Organic Chemistry, Fourth Edition

Janice Gorzynski Smith University of Hawai'i

Chapter 18 Lecture Outline

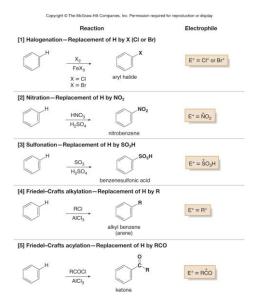
Prepared by Layne A. Morsch The University of Illinois - Springfield

Copyright © 2014 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Electrophilic Aromatic Substitution

- The characteristic reaction of benzene is electrophilic aromatic substitution—a hydrogen atom is replaced by an electrophile.
- Since benzene is especially stable, reactions that keep the aromatic ring intact are favored.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display


Substitution Instead of Addition

- Benzene does not undergo addition reactions like other unsaturated hydrocarbons, because addition would yield a product that is not aromatic.
- · Substitution of a hydrogen keeps the aromatic ring intact.
- There are several common examples of electrophilic aromatic substitution.

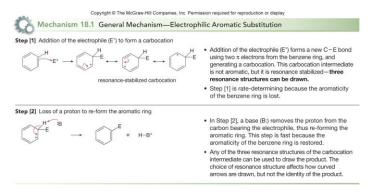
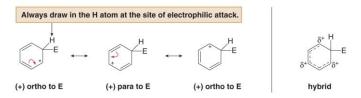

Examples of Electrophilic Aromatic Substitution

Figure 18.1

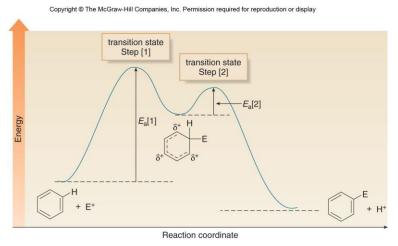
Mechanism of Substitution

- Regardless of the electrophile used, all electrophilic aromatic substitution reactions occur by the same two-step mechanism:
 - addition of the electrophile E⁺ to form a resonancestabilized carbocation,
 - 2. followed by deprotonation with base.


5

Resonance-Stabilized Aromatic Carbocation

- The first step in electrophilic aromatic substitution forms a carbocation, for which three resonance structures can be drawn.
- To help keep track of the location of the positive charge:


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

- Always draw in the H atom on the carbon bonded to E. This serves as a reminder that it
 is the only sp³ hybridized carbon in the carbocation intermediate.
- Notice that the positive charge in a given resonance structure is always located ortho
 or para to the new C-E bond. In the hybrid, therefore, the charge is delocalized over
 three atoms of the ring.

Energy Diagram for Electrophilic Aromatic Substitution

Figure 18.2

Halogenation

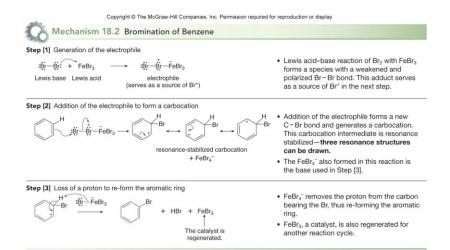
- In halogenation, benzene reacts with Cl₂ or Br₂ in the presence of a Lewis acid catalyst, such as FeCl₃ or FeBr₃, to give the aryl halides chlorobenzene or bromobenzene, respectively.
- Analogous reactions with I₂ and F₂ are not synthetically useful because I₂ is too unreactive and F₂ reacts too violently.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Chlorination

H

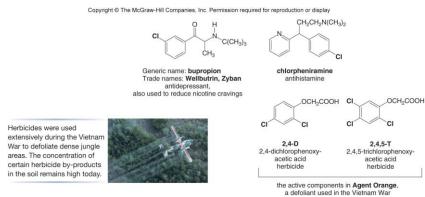
Cl₂
FeCl₃


Chlorobenzene

Bromination

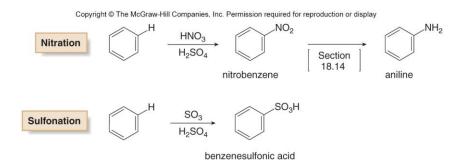
H

Br₂
FeBr₃


bromobenzene

· Chlorination proceeds by a similar mechanism.

Biologically Active Alkyl Chlorides

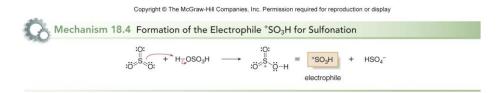


10

Nitration and Sulfonation


- Nitration and sulfonation introduce two different functional groups into the aromatic ring.
- Nitration is especially useful because the nitro group can be reduced to an NH₂ group.

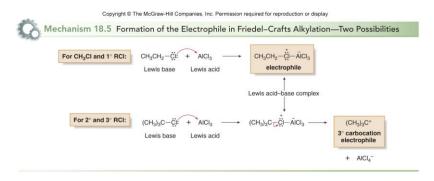
11


Nitration Mechanism

 Generation of the electrophile in nitration requires strong acid.

Sulfonation Mechanism

 Generation of the electrophile in sulfonation requires strong acid.



13

Friedel-Crafts Alkylation

• In Friedel-Crafts alkylation, treatment of benzene with an alkyl halide and a Lewis acid (AlCl₃) forms an alkyl benzene.

Electrophiles in Friedel-Crafts Alkylation

- For CH₃Cl and 1° RCl, the Lewis acid-base complex itself serves as the electrophile for electrophilic aromatic substitution.
- With 2° and 3° RCI, the Lewis acid-base complex reacts further to give a 2° or 3° carbocation, which serves as the electrophile. Carbocation formation occurs only with 2° and 3° alkyl chlorides, because they afford more stable carbocations.

15

Friedel–Crafts Alkylation with 3° Carbocation

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Mechanism 18.6 Friedel–Crafts Alkylation Using a 3° Carbocation

HC(CH₃)₃

(C(CH₃)₃

(C(CH₃

- Addition of the electrophile (a 3° carbocation) forms a new carbon-carbon bond in Step [1].
- AICI₄ removes a proton on the carbon bearing the new substituent, thus re-forming the aromatic ring in Step [2].

Other Facts About Friedel-Crafts Alkylation

[1] Vinyl halides and aryl halides do not react in Friedel-Crafts alkylation.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

[2] Rearrangements can occur.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

$$[1] \begin{array}{c} CH_3 \\ + CH_3 - C - CHCH_3 \\ + CH_3 - C - CHCH_3 \\ + CH_3 - C - CHCH_3 \\ + CH_3 - CH_2 - CH_3 \\ \end{array}$$

$$(2) \begin{array}{c} CH_3 \\ + CH_3 - CH_2 - CH_3 \\ \hline \\ 1^\circ \text{ halide} \end{array}$$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Mechanism 18.8 Friedel–Crafts Alkylation Involving Carbocation Rearrangement

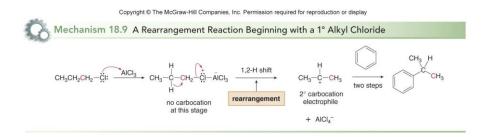
Steps [1] and [2] Formation of a 2° carbocation

 Reaction of the alkyl chloride with AlCl₃ forms a complex that decomposes in Step [2] to form a 2° carbocation.

Step [3] Carbocation rearrangement

$$\begin{array}{ccc} \text{CH}_3 & \xrightarrow{\text{1,2-H shift}} & \text{CH}_3 \\ \text{CH}_3 - \overset{\text{C}}{\text{C}} - \overset{\text{C}}{\text{CHCH}_3} & \xrightarrow{\text{[3]}} & \text{CH}_3 - \overset{\text{C}}{\text{C}} - \overset{\text{C}}{\text{CHCH}_5} \\ \text{H} & & \\ & & \text{3° carbocation} \end{array}$$

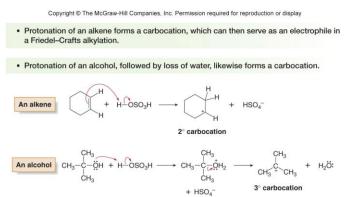
 1,2-Hydride shift converts the less stable 2° carbocation to a more stable 3° carbocation.


Steps [4] and [5] Addition of the carbocation and loss of a proton

 Friedel–Crafts alkylation occurs by the usual two-step process: addition of the carbocation followed by loss of a proton to form the alkylated product.

18

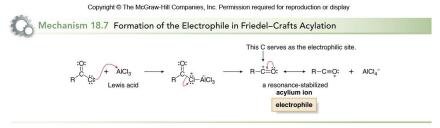
Rearrangements of 1° Alkyl Halides


 Rearrangements can occur even when no free carbocation is formed initially.

19

Other Carbocations in Friedel-Crafts Alkylation

[3] Other functional groups that form carbocations can also be used as starting materials.


• Carbocations formed in the presence of benzene can then substitute onto the ring by the usual mechanism.

Friedel-Crafts Acylation

- In Friedel-Crafts acylation, a benzene ring is treated with an acid chloride (RCOCI) and AICI₃ to form a ketone.
- Because the new group bonded to the benzene ring is called an acyl group, the transfer of an acyl group from one atom to another is an acylation.

Friedel-Crafts Acylation

- In Friedel-Crafts acylation, the Lewis acid AlCl₃ ionizes the carbon-halogen bond of the acid chloride, thus forming a positively charged carbon electrophile called an acylium ion, which is resonance stabilized.
- The positively charged carbon atom of the acylium ion then goes on to react with benzene in the two-step mechanism of electrophilic aromatic substitution.

Intramolecular Friedel-Crafts Reactions

 Starting materials that contain both a benzene ring and an electrophile are capable of intramolecular Friedel-Crafts reactions.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

23

Intramolecular Friedel-Crafts Reactions

Figure 18.4 Synthesis of LSD

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Substituent Effects of Substituted Benzenes

- Many substituted benzene rings undergo electrophilic aromatic substitution.
- Each substituent either increases or decreases the electron density in the benzene ring, and this affects the course of electrophilic aromatic substitution.
 - Donation of electron density to the ring makes benzene more electron rich.
 - Withdrawal of electron density from the ring makes benzene less electron rich.
- Electrophilic substitution on an already substituted benzene produces isomers, some of which are favored over others.

25

Inductive Effects

 Considering inductive effects only, the NH₂ group withdraws electron density and CH₃ donates electron density.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Electron-withdrawing inductive effect

Electron-donating inductive effect

The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Electron-donating inductive effect

Alkyl groups are polarizable, making them electron-donating groups.

Resonance Effects

• Resonance effects are only observed with substituents containing lone pairs or π bonds.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

- A resonance effect is electron donating when resonance structures place a negative charge on carbons of the benzene ring.
- A resonance effect is electron withdrawing when resonance structures place a positive charge on carbons of the benzene ring.
- An electron-donating resonance effect is observed whenever an atom Z having a lone pair of electrons is directly bonded to a benzene ring.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Three resonance structures place a (–) charge on atoms in the ring.

27

Electron-Withdrawing Resonance Effects

- An electron-withdrawing resonance effect is observed in substituted benzenes having the general structure C_6H_5 -Y=Z, where Z is more electronegative than Y.
- Seven resonance structures can be drawn for benzaldehyde (C₆H₅CHO).
- Because three of them place a positive charge on a carbon atom of the benzene ring, the CHO group withdraws electrons from the benzene ring by a resonance effect.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

On the McGraw-Hill Companies, Inc. Permission required for reproduction or display

On the McGraw-Hill Companies, Inc. Permission required for reproduction or display

On the McGraw-Hill Companies, Inc. Permission required for reproduction or display

On the McGraw-Hill Companies, Inc. Permission required for reproduction or display

On the McGraw-Hill Companies, Inc. Permission required for reproduction or display

On the McGraw-Hill Companies, Inc. Permission required for reproduction or display

On the McGraw-Hill Companies, Inc. Permission required for reproduction or display

On the McGraw-Hill Companies, Inc. Permission required for reproduction or display

On the McGraw-Hill Companies, Inc. Permission required for reproduction or display

On the McGraw-Hill Companies, Inc. Permission required for reproduction or display

On the McGraw-Hill Companies, Inc. Permission required for reproduction or display

On the McGraw-Hill Companies, Inc. Permission required for reproduction or display

On the McGraw-Hill Companies, Inc. Permission required for reproduction or display

On the McGraw-Hill Companies, Inc. Permission required for reproduction or display

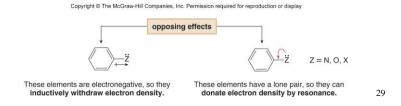
On the McGraw-Hill Companies, Inc. Permission required for reproduction or display

On the McGraw-Hill Companies, Inc. Permission required for reproduction or display

On the McGraw-Hill Companies, Inc. Permission required for reproduction or display

On the McGraw-Hill Companies, Inc. Permission required for reproduction or display

On the McGraw-Hill Companies, Inc. Permission required for reproduction or display

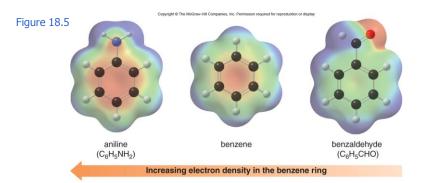

On the McGraw-Hill Companies, Inc. Permission required for reproduction or display

On the McGraw-Hill Companies or display

On the McGraw-Hill Companie


Inductive and Resonance Effects

- To predict whether a substituted benzene is more or less electron rich than benzene itself, we must consider the net balance of both the inductive and resonance effects.
- Alkyl groups donate electrons by an inductive effect, but they have no resonance effect because they lack nonbonded electron pairs or π bonds.
- Thus, any alkyl-substituted benzene is more electron rich than benzene itself.
- The same analysis can be done with groups other than alkyl.


Electron-Donating and Electron-Withdrawing Groups

 These compounds represent examples of the general structural features in electron-donating and electron-withdrawing substituents.

Electron-Donating and Electron-Withdrawing Groups

- The NH₂ group donates electron density making the benzene ring more electron rich.
- The CHO group withdraws electron density, making the benzene ring less electron rich.

Substituent Effects on Electrophilic Aromatic Substitution

- Electrophilic aromatic substitution is a general reaction of all aromatic compounds, including polycyclic aromatic hydrocarbons, heterocycles, and substituted benzene derivatives.
- A substituent affects two aspects of the electrophilic aromatic substitution reaction:
 - 1. The rate of the reaction: A substituted benzene reacts faster or slower than benzene itself.
 - 2. The orientation: The new group is located either ortho, meta, or para to the existing substituent.
 - The identity of the first substituent determines the position of the second incoming substituent.

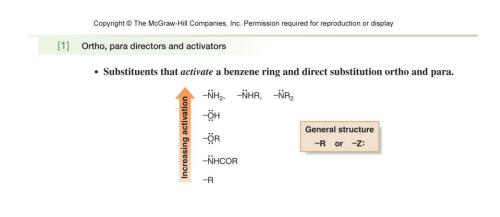
32

Ortho, Para Directors—Activators

- Toluene reacts faster than benzene in all substitution reactions.
- The electron-donating CH₃ group activates the benzene ring to electrophilic attack.
- Ortho and para products predominate.
- The CH₃ group is called an ortho, para director.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

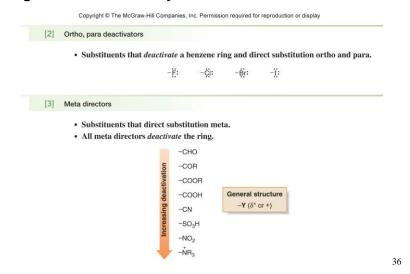
33


Meta Directors—Deactivators

- Nitrobenzene reacts more slowly than benzene in all substitution reactions.
- The electron-withdrawing NO₂ group deactivates the benzene ring to electrophilic attack.
- The meta product predominates.
- The NO₂ group is called a meta director.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Categorizing Directors and Activators


· All substituents can be divided into three general types:

35

Categorizing Directors and Activators

· Halogens are in a class by themselves.

Characteristics of Ortho and Para Directors and Meta Directors

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

 All ortho, para directors are R groups or have a nonbonded electron pair on the atom bonded to the benzene ring.

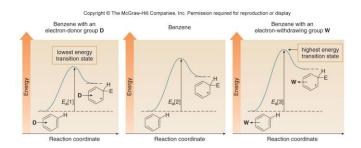
$$Z:$$
 $Z = N \text{ or } O \longrightarrow The \text{ ring is activated.}$ $Z = halogen \longrightarrow The \text{ ring is deactivated.}$

 All meta directors have a full or partial positive charge on the atom bonded to the benzene ring.

37

Mechanism of Activation/Deactivation

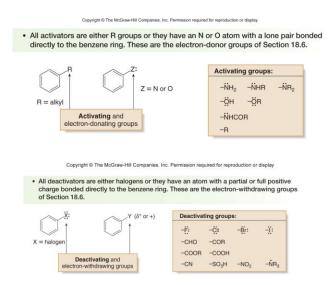
- To understand how substituents activate or deactivate the ring, we must consider the first step in electrophilic aromatic substitution.
- The first step involves addition of the electrophile (E+) to form a resonance-stabilized carbocation.
- The Hammond postulate makes it possible to predict the relative rate of the reaction by looking at the stability of the carbocation intermediate.


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

 The more stable the carbocation, the lower in energy the transition state that forms it, and the faster the reaction.

Energy Diagrams Comparing Substitution Rates

• The energy diagrams below illustrate the effect of electronwithdrawing and electron-donating groups on the transition state energy of the rate-determining step.


Figure 18.6 Energy diagrams comparing the rate of electrophilic substitution of substituted benzenes

Electron-donor groups D stabilize the carbocation intermediate, lower the energy of the transition state, and increase the rate of reaction.
 Electron-withdrawing groups W destabilize the carbocation intermediate, raise the energy of the transition state, and decrease the rate of reaction.

39

Summary: Activators and Deactivators

Orientation Effects in Substituted Benzenes

- There are two general types of ortho, para directors and one general type of meta director.
- All ortho, para directors are R groups or have a nonbonded electron pair on the atom bonded to the benzene ring.
- All meta directors have a full or partial positive charge on the atom bonded to the benzene ring.

41

Determining Directing Effects

 To evaluate the effects of a given substituent, we can use the following stepwise procedure:

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

How To Determine the Directing Effects of a Particular Substituent

Step [1] Draw all resonance structures for the carbocation formed from attack of an electrophile E* at the ortho, meta, and para positions of a substituted benzene (C₆H₅ – A).

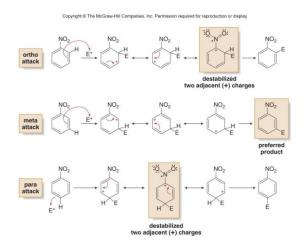
original substituent

A

• There are at least three resonance structures for each site of reaction.
• Each resonance structure places a positive charge ortho or para to the new C – E bond.

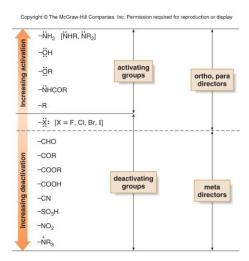
Step [2] Evaluate the stability of the intermediate resonance structures. The electrophile attacks at those positions that give the most stable carbocation.

Methyl Carbocation Stabilization


 A CH₃ group directs electrophilic attack ortho and para to itself because an electron-donating inductive effect stabilizes the carbocation intermediate.

Amine Carbocation Stabilization

 An NH₂ group directs electrophilic attack ortho and para to itself because the carbocation intermediate has additional resonance stabilization.


Nitro Carbocation Stabilization

 With the NO₂ group (and all meta directors) meta attack occurs because attack at the ortho and para position gives a destabilized carbocation intermediate.

Summary of Reactivity and Directing Effects

Figure 18.7

46

Reactions of Activated Rings

 Benzene rings activated by strong electron-donating groups— OH, NH₂, and their derivatives (OR, NHR, and NR₂)—undergo polyhalogenation when treated with X₂ and FeX₃.

 $\label{eq:convergence} \textbf{Copyright} \, \textcircled{\o} \, \, \textbf{The McGraw-Hill Companies, Inc. Permission required for reproduction or display}$

Monosubstitution of H by Br occurs with Br₂ *alone* without added catalyst to form a mixture of ortho and para products.

Reactions of Deactivated Rings

 A benzene ring deactivated by strong electron-withdrawing groups (i.e., any of the meta directors) is not electron rich enough to undergo Friedel-Crafts reactions.

 Friedel-Crafts reactions also do not occur with NH₂ groups because the complex that forms between the NH₂ group and the AlCl₃ catalyst deactivates the ring towards Friedel-Crafts reactions.

Uploaded By: Mariam Qadah

Friedel-Crafts Reactions and Ring Activation

- Treatment of benzene with an alkyl halide and AlCl₃ places an electron-donor R group on the ring.
- Since R groups activate the ring, the alkylated product (C_6H_5R) is now more reactive than benzene itself towards further substitution, and it reacts again with RCI to give products of polyalkylation.

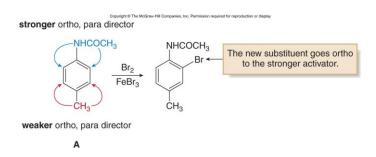
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Polysubstitution does not occur with Friedel–Crafts acylation.

Reinforcing Directing Effects

 When the directing effects of two groups reinforce, the new substituent is located on the position directed by both groups.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display


ortho, para director

meta director

p-nitrotoluene

Opposing Directing Effects

2. If the directing effects of two groups oppose each other, the more powerful activator "wins out."

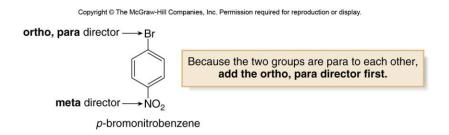
51

Steric Limitations to Directing Effects

3. No substitution occurs between two meta substituents because of crowding.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

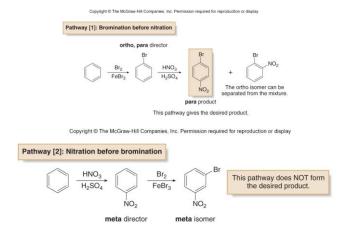
ortho to 1 CH₃ group
para to 1 CH₃ group


ortho to 1 CH₃ group

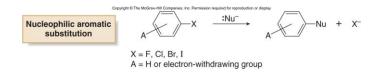
ortho to 1 CH₃ group

m-xylene
(1,3-dimethylbenzene)

Synthesis of Benzene Derivatives

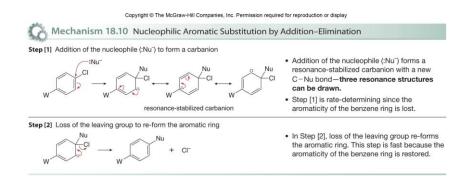

• In a disubstituted benzene, the directing effects indicate which substituent must be added to the ring first.

53


Synthesis of Benzene Derivatives

- Pathway 1, in which bromination precedes nitration, yields the desired product.
- Pathway 2 yields the undesired meta isomer.

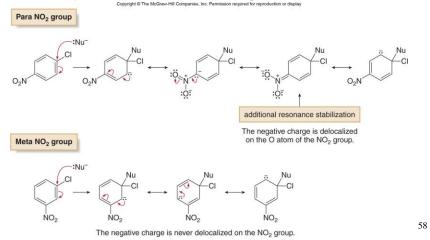
Nucleophilic Aromatic Substitution


 Nucleophilic aromatic substitution results in the substitution of a halogen on a benzene ring by a nucleophile.

- Two different mechanisms are proposed to explain the result of the reaction.
 - Addition-elimination
 - Elimination-addition

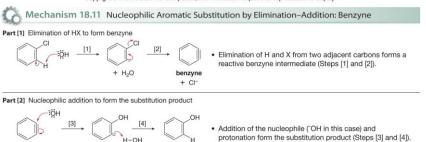
55

Nucleophilic Aromatic Substitution by Addition-Elimination


Reactivity Trends in Nucleophilic Aromatic Substitution

- Increasing the number of electron-withdrawing groups increases the reactivity of the aryl halide.
 - Electron-withdrawing groups stabilize the intermediate carbanion.
- Increasing the electronegativity of the halogen increases the reactivity of the aryl halide.
 - A more electronegative halogen stabilizes the intermediate carbanion by an inductive effect.

57


Orientation for Addition-Elimination

 Nucleophilic aromatic substitution only occurs by an addition-elimination mechanism with aryl halides that contain ortho or para electron-withdrawing substituents.

Nucleophilic Aromatic Substitution by Elimination-Addition

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

59

Products of Elimination-Addition

- Formation of a benzyne intermediate explains why substituted aryl halides form mixtures of products.
- Nucleophilic aromatic substitution by an elimination-addition mechanism affords substitution on the carbon directly bonded to the leaving group and the carbon adjacent to it.

CH3

NaNH2

NH3

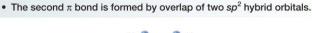
P-chlorotoluene

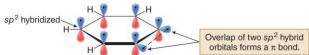
$$p$$
-methylaniline
 $(p$ -toluidine)

 p -methylaniline
 $(p$ -toluidine)

 p -methylaniline
 $(p$ -toluidine)

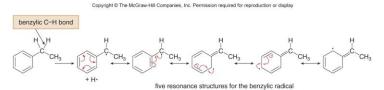
 p -methylaniline
 $(p$ -toluidine)

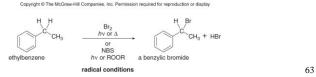

Products of Elimination-Addition


 Nucleophilic attack on the benzyne intermediate may occur at C3 to form m-methylaniline, or C4 to form p-methylaniline.

Products of Elimination-Addition

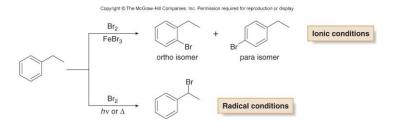
- The second π bond of benzyne is different from all other π bonds seen thus far:
 - It is formed by the side-by-side overlap of sp^2 hybrid orbitals, not p orbitals.
 - · Therefore, it is extremely weak.


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display
 The σ bond is formed by overlap of two sp² hybrid orbitals.
 One π bond is formed by overlap of two ρ orbitals perpendicular to the plane of the molecule.



Halogenation of Alkyl Benzenes

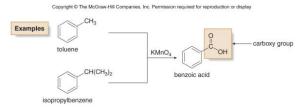
 Benzylic C–H bonds are weaker than most other sp³ hybridized C–H bonds, because homolysis forms a resonancestabilized benzylic radical.


 As a result, alkyl benzenes undergo selective bromination at the weak benzylic C–H bond under radical conditions to form the benzylic halide.

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display Mechanism 18.12 Benzylic Bromination Initiation Step [1] Bond cleavage forms two radicals. • The reaction begins with homolysis of the Br-Br :Br → Br: → Br: + ·Br: bond using energy from light or heat to form two Brradicals. Steps [2] and [3] One radical reacts and a new radical is formed. · Abstraction of a benzylic hydrogen by a Br· radical forms the resonance-stabilized benzylic radical in Step [2], which reacts with Br2 in Step [3] to form the bromination product. · Because the Br· radical formed in Step [3] is a reactant in Step [2], Steps [2] and [3] can occur repeatedly without additional initiation. Repeat Steps [2], [3], [2], [3], again and again.

Ionic and Radical Halogenation

 Alkyl benzenes undergo two different reactions depending on the reaction conditions:



- With Br₂ and FeBr₃ (ionic conditions), electrophilic aromatic substitution occurs, resulting in replacement of H by Br on the aromatic ring to form ortho and para isomers.
- With Br₂ and light or heat (radical conditions), substitution of H by Br occurs at the benzylic carbon of the alkyl group.

65

Oxidation of Alkyl Benzenes

 Arenes containing at least one benzylic C-H bond are oxidized with KMnO₄ to benzoic acid.

- Substrates with more than one alkyl group are oxidized to dicarboxylic acids.
- Compounds without a benzylic hydrogen are inert to oxidation.

yright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

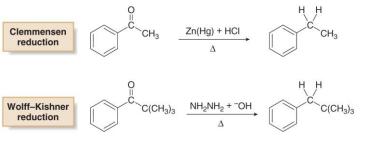
CH₂CH₃

KMnO₄

Phthalic acid

CC(CH₃)₃

KMnO₄

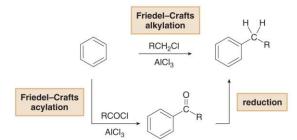

No reaction

Uploaded By: Mariam Qadah

Reduction of Acyl Benzenes

- Ketones formed as products of Friedel-Crafts acylation can be reduced to alkyl benzenes by two different methods:
- 1. The Clemmensen reduction—uses zinc and mercury in the presence of strong acid.
- 2. The Wolff-Kishner reduction—uses hydrazine (NH₂NH₂) and strong base (KOH).

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display



67

Synthesis of Alkyl Benzenes

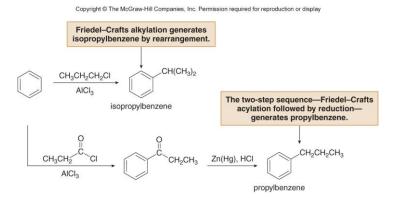

- We now know two different ways to introduce an alkyl group on a benzene ring:
- 1. A one-step method using Friedel-Crafts alkylation.
- 2. A two-step method using Friedel-Crafts acylation to form a ketone, followed by reduction.

Figure 18.8 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Synthesis of Alkyl Benzenes

 Although the two-step method seems more roundabout, it must be used to synthesize certain alkyl benzenes that cannot be prepared by the one-step Friedel-Crafts alkylation because of rearrangements.

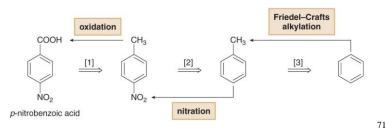
69

Reduction of Nitro Benzenes

 A nitro group (NO₂) that has been introduced on a benzene ring by nitration with strong acid can readily be reduced to an amino group (NH₂) under a variety of conditions.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

 Reduction of ethyl p-nitrobenzoate with H₂ and a palladium catalyst forms ethyl p-aminobenzoate, a local anesthetic commonly called benzocaine.


$$O_2N$$
 — $CO_2CH_2CH_3$ — H_2 — $CO_2CH_2CH_3$ ethyl p -nitrobenzoate (benzocaine) $CO_2CH_2CH_3$

Multistep Synthesis

• Write out a synthesis of *p*-nitrobenzoic acid from benzene.

· First, perform retrosynthetic analysis.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Multistep Synthesis

Then, write out the synthesis from starting material to product.

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display

- Make sure you put the methyl group on first as nitro is a meta director and deactivator.
- Do not oxidize the methyl group until after adding the nitro as a carboxylic acid is a meta director and deactivator.