV R2#6

ADD R4,R2,#2

Renaming the registers before issuing the instructions to execution unit is done in
many of new advanced CPU and it is called register renaming.

Putting them all together in an ARM CPU

In Figure 7-5 you can see a top-level diagram of the ARM Cortex A9 processor. It
has most of the parts discussed in this chapter.

STUDENTS-HUB.com Uploaded By: anonymous

Cortex-A9 processor Program Trace Performance
Macrocell (PTM) Monitoring Unit
interface (PMU)
Register Dispatch :
rename stage stages ALUMUL Wrrksbeiok
stage
Virtual to | [instruction ALY
physical queue and
register pool 2 dispatch
- FPU or NEON
Dual instruction Out of order
decode stage multi-issue
- A Branches with speculation Load/store
T address *
_ L genaration unit
Instructions Predictions
| . j
Instruction prefetch stage Memory system
Branch prediction 1
Instruction Memary Translation
queue Dynamic branch Loadstore || - nagement || lookaside
_ prediction ek unit buffer
Instruction
Return stack
cache Preload
Engine (optional)
I_ Data cache
-
Instruction Data
fetch ACCesses

| .

Figure 7- 5: Top-level diagram of the ARM Cortex A9 processor

Bus frequency vs. internal frequency in CPU

Frequently you may see an advertisement for a 1-GHz or 2-GHz CPUs. It is
important to note that the stated frequency is the internal frequency of the CPU and not the
bus frequency. This is due to the fact that designing a 1-GHz motherboard is very difficult
and expensive. Such a design requires a very fast logic family and memory in addition to a
massive simulation to avoid crosstalk and signal radiation. The bus frequency for such
systems is currently less than 1 GHz.

Review Questions
1. True or false. The ARM instruction set is in triadic form.
2. True or false. The branch prediction task is performed by circuitry inside the CPU.
3. Why are some CPUs called a superscalar processor?
4. Instruction scheduling is done by
5

Out of order execution is arranged by

STUDENTS-HUB.com Uploaded By: anonymous

Problems

Section 7.1: ARM Pipeline Evolution
1. The ARMY7 uses a pipeline of stages.
2. Give the names of the pipeline stages in the ARM7
3. The ARMSO uses a pipeline of stages.
4. Give the names of the pipeline stages in the ARM9

Section 7.2: Other CPU Enhancements

5. The number of pipeline stages in a superpipeline system is (less, more)
than in a superscalar system.

6. Which has one or more execution units, superpipeline or superscalar?

7. Which part of on-chip cache in the ARM is write protected, data or code?
8. What is instruction pairing, and when can it happen?

9. What is data dependency, and how is it avoided?

10. True or false. Instructions are fetched according to the order in which they were
written.

11. True or false. Instructions are executed according to the order in which they were
written.

12. True or false. Instructions are retired according to the order in which they were
written.

13. The visible registers R0, R1, and so on, are updated by which unit of the CPU?

14. True or false. Among the instructions, STRs (store) are never executed out of order.

STUDENTS-HUB.com Uploaded By: anonymous

Answers to Review Questions

Section 7.1

1. In superpipelining, the process of fetching and executing instructions is split into
many small steps and all are done in parallel. In this way the execution of many
instructions is overlapped.

2. The speed of the execution is limited to the slowest stage of the pipeline.
3. Insuperscaling, the entire execution unit has been doubled
4. True
5. Fetch, decode, execute, memory, write back
Section 7.2
1. True
2. True

3. Since it has two execution units (pipelines) capable of executing two instructions
with one clock

4. circuitry inside the CPU and the compiler
the CPU

Ut

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Appendix A: ARM Cortex-M3 Instruction Description

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section A.1: List of ARM Cortex-M3 Instructions

ADC Add with Carry

ADCS Add with Carry (and update the flags)
ADD ADD

ADDS ADD and update the flags

ADR Load PC-Relative Address

AND Logical AND

ANDS Logical AND (update flags)

ASR Arithmetic Shift right

ASRS Arithmetic Shift right (update the flags)

B Branch (unconditional jump)

Bxx Branch Conditional

BEC Bit Field Clear

BFI Bit Field Insert

BIC Bit Clear

BICS Bit Clear (update flags)

BKPT Breakpoint

BL Branch with Link (this is Call instruction)
BLX Branch Indirect with Link

BX Branch Indirect (BX LR is used for Return)
CBNZ Compare and Branch on Non-Zero

CBZ Compare and Branch on Zero

CDP Coprocessor Data processing

CLREX Clear Exclusive

CLZ Count Leading Zero

CMN Compare Negative

CMP Compare

CPSID Change processor ID and Disable Interrupt
CPSIE Change Processor State and Enable Interrupt
DMB Data Memory Barrier

DSB Data Synchronization Barrier

STUDENTS-HUB.com

Uploaded By: anonymous

EOR Exclusive OR

EORS Exclusive OR and update the flags
ISB Instruction Synchronization Barrier
IT If-Then Condition Block

LDC Load Coprocessor

LDM Load Multiple registers

LDMDB

Load Multiple registers and Decrement Before each access

LDMEA Load Multiple registers from Empty Ascending

LDMFD Load Multiple registers Full Descending

LDMIA Load Multiple registers and Increment after each Access
LDR Load Register

LDR Rx,=Value Load Register with 32-bit value

LDRB Load Register Byte

LDRBT Load Register Byte with Translation

LDREX, LDREXB, LDREXH__Load Register Exclusive

LDRH Load Register Halfword

LDRSB Load Register signed Byte

LDRSH Load Register Signed Halfword
LDRT Load Register with Translation

LSL Logical Shift Left

LSLS Logical Shift Left (update the flags)
LSR Logical Shift Right

LSRS Logical Shift Right (update the flags)
MCR Move to Coprocessor from ARM Register
MLA Multiply Accumulate

MLS Multiply and Subtract

MOV Move (ARM7)

MOV Move (ARM Cortex)

MOQOVS Move (and update flags)

MOVT Move Top

MOVW Move 16-bit constant

STUDENTS-HUB.com

Uploaded By: anonymous

MRC Move to ARM Register from Coprocessor

MRS Move to general Register from Special register
MSR Move to Special register from general Register
MUL Unsigned Multiplication

MVN Move Negative

MVNS Move Negative and update the flags

NOP No Operation

ORN Logical OR Not

ORNS OR Not and update flags

ORR Logical OR

ORRS Logical OR and update the flags

POP POP register from Stack

PUSH PUSH register onto stack

RBIT Reverse Bits

REV Reverse byte order in a word

RV16 Reverse byte order in 16-bit

REVSH Reverse byte order in bottom halfword and sign extend
ROR Rotate Right

RORS Rotate Right (update the flags)

RRX Rotate Right with extend

RRXS Rotate Right with extend (update the flags)
RSB Reverse Subtract

RSBS Reverse Subtract and update the flags

SBC Subtract with Carry (Borrow)

SBCS Subtract with Carry (Borrow) and update the flags
SBEX Sign Bit Field extract

SDIV Signed Divide

SEV Send Event

SMLAL Signed Multiply Accumulate L.ong

SMULL Signed Multiply L.ong

SSAT Sign Saturate

STUDENTS-HUB.com

Uploaded By: anonymous

STM Store Multiple

STMDB Store Multiple register and Decrement Before
STMEA Store Multiple register Empty Ascending
STMIA Store Multiple register Empty Ascending
STMFD Store Multiple register Full Descending
STR Store Register

STRB Store Register Byte

STRBT Store Register Byte with Translation
STRD Store Register Double (two words)
STREX, STREXB, STREXH Store Register Exclusive

STRH Store Register Halfword

STRT Store Register

SUB Subtract

SUBS Subtract

SVC supervisor Call (Software Interrupt)
SXTB Sign Extend byte

SXTH Sign Extend Halfword

TBB Table Branch Byte

TBH Table Branch halfword

TEQ Test Equivalence

TST Test

UBEFX Unsigned Bit filed extract

UDIV Unsigned Divide

UMLAL Unsigned Multiply with Accumulate
UMULL Unsigned Multiply Long

USAT Unsigned Saturate

UXBT Zero extend a byte

UXTH Zero extend halfword

WFE Wait for event

WEFI Wait for interrupt

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section A.2: ARM Cortex-M3 Instruction Description

ADC Add with Carry
Flags: Unaffected.
Format: ADC Rd,Rn,Op2 ;RA=Rn+0p2+C

Function: If C = 1 prior to this instruction, then after execution of this instruction, Op2 is
added to Rn plus 1 and the result is placed in Rd. If C = 0, Op2 is added to Rn plus 0.
Used widely in multiword additions. After the execution the flags are not updated. The
ADCS instruction updates the flags.

Example 1:
LDR RO,=0xFFFFFFFB ;RO=0xFFFFFFFB
LDR R1,=0xFFFFFFFF ;R1=0xFFFFFFFF
MOV R2,#3 ;R2=3
MOV R3,#4 :R3=4
ADDS R4,R0O,R1 ;R4=R0O+R1, C=1
ADC R5,R2,R3 ;R5=R2+R3+C=R2+R3+1

ADCS Add with Carry (and update the flags)
Flags: Affected: N, Z, V, C.
Format: ADC Rd,Rn,Op2 ;RA=Rn+0p2 +C

Function: If C=1 prior to this instruction, then after execution of this instruction,
Op?2 is added to Rn plus 1 and the result is placed in Rd. If C = 0, Op2 is added to Rn plus
0. Used widely in multiword additions. Notice the S indicates the flags will be updated.

Example 1:
LDR RO,=0xFFFFFFFB ;RO=0xFFFFFFFB
LDR R1,=0xFFFFFFFF ;R1=0xFFFFFFFF
MOV R2#3 ;R2=3
MOV R3#4 :R3=4
ADDS R4,RO,R1 ;R4=R0+R1, C=1
ADCS R5,R2,R3 ;R5=R2+R3+C=3+4+1, Z=0,N=0,C=0,
ADD ADD
Flags: Unaffected
Format: ADD Rd,Rn,Op2 ;Rd = Rn + Op2

STUDENTS-HUB.com Uploaded By: anonymous

Function: Adds source operands together and places the result in destination. This
will not update the flags. To update the flags we must use ADDS.

Example 1:
LDR RO,=0xFFFFFFFF ;RO=0xFFFFFFFB
MOV R1,#0x5 ;R1=0x5

ADD R2,RO,R1
;R2=R0+R1=0xFFFFFFFFB+0x5=00000000
;flags unchanged

Example 2:
LDR RO,=0xFFFFFFFF ;RO=0xFFFFFFFF
ADD R2,R0,#0xF1
;R2=R0+0xF1=R1=0xFFFFFFFF+0xF1=000000F0
;flags unchanged

ADDS ADD and update the flags
Flags: Affected: N, Z, V, C.
Format: ADDS Rd,Rn,Op2 ;Rd=Rn+Op2 and update the flags

Function: Add source operands together and places the result in destination and
update the flags. Next, we examine the cases of signed and unsigned numbers.

Unsigned addition:

In addition of unsigned numbers, the status of C, Z, N, and V may change, but only C and
Z are of any use to programmers. The most important of these flags is C. It becomes 1
when there is carry from D31 out in a 32-bit (DO-D31) operation.

Example 1:
MOV R1,#0x45 ;R1=0x45
ADDS RI1,R1L#0x4F ;R1=0x94 (0x45+0x4F=0x94),C=0,Z=0

Example 2:
MOV R2#0xFE ;R2=0xFE
MOV R3#0x75 ;R3=0x75
ADDS R4,R2,R3 ;R4=0xFE+0x75=0x73,C=0,Z=0
Example 3:
LDR R0,=0xFFFFFFFF ;RO=0xFFFFFFFB
MOV R1,#0x01 ;R1=0x1

STUDENTS-HUB.com Uploaded By: anonymous

ADDS R2,RO,R1
;R2=R0+R1=0xFFFFFFFFF+0x1= 00000000, C=1, Z=1

Example 4:
LDR RO,=0xFFFF126F ;RO=0xFFFF126F
LDR R1,=0xFFFF46D4 ;R1=0xFFFF46D4

ADDS R2,RO,R1
;R1=0xFFFF126F + OxFFFF46D5=0xFFFF5943, C=1, Z=0

Signed addition:

In addition of signed numbers, the status of V, Z, and N must be noted. Special attention
should be given to the overflow flag (V) since this indicates if there is an error in the result
of the addition. There are two rules for setting V in signed number operation. The
overflow flag is set to 1:

1. If there is a carry from D30 to D31 and no carry from D31 out in a 32-bit operation
2. [If there is a carry from D31 out and no carry from D30 to D31 in a 32-bit operation

Notice that if there is a carry both from D31 out and from D30 to D31, then V = 0 in 32-
bit operations.

Example 5:
MOV R1,#+8 ;R1=0x00000008
MOV R2#+4 ;R2=0x00000004
ADDS R3,R1,R2 ;R3=0x0000000C N=0,V=0,C=0

Notice N = D31 = 0 since the result is positive and V = 0 since there is neither a carry
from D30 to D31 nor any carry beyond D31. Since V = 0, the result is correct [(+8) +
(+4) = (+12)].

Example 6:
LDR R1,=0x+42FFFFFF ;R1=0x42FFFFFF, (a positive number)
LDR R2,=0x+45FFFFFF ;R2=0x45FFFFFF (a positive number)
ADDS R3,R2,R1 ;R3=0x88FFFFFE, C=0, N=1, Z=0, and V=1

In Example 6, the correct result should be +, but the result is —. The V = 1 is an indication
of this error. Notice that N =D31 = 1 since the result is negative; V = 1 since there is a
carry from D30 to D31and C = 0.

Example 7:
LDR R0O,=-12 ;RO=0xFFFFFFF4
LDR R1,=+17 ;R1=0x00000011

STUDENTS-HUB.com Uploaded By: anonymous

ADDS R2,R1,R2 ;R2=00000005 (which is +5 and correct)
;N=0,Z2=0,V=0, and C=1
Notice that V = 0 since there is a carry from D30 to D31 and a carry from D31 out.

Example 8:
LDR R0,=-30 ;RO=0xFFFFFFE2
LDR R1,=+14 ;R2=0x0000000E
ADDS R2,R1,R0 ;R2=FFFFFFFOQ (which is -16 and correct)

;N=1,7=0,V=0, and C=0

V = 0 since there is no carry from D31 out nor any carry from D30 to D31.

Example 9:
LDR R1,=-126 ;R1=0xFFFFFF82
LDR R2,=-127 ;R2=0xFFFFFF81
ADDS R3,R2,R1 ;R3=0xFFFFFF03

;(which is -253 and correct),N=1,Z=0 and V=0, C=1

V = 0 since there is carry from D31 out and carry from D30 to D31.

ADR Load PC-Relative Address

Flags: Unaffected:

Format: ADR Rd,label ;Rd= address of label

Function: This allows loading into Rd register an address relative to the current PC

(program counter). The label target address must be within the -4,095 to +4,096 bytes
from the address in PC register. That is no farther than 1024 instructions in either direction
of backward or forward.

Example:
ADR R3,MyMessage
HERE B HERE

MyMessage DCB “Hello”

AND Logical AND

Flags: Unaffected

Format: AND Rd,Rn,Op2 ;Rd= Rn ANDed Op2

Function: Performs logical AND on the operands, bit by bit, storing the result in

the destination. This will not update the flags. To update the flags we must use ANDS.
Notice that C flag is updated during calculation of Op2 when LSR or LSL are used.

|
STUDENTS-HUB.com Uploaded By: anonymous

0 0 0
0 1 0
1 0 0
1 1 1
Example 1:
MOV RO0,#0x39 ;R0=0x39
MOV R1,#0x0F ;R1=0x0F
AND R2,R1,R0 ;R2=09

;39 0011 1001
;OF 0000 1111

;09 0000 1001 Flags unchanged

Example 2:
MOV RO0,#0x37 ;R0=0x37
AND R1,R0,#0x0F ;R1 = R0 ANDed 0x0F = 07
;37 0011 0111
;OF 0000 1111

;07 0000 0111 Flags unchanged

ANDS Logical AND (update flags)
Flags: Affected: N,Z,C
Format: AND Rd,Rn,Op2 ;Rd= Rn ANDed Op2

Function: Performs logical AND on the operands, bit by bit, storing the result in the
destination. This will also update the flags. Notice that C flag is updated during
calculation of Op2 when LSR or LSL are used.

STUDENTS-HUB.com Uploaded By: anonymous

0 0 0
0 1 0
1 0 0
1 1 1
Example 1:
MOV RO0,#0x39 ;R0=0x00000039
MOV R1,#0x0F ;R1=0x0000000F
ANDS R3,R1,R0 ;R3=0x00000009
;39 0011 1001
;OF 0000 1111
;09 0000 1001 Z=0,N=0, C=unchanged
Example 2:
MOV R1,#0x39 ;R1=0x00000039
MOV R2,#0xC6 ;R2=0x000000C6
ANDS R3,R1,R2 ;R3=00000000

;39 0011 1001
;C6 1100 0110

;00 0000 0000 Z=1,N=0
Example 3:

LDR R2,=0xFFFFFF82

LDR R3,=0xFFFFFF81

ANDS R4,R2,R3 ;R4=0xFFFFFF80, Z=0, N=1
Example 4:

LDR R1,=0x55555555

LDR R2,=0xAAAAAAAA

ANDS R3,R2,R1 ;R3=00000000 Z=1, N=0
ASR Arithmetic Shift right
Flags: Unaffected. Except C

STUDENTS-HUB.com Uploaded By: anonymous

Format: ASR Rd, Rm, Rn

Function: As each bit of Rm register is shifted right, the LSB is removed and the
empty bits filled with the sign bit (MSB). The number of bits to be shifted right is given
by Rn and the result is placed in Rd register. The flags are unchanged. To update the flags
use ASRS instruction.

Example 1:
LDR R2,=0xFFFFFF82
ASR RO,R2,#6 ;RO=R2 is shifted right 6 times

;now, RO = OXFFFFFFFE

Example 2:
LDR R0,=0x2000FF18
MOV R1, #12
ASR R2,RO,R1 ;R2=R0 is shifted right R1 number of times.

;now, R2 = 0x0002000F

Example 3:
LDR R0,=0x0000FF18
MOV R1, #16
ASR R2,R0,R1 ;R2=R0 is shifted right R1 number of times
;now, R2 = 0x00000000

ASR arithmetic shift is used for signed number shifting. ASR essentially divides Rm by a
power of 2 for each bit shift.

ASRS Arithmetic Shift right (update the flags)

Flags: N,Z, and C.

Format: ASR Rd, Rm, Rn

Function: As each bit of Rm register is shifted right, the LSB is copied to C flag

and the empty bits filled with the sign bit (MSB). The number of bits to be shifted right is
given by Rn and the result is placed in Rd register. The ASRS updates the flags.

Example 1:
LDR R2,=0xFFFFFF82
ASRS RO,R2,#6 ;RO=R2 is shifted right 6 times.

;now, RO= OxFFFFFFFE, C=0, N=1, Z=0

Example 2:

STUDENTS-HUB.com Uploaded By: anonymous

LDR R0,=0x2000FF18
MOV R1, #12
ASRS R2,R0,R1 ;R2=R0 is shifted right R1 number of times.
;now, R2= 0x0002000F, C=1, N=0, Z=0
Example 3:
LDR R0,=0x0000FF18
MOV R1, #16
ASRS R2,RO,R1 ;R2=R0 is shifted right R1 number of times.
;now, R2=0x00000000, C=1, N=0, Z=1

ASRS arithmetic shift is used for signed number shifting. ASRS essentially divides Rm
by a power of 2 for each bit shift.

B Branch (unconditional jump)
Flags: Unchanged.
Format: B target ;jump to target address

Function: This instruction is used to transfer control unconditionally to a new address.
The difference between B and BL is that the BL instruction saves the address of the next
instruction to LR (the link register, R14). For ARM7, the target address is calculated by
(a) shifting the 24-bit signed (2’s comp) offset left two bits, (b) sign-extend the result to
32-bit, and (c) add it to contents of PC (program counter). This means the target address
could be within the —32M bytes to +32M bytes of address space from the current program
counter. For ARM Cortex M3. the target address must be within —-16MB to +16 MB
address space from current instruction.

Bxx Branch Conditional
Flags: Unaffected.
Format: Bxx target ;jump to target upon condition

Function: Used to jump to a target address if certain conditions are met. In ARM?7,
the target address cannot be more than —32MB to +32MB bytes away. For ARM Cortex
Ma3. the target address must be within —16MB to +16 MB address space from current
instruction. The conditions are indicated by the flag register. The conditions that determine
whether the jump takes place can be categorized into three groups:

1. flag values,
2. the comparison of unsigned numbers, and
3. the comparison of signed numbers.

Each is explained next.

1. “B condition” where the condition refers to flag values. The status of each bit of

STUDENTS-HUB.com Uploaded By: anonymous

the flag register has been decided by execution of instructions prior to the jump. The
following “B condition” instructions check if a certain flag bit is raised or not.

Instruction Condition
BCS Branch if Carry Set jump if C=1
BCC Branch if Carry Clear jump if C=0
BEQ Branch if Equal jump if Z=1
BNE Branch if Not Equal jump if Z=0
BMI Branch if Minus/Negative jump if N=1
BPL Branch if Plus/Positive jump if N=0
BVS Branch if Overflow jump if V=1
BVC Branch if No overflow jump if V=0

2. “B condition” where the condition refers to the comparison of unsigned numbers.
After a compare (CMP Rn,Op2) instruction is executed, C and Z indicate the result
of the comparison, as follows:

Rn > Op2 1 0
Rn = Op2 1 1
Rn < Op2 0 0

Since the operands compared are viewed as unsigned numbers, the following “B
condition” instructions are used.

Instruction Condition
BHI Branch if Higher jump if C=1 and Z=0

BEQ Branch if Equal jump if C=1 and Z=1

BLS Branch if Lower or same jump if C=0 or Z=1

In reality, the “CMP Rn, Op2” is a subtract instruction (Rn-Op2). After the subtraction
the result is discarded and flags are changed according to the result. Notice in ARM the
subtract affects the C flag setting differently from the x86 and other CPUs. See the SUB

STUDENTS-HUB.com Uploaded By: anonymous

instruction.

3. “B condition” where the condition refers to the comparison of signed numbers. In
the case of the signed number comparison, although the same instruction, “CMP
Rn,0Op2”, is used, the flags used to check the result are as follows:

Rn > Op2 V=N or Z=0
Rn = Op2 Z=1
Rn < Op2 V inverse of N

Consequently, the “B condition” instructions used are different. They are as follows:

jump if N=1 and V=1 or N=0 and V=0

BGE Branch Greater or Equal
(V=N)

jump if N=1 and V=0 or N=0 and V=1
(N not equal to V)

BLT Branch Less than

jump if Z=0 and either N=1 and V=1 or N=0 and
BGT Branch Greater than V=0

(N=V)

jump if Z=1 or N=1 and V=0. Or N=0 and V=1

BLE Branch Less or Equal
(Z=1 or N not equal to V)

BEQ Branch if Equal jumpif Z =1

All “B condition” instructions are short jumps, meaning that the target address cannot be
more than -32M bytes backward or +32M bytes forward from the PC of the instruction
following the jump. In ARM Cortex M3 it is 16MB in each direction. What happens if a
programmer needs to use a “B condition” to go to a target address beyond the -32MB to
+32MB range? The solution is to use the “BX condition, Rm” since Rm can be 32-bit
address and covers the entire 4GB address space of the ARM. This is shown next.

LDR R4,=MYTARGET
ADDS RI1,R2,R3

BXEQ R4 ;branch to address held by R4 if Z=1
MYTRGT SUBS R7,#4

NOP

NOP

STUDENTS-HUB.com Uploaded By: anonymous

Rn > Op2 0 0 0 N

Rn = Op2 0 1 0 N
Rn < Op2 1 0 1 Inverse of N
BFC Bit Field Clear
Flags: Unaffected.
Format: BFC Rd, #L.SB, #Width
Function: Clears selected bits of Rd. The start location of the Rd bit is indicated by

#L.SB and must be in the range of 0—31. How many bits should be cleared is indicated by
#Width and must be in the range of 1-32.

Example 1:

LDR R1,=0xFFFFFFFF ;R1=0xFFFFFFFF

BFC R1,#2,#14 ;now R1=0xFFFF0003
Example 2:

LDR R2,=0x999999999 ;R2=0x99999999

BFC R2,#8,#24 ;now R2=0x00000099
BFI Bit Field Insert

Flags: Unaffected.
Format: BFI Rd, Rn, #L.SB, #Width

Function: Selected bits of Rn are copied to Rd. The start location of the Rd bit is
indicated by #L.SB and must be in the range of 0 — 31. How many bits should be copied is
indicated by #Width and must be in the range of 1-32. The start bit location of Rn is
always bit 0 (DO).

Example:
LDR R1,=0xABCDABCD ;R1=0xABCDABCD
LDR R2,=0x12345678 ;R2=0x12345678
BFI R1,R2,#4,#8 ;now R1=0xABCDA78D
BIC Bit Clear

Flags: Unaffected.

STUDENTS-HUB.com Uploaded By: anonymous

Format: BIC Rd, Rn,Op2 ;Rd=Rn ANDed with NOT of Op2

Function: Selected bits of Rn are cleared and placed in Rd. The Op2 provides the
bits selection. If the selected bits in Op2 are high then corresponding bits in Rn are cleared
and the result is placed in Rd. If the selected bits in Op2 are low the corresponding bits in
Rn are left unchanged and the result is placed in Rd. In reality, the BIC performs the AND
operation on the bits of Rn with the complement of the bits in Op2. The BIC will not
update the flags. To update the flags we must use BICS.

Output
X AND (NOT
Y)

0 0 0

0 1 0

1 0 1

1 1 0

Example:

LDR R1,=0xFFFFFFO0 ;R1=0xFFFFFFO00
LDR R2,=0x99999999 ;R2=0x9999999
BIC R3,R2,R1 ;now R3=0x00000099

BICS Bit Clear (update flags)
Flags: N and Z.
Format: BICS Rd, Rn, Op2 ;Rd=Rn ANDed with NOT of Op2

Function: Selected bits of Rn are cleared and placed in Rd. The Op2 provides the
selected bits. If the selected bits in Op2 is high then the corresponding bits in Rn is cleared
and the result is placed in Rd. If the selected bits in Op2 is low them the corresponding
bits in Rn is left unchanged and the result is placed in Rd. In reality, the BICS performs
the AND operation on the bits of Rn with the complement of the bits in Op2 and updates
the flags.

Output
X AND (NOT
Y)
0 0 0
0 1 0

STUDENTS-HUB.com Uploaded By: anonymous

1 1 0

Example 1:

LDR R1,=0xFFFFFF00 ;R1=0xFFFFFF00

LDR R2,=0x99999999 ;R2=0x9999999

BICS R3,R2,R1 ;now R3=0x00000099, N=0, Z=0
Example 2:

LDR R0O,=0xFFFFFFFF ;RO=0xFFFFFFFF

LDR R1,=0x01234567 ;R1=0x01234567

BICS R2,R1,R0 ;now R2=0, N=0, Z=1
Example 3:

MOV RO,#0 ;R0=0

LDR R1=0x99999999 ;R1=0x99999999

BICS R2,R1,RO ;now R2=0x99999999, N=1, Z=0
BKPT Breakpoint
Flags: Unaffected.
Format: BKPT #imme_value
Function: used by compiler to insert breakpoint into programs. Upon execution of

the BKPT instruction the program enters the Debug mode. See your ARM compiler for
more information

BL Branch with Link (this is Call instruction)
Flags: Unchanged.
Format: BL Subroutine Addr ;transfer control to a subroutine

Function: Transfers control to a subroutine. This instruction saves the address of
the instruction after the BL in R14 (link register). At the end of the subroutine the control
to the instruction after the BL is achieved by copying the LR (R14) register to PC. In
ARMY7, the target address cannot be more than —32MB to +32MB bytes away. For ARM
Cortex M3. the target address must be within —16MB to +16 MB address space from
current instruction.

Example:
LDR R7,=20000000
BL DELAY ;Call subroutine MY_DELAY

STUDENTS-HUB.com Uploaded By: anonymous

ADD R3,#4 ;address of this instruction is saved in R14

DELAY SUBS R7#4
NOP
NOP
MOV PC,R14 ;Return, could have used “BX LR” instruction

BLX Branch Indirect with Link

Flags: Unaffected.

Format: BLX Rm ;transfer control to a subroutine whose
;address is given by Rm

Function: Transfers control to a subroutine whose address is given by the Rm
register. This instruction saves the address of the instruction after the BL in R14 (link
register). At the end of the subroutine the control to the instruction after the BL is
achieved by copying the LR (R14) register to PC. One can use “BX LR” as return
instruction. Notice the difference between this instruction and “BL Target_Addr”
instruction. In the “BL Target_Addr” instruction the target address of the subroutine is
given right there. However, in the “BLX Rm” instruction, the target address of the
subroutine is held by register Rm.

Example:
ADR R2,DELAY
BLX R2 ;Call subroutine pointed to by R2

ADD R3,#4 ;address of this instruction is saved in R14

DELAY SUBS RI1,#4

NOP
NOP
BX LR ;return
BX Branch Indirect (BX LR is used for Return)
Flags: Unchanged.
Format: BX Rm ;BX LR is used for Return from a subroutine
Function: The most widely usage of this instruction is in the form of “BX LR” for

STUDENTS-HUB.com Uploaded By: anonymous

the purpose of return instruction at the end of subroutine.

Example:
LDR R1,=20000000
BL DELAY ;Call subroutine MY_DELAY
ADD R3,#4 ;address of this instr. is saved in R14

DELAY SUBS R1,#4
NOP
NOP
BX LR ;return to caller

CBNZ Compare and Branch on Non-Zero
Flags: Unchanged.
Format: CBNZ Rn, Target

Function: Transfers control to the target location if Rn is not equal to zero. The Rn
must be in the range of RO—R7 and target address cannot be farther than 130 bytes away
from the instruction. This instruction compares the Rn with zero and jumps only if Rn is
not zero. The comparison has no effect on flags. This can be used for loops in which the
body of the loop is no more than 20 instructions.

Example 1:
MOV R1,#10 ;R1=10
L1 NOP
NOP
NOP
SUB R1,R1,1 ;R1=R1-1
CBNZ RI1,L1

CBZ Compare and Branch on Zero
Flags: Unaffected.
Format: CBZ Rn, Target

Function: Transfers control to the target location if Rn is zero. The Rn must be in
the range of RO—R7 and target address cannot be farther than 130 bytes away from the
instruction. This instruction compares the Rn with zero and jumps only if Rn is zero. The
comparison has no effect on flags. This can be used to test a register value after reading a

STUDENTS-HUB.com Uploaded By: anonymous

port.

Example 1:

LDR R0O,=MYPORT_ADR ;RO = MYPORT address
HERE LDR R2,[RO] ;read from MYPORT

CBZ R2,HERE ;keep reading MYPORT until it is zero

CDP Coprocessor Data processing

See ARM Cortex-M Manual.

CLREX Clear Exclusive
See ARM Cortex-M Manual.

CLZ Count Leading Zero
Flags: Unchanged.
Format: CLZ Rd,Rn

Function: Scans the Rn register contents from most significant bit (D31) toward
least significant bit (DO) until it find the first HIGH. The number of binary zero bits before
it encounters the first binary HIGH is placed in Rd.

Example:
LDR R3,=0x01FFFFFF
CLZ R1,R3 ;R1=7 since there are 7 zeros before the first binary 1

CMN Compare Negative

Flags: Affected: V, N, Z,C.

Format: CMN Rn,0Op2 ;sets flags as if “Rn + Op2”
;Notice, the Rn -(-Op2)=Rn+0Op2

Function: Compares Rn register value with the negative of Op2 value. This is done by Rn
- (negative of Op2) which is Rn - (-Op2) = Rn + Op2. The Rn and Op2 operands are not
altered. In other words, the CMN adds the Op2 to Rn (Rn+Op2) and sets the flags
accordingly. This is the same as ADDS instruction except the operands are unchanged and
the result is discarded. See Bxx instruction for possible cases of comparison.

CMP Compare

Flags: Affected: V, N, Z, C.

Format: CMP Rn,Op2 ;sets flags as if “Rn-Op2”

Function: Compares two operands. The operands are not altered. Performs

comparison by subtracting the Op2 operand from the Rn and updates flags as if SUBS
were performed. As we can see in SUBS, the CMP perform the operation of Rn + 2’s

STUDENTS-HUB.com Uploaded By: anonymous

comp of Op2 and sets the flags according to the result. See Bxx instruction for possible
cases of comparison.

CPSID Change processor ID and Disable Interrupt

Flags: Unaffected

Format: CPSID iflag ;iflag is i in PRIMASK or f in FAULTMASK
Function: Used for disabling the interrupt flags in PRIMASK or FAULTMASK

registers. See ARM Cortex manual.

CPSIE Change Processor State and Enable Interrupt
Flags: Unaffected

Format: CPSIE iflag ;iflag is i in PRIMASK or f in FAULTMASK
Function: Used for enabling the interrupt flags in PRIMSK or FAULTMASK
registers. See ARM Cortex manual.

DMB Data Memory Barrier

Flags: Unaffected

Format: DMB

Function: It makes sure that all the explicit memory accesses prior to DMB

instruction are completed before the explicit memory accesses after the DMB. See ARM
Cortex manual.

DSB Data Synchronization Barrier
Flags: Unaffected
Format: DSB

Function: It makes sure that all the explicit memory accesses prior to DSB instruction are
completed before the DSB instruction is executed. See ARM Cortex manual.

EOR Exclusive OR
Flags: Unaffected
Format: EOR Rd,Rn,Op2

Function: Performs logical Ex-OR on the Rn and Op2 operands, bit by bit, storing
the result in the Rd. This will not update the flags. Use EORS instruction to updates the
flags.

STUDENTS-HUB.com Uploaded By: anonymous

0 1 1
1 0 1
1 1 0
Example 1:
MOV RO,#0xAA ;RO=0xAA

EOR R2,R0,#0xFF ;now, R2=0x55
;AA 1010 1010

;FF 1111 1111
;55 0101 0101 flags unchanged

Example 2:
LDR R0O,=0xAAAAAAAA ;RO=0xAAAAAAAA
LDR R1,=0x55555555 ;R1=0x55555555
EOR R2,R1,R0 ;R2=0xFFFFFFFF

;AA 1010 1010
;00 0101 0101

;FF 1111 1111 flags unchanged
The “EOR Rd,Rx,Rx” can be used to clear Rd.
Example 3:

MOV R1,#0x55

EOR R2,R1,R1 ;R2=0

;55 0101 0101

;55 0101 0101
;00 0000 0000 flags unchanged

To complement the bits of Rn, EX-OR it with OxFF.

Example 4:
LDR RO,=0xAAAAAAAA ;RO=0xAAAAAAAA
LDR R1,=0xFFFFFFFF ;R1=0xFFFFFFFF

STUDENTS-HUB.com Uploaded By: anonymous

EOR R2,R1,R0 ;R2=0x55555555
;AA 1010 1010

;FF 1111 1111

;55 0101 0101 flags unchanged

EORS Exclusive OR and update the flags
Flags: Affected: C, V,N, Z
Format: EORS Rd,Rn,Op2

Function: Performs logical Ex-OR on the Rn and Op2 operands, bit by bit, storing
the result in the Rd. After the execution the flags are updated.

b

STUDENTS-HUB.com

0 0 0
0 1 1
1 0 1
1 1 0
Example 1:
MOV RO,#0xAA ;RO=0xAA
EORS R2,R0,#0xFF ;now, R2=0x55
;AA 1010 1010
;FF 1111 1111
;55 0101 0101 N=0, C=0,2=0,V=0
Example 2:
LDR RO,=0xAAAAAAAA ;RO=0xAAAAAAAA
LDR R1,=0x55555555 ;R1=0x55555555
EORS R2,R1,R0O ;R2=0xFFFFFFFF
;AA 1010 1010
;55 0101 0101

Uploaded By: anonymous

;FF 1111 1111 N=1, C=0,Z2=0,V=0
The “EOR Rd,Rx,Rx” can be used to clear Rd.

Example 3:
MOV R1,#0x55
EORS R2,R1,R1 ;R2=0x0

;55 0101 0101
;55 0101 0101

;00 0000 0000 N=0, C=0,Z=1,V=0
ISB Instruction Synchronization Barrier
Flags: Unaffected.
Format: ISB

Function: It flushes the pipeline to make sure the instructions executed right after
the ISB instruction are fetched fresh from the cache or memory.

IT If-Then Condition Block
Flags: Unaffected

Format: See ARM manual
Function: It allows the execution of up to four instruction after the IT to be
conditional.

LDC Load Coprocessor
See the ARM Manual

LDM Load Multiple registers
Flags: Unaffected.
Format: LDM Rn, {Rx,Ry,..}

Function: Loads into registers from consecutive memory locations. The starting
address of memory location is given by Rn register. The destination registers separated by
comma and placed in braces. In the ARM Cortex, the stack is descending meaning that as
information is pushed onto stack the stack pointer is decremented. This IA (Increment the
address after each Access) is the default for loading (Poping). This instruction is widely
used for Poping (loading) multiple words from descending stack into CPU registers.

Example:

;Assume the following memory locations with the contents:

;12000=(46)
STUDENTS-HUB.com Uploaded By: anonymous

;12001=(10)
;12002=(38)
;12003=(82)
;12004=(56)
;12005=(50)
;12006=(58)
;12007=(15)
;12008=(63)
;12009=(60)
;1200A=(68)
;1200B=(39)
;1200C=(79)
;1200D=(70)
;1200E=(75)
;1200F=(92)
LDR R7,=0x12000
LDM R7,{R0O,R2,R4}
;now, R0=0x82381046, R2=0x15585056, ...
;the contents of memory locations 0x12000-0x12003 are
;moved to register R0O,and the contents of memory
;locations 0x12004-0x12007 are moved to register
;R2, and so on. Therefore we have R0=0x82381046,
;R2=0x15585056, and R4=0x39686063.
LDMDB Load Multiple registers and Decrement Before each access
Flags: Unaffected.
Format: LDMDB Rn, {Rx,Ry,...}

Function: This is the same as LDMEA (load multiple registers from Empty Ascending)
used for cases in which the stack is ascending. See LDMEA instruction.

LDMEA Load Multiple registers from Empty Ascending
Flags: Unaffected.

STUDENTS-HUB.com Uploaded By: anonymous

Format: LDMEA Rn, {Rx,Ry,...}

Function: Loads into registers from consecutive memory locations. The starting address
of memory location is given by Rn register. The destination registers separated by comma
and placed in braces. In the ARM Cortex, the default for stack is descending meaning that
as information are pushed onto stack the stack pointer is decremented. The IA (Increment
the address after each Access) is the default. If we change the default of descending stack
to ascending stack then we have to use the EA (Empty Ascending). The ascending stack
means as information are pushed onto stack the stack pointer is incremented. The LDMEA
is used for Poping (loading) multiple words from ascending stack into CPU registers.

LDMFD Load Multiple registers Full Descending

Flags: Unaffected.

Format: LDMFD Rn, {Rx,Ry,..}

Function: This is the same as LDM and LDMIA.

LDMIA Load Multiple registers and Increment after each Access

Flags: Unaffected.
Format: LDM Rn, {Rx,Ry,..}

Function: This is the same as the LDM instructions. In the ARM Cortex, the stack is
descending meaning that as information are pushed onto stack the stack pointer is
decremented. This IA (Increment the address after each Access) is the default. We use this
for Poping (loading) multiple words from descending stack into CPU registers.

LDR Load Register

Flags: Unaffected.

Format: LDR Rd,[Rx] ;load into Rd a word from memory
;location pointed to be Rx

Function: Loads into destination register the contents of four memory locations.
The [Rx] points to address of memory location. This is widely used to load 32-bit data
from memory into Rd register of the ARM since in the “MOV Rd,#immediate_value” the
immediate value cannot be larger than OxFF.

Example:
;Assume the following memory locations with the contents:
;12000=(46)
;12001=(10)
;12002=(38)
;12003=(82)
LDR R0,=0x12000

STUDENTS-HUB.com Uploaded By: anonymous

LDR R1,[RO]
;now, R1=82381046.

LDR Rx,=Value Load Register with 32-bit value
Flags: Unaffected.
Format: LDR Rd,=32_bit_value ;load Rd with 32-bit value

Function: Loads into destination register a 32-bit immediate value. This is widely
used to load 32-bit immediate value into Rd register of the ARM since in the “MOV
Rd,#immediate_value” the immediate value cannot be larger than OxFF.

Example:
LDR R0,=0x1200000 ;R0=0x1200000
LDR R1,=0x2FFFF ;R1=0x2FFFF
LDR RO,=0xFFFFFFFF ;RO=0xFFFFFFFF
LDR R1,=200000000 ;R1=200000000
LDRB Load Register Byte
Flags: Unaffected.
Format: LDRB Rd,[Rx] ;load into Rd a byte from memory
;location pointed to be Rx
Function: Loads into destination register the contents of a single memory location
indicated by Rx.
Example:

;Assume the following memory locations with the contents:
;12000=(46)
;12001=(10)
;12002=(38)
;12003=(82)
LDR R0,=0x12000
LDRB R1,[RO]
;now, RO=00000046
LDRBT Load Register Byte with Translation
Flags: Unaffected.
Format: LDRBT Rd,[Rx]

Function: Loads into Rd register a byte from memory location pointed to by Rx

STUDENTS-HUB.com Uploaded By: anonymous

and zero-extends the byte to 32-bit word. That means a zero is copied to all the upper 24
bits of the Rd register. Used for unprivileged memory access.

Example:
;Assume the following memory locations with the contents:
;12000=(46)
;12001=(10)
;12002=(38)
;12003=(82)
LDR R0,=0x12000
LDRBT R1,[R0O] ;now, R1=00000046

LDREX, LDREXB, LDREXH Load Register Exclusive

Function: They are used with STREX, STREXB, and STREXH instructions to perform
CPU synchronization operation. See ARM Cortex manual.

LDRH Load Register Halfword

Flags: Unaffected.

Format: LDRH Rd,[Rx] ;load into Rd a 2-byte from memory
;location pointed to be Rx

Function: Loads into destination register the contents of the two consecutive
memory locations (halfword) indicated by Rx.

Example:
;Assume the following memory locations with the contents:
;12000=(46)
;12001=(10)
;12002=(38)
;12003=(82)
LDR R0,=0x12000
LDRH RI1,[RO]
;now, R0O=00001046

LDRSB Load Register signed Byte
Flags: Unaffected.
Format: LDRSB Rd,[Rx]

STUDENTS-HUB.com Uploaded By: anonymous

Function: Loads into Rd register a byte from memory location pointed to by Rx
and sign-extends the byte to 32-bit word. That means the sign (D7) of the byte is copied to
all the upper 24 bits of the Rd register.

Example 1:

;Assume the following memory locations with the contents:

;12000=(85)

;12001=(10)

;12002=(38)

;12003=(82)

LDR R0,=0x12000

LDRB R1,[R0O];now R1=FFFFFF85 because MSB of 85 is 1
Example 2:

;Assume the following memory locations with the contents:

;12000=(15)

;12001=(20)

;12002=(3F)

;12003=(82)

LDR R0,=0x12000

LDRB R1,[R0O] ;now, R1=00000015 because MSB of 15 is 0

LDRSH Load Register Signed Halfword

Flags: Unaffected.

Format: LDRSH Rd,[Rx]

Function: Loads into Rd register a half-word (2-byte) from memory location

pointed to by Rx and sign-extends it to 32-bit word. That means the sign (D15) of the 16-
bit operand is copied to all the upper 16 bits of the Rd register.

Example 1:
;Assume the following memory locations with the contents:
;12000=(46)
;12001=(F3)
;12002=(38)
;12003=(82)

STUDENTS-HUB.com Uploaded By: anonymous

LDR R0,=0x12000

LDRB R1,[R0] ;now, RO=FFFFF346 because MSB of F3is 1
Example 2:

;Assume the following memory locations with the contents:

;12000=(4F)

;12001=(23)

;12002=(18)

;12003=(B2)

LDR R0,=0x12000

LDRB R1,[RO] ;now, R1=0000234F because MSB of 23 is 0

LDRT Load Register with Translation

Flags: Unaffected

Format: LDRT Rd,[Rx]

Function: Loads into Rd register a byte from memory location pointed to by Rx

and zero-extends the byte to 32-bit word. That means a zero is copied to all the upper 24
bits of the Rd register. Used for unprivileged memory access.

Example:
;Assume the following memory locations with the contents:
;12000=(46)
;12001=(10)
;12002=(38)
;12003=(82)
LDR R0,=0x12000
LDRB R1,[R0O] ;now, R1=00000046

LSL Logical Shift Left
Flags: Unaffected.
Format: LSL Rd, Rm, Rn

Function: As each bit of Rm register is shifted left, the MSB is removed and the empty
bits are filled with zeros. The number of bits to be shifted left is given by Rn and the result
is placed in Rd register. The LSL does not updates the flags.

C | 4—MSB «——VLSB |[«— 0

STUDENTS-HUB.com Uploaded By: anonymous

Example 1:
LDR R2,=0x00000010
LSL RO,R2,#8 ;RO=R2 is shifted left 8 times
;now, RO= 0x00001000, flags not changed

Example 2:
LDR R0,=0x00000018
MOV R1, #12
LSL R2,R0O,R1 ;R2=R0 is shifted left R1 number of times

;now, R2=0x000018000, flags not changed

Example 3:
LDR R0,=0x0000FF18
MOV RI1, #16
LSL R2,R0O,R1 ;R2=R0 is shifted left R1 number of times
;now, R2= 0xFF180000, flags not changed

The logical shift left used for unsigned number shifting. LSL essentially multiplies Rm
by a power of 2 for each bit shift.

LSLS Logical Shift Left (update the flags)

Flags: Affected.

Format: LSLS Rd, Rm, Rn

Function: As each bit of Rm register is shifted left, the MSB is copied to C flag and

the empty bits are filled with zeros. The number of bits to be shifted left is given by Rn
and the result is placed in Rd register. The LSLS updates the flags.

Example 1:
LDR R2,=0x00000010
LSLS RO,R2,#8 ;R0=R2 is shifted left 8 times

;now, RO= 0x00001000, C=0, N=0, Z=0

Example 2:
LDR R0,=0x00000018
MOV R1, #12
LSLS R2,RO,R1 ;R2=R0 is shifted left R1 number of times

;now, R2=0x000018000, C=0, N=0, Z=0

Example 3:
STUDENTS-HUB.com Uploaded By: anonymous

LDR R0,=0x000FFF18

MOV RI1, #16

LSLS R2,R0,R1 ;R2=RO0 is shifted left R1 number of times
;now, R2= 0xFF180000, C=1, Z=0, N=0

The logical shift left used for unsigned number shifting. LSLS essentially multiplies Rm
by a power of 2 for each bit shift.

LSR Logical Shift Right

Flags: Unaffected.

Format: LSR Rd, Rm, Rn

Function: As each bit of Rm register is shifted right, the LSB is removed and the

empty bits are filled with zeros. The number of bits to be shifted left is given by Rn and
the result is placed in Rd register. The LSR does not update the flags.

0 —»| MSB——»LSB —»| C

Example 1:
LDR R2,=0x00001000
LSR RO,R2,#8 ;RO=R2 is shifted right 8 times
;now, RO= 0x00000010, C=0
Example 2:
LDR R0,=0x000018000
MOV R1, #12
LSR R2,R0,R1 ;R2=R0 is shifted right R1 number of times

;now, R2=0x00000018, C=0

Example 3:
LDR R0,=0x7F180000
MOV R1, #16
LSR R2,RO,R1 ;R2=R0 is shifted right R1 number of times

;now, R2=0x00007F18, C=0

The logical shift right used for shifting unsigned numbers. LSR essentially divides Rm by
a power of 2 for each bit shift.

LSRS Logical Shift Right (update the flags)
Flags: Affected.

STUDENTS-HUB.com Uploaded By: anonymous

Format: LSRS Rd, Rm, Rn

Function: As each bit of Rm register is shifted right, the LSB is copied to C flag
and the empty bits are filled with zeros. The number of bits to be shifted left is given by
Rn and the result is placed in Rd register. The LSRS updates the flags.

Example 1:
LDR R2,=0x00001FFF
LSRS RO,R2,#8 ;RO=R2 is shifted right 8 times

;now, RO= 0x0000001F, C=1, N=0, Z=0

Example 2:
LDR R0,=0x00000018
MOV R1, #12
LSRS R2,R0O,R1 ;R2=R0 is shifted right R1 number of times

;now, R2=0x000000000, C=0, N=0, Z=1,
Example 3:
LDR R0,=0x000FFF18
MOV R1, #16
LSRS R2,R0O,R1 ;R2=R0 is shifted right R1 number of times
;Now, R2= 0x0000000F, C=1, Z=0,N=0

The logical shift right used for shifting unsigned numbers. LSRS essentially divides Rm
by a power of 2 for each bit shift.

MCR Move to Coprocessor from ARM Register
See ARM Manual.
MLA Multiply Accumulate
Flags: Unaffected
Format: MLA Rd,Rs1,Rs2,Rs3 ; Rd= (Rsl x Rs2) + Rs3
Function: Multiplies an unsigned word held by Rs1 by a unsigned word in Rs2 and
the result is added to Rs3 and placed in Rd.
Example:

MOV RO0,#0x20 ;R0=0x20

MOV R1,#0x50 ;R1=0x50

MOV R2#0x10 ;R2=0x10

MLA R4,R0,R1,R2 ;now R4= (0x20 x 0x50)+10= 0xA10

STUDENTS-HUB.com Uploaded By: anonymous

MLS Multiply and Subtract
Flags: Unaffected
Format: MLS Rd,Rm,Rs,Rn ; Rd= Rn -(Rs X Rm)

Function: Multiplies an unsigned word held by Rm by a unsigned word in Rs and
the result is subtracted from Rn and placed in Rd.

Example:
MOV RO0,#0x20 ;R0=0x20
MOV R1,#0x50 ;R1=0x50

LDR R2,=0x1000 ;R2=0x1000
MLS R4,R0O,R1,R2 ;now R4= 0x1000-(0x20x0x50)=0x600

MOV Move (ARM?7)

Flags: Unaffected.

Format: MOV Rd,#imm_value ; Rd=imm_Value < 0x200

Function: Load the Rd register with an immediate value. The immediate value

cannot be larger than OxFF (0—255). After the execution the flags are not updated. The
MOVS instruction updates the flags.

Example 1:
MOV RO0,#0x25 ;RO=0x25
MOV R1,#0x5F ;R1=0x5F

To load the ARM register with value larger than OxFF we must use the “LDR Rd,=
32_bit_data.” For example, we can use LDR R2,=0xFFFFFFFF.

Example 2:
LDR R0,=0x2000000 ;R0=0x2000000
MOV Move (ARM Cortex)
Flags: Unaffected.
Format: MOV Rd,#imm_val ;Rd=imm_val (imm_val<0x10000)
Function: Load the Rd register with an immediate value. The immediate value

cannot be larger than OXFFFF (0-65535).

Example:

MOV R1,#0xF459 ;R1=0xF459

To load the ARM register with value larger than OXFFFF we must use the “LDR Rd,=
32_bit_data.” For example we can use LDR R2,=0xFFFFFFF.

STUDENTS-HUB.com Uploaded By: anonymous

MOVS Move (and update flags)
Flags: Affected: C, N, Z
Format: MOV Rd,#immediate_value

Function: Load the Rd register with an immediate value and update the flags.

Example:
MOVS RO,#0x25 ;R0=0x25, N=0,Z2=0, and C=0
MOVS RO,#0x0 ;R0=0x0, N=0,Z=1, and C=0
MOVT Move Top
Flags: Unaffected.
Format: MOVT Rd,#imm_value ;imm_value < 0x10000
Function: Loads the upper 16-bit of Rd register with an immediate value. The

immediate value cannot be larger than OXFFFF (0-65535). The lower 16-bit of the Rd
register remains unchanged.

Example:
LDR R0,=0x25579934 ;R0=0x25579934
MOVT RO,#0xAAAA ;RO0=0xAAAA9934
MOVW Move 16-bit constant
Flags: Unaffected.
Format: MOVW Rd,#imm_value ;imm_value < 0x10000
Function: Load the Rd register with an immediate value. The immediate value

cannot be larger than OXFFFF (0-65535).
Example:
MOVW R1,#0x5555 ;R1=0x5555

To load the ARM register with value larger than OXFFFF we must use the “LDR Rd,=
32_bit_data.” For example we can use LDR R2,=0xFFFFFFF.

MRC Move to ARM Register from Coprocessor
See ARM manual
MRS Move to general Register from Special register

Flags: Unaffected.
Format: MRS Rd,special_reg ;copy special_reg to Rd

Function: Copies the contents of a special function register to a general-purpose
register. This instruction along with the MSR is widely used to modify the special function

STUDENTS-HUB.com Uploaded By: anonymous

registers such as CONTROL, PRIMASK, and ISPR. This is the only way we can access
the special function registers.

Example:
MRS R1,CONTROL ;R1=CONTROL
AND R1,#0x00 ;mask the lower 8 bits

MSR CONTROL,R1

MSR Move to Special register from general Register
Flags: Unaffected.
Format: MSR special_reg, Rn ;copy special_reg to Rn

Function: Copies the contents of a general-purpose register to special function register.
This instruction along with the MRS is widely used to modify the contents of special
function registers such as CONTROL, PRIMASK, and ISPR. This is the only way we can
access the special function registers.

Example:
MRS R1,CONTROL ;R1=CONTROL
AND R1,#0x00 ;mask the lower 8 bits

MSR CONTROL,R1 ;mask the lower 8 bits of CONTROL reg.

MUL Unsigned Multiplication

Flags: Affected: N, Z, Unaffected: C, V

Format: MUL Rd,Rn,Rm ;Rd = Rn x Rm

Function: Multiplies a word in register Rn by a word in register Rm and places the

result in Rd.

Example 1:
MOV RO0,#100 ;R0=100
MOV R1,#200 ;R1=200
MUL R3,R0,R1 ;R3=R0 x R1 =100 x 200 =20000
Example 2:
LDR R0,=10000 ;R0=10000
LDR R1,=20000 ;R1=20000
MUL R3,R0,R1 ;R3 = R0 x R1= 10000 x 20000 = 200000000
MVN Move Negative
Flags: Unaffected.

STUDENTS-HUB.com Uploaded By: anonymous

Format: MVN Rd,Op2 ;Rd = 1’s comp. of Op2

Function: Places in Rd the negation (the 1’s complement) of Op2. Each bit of Op2 is
inverted (logical NOT) and placed in Rd while flags remain unchanged.

Example 1:

MOV RO,#0xAA ;RO=0xAA

MVN R2,R0 ;now, R2=0xFFFFFF55
Example 2:

LDR RO,=0xAAAAAAAA ;RO=0xAAAAAAAA

MVN R1,R0 ;R1=0x55555555
Example 3:

MVN RO,#0x0F ;RO=0xFFFFFFFO
Example 4:

MVN R2,#0x0 ;RO=0xFFFFFFFF widely used to load Rx with all 1s
MVNS Move Negative and update the flags
Flags: N and Z are affected
Format: MVNS Rd,Op2 ;Rd = 1’s comp. of Op2 and update flags
Function: Places in Rd the negation (the 1’s complement) of Op2. Each bit of Op2
is inverted (logical NOT) and placed in Rd and N and Z flags are updated.
Example 1:

MOV RO,#0xAA ;RO=0xAA

MVNS R2,R0 ;now, R2=0xFFFFFF55, N=1, Z=0
Example 2:

LDR RO,=0xAAAAAAAA ;RO=0xAAAAAAAA

MVNS R1,R0 ;R1=0x55555555, Z=0 and N=0
Example 3:

LDR RO,=0xFFFFFFFF ;RO=0xFFFFFFFF

MVNS RI1,R0 ;R1=0x00000000, N=0 and Z=1
Example 4:

MVN R2,0x0 ;RO=0xFFFFFFFF, N=1, Z=0

NOP No Operation
Flags: Unaffected.

STUDENTS-HUB.com Uploaded By: anonymous

Format: NOP

Function: Performs no operation. Sometimes used for timing delays to waste clock
cycles. Updates PC (program counter) to point to next instruction following NOP. In some
ARM CPUs s, the pipeline removes the NOP before it reaches the execution stage.

ORN Logical OR Not

Flags: Unaffected.

Format: ORN Rd,Rn,Op2 ;Rd = Rn ORed with 1’s comp of Op2
Function: Performs the OR operation on the bits of Rn with the complement of the

bits in Op2. The ORN will not update the flags. To update the flags we must use ORNS.

Output
A OR (NOT
B)
0 0 1
0 1 0
1 0 1
1 1 1
Example 1:
LDR R1,=0xFFFFFFO0 ;R1=0xFFFFFFO00
LDR R2,=0x99999999 ;R2=0x9999999
ORN R3,R2,R1 ;now R3=0x999999FF
Example 2:
MOV R1,#0 ;R1=0
LDR RO=0xFFFFFFFF ;RO=0xFFFFFFFF
ORN R2,R1,RO ;now, R2=0x0
ORNS OR Not and update flags
Flags: N and Z are affected
Format: ORNS Rd,Rn,Op2 ;Rd = Rn ORed with 1’s comp of Op2
Function: Performs the OR operation on the bits of Rn with the complement of the

bits in Op2 and updates the flags. The result is placed in Rd.

Output

A OR (NOT
STUDENTS-HUB.com Uploaded By: anonymous

0 0 1
0 1 0
1 0 1
1 1 1
Example 1:
LDR R1,=0xFFFFFF00 ;R1=0xFFFFFF00
LDR R2,=0x99999999 ;R2=0x9999999
ORNS R3,R2,R1 ;now, R3=0x999999FF, N=1, Z=0
Example 2:
LDR RO,=0xFFFFFFFF ;RO=0xFFFFFFFF
LDR R1,=0x01234567 ;R1=0x01234567
ORNS R2,R1,RO ;now, R2=0x01234567, N=0, Z=0
Example 3:
MOV R1,#0 ;R1=0
LDR RO=0xFFFFFFFF ;RO=0xFFFFFFFF
ORNS R2,R1,R0 ;now, R2=0x0, N=0, Z=1
ORR Logical OR
Flags: Unaffected
Format: ORR Rd,Rn,Op2 ;Rd= Rn ORed Op2
Function: Performs logical OR on the bits of Rn and Op2, and places the result in
Rd. Often used to turn a bit on. ORR will not update the flags.
Example 1:
MOV RO#0xAA ;RO=0xAA

ORR R2,R0,#0x55 ;now, R2=0xFF

Example 2:

LDR R0,=0x00010203 ;R0=00010203

LDR R1,=0x30303030

ORR R2,R0,R1 ;R2=0x30313233

STUDENTS-HUB.com

Uploaded By: anonymous

Example 3:

LDR R0,=0x55555555 ;R0=0x55555555
LDR R1,=0xAAAAAAAA ;RO=0xAAAAAAAA
ORR R2,R1,R0 ;R1=0xFFFFFFFF
ORRS Logical OR and update the flags
Flags: N and Z are affected.
Format: ORRS Rd,Rn,0p2 ;Rd= Rn ORed Op2 ,update the flags

Function: Performs logical OR on the bits of Rn and Op2, and places the result in Rd.
Often used to turn a bit on. ORRS updates the flags.

0 0 0
0 1 1
1 0 1
1 1 1
Example 1:
MOV RO,#0xAA ;RO=0xAA

ORRS R2,R0,#0x55 ;now, R2=0xFF, N=0,Z=0

Example 2:

LDR R0,=0x00010203 ;R0=00010203

LDR R1,=0x30303030

ORRS R2,R0,R1 ;R2=0x30313233 N=0, Z=0
Example 3:

LDR R0,=0x55555555 ;R0=0x55555555

LDR R1,=0xAAAAAAAA ;RO=0xAAAAAAAA

ORRS R2,R1,RO ;R1=0xFFFFFFFF N=1, Z=0
POP POP register from Stack
Flags: Unaffected.
Format: POP {reg_list} ;reg_reg = words off top of stack
Function: Copies the words pointed to by the stack pointer to the registers indicated

STUDENTS-HUB.com Uploaded By: anonymous

by the reg_list and increments the SP by 4, 8, 12, 16, ... depending on the number of
registers in the reg_list.

Example:
POP {R1} ;POP the top word of stack to R1
POP {R1,R4,R7} ;POP the top 3 words of stack to R1,R4,R7
POP {R2-R6} ;POP the top 5 words of stack to R2-R6
POP {RO,R5} ;POP the top 2 words of stack to RO and R5
POP {RO-R7} ;POP the top 8 words of stack to RO-R7

The POP instruction is synonyms for LDMIA.

PUSH PUSH register onto stack

Flags: Unaffected.

Format: PUSH {reg_list} ;PUSH reg_list onto stack

Function: Copies the contents of registers stated in reg_list onto the stack and decrements
SP by 4, 8, 12, 16, ... depending on the number of registers in reg_list.

Example:
PUSH ({R1} ;PUSH the R1 onto top of stack
PUSH {R1,R4,R7} ;PUSH R1,R4,R7 onto top of stack
PUSH {R2-R6} ;PUSH the R2,R3,R4,R5,R6 onto top of stack
PUSH {RO,R5} ;PUSH the RO and R5 onto top of stack
PUSH {RO-R7} ;PUSH the RO through R7 onto top of stack
The PUSH instruction is synonyms for STMDB.
RBIT Reverse Bits
Flags: Unaffected.
Format: RBIT Rd,Rn ;Reverse the bit order of Rn and place in Rd
Function: Reverses the bit position order of the 32-bit value in Rn register and

place the result in Rd.

Example:
MOV R1,#0x5F
RBIT R2,R1 ;now, R2=0xF5000000
REV Reverse byte order in a word
Flags: Unaffected
Format: REV Rd,Rn ;Reverse the byte of Rn and place it in Rd

STUDENTS-HUB.com Uploaded By: anonymous

Function: Reverses the byte position order of the 32-bit value in Rn register and
places the result in Rd. This can be used to convert from little endian to big endian or from
big endian to little endian.

Example:
LDR R1,=0x12345678
REV R2,R1 ;now, R2=0x78564312
RV16 Reverse byte order in 16-bit
Flags: Unaffected
Format: REV16 Rd,Rn ;Reverse the bits if Rn and place it in Rd
Function: Reverses the 16-bit position order of the 32-bit value in Rn register and

places the result in Rd. This can be used to convert 16-bit little endian to big endian or
from 16-bit big endian to little endian.

Example:
LDR R1,=0x559922FF
RV16 R2,R1 ;now, R2=0x22FF5599
REVSH Reverse byte order in bottom halfword and sign extend
Flags: Unaffected
Format: REVSH Rd,Rn ;Rd=Reverse the byte and sign extend Rn
Function: Reverses the 16-bit position order of Rn register and after sign extending

to 32-bit it is placed in Rd. This can be used to convert a signed 16-bit little endian to 32-
bit signed big endian or from signed 16-bit big endian to 32-bit signed little endian.

Example:
LDR R1,=0x559922FF
REVSH R2,R1 ;now, R2=0x22FF5599
ROR Rotate Right
Flags: Unaffected.
Format: ROR Rd,Rm,Rn ;Rd=rotate Rm right Rn bit positions
Function: As each bit of Rm register shifts from left to right, they exit from the

right end (LSB) and enter from left end (MSB). The number of bits to be rotated right is
given by Rn and the result is placed in Rd register. The ROR does not update the flags.

—| MSB ——» LSB | C

STUDENTS-HUB.com Uploaded By: anonymous

Example 1:
LDR R2,=0x00000010
ROR RO,R2,#8 ;RO=R2 is rotated right 8 times
;now, RO = 0x10000000, C=0

Example 2:
LDR R0,=0x00000018
MOV R1, #12
ROR R2,R0,R1 ;R2=R0 is rotated right R1 number of times

;now, R2 = 0x01800000, C=0

Example 3:
LDR R0,=0x0000FF18
MOV R1, #16
ROR R2,R0,R1 ;R2=R0 is rotated right R1 number of times
;Now, R2 = 0xFF180000, C=0

RORS Rotate Right (update the flags)

Flags: C, N, Z are affected.

Format: RORS Rd,Rm,Rn ;Rd=rotate Rm right Rn bit positions
Function: As each bit of Rm register shifts from left to right, they exit from the

right end (LSB) and enters from left end (MSB). In addition as each bit exits the LSB, a
copy is of it is given to C flag. The number of bits to be rotated right is given by Rn and
the result is placed in Rd register. The RORS updates the flags.

—| M1SB ——» 5B | C

Example 1:
LDR R2,=0x00000010
RORS RO,R2,#8 ;RO=R2 is rotated right 8 times

;now, RO= 0x01000000, C=0, N=0, Z=0

Example 2:
LDR R0,=0x00000018
MOV R1, #12
RORS R2,R0O,R1 ;R2=RO0 is rotated right R1 number of times

STUDENTS-HUB.com Uploaded By: anonymous

;now, R2=0x01800000, C=0, N=0, Z=0
Example 3:
LDR R0,=0x0000FF18
MOV R1, #16
RORS R2,R0,R1 ;R2=R0 is rotated right R1 number of times
;now, R2= 0xFF180000, C=1, N=0, Z=0

RRX Rotate Right with extend

Flags: Unaffected.

Format: RRX Rd,Rm ;Rd=rotate Rm right 1 bit position

Function: Each bit of Rm register is shifted from left to right one bit. The RRX

does not update the flags.

L | MSB—»LSB | C >|

Example:

LDR R2,=0x00000002

RRX RO,R2 ;RO=R2 is shifted right one bit

;now, RO=0x00000001
RRXS Rotate Right with extend (update the flags)
Flags: Affected.
Format: RRXS Rd,Rm ;Rd=rotate Rm right 1 bit position
Function: Each bit of Rm register is shifted from left to right one bit. The RRXS
updates the flags.

L | MSB—»LSB | C >|

Example 1:
LDR R2,=0x00000002
RRXS RO,R2 ;R0=R2 is shifted right one bit
;now, RO=0x00000001

RSB Reverse Subtract

Flags: Unaffected

STUDENTS-HUB.com Uploaded By: anonymous

Format: RSB Rd, Rn, Op2 ;Rd=0p2 - Rn

Function: Subtracts the Rn from the Op2 and puts the result in the Rd. The RSB
has no effect on flags. The steps for subtraction performed by the internal hardware of the
CPU are as follows:

1. Takes the 2’s complement of the Rn
2. Adds this to the Op2
3. Places the result in Rd

The Op2 and Rn operands remain unchanged by this instruction.

Example:
LDR R0,=0x55555555 ;R0=0x55555555
LDR R1,=0x99999999 ;R1=0x99999999
RSB R2,RO,R1 ;R2=R1-R0O

;For “RSB R2,R0,R1” we have:
;R2=R1-R0=0x99999999 - 0x55555555 =
;R2=0x99999999 + 2’s comp of 0x55555555
;R2=0x99999999 + 0xAAAAAAAB = 0x44444444
; 0x99999999

; - 0x55555555

; 0x44444444
RSBS Reverse Subtract and update the flags
Flags: Affected: V, N, Z, C.
Format: RSBS Rd, Rn, Op2 ;Rd=0p2 - Rn

Function: Subtracts the Rn from the Op2 and puts the result in the Rd. The RSBS
updates the flags.

The steps for subtraction performed by the internal hardware of the CPU are as follows:
1. Takes the 2’s complement of the Rn
2. Adds this to the Op2
3. Places the result in the Rd
The Rn and Op2 operands remain unchanged by this instruction.

Example:

LDR R0,=0x55555555 ;R0=0x55555555

STUDENTS-HUB.com Uploaded By: anonymous

LDR R1,=0x99999999
RSB R2,RO,R1

;For “RSB R2,R0,R1” we have:
;R2=R1-R0=0x99999999 - 0x55555555 =
;R2=0x99999999 + 2’s comp of 0x55555555
;R2=0x99999999 + 0xAAAAAAAB = 0x44444444
; 0x99999999

; - 0x55555555

;R1=0x99999999
;R2=R1-R0

; 0x44444444 C=0, N=0, Z2=0, V=0
SBC
Flags: Unaffected

SBC Rd,Rn,Op2

Subtract with Carry (Borrow)

Format:

Function:

;RAd=Rn-0p2-(1-C)
Subtracts the Op2 operand from the Rn, placing the result in Rd. If C =

0, it subtracts 1 from the result; otherwise, it operates like SUB. The SBC has no effect on

flags.This is used widely for multiword (64-bit) subtraction.

Example:
LDR R0,=0x55555555 ;R0=0x55555555
LDR R1,=0x99999999 ;R1=0x99999999
SUBS R2,R0,R1 ;R2=R0O - R1
MOV R3,#0x09 ;R3=0x09
SBC R4,R3,#03 ;R4=R3 - 0x3

;For SUBS we have:
;R2=R1 - RO = 0x55555555 - 0x99999999 =
;R2=0x55555555 + 2’s comp of 0x99999999

;R2=0x55555555 + 0x66666667 = 0xBBBBBBBC C=0

;For SBC we have:
;R4=R3-0x3=0x09 - 0x3-(1-C)=9-3-1

;R4= 0x9 +2’comp. of -4 = 0x9 + OxFFFFFFFC = 0x05

; 0x0000000955555555

; - 0x0000000399999999
SBCS
STUDENTS-HUB.com

Subtract with Carry (Borrow) and update the flags

Uploaded By: anonymous

Flags: C,Z,N,V
Format: SBCS Rd,Rn,Op2 ;Rd=Rn-0p2 - (1-C)

Function: Subtracts the Op2 operand from the Rn, placing the result in Rd. If C =
0, it subtracts 1 from the result; otherwise, it executes like SUB. The SBCS updates the
flags. This is used widely for multiword (64-bit) subtraction.

Example:
LDR R0,=0x55555555 ;R0=0x55555555
LDR R1,=0x99999999 ;R1=0x99999999
SUBS R2,R0,R1 ;R2=R0-R1
MOV R3,#0x09 ;R3=0x09
SBCS R4,R3,#03 ;R4=R3-0x3

;For SUBS we have:
;R2=R1-R0=0x55555555 - 0x99999999 =
;R2=0x55555555 + 2’s comp of 0x99999999
;R2=0x55555555 + 0x66666667 = 0xBBBBBBBC C=0
;For SBCS we have:
;R4=R3-0x3=0x09 - 0x3-(1-C)=9-3-1
;R4= 0x9 +2’comp. of -4 = 0x9 + OXxFFFFFFFC = 0x05
; 0x0000000955555555
; - 0x0000000399999999

5

; 0x1 0000005BBBBBBBC C=0, Z=0, V=0, N=0

SBFX Sign Bit Field extract

Flags: Unaffected

Format: SBFX Rd,Rn,#LSB,#Width

Function: Extracts the bit field from the Rn register and then after sign extending it

is placed in Rd. The #LSB indicates which bit and #Width indicates how many bits.

Example 1:
LDR R0,=0x00000543 ;R0=0x00000543
SBFX R2,R0,#8,#4 ;now, R2=0x00000005
Example 2:
LDR R0,=0x00000C43 ;R0=0x00000C43

STUDENTS-HUB.com Uploaded By: anonymous

SBFX R2,R0,#4,#8 ;now, R2=0xFFFFFFC4

SDIV Signed Divide
Flags: Unaffected
Format: SDIV Rd,Rn,Rm ;Rd= Rn/Rm

Function: Divides a signed integer word in Rn by another signed integer word in Rm. The
quotient result is placed in Rd. If value in Rn register is not divisible by the value in Rm
register, the result is rounded to zero and placed in Rd. Divide by zero causes interrupt
type 3.

Example:
LDR R0,=-20000 ;R0=-20000
LDR R1,=-1000 ;R1=-1000
SDIV R2,R0O,R1 ;now, R2 =-2000/-1000= 2
SEV Send Event
Flags: Affected.
Format: SEV

Function: Sends signal to all the processors in the multiprocessors system. See the ARM
Cortex manual.

SMLAL Signed Multiply Accumulate Long

Flags: Unaffected

Format: SMLAL Rdlo,Rdhi,Rn,Rm ;Rdhi:Rdlo=(Rm % Rn) + (Rdhi:Rdlo)
Function: Multiplies signed words in Rn and Rm register, adds the 64-bit result to

Rdhi:Rdlo register, and saves the final result in Rdhi:Rdlo. The Rdlo (low) and Rdhi(high)
are the lower word and higher word of a 64-bit value.

Example 1:

LDR R0,=0

LDR R1,=0x23

LDR R2,=-5000

LDR R3,=-4000

SMLAL RO,R1,R2,R3 ;now, R3:R2= (R3:R2)+ (R1 x R0)

;= 0x2300000000 + (-5000 x -4000)

;= 0x2300000000 + 20000000

;= 0x23000000 + 0x1312D00 = 0x2301312D00

;=> R0 = 0x1312D00 and R1 = 0x23
STUDENTS-HUB.com Uploaded By: anonymous

SMULL Signed Multiply Long
Flags: Unaffected

Format: SMULL Rdlo,Rdhi,Rn,Rm ;Rdhi:Rdlo = Rm x Rn
Function: Multiplies signed words in Rn and Rm register, and saves the result in
Rdhi:Rdlo. The Rdl (low) and Rdh(high) are the lower word and higher word of a 64-bit
value.
Example:

LDR R0,=-20000 ;R0=-20000 (signed 2’s comp)

LDR R1,=-1000000 ;R0=-100000 (signed 2’s comp)

SMLAL R2,R3,R0,R1 ;now, R3:R2=R1 x RO =-20000 x -1000000 =
;20000000000 =0x4A817C800 => R3 = 0x4 and

;R2 = 0xA817C800

SSAT Sign Saturate

Flags: Unaffected.

Format: SSAT Rd,#n,Rm,shift#

Function: Used for saturation operation. See ARM Cortex manual.

STM Store Multiple

Flags: Unaffected.

Format: STM Rn, {Rx,Ry,...}

Function: Stores registers Rx, Ry,... into consecutive memory locations. The

starting address of memory location is given by Rn register. The source registers are
separated by comma and placed in braces. In the ARM Cortex, the default stack is
descending meaning that as information are pushed onto stack the stack pointer is
decremented. This IA (Increment the address After each access) is the default. This
instruction is widely used for Pushing (storing) multiple registers into ascending stack.

Example:
LDR R7,=0x12000
LDR R0,=0x82381046 ;R0=0x82381046
LDR R2,=0x15585056 ;R2=0x15585056
LDR R4,=0x39686063 ;R4,=0x39686063
STM R7,{RO,R2,R4} ;now, R2=0x15585056, ..

;The contents of registers R0,R2, and R4 are stored into

;consecutive memory locations starting at an address given by R7.

STUDENTS-HUB.com Uploaded By: anonymous

;The RO contents are stored into memory locations 0x12000-0x12003,
;the R2 contents are stored into memory locations 0x12004 through
;0x12007, and so on. This is shown below.
;12000=(46)
;12001=(10)
;12002=(38)
;12003=(82)
;12004=(56)
;12005=(50)
;12006=(58)
;12007=(15)
;12008=(63)
;12009=(60)
;1200A=(68)
;1200B=(39)
STMDB Store Multiple register and Decrement Before
Flags: Unaffected.
Format: STMDB Rn,{Rx,Ry,...}

Function: Stores registers Rx, Ry,... into consecutive memory locations. The
starting address of memory location is given by Rn register. The source registers are
separated by comma and placed in braces. In the ARM Cortex, the default stack is
descending meaning that as information are pushed onto stack the stack pointer is
decremented. Since IA(Increment the address After each access) is the default we need to
use DB (Decrement the address Before each access) is to overwrite the default. This
instruction is widely used for Pushing (storing) multiple registers into Descending stack.

Example:
LDR R7,=0x12000
LDR R0,=0x39686063 ;R0=0x39686063
LDR R2,=0x15585056 ;R2=0x15585056
LDR R4,=0x82381046 ;R4,=0x82381046
STMDB R7,{R0,R2,R4}

;The contents of registers R0,R2, and R4 are stored into

;consecutive memory locations starting at an address given by R7.

STUDENTS-HUB.com Uploaded By: anonymous

;The RO contents are stored into memory locations Ox11FFF-0x11FFC,
;the R2 contents are stored into memory locations 0x11FFB
;through 0x11FF8, and so on. This is shown below.
:11FF4=(46)
:11FF5=(10)
;11FF6=(38)
:11FF7=(82)
:11FF8=(56)
:11FF9=(50)
:11FFA=(58)
:11FFB=(15)
:11FFC=(63)
:11FFD=(60)
:11FFE=(68)
:11FFF=(39)
STMEA Store Multiple register Empty Ascending
Flags: Unaffected.
Format: STMEA Rn,{Rx,Ry,...}

Function: This is same as STM.

STMIA Store Multiple register Empty Ascending
Flags: Unaffected.

Format: STMIA Rn,{Rx,Ry,...}

Function: This is same as STM.

STMFD Store Multiple register Full Descending

Flags: Unaffected.

Format: STMFD Rn,{Rx,Ry,...}

Function: This is another name for STMDB. The FD is for pushing onto Full Descending
stacks

STR Store Register

Flags: Unaffected.

Format: STR Rd,[Rx] ;Store Rd into memory location pointed to

STUDENTS-HUB.com Uploaded By: anonymous

be Rx

Function: Stores Rd register into four consecutive memory locations. The [Rx]
points to starting address of memory location. This is widely used to store 32-bit register
into memory locations.

Example:
LDR R1,=0x82381046 ;R1=0x82381046
LDR R0,=0x12000 ;R0=0x12000
STR R1,[RO] ;NIOW,
;12000=(46)
;12001=(10)
;12002=(38)
;12003=(82)
STRB Store Register Byte
Flags: Unaffected.
Format: STRB Rd,[Rn]
Function: Stores the lowest byte of the Rd register into a single memory location
indicated by Rn.
Example:
LDR R1,=0x82381046 ;R1=0x82381046
LDR R0,=0x12000 ;R0=0x12000
STRB R1,[RO] ;now, 12000=(46)
STRBT Store Register Byte with Translation
Flags: Unaffected.
Format: STRBT
Function: Stores the lowest byte of the Rd register into a single memory location

indicated by Rn. This is the same as STRB but is used for unprivileged memory access.
See ARM Cortex manual.

Example:
LDR R1,=0x82381046 ;R1=0x82381046
LDR R0,=0x12000 ;R0=0x12000
STRBT RI1,[RO]

STUDENTS-HUB.com Uploaded By: anonymous

;now, 12000=(46)

STRD Store Register Double (two words)

Flags: Unaffected.

Format: STRD Rd,[Rn]

Function: Stores two registers of Rd and Rd+1 into 8 consecutive memory

locations indicated by Rn. Rd can be RO, R2, R4, R6, R8, R10, or R12.

Example:
LDR R2,=0x12000
LDR R0,=0x82381046 ;R0=0x82381046
LDR R1,=0x15585056 ;R1=0x15585056
STRD RO,R1,[R2] ;store RO and R1 into memory locations starting
;at an address given by R2. Now, we have:
;12000=(46)
;12001=(10)
;12002=(38)
;12003=(82)
;12004=(56)
;12005=(50)
;12006=(58)
;12007=(15)
STREX, STREXB, STREXH Store Register Exclusive

Function: They are used with LDREX, LDREXB, and LDREXH instructions to perform
CPU synchronization operation. See ARM Cortex manual.

STRH Store Register Halfword

Flags: Unaffected.

Format: STRH Rd,[Rn]

Function: Stores the lower 2 bytes of the Rd register into two consecutive memory

locations indicated by Rn.

Example:
LDR R1,=0x82381046 ;R1=0x82381046
LDR R0,=0x12000 ;R0=0x12000

STUDENTS-HUB.com Uploaded By: anonymous

STRB R1,[RO0] :now, 12000=(46), and 12001=(10)

STRT Store Register

Flags: Unaffected

Format: STRT Rx,[Rn]

Function: Stores Rx register into memory location pointed to by Rx. This is the

same as STR but is used for unprivileged memory access. See ARM Cortex manual.

Example:
LDR R1,=0x82381046 ;R1=0x82381046
LDR R0,=0x12000 ;R0=0x12000

STRT R1,[RO]
;now, 12000=(0x82381046)

SUB Subtract

Flags: Unaffected

Format: SUB Rd, Rn, Op2 ;Rd = Rn — Op2

Function: Subtracts the Op2 from the Rn and puts the result in the Rd. Has no

effect on flags. The steps for subtraction performed by the internal hardware of the CPU
are as follows:

1. Takes the 2’s complement of the Op2
2. Adds this to the Rn
3. Place the result in the Rd

The Rd and Op2 operands remain unchanged by this instruction.

Example:
LDR R0,=0x55555555 ;R0=0x55555555
LDR R1,=0x99999999 ;R1=0x99999999
SUB R2,R1,R0 ;R2=R1-R0O

;For “SUB R2,R1,R0” we have:
;R2=R1-R0=0x99999999 - 0x55555555 =
;R2=0x99999999 + 2’s comp of 0x55555555
;R2=0x99999999 + OxAAAAAAAB = 0x44444444
; 0x99999999

; - 0x55555555

5

STUDENTS-HUB.com Uploaded By: anonymous

; 0x44444444

SUBS Subtract

Flags: Affected: V, N, Z, C.

Format: SUB Rd, Rn, Op2 ;Rd =Rn - 0p2

Function: Subtracts the Op2 from the Rn and puts the result in the Rd. The SUBS

updates the flags. The steps for subtraction performed by the internal hardware of the CPU
are as follows:

1. Takes the 2’s complement of the Op2
2. Adds this to the Rn
3. Place the result in the Rd

The Rd and Op2 operands remain unchanged by this instruction.

Example:
LDR R0,=0x55555555 ;R0=0x55555555
LDR R1,=0x99999999 ;R1=0x99999999
SUBS R2,R1,R0 ;R2=R1-R0

;For “SUBS R2,R1,R0” we have:

;R2=R1 - RO = 0x99999999 - 0x55555555 =
;R2=0x99999999 + 2’s comp. of 0x55555555
;R2=0x99999999 + 0OxAAAAAAAB = 0x44444444
; 0x99999999

; - 0x55555555

; 0x44444444 C=1, Z=0, N=0, V=0
SVC supervisor Call (Software Interrupt)
Flags: Unaffected.
Format: SVC #imm_value

Function: It is used by application software to get services from operating systems
(OS). This is like the SWI (software interrupt) instruction in ARM7.

SXTB Sign Extend byte
Flags: Unaffected.
Format: SXTB Rd,Rm

STUDENTS-HUB.com Uploaded By: anonymous

Function: Converts a signed byte in Rm into a signed word by copying the sign bit (D7)
of Rm into all the bits of Rd. Used widely to convert a signed byte in Rm to a signed word
to avoid the overflow problem in signed number arithmetic.

Example:
MOV R1,#0xFB ;R1=0xFB which is 2’s complement of -5
SXTB RO,R1 ;now, RO=0xFFFFFFFB
;R1=0000 0000 0000 0000 0000 0000 1111 1011
;now RO=0xFFFFFFFB
;RO=1111 1111 1111 1111 1111 1111 1111 1011

SXTH Sign Extend Halfword
Flags: Unaffected.
Format: SXTH Rd,Rm

Function: Converts a signed halfword in Rm into a signed word by copying the sign bit
(D15) of Rm into all the bits of Rd. Used widely to convert a signed halfword (16-bit) in
Rm to a signed word to avoid the overflow problem in signed number arithmetic.

Example:
;assume R1=0xFFFB which is 2’s complement of -5
SXTH RO,R1 ;now, RO=0xFFFFFFFB
;R1=0000 0000 0000 0000 1111 1111 1111 1011
;now, RO=0xFFFFFFFB
;RO=1111 1111 1111 1111 1111 1111 1111 1011

TBB Table Branch Byte
Flags: Unaffected.
Format: TBB [Rn, Rm]

Function: Branches forward using table of single byte offset using PC-relative addressing
mode. Rn has starting address of the table and Rm is an index into the table. See ARM
Cortex M3 manual.

TBH Table Branch halfword
Flags: Unaffected.
Format: TBH [Rn, Rm, LSL #1]

Function: Branches forward using table of halfword offset using PC-relative addressing
mode. Rn has starting address of the table and Rm is an index into the table. The “LSL #
1” shifts left the address once to make it halfword aligned address. See ARM Cortex M3

STUDENTS-HUB.com Uploaded By: anonymous

manual.

TEQ Test Equivalence
Flags: Affected: N and Z
Format: TEQ Rn,0Op2 ;performs Rn Ex-OR Op2

Function: Performs a bitwise logical Ex-OR on Rn and Op2, setting flags but leaving the
contents of both Rn and Op2 unchanged. While the EORS instruction changes the
contents of the destination and the flag bits, the TEQ instruction changes only the flag bits.
This is widely used to see if two registers are equal.

Example 1:
TEQ R1,R2 ;check to see if R1=R2. If so Z=1. R1 and R2
;remain unchanged

Example 2:
TEQ R2,#0x01 ;check to see if DO of R2 is 1, if so Z=1. R2
;remains unchanged

Example 3:
TEQ R1,#0xFF ;check to see if D7_DO of R1 are 1s,

;if so Z=1. R1 remains unchanged

TST Test

Flags: Affected: N and Z

Format: TST Rn,Op2 ;performs Rn AND Op2

Function: Performs a bitwise logical AND on Rn and Op2, setting flags but leaving

the contents of both Rn and Op2 unchanged. While the ANDS instruction changes the
contents of the destination and the flag bits, the TST instruction changes only the flag bits.
To test whether a bit of Rn is 0 or 1, use the TST instruction with an Op2 constant that has
that bit set to 1 and all other bits cleared to 0.

Example 1:
TST R1,#0x01 ;check to see if DO of R1 is zero, if so Z=1.

;R1 remain unchanged

Example 2:
TST R1,#0xFF ;check to see if any bits of R1 is zero, if so

;Z=1. R1 remain unchanged

UBFX Unsigned Bit filed extract
STUDENTS-HUB.com Uploaded By: anonymous

Flags: Unaffected.
Format: UBFX Rd,Rn,#LSB,#Width

Function: Extracts the bit field from the Rn register and then zero extends it and places in
Rd. The #LSB indicates from which bit and #Width indicates how many bits.

Example 1:
LDR R0,=0x00077555 ;R0=0x00077555
UBFX R2,R0,#8,#4 ;now, R2=0x00000005
Example 2:
LDR R0,=0x12345678 ;R0=0x12345678
UBFX R2,R0,#8,#12 ;now, R2=0x00000456
UDIV Unsigned Divide
Flags: Unaffected
Format: UDIV Rd,Rn,Rm ;Rd= Rn/Rm

Function: Divides an unsigned integer word in Rn by another unsigned integer word in
Rm. The quotient result is placed in Rd. If value in Rn register is not divisible by the value
in Rm register, the result is rounded to zero and placed in Rd. Divide by zero causes
exception interrupt.

Example 1:

LDR R0,=100 ;R0=100

LDR R1,=2000

UDIV R2,R1,R0 ;now, R2=R1/R0=2000/100=20
Example 2:

LDR R0,=20000 ;R0=20000

UDIV R2,R0,#100 ;now, R2=2000/100=20
UMLAL Unsigned Multiply with Accumulate

Flags: Unaffected
Format: UMLAL RdLo,RdHi,Rn,Rm ;RdHi:RdLo=(Rm % Rn) + (RdHi:RdLo)

Function: Multiplies unsigned words in Rn and Rm register, adds the 64-bit result to
RdHi:RdLo registers, and saves the final result in RdHi:RdLo. The RdLo (low) and
RdHi(high) are the unsigned lower word and higher word of the 64-bit value.

Example:

LDR R0,=20000 ;R0=20000

STUDENTS-HUB.com Uploaded By: anonymous

LDR R1,=1000
LDR R2,=5000
LDR R3,=4000
UMLAL R2,R3,R0,R1 ;now, R3:R2=R1 x RO + R3:R2

UMULL Unsigned Multiply Long

Flags: Unaffected

Format: UMULL RdLo,RdHi,Rn,Rm ;RdHi:RdLo = Rm X Rn

Function: Multiplies unsigned words in Rn and Rm registers, and saves the result

in RdHi:RdLo. The RdLo (low) and RdHi(high) are the lower word and higher word of a
64-bit value.

Example:
LDR R0,=20000 ;R0=20000
LDR R1,=10000 ;R1=10000
LDR R2,=50000 ;R2=50000
LDR R3,=40000 ;R3=40000

UMLAL R2,R3,R0,R1 ;now, R3:R2=R1 x RO
USAT Unsigned Saturate
Flags: Unaffected
Format: USAT Rd,#n,Rm,shift#

Function: Used for unsigned saturation operation. See ARM Cortex manual.

UXBT Zero extend a byte
Flags: Unaffected
Format: UXBT Rd,Rm

Function: Zero extends a byte in Rm and places in Rd. Used widely to convert a byte in
Rm to word for signed number operations.

Example:
MOV R1,#0xFB ;R1=0xFB
UXBT RO,R1 ;now, RO=0x00000000FB
;R1=0000 0000 0000 0000 0000 0000 1111 1011
;now RO=0x000000FB
;RO = 0000 00000 0000 0000 0000 0000 1111 1011

UXTH Zero extend halfword
STUDENTS-HUB.com Uploaded By: anonymous

Flags: Unaffected
Format: UXTH Rd,Rm

Function: Zero extends a halfword in Rm and places in Rd. Used widely to convert a
halfword in Rm to word for signed number operations.

Example:
;assume R1=0xFFFB
UXTH RO,R1 ;now, RO=0x00000FFFB
;R1=0000 0000 0000 0000 1111 1111 1111 1011
;now, RO=0x0000FFFB
;RO = 0000 0000 0000 0000 1111 1111 1111 1011

WFE Wait for event
Flags: Unaffected
Format: WEFE

Function: Used by power management. See ARM Cortex M3 manual.

WFI Wait for interrupt

Flags: Unaffected

Format: WFI

Function: Suspends execution until one of the following events occurs:
1. anon-masked interrupt occurs and is taken,
2. an interrupt masked by PRIMASK becomes pending,
3. a Debug Entry request.

See ARM Cortex manual.

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Appendix B: ARM Assembler Directives

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section B.1: List of ARM Assembler Directives

ALIGN
AREA

DCB directive (define constant byte)

DCD directive (define constant word)

DCW directive (define constant half-word)
ENDP_or ENDFUNC

ENTRY

EQU (Equate)

EXPORT or GLOBAL

EXTRN (External)

FUNCTION or PROC

INCLUDE

RN (equate)

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Section B.2: Description of ARM Assembler Directives

Directives, or as they are sometimes called, pseudo-ops or pseudo-instructions, are
used by the assembler to translate Assembly language programs into machine language.
Unlike the microprocessor’s instructions, directives do not generate any opcode; therefore,
no memory locations are occupied by directives in the final hex version of the assembly
program. To summarize, directives give directions to the assembler program to tell it how
to generate the machine code; instructions are assembled into machine code to give
instructions to the CPU at execution time. The following are descriptions of the some of
the most widely used directives for the ARM assembler. They are given in alphabetical
order for ease of reference.

ALIGN

Format:

ALIGN n ;n is any power of 2 from 29 to 23!

This is used to make sure data is aligned in 32-bit word or 16-bit half word memory
address. If n is not specified, ALIGN sets the current location to the next word (four byte)
boundary. The following uses ALIGN to make the data word and half word aligned:

ALIGN 4 ; The next instruction is word (4 bytes) aligned
ALIGN ; The next instruction is word (4 bytes) aligned
ALIGN 2 ; The next instruction is half word (2 bytes) aligned

Notice that, this ALIGN directive should not be confused with the ALIGN attribute
of the AREA directive.

AREA
Format:
AREA sectionname attribute, attribute, ...

The AREA directive tells the assembler to define a new section of memory. The
memory can be code or data and can have attributes such as ReadOnly, ReadWrite, and so
on. This is widely used to define one or more blocks of indivisible memory for code or
data to be used by the linker. Every assembly language program has at least one AREA.

The following line defines a new area named MY_ASM_PROG1 which has CODE
and READONLY attributes:

AREA MY_ASM_PROG1 CODE, READONLY

Among widely used attributes are CODE, DATA, READONLY, READWRITE,
COMMON, and ALIGN. The following describes these widely used attributes.

CODE is an attribute given to an area of memory used for executable machine
instruction. Since it is used for code section of the program it is by default READONLY
memory. In ARM Assembly language we use this area to write our instructions.

STUDENTS-HUB.com Uploaded By: anonymous

DATA is an attribute given to an area of memory used for data and no instruction
(machine instructions) can be placed in this area. Since it is used for data section of the
program it is by default a READWRITE memory. In ARM Assembly language we use
this area to set aside SRAM memory for scratch pad and stack.

READWRITE is an attribute given to an area of memory which can be read from
and written to. Since it is READWRITE section of the program it is by default for DATA.
In ARM Assembly language we use this area to set aside SRAM memory for scratch pad
and stack.

READONLY is an attribute given to an area of memory which can only be read
from. Since it is READONLY section of the program it is by default for CODE. In ARM
Assembly language we use this area to write our instructions for machine code execution.

COMMON is an attribute given to an area of DATA memory section which can be
used commonly by several program codes. We do not initialize the COMMON section of
the memory since it is used by compiler exclusively. The compiler initializes the
COMMON memory area with all zeros.

ALIGN is another attribute given to an area of memory to indicate how memory
should be allocated according to the addresses. When the ALIGN is used for CODE and
READONLY it aligned in 4-bytes address boundary by default since the ARM instructions
are all 32-bit (4-bytes) word. The ALIGN attribute of AREA has a number after like
ALIGN=3 which indicates the information should be placed in memory with addresses of

23 that is 0x50000, 0x50008, 0x50010, 0x50020, and so on. This ALIGN attribute of the
AREA should not be confused with the ALIGN directive.

DCB directive (define constant byte)
Format:
label DCB n ;n between -128 to 256 , byte or string

The DCB directive allocates a byte size memory and initializes the values for
reading only.

MY VALUE DCB 5 ;MY VALUE =5
MYMSAGE DCB “HELLO WORLD” ;string

DCD directive (define constant word)
Format:

label DCD n

The DCD directive allocates a word size memory and initializes the values for
reading only. The data is 32 bit aligned.

MYDATA DCD 0x200000, 0xF30F5, 5000000, 0xFFFF9CD7
DCW directive (define constant half-word)

Format:

STUDENTS-HUB.com Uploaded By: anonymous

label DCB n

The DCW directive allocates a half-word size memory and initializes the values for
reading only.

MYDATA DCW 0x20, 0xF230, 5000, 0x9CD7
END

Every program must have an entry and an END point. The labels for the entry and
end points must match. The END directive tells the assembler that it has reached the end
of source file.

AREA PROG_C2, CODE, READONLY
ENTRY

END

ENDP or ENDFUNC

The ENDFUNC or ENDP directive informs the assembler that it has reached the end
of a function. ENDFUNC and ENDP are the same. See FUNCTION or PROC directives.

ENTRY

The ENTRY directive shows the entry point of a program to the assembler. Each
program must have one entry point.

AREA PROG_C2, CODE, READONLY
ENTRY

END
EQU (Equate)

To assign a fixed value to a name, one uses the EQU directive. The assembler will
replace each occurrence of the name with the value assigned to it.

DATA1 EQU 0x39 ;the way to define hex value
PORTB EQU 0xF0018000 ;SFR Port B address
SUM1 EQU 0x40000120 ;assign RAM loc to SUM1

Unlike data directives such as DCB, DCD, and so on, EQU does not assign any
memory storage; therefore, it can be defined at any time and at any place, and can even be
used within the code segment.

EXPORT or GLOBAL

To inform the assembler that a name or symbol will be referenced by other modules

STUDENTS-HUB.com Uploaded By: anonymous

(in other files), it is marked by the EXPORT or GLOBAL directives. If a module is
referencing a name outside itself, that name must be declared as EXTRN (or IMPORT).
Correspondingly, in the module where the variable is defined, that variable must be
declared as EXPORT or GLOBAL in order to allow it to be referenced by other modules.
See the EXTRN directive for examples of the use of both EXTRN and EXPORT.

EXTRN (External)

The EXTRN directive is used to indicate that certain variables and names used in a
module are defined by another module. In the absence of the EXTRN directive, the
assembler would search for the definition and give an error when it couldn’t find it. The
format of this directive is:

EXTRN name
The following example shows how the EXPORT and EXTERN directives are used:
;from the main program:

EXTRN MY_FUNC

BL MY_FUNC

;MY _FUNC is located in a different file:
AREA OUR_EXAMPLE,CODE,READONLY
EXTRN DATA1
EXPORT MY_FUNC
MY_FUNC FUNCTION

LDR R1,=DATA1

ENDFUNC

Notice that the EXTRN directive is used in the main procedure to show that
MY_FUNC is defined in another module. This is needed because MY_FUNC is not
defined in that module. Correspondingly, MY_FUNC is defined as GLOABAL in the
module where it is defined. EXTRN is used in the MY_FUNC module to declare that
operand DATA1 has been defined in another module. Correspondingly, DATA1 is declared
as GLOBAL in the calling module.

FUNCTION or PROC

Often, a group of Assembly language instructions will be combined into a procedure

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com

so that it can be called by another module. The FUNCTION and ENDFUNC directives are
used to indicate the beginning and end of the procedure. See the following example:

MY_FUNC FUNCTION

ENDFUNC
INCLUDE

When there is a group of macros written and saved in a separate file, the INCLUDE
directive can be used to bring them into another file.

RN (equate)

This is used to define a name for a register. The RN directive does not set aside a
separate storage for the name, but associates a register with that name. The following code
shows how we use RN:

VAL1 RN R1 ;define VAL1 as a name for R1
VAL2 RN R2 ;define VAL?2 as a name for R2
SUM RN R3 ;define SUM as a name for R3

AREA PROG_2_1, CODE, READONLY

ENTRY

MOV VAL1, #0x25 ;R1 = 0x25

MOV VAL2, #0x34 ;R2 = 0x34

ADD SUM, VAL1,VAL2 ;add R2 to R1 and place it in R3
HERE B HERE

END

Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Appendix C: Macros

What is a macro and how is it used?

There are applications in Assembly language programming where a group of
instructions performs a task that is used repeatedly. For example, you might need to add
three registers together. So it does not make sense to rewrite them every time they are
needed. Therefore, to reduce the time that it takes to write these codes and reduce the
possibility of errors, the concept of macros was born. Macros allow the programmer to
write the task (set of codes to perform a specific job) once only and to invoke it whenever
it is needed, wherever it is needed.

MACRO definition
Every macro definition must have three parts, as follows:
MACRO

[$label] macroName parameterl,parameter2,...,parameterN

MEND

The MACRO directive indicates the beginning of the macro definition and the
MEND directive signals the end. What goes in between the MACRO and MEND
directives is called the body of the macro. The name must be unique and must follow
Assembly language naming conventions. The parameters are names, or parameters, or
even registers that are mentioned in the body of the macro. After the macro has been
written, it can be invoked (or called) by its name, and appropriate values are substituted
for parameters. For example you might want to have an instruction that adds three
registers. The following is a macro for the purpose:

MACRO

ADD3VAL $DEST,$ARG1,$ARG2,5ARG3
ADD $DEST,$ARG1,5ARG2

ADD $DEST,$DEST,$ARG3

MEND

The above code is the macro definition. Note that parameters $DEST, $ARGI,
$ARG2, and $ARG3 are mentioned in the body of the macro. To distinguish parameters
they must start with $. In the following example, the macro is invoked by its name with
the user’s actual data:

AREA OURCODE,READONLY,CODE
ENTRY

STUDENTS-HUB.com Uploaded By: anonymous

MOV R1,#5
MOV R2,#2
ADD3VAL RO,R1,R2,#5
The instruction “ADD3VAL R0O,R1,R2,#5” invokes the macro.
The assembler expands the macro by providing the following code in the .LST file:
3 00000008 E0810002 ADD RO,R1,R2
4 0000000C E2800005 ADD RO,RO,#5

Default Values for parameters
We can define default values for parameters as shown below:
MACRO
ADD3VAL $DEST,$ARG1=R3,$ARG2,$ARG3=#5
ADD $DEST,$ARG1,$ARG2
ADD $DEST,$DEST,$ARG3

MEND
To use the default value we put a | instead of the parameter while invoking the
macro:
ADD3VAL RO,R1,R2,|

The above code uses the default value of $SARG3 which is set to #5.

Using labels in macros

In the discussion of macros so far, examples have been chosen that do not have a
label or name in the body of the macro. This is because if a macro is expanded more than
once in a program and there is a label in the label field of the body of the macro, the same
label would be generated more than once and an assembler error would be generated. To
address the problem we can give a unique label to the macro when we invoke it, as shown

below:
MACRO
$lbl OUR_MACRO
CMP RIL#5
BEQ $lbl
MOV R1,#1
$1bl
MEND

STUDENTS-HUB.com Uploaded By: anonymous

AREA OURCODE,READONLY,CODE

ENTRY
MOV RI1,#3
labell OUR_MACRO
MOV R1,#5
label2 OUR_MACRO
HERE B HERE

The assembler expands the macro by providing the following code in the .LST file:
20 00000000 AREA OURCODE,READONLY,CODE
21 00000000 ENTRY
22 00000000 E3A01003 MOV R1,#3
23 00000004 labell OUR_MACRO
3 00000004 E3510005 CMP R1,#5
4 00000008 0A000000 BEQ labell
5 0000000C E3A01001 MOV R1,#1
6 00000010 labell
24 00000010 E3A01005 MOV R1,#5
25 00000014 label2 OUR_MACRO
300000014 E3510005 CMP R1,#5
4 00000018 0A000000 BEQ label2
50000001C E3A01001 MOV R1,#1
6 00000020 label?2
26 00000020 EAFFFFFE
HERE B HERE

In cases that there are more than one label in a macro the lines can be labeled as
shown below:

MACRO

$1bl OUR_MACRO
CMP R1,#5
BEQ $lbl.equal
MOV R1#1
B $Ibl.next

STUDENTS-HUB.com Uploaded By: anonymous

$lbl.equal

MOV R1,#2
$lbl.next

MEND

AREA OURCODE,READONLY,CODE
ENTRY
MOV R1,#3
labell OUR_MACRO
MOV R1,#5
label2 OUR_MACRO
HERE B HERE
The assembler expands the macro by providing the following code in the .LST file:
13 00000000 AREA OURCODE,READONLY,CODE
14 00000000 ENTRY
15 00000000 E3A01003 MOV R1,#3
16 00000004 labell OUR_MACRO
3 00000004 E3510005 CMP R1,#5
4 00000008 0A000001 BEQ labellequal
50000000C E3A01001 MOV R1,#1
6 00000010 EA000000 B labellnext
7 00000014 labellequal
8 00000014 E3A01002 MOV R1,#2
9 00000018 label1next
17 00000018 E3A01005 MOV R1,#5
18 0000001C label2 OUR_MACRO
3 0000001C E3510005 CMP R1,#5
4 00000020 0A000001 BEQ label2equal
500000024 E3A01001 MOV R1,#1
6 00000028 EA000000 B label2next
7 0000002C label2equal

STUDENTS-HUB.com Uploaded By: anonymous

8 0000002C E3A01002 MOV R1,#2
9 00000030 label2next

19 00000030 EAFFFFFE

HERE B HERE

Conditional macros
We can pass condition into macros, as well:
MACRO
$1bl OurMacro$cond
CMP R1,#5
BS$cond $lbl.equal
MOV R1,#1
$lbl.equal
MEND

AREA OURCODE,READONLY,CODE

ENTRY
MOV RI1,#3
labell OurMacroEQ ;in the macro check equality
MOV RI1,#3
label2 OurMacroLO ;in the macro check if is lower
HERE B HERE
The assembler expands the macro by providing the following code in the .LST file:
10 00000000 AREA OURCODE,READONLY,CODE
11 00000000 ENTRY

12 00000000 E3A01003 MOV R1,#3

13 00000004 labell OurMacroEQ

3 00000004 E3510005 CMP R1,#5

4 00000008 0A000000 BEQ labellequal
50000000C E3A01001 MOV R1,#1

6 00000010 labellequal

14 00000010 E3A01003 MOV R1,#3

STUDENTS-HUB.com Uploaded By: anonymous

15 00000014 label2 OurMacroLO
3 00000014 E3510005 CMP R1,#5
4 00000018 3A000000 BLO label2equal
50000001C E3A01001 MOV R1,#1
6 00000020 label2equal
16 00000020 EAFFFFFE
HERE B HERE

Notice that the first B$cond is substituted with BEQ while the second B$cond is
substituted with BLO since the conditions EQ and LO are used respectively.

INCLUDE directive

Assume that there are several macros that are used in every program. Must they be
rewritten every time? The answer is no if the concept of the INCLUDE directive is
known. The INCLUDE directive allows a programmer to write macros and save them in a
file, and later bring them into any file. For example, assuming that some widely used
macros were written and then saved under the filename “MYMACRO1.S”, the INCLUDE
directive can be used to bring this file into any “.asm” file and then the program can call
upon any of the macros as many times as needed. In the following example the
ADD3VAL macro is defined in the MyMACRO.s file and it is used in the example.asm
file.

] prog.asm v X [] Mymacro:s v X
1 ARER OURCODE, READOMLY, CODE 1 MACRO
i INCLUDE MyMacro.s 2 ADD3IVAL S$DEST,SARG1, SARG2Z, SARG3
3 ENTIRY 3 ADD SDEST, $ARGL, SARGZ
4 MOV R1,#5 4 ADD SDEST,SDEST, SARG3
5 MOV RI,$2 5 HEND
& ADD3VAL RO,R1,RZ,#5 & END
T H1I B Hl
8 END
i i} » r] L[}

Figure C. 1: Defining a Macro in an Include File

STUDENTS-HUB.com

Uploaded By: anonymous

Macros vs. subroutines

Macros and subroutines are useful in writing assembly programs, but each has
limitations. Macros increase code size every time they are invoked. For example, if you
call a 10-instruction macro 10 times, the code size is increased by 100 instructions;
whereas, if you call the same subroutine 10 times, the code size is only that of the
subroutine instructions. On the other hand, a function call takes 3 clocks and the return
instruction takes 3 clocks to get executed. So, using functions adds around 6 clock cycles.
The subroutines might use stack space as well when called, while the macros do not.

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Appendix D: Flowcharts and Pseudocode

Flowcharts

If you have taken any previous programming courses, you are probably familiar
with flowcharting. Flowcharts use graphic symbols to represent different types of
program operations. These symbols are connected together into a flowchart to show the
flow of execution of a program. The more commonly used symbols are as follows:

Start and End points

Start and End points are commonly represented as rounded rectangles or ovals
containing the words “Start” or “End”. Small circle is another way to show them.

Figure D- 1: Start and End Points
Decisions

The conditions are represented in diamonds.

Figure D- 2: a Decision that Compares A with B
Process

The processing steps are represented using rectangles.

A=B+2
C=C-1

Figure D- 3: a Process Sample
Inputs and outputs

Inputs and outputs are represented as parallelogram.

Figure D- 4: an Output Sample
Subroutines

Calling subroutines are represented as shown below

Caleulate result

Figure D- 5: a Subroutine Call Sample

STUDENTS-HUB.com Uploaded By: anonymous

Pseudocode

Flowcharting has been standard practice in industry for decades. However, some
find limitations in using flowcharts, such as the fact that you can’t write much in the little
boxes, and it is hard to get the “big picture” of what the program does without getting
bogged down in the details. An alternative to using flowcharts is pseudocode, which
involves writing brief descriptions of the flow of the code. Figures D-6 through D-10
show flowcharts and pseudocode for commonly used control structures.

Structured programming uses three basic types of program control structures:
sequence, control, and iteration. Sequence is simply executing instructions one after
another. Figure D-6 shows how sequence can be represented in pseudocode and
flowcharts.

Statement 1

Statement 1 $

Statement 2

Statement 2

'

{a) Pseudocode {b) FlowChart

Figure D- 6: SEQUENCE Pseudocode versus Flowchart

Note in Figures D-6 through D-11 that “statement” can indicate one statement or a
group of statements.

Figure D-7 through D-9 show two control programming structures: IF-THEN-ELSE
and IF-THEN in both pseudocode and flowcharts.

IF (condition) THEN
Statement 1
ELSE
Statement 2

Statement 1 Statement 2

b

Figure D- 7: IF THEN ELSE Pseudocode versus Flowchart

STUDENTS-HUB.com Uploaded By: anonymous

IF (A = B) THEN
c=2
ELSE
c=5

Figure D- 8: an IF THEN ELSE Sample

Condition?

IF (condition) THEN
Statement

Statement

Figure D- 9: IF THEN Pseudocode versus Flowchart

Figures D-10 and D-11 show two iteration control structures: REPEAT UNTIL and
WHILE DO. Both structures execute a statement or group of statements repeatedly. The
difference between them is that the REPEAT UNTIL structure always executes the
statement(s) at least once, and checks the condition after each iteration, whereas the
WHILE DO may not execute the statement(s) at all because the condition is checked at the
beginning of each iteration.

Statement |-————

REPEAT
Statement
UNTIL {condition)

STUDENTS-HUB.com Uploaded By: anonymous

Figure D- 10: REPEAT UNTIL Pseudocode versus Flowchart

Mo
Condition?

WHILE (condition) DO
Statement

Statement

|

'

Figure D- 11: WHILE DO Pseudocode versus Flowchart

Program D-1 finds the sum of numbers between 1 and 10. Compare the flowchart
versus the pseudocode for Program D-1 (shown in Figure D-12). In this example, more
program details are given than one usually finds. For example, this shows steps for
initializing and changing values. Another programmer may not include these steps in the
flowchart or pseudocode. It is important to remember that the purpose of flowcharts or
pseudocode is to show the flow of the program and what the program does, not the
specific Assembly language instructions that accomplish the program’s objectives. Notice
also that the pseudocode gives the same information in a much more compact form than
does the flowchart. It is important to note that sometimes pseudocode is written in layers,
so that the outer level or layer shows the flow of the program and subsequent levels show
more details of how the program accomplishes its assigned tasks.

Program D-1

—t
=)
QO
[—
=
VY
N

int sum = 0;

int value = 1;

o
o

sum = sum + value;
value++;

}while(value <= 10);

[
|_sum=sum+vale; |
| valuets
| }while(valve<=10, |
[

STUDENTS-HUB.com Uploaded By: anonymous

printf (“%d”, sum);

value = 1
sum =
-
value =1 Add value to sum
sum =10
REPEAT ¢
sum = sum + value
value = value + 1
UNTIL (value > 10) Increment value
Display sum

Yes

Figure D-12: Pseudocode versus Flowchart for Program D-1

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

Appendix E: Passing Arguments into Functions
There are different ways to pass arguments to functions. Some of them are:
through registers
through memory using references

using stack

STUDENTS-HUB.com Uploaded By: anonymous

E.1: Passing arguments through registers

In the following program the BIGGER function gets two values through RO and R1.
After comparing RO and R1, it returns the bigger value through R2.

Program E-1
AREA OUR_PROG,CODE,READONLY
ENTRY
MOV RO#5 ;R0=5
MOV R1#7 ;R1=7
BL BIGGER ;BIGGER(5,7)
B HERE ;stay here

s
]
e
&

;BIGGER returns the bigger value
;Parameters:
RO and R1: the values to be compared

;Returns:

R2: containing the bigger value

IGGER

CMP RO,R1
HI
MOV R2,R1 ;R2=R1

vy
=

;if RO > R1 goto L1

;return

MOV R2,R0 ;R2=RO

os)
>~
=
el

= o
—
o
>~
- -

;return

This is a fast way of passing arguments to the function.

STUDENTS-HUB.com Uploaded By: anonymous

E.2: Passing through memory using references

We can store the data in memory and pass its address through a register. In the
following program the STR_LENGTH function gets the address of a zero-ended string
through RO and returns the length of the string through R1.

Program E-2
AREA OUR_PROG,CODE,READONLY
ENTRY
ADR RO,OUR_STR ;RO = addr. of OUR_STR
BL STR_LENGTH ;STR_LENGTH(&OUR_STR)
B HERE ;stay here

OUR_STR DCB “HELLO!”
ALIGN 4

o
o)
&

;STR_LENGTH returns the length of str
;Parameters:

RO: address of the string
;Returns:

RO: the length of string

TR_LENGTH
MOV R2#0
_BEGIN
LDRB R5,[RO]
CMP R5,#0
BXEQ LR ;return if 0
ADD R2,R2#1 ;R2=R2+1
ADD RO,RO,#1 ;RO=R0O+1
L._BEGIN

&3]
)

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com Uploaded By: anonymous

E.3: Passing arguments through stack

Passing through the stack is a flexible way of passing arguments. To do so, the
arguments are pushed into the stack just before calling the function and popped off after
returning. In Program E-3, the BIGGER function gets two arguments through the stack
and returns the bigger value through the stack.

Program E-3
AREA OUR_PROG,CODE,READONLY
ENTRY

;init stack pointer

LDR SP,=(0x40000000+(16*1024))

MOV RO,#5
PUSH {RO} ;push Argl
MOV RO#7
PUSH {RO} ;push Arg2

BL BIGGER ;BIGGER(5,7)
LDR R1,[SP#0] ;R1=return value
POP {RO}
POP {RO}

HERE B HERE ;stay here

;BIGGER returns the bigger value
;Parameters:

values to be compared
;Returns:

the bigger value

-

BIGGER
LDR RO,[SP,#4] ;RO = argl

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com

LDR R1,[SP#0] ;R1 = arg?

CMP RO,R1
HI
STR R1,[SP#0] ;return R1

oy
rq
—

;if RO > R1 goto L1

oy
e
r'
=

;return

STR RO,[SP,#0] ;return RO

oy
e
r'
=

;return

&5
W,

This method of passing arguments are used in x86 computers.

Uploaded By: anonymous

E.4: AAPCS (ARM Application Procedure Call Standard)

The AAPCS provides an standard for implementing the functions and the function
calls so that the codes made by different compilers and different programmers can work
with each other. Some of the rules of the standard are:

The arguments must be sent through RO to R4, respectively.
The return value must be sent back through RO and R1.

The functions can use R5 to R8 for their internal calculations. But their
values must be retrieved before returning. To do so, we push the registers
before using them and pop them before returning from the function.

The stack must be used as Full Descending

In Program E-1 most of the above rules are considered. But the return value must be
in RO instead of R2.

In Program E-4 the above rules are considered.
Program E-4
AREA OUR_PROG,CODE,READONLY
ENTRY

;init stack pointer
;(change it according to your chip)

LDR SP,=(0x40000000+(16*1024))

MOV RO0,#20
BL DELAY ;DELAY(20)
HERE B HERE ;stay here

;DELAY waits for a while
;Parameters:
RO: the amount of wait

;Returns:

STUDENTS-HUB.com Uploaded By: anonymous

CMP RO,#0
BXEQ LR ;return if zero

PUSH ({R5} ;save R5

LDR R5,=5000000 ;R5 =5000000

1 SUBS R5,R5#1 ;R5=R5-1
BN L

e
[N

;goto L1 if R5 is not zero

POP {R5} ;restore R5

os)
<
—

R ;return

k5|
)

More information

For more information about AAPCS see the following article or search “AAPCS” on the
Internet:

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042e/IHI0042E_aapcs.pdf

STUDENTS-HUB.com Uploaded By: anonymous

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042e/IHI0042E_aapcs.pdf

STUDENTS-HUB.com Uploaded By: anonymous

Appendix F: ASCII Codes

Dec | Hex | Ch Dec | Hex | Ch Dec Hex | Ch Dec Hex | Ch
a L5]5] 32 28 b4 48 @ 76 5] "
b a1 @ 33 21 H 65 41 A 97 61 a
2 a2 B 34 22 A bb 42 B 78 62 b
3 al L] 35 23 # 6?7 43 H 99 63 c
4 B84 * 36 24 $ 6B 44 1] 18a o4 d
5 s o 37 25 # 69 45 E 181 65 e
& 86 4 38 26 & 78 46 F 182 66 F
7 av - 39 27 : 71 47 G 183 b7 g
B (5 1]] 4@ 28 < 72 48 H 184 68 h
7 a2] 41 27 b 73 432 I 185 69 i
18 an 0] 42 2A - 74 4A J 186 6A J
ii ap d 43 2B + 75 4B K 187 6B k
12 ac '] 4 2C o 76 4C L 188 6C 1
13 aD F 45 2D - ?? 4D H 189 (1] n
14 BE n 46 2E * 78 4E N 118 LE n
15 aF -3 47 2F Fs 79 4F 0 111 &F o
i6 i8 > 48 38 a Ba 58 P 112 7a 1]
1?7 11 | 49 31 i | 81 51 Q 113 1 q
i8 12 3 LA 32 2 a8z 52 R 114 72 r
19 13 L 51 33 3 83 53 8 115 73 s
28 i4 q 52 34 4 A4 54 T 116 74 t
21 15] 53 35 5 85 55 1] 117 75 u
22 ih - 54 36 (] 86 56 u 118 7h v
23 17 1 &S a7 7 a7 57 u 119 77 W
24 i8 1 56 38 3 88 58] 12@8 78 H
25 19 i 5?7 39 9 ae 59 g 124 79 y
26 1A + 58 3R : 28 5A Z 122 7H F
27 iB - 59 3B & 91 LB [123 7B {
28 icC L 6@ 3C 4 92 5C S 124 7C i
29 iD “ bl 3D = 923 5D 1 125 7D >
38 1E A b2 3E > 24 5E = 126 7E -~
3 iF Y 63 3F 7 95 5F _ 127 7F a

STUDENTS-HUB.com Uploaded By: anonymous

	Chapter 1: The History of ARM and Microcontrollers
	Section 1.1: Introduction to Microcontrollers
	Section 1.2: The ARM Family History
	Problems
	Answers to Review Questions
	Chapter 2: ARM Architecture and Assembly Language Programming
	Section 2.1: The General Purpose Registers in the ARM
	Section 2.2: The ARM Memory Map
	Section 2.3: Load and Store Instructions in ARM
	Section 2.4: ARM CPSR (Current Program Status Register)
	Section 2.5: ARM Data Format and Directives
	Section 2.6: Introduction to ARM Assembly Programming
	Section 2.7: Assembling an ARM Program
	Section 2.8: The Program Counter and Program ROM Space in the ARM
	Section 2.9: Some ARM Addressing Modes
	Section 2.10: RISC Architecture in ARM
	Section 2.11: Viewing Registers and Memory with ARM Keil IDE
	Problems
	Answers to Review Questions
	Chapter 3: Arithmetic and Logic Instructions and Programs
	Section 3.1: Arithmetic Instructions
	Section 3.2: Logic Instructions
	Section 3.3: Rotate and Barrel Shifter
	Section 3.4: Shift and Rotate Instructions in ARM Cortex (Case Study)
	Section 3.5: BCD and ASCII Conversion
	Problems
	Answers to Review Questions
	Chapter 4: Branch, Call, and Looping in ARM
	Section 4.1: Looping and Branch Instructions
	Section 4.2: Calling Subroutine with BL
	Section 4.3: ARM Time Delay and Instruction Pipeline
	Section 4.4: Conditional Execution
	Problems
	Answers to Review Questions
	Chapter 5: Signed Numbers and IEEE 754 Floating Point
	Section 5.1: Signed Numbers Concept
	Section 5.2: Signed Number Instructions and Operations
	Section 5.3: IEEE 754 Floating-Point Standards
	Problems:
	Answers to Review Questions
	Chapter 6: ARM Memory Map, Memory Access, and Stack
	Section 6.1: ARM Memory Map and Memory Access
	Section 6.2: Stack and Stack Usage in ARM
	Section 6.3: ARM Bit-Addressable Memory Region
	Section 6.4: Advanced Indexed Addressing Mode
	Section 6.5: ADR, LDR, and PC Relative Addressing
	Problems
	Answers to Review Questions
	Chapter 7: ARM Pipeline and CPU Evolution
	Section 7.1: ARM Pipeline Evolution
	Section 7.2: Other CPU Enhancements
	Problems
	Answers to Review Questions
	Appendix A: ARM Cortex-M3 Instruction Description
	Section A.1: List of ARM Cortex-M3 Instructions
	Section A.2: ARM Cortex-M3 Instruction Description
	Appendix B: ARM Assembler Directives
	Section B.1: List of ARM Assembler Directives
	Section B.2: Description of ARM Assembler Directives
	Appendix C: Macros
	What is a macro and how is it used?
	Macros vs. subroutines
	Appendix D: Flowcharts and Pseudocode
	Flowcharts
	Pseudocode
	Appendix E: Passing Arguments into Functions
	E.1: Passing arguments through registers
	E.2: Passing through memory using references
	E.3: Passing arguments through stack
	E.4: AAPCS (ARM Application Procedure Call Standard)
	Appendix F: ASCII Codes
	ADC Add with Carry
	ADCS Add with Carry (and update the flags)
	ADD ADD
	ADDS ADD and update the flags
	ADR Load PC-Relative Address
	AND Logical AND
	ANDS Logical AND (update flags)
	ASR Arithmetic Shift right
	ASRS Arithmetic Shift right (update the flags)
	B Branch (unconditional jump)
	Bxx Branch Conditional
	BFC Bit Field Clear
	BFI Bit Field Insert
	BIC Bit Clear
	BICS Bit Clear (update flags)
	BKPT Breakpoint
	BL Branch with Link (this is Call instruction)
	BLX Branch Indirect with Link
	BX Branch Indirect (BX LR is used for Return)
	CBNZ Compare and Branch on Non-Zero
	CBZ Compare and Branch on Zero
	CDP Coprocessor Data processing
	CLREX Clear Exclusive
	CLZ Count Leading Zero
	CMN Compare Negative
	CMP Compare
	CPSID Change processor ID and Disable Interrupt
	CPSIE Change Processor State and Enable Interrupt
	DMB Data Memory Barrier
	DSB Data Synchronization Barrier
	EOR Exclusive OR
	EORS Exclusive OR and update the flags
	ISB Instruction Synchronization Barrier
	IT If-Then Condition Block
	LDC Load Coprocessor
	LDM Load Multiple registers
	LDMDB Load Multiple registers and Decrement Before each access
	LDMEA Load Multiple registers from Empty Ascending
	LDMFD Load Multiple registers Full Descending
	LDMIA Load Multiple registers and Increment after each Access
	LDR Load Register
	LDR Rx,=Value Load Register with 32-bit value
	LDRB Load Register Byte
	LDRBT Load Register Byte with Translation
	LDREX, LDREXB, LDREXH Load Register Exclusive
	LDRH Load Register Halfword
	LDRSB Load Register signed Byte
	LDRSH Load Register Signed Halfword
	LDRT Load Register with Translation
	LSL Logical Shift Left
	LSLS Logical Shift Left (update the flags)
	LSR Logical Shift Right
	LSRS Logical Shift Right (update the flags)
	MCR Move to Coprocessor from ARM Register
	MLA Multiply Accumulate
	MLS Multiply and Subtract
	MOV Move (ARM7)
	MOV Move (ARM Cortex)
	MOVS Move (and update flags)
	MOVT Move Top
	MOVW Move 16-bit constant
	MRC Move to ARM Register from Coprocessor
	MRS Move to general Register from Special register
	MSR Move to Special register from general Register
	MUL Unsigned Multiplication
	MVN Move Negative
	MVNS Move Negative and update the flags
	NOP No Operation
	ORN Logical OR Not
	ORNS OR Not and update flags
	ORR Logical OR
	ORRS Logical OR and update the flags
	POP POP register from Stack
	PUSH PUSH register onto stack
	RBIT Reverse Bits
	REV Reverse byte order in a word
	RV16 Reverse byte order in 16-bit
	REVSH Reverse byte order in bottom halfword and sign extend
	ROR Rotate Right
	RORS Rotate Right (update the flags)
	RRX Rotate Right with extend
	RRXS Rotate Right with extend (update the flags)
	RSB Reverse Subtract
	RSBS Reverse Subtract and update the flags
	SBC Subtract with Carry (Borrow)
	SBCS Subtract with Carry (Borrow) and update the flags
	SBFX Sign Bit Field extract
	SDIV Signed Divide
	SEV Send Event
	SMLAL Signed Multiply Accumulate Long
	SMULL Signed Multiply Long
	SSAT Sign Saturate
	STM Store Multiple
	STMDB Store Multiple register and Decrement Before
	STMEA Store Multiple register Empty Ascending
	STMIA Store Multiple register Empty Ascending
	STMFD Store Multiple register Full Descending
	STR Store Register
	STRB Store Register Byte
	STRBT Store Register Byte with Translation
	STRD Store Register Double (two words)
	STREX, STREXB, STREXH Store Register Exclusive
	STRH Store Register Halfword
	STRT Store Register
	SUB Subtract
	SUBS Subtract
	SVC supervisor Call (Software Interrupt)
	SXTB Sign Extend byte
	SXTH Sign Extend Halfword
	TBB Table Branch Byte
	TBH Table Branch halfword
	TEQ Test Equivalence
	TST Test
	UBFX Unsigned Bit filed extract
	UDIV Unsigned Divide
	UMLAL Unsigned Multiply with Accumulate
	UMULL Unsigned Multiply Long
	USAT Unsigned Saturate
	UXBT Zero extend a byte
	UXTH Zero extend halfword
	WFE Wait for event
	WFI Wait for interrupt
	ALIGN
	AREA
	DCB directive (define constant byte)
	DCD directive (define constant word)
	DCW directive (define constant half-word)
	ENDP or ENDFUNC
	ENTRY
	EQU (Equate)
	EXPORT or GLOBAL
	EXTRN (External)
	FUNCTION or PROC
	INCLUDE
	RN (equate)

