Birzeit University Faculty of Engineering Department of Electrical Engineering Engineering Probability and Statistics ENEE 331 Previous Problems

1. Suppose we want to estimate the average weight of an adult male in a County. We draw a random sample of 40 men from a population of 1,000,000 men and weigh them. We find that the average man in our sample weighs 180 pounds, and the standard deviation of the sample is 30 pounds. What is the 96% confidence interval?

- 2. For a certain commodity which you buy, you can make either a \$500 profit with probability 0.5 when you sell it, or \$200 with probability 0.3 or lose \$100 with probability 0.2.
- a. Find the mean and variance of your net profit if you sell one item.
- b. Suppose you sell 80 items separately and independently, find the mean and standard deviation of your total net profit.
- 3. Two random variables X and Y are related by Y = aX + b, where X is a random variable with zero mean and unit variance.
- a. Find the mean and variance of Y
- b. Find the correlation coefficient between X and Y.
- 4. Let X and Y be random variables with a joint pdf $f_{X,Y}(x, y) = C$ for $0 \le X + Y \le 1$

 $0 \le X \le 1, 0 \le Y \le 1$

- a. Find C so that this is a valid joint pdf
- b. Find the marginal density functions of X and Y.
- c. Are X and Y independent?
- d. Find the conditional pdf of Y given X = 0.5
- 5. If X and Y are independent, normal random variables with E(X) = 10, Var(X) = 4, E(Y) = 0, and Var(Y) = 9.
- a. Let T = X Y, find the mean and variance of T
- b. Let Z = XY, find the mean and variance of Z.
- 6. The random variables X and Y are independent and uniformly distributed in the interval (0,1). Find $P(Y \le \sqrt{X})$.
- 7. Let X be a uniformly distributed random variable on the interval $0 \le x \le 10$ and zero elsewhere and let Y be another uniformly distributed random variable on $0 \le y \le 20$ and zero elsewhere. Assuming that X and Y are independent, find
- a. $P(X \le 4 \cap Y \le 8)$
- b. $E \{X + Y\}$
- c. $E \{XY\}$

d. Var (X + Y)

- 8. The lifetime of a structure **T** is a Gaussian distribution which is dependent on the strength of used concrete. B250 has $\mu = 35$ years, $\sigma = 10$ years, whereas B300 has $\mu = 50$ years, $\sigma = 5$ years.
- a- If a structure with design period of 40 years will be designed, which concrete is better to be used?
- b- For B300, find time in years at which the lifetime of the structure will exceed 95% of its design period.

9. For the joint density function shown in the (x, y) figure, find the followings:

- a- Marginal density functions of X and Y b- P(X < 3)c- $P(Y \ge 2)$
- d- P[X = x / (Y = 1)]
- e- $P(X \ge Y)$

10. 9) Let X_1 and X_2 be independent normal random variables with means 23 and 4 and variances 3 and 1, respectively. Find the probability density function of $Y = 4X_1 - X_2$.

11. The joint pdf of two random variables X and Y is given by

$$f_{X,Y}(x,y) = \begin{cases} kxy & 0 \le x \le 2 \quad 0 \le y \le 3 \\ 0 & otherwise \end{cases}$$

a. Find the constant k so that this is a valid pdf.

- b. Are X and Y statistically independent?
- c. Find the expected value of the function g(X,Y) = 2X + 3Y

d. Find P(X + Y < 1), P(Y - X < 1).

- 12. A manufacturer of semiconductor devices takes a random sample of size n of chips and tests them, classifying each chip as defective or non-defective. Let $X_i = 0$ if the chip is non-defective and $X_i = 1$ if the chip is defective.
- a. Find the mean and variance of the sample average defined as $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.
- b. Compare the sample variance for the case when n = 50 and n = 100. Comment on the effect of sample size on the variance of the sampling distribution
- c. If p is the probability of a defective chip, find an unbiased estimator of p.
- 13. Consider a random sample of size n taken from a discrete distribution, the pmf of which is given by: $f(x) = \theta^x (1-\theta)^{1-x}$, x = 0, 1. Two estimators for θ are proposed

$$\hat{\Theta}_1 = \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$$
$$\hat{\Theta}_2 = \frac{n\overline{X} + 1}{n+2}$$

- a. Which one of these two estimators is an unbiased estimator of the parameter θ ?
- b. Which one has a smaller variance?
- 14. In a random sample of 500 persons in the city of Ramallah, it was found that 372 voted for Abu Mazen in the 2005 presidential elections for the Palestinian Authority. Determine a 95% confidence interval for p, the actual proportion of Ramallah residents supporting Abu Mazen.
- 15. The compressive strength of concrete is being tested by a civil engineer. He tests 12 specimens and obtains the following data (in psi)
- 2216 2237 2249 2204 2225 2301 2281 2283
- 2318 2255 2275 2295
 - a. Find point estimates for the mean and variance of the strength
 - b. Construct a 95% confidence interval on the mean strength
 - c. Construct a 95% confidence interval on the variance of the strength.
 - 16. A random sample of n = 36 observations has been drawn from a normal distribution with mean 50 and standard deviation 12. Find the probability that the sample mean is in the interval 47 to 53.
 - 17. Given the following pair of measurements, which are suspected to be linearly related. Do a regression analysis to find the linear relationship $y = \alpha x + \beta$

Xi	0.77	4.39	4.11	2.91	0.56	0.89	4.09	2.38	0.78	2.52
Yi	14.62	22.21	20.12	19.42	14.69	15.23	24.48	16.88	8.56	16.24

18. A machine produces metal rods used in an automobile suspension system. A random sample of 9 rods is selected and the diameter is measured. The resulting data (in mm) are:

8.24 8.23 8.20 8.21 8.22 8.28 8.17 8.26 8.19

If the sampling comes from a normal population with a mean rod diameter μ and a variance σ^2 , find

- a. point estimates for the mean and the variance
- b. a 95% confidence interval on the mean
- c. a 95% confidence interval on the variance
- 19. A random sample of n = 10 structural elements is tested for compressive strength. We know that the true mean compressive strength is $\mu = 5000$ psi and the standard deviation is $\sigma = 100$ psi. Find the probability that the sample mean compressive strength exceeds 4985 psi.

20. Let X_1 and X_2 be a sample of size two drawn from a population with mean μ and variance σ^2 . Two estimators for μ are proposed:

$$\hat{\mu}_1 = \frac{X_1 + X_2}{2}$$
$$\hat{\mu}_2 = \frac{X_1 + 2X_2}{3}$$

Which is the better estimator and in what sense?

21. Suppose that X has the following discrete distribution

$$P(X = x) = \begin{cases} 1/3 & x = 1,2,3 \\ 0 & otherwise \end{cases}$$

A random sample of n = 200 is selected from this population. Approximate the probability that the sample mean is greater than 2.1 but less than 2.5.

- 22. The amount of waiting time that a customer spends waiting at a bank is a random variable with mean 8.2 minutes and standard deviation 1.5 minutes. Suppose that a random sample of n = 50 customers is observed. Find the probability that the average waiting time for these customers is less than 8 minutes.
- 23. A computer, in adding numbers, round each number to the nearest integer. Suppose that all rounding errors are independent and uniformly distributed over (-0.5, 0.5). If 1500 numbers are added, what is the probability that the magnitude of the total error exceeds 15?
- 24. Suppose that X has a normal distribution with mean μ and variance σ^2 , where μ and σ^2 are unknown. A sample of size 15 yielded the values $\sum_{i=1}^{15} X_i = 8.7$ and

$$\sum_{i=1}^{15} X_i^2 = 27.3$$
. Obtain a 95% confidence interval on the variance.

Birzeit University Faculty of Engineering Department of Electrical Engineering Engineering Probability and Statistics ENEE 331 Previous Problems

1. Suppose we want to estimate the average weight of an adult male in a County. We draw a random sample of 40 men from a population of 1,000,000 men and weigh them. We find that the average man in our sample weighs 180 pounds, and the standard deviation of the sample is 30 pounds. What is the 96% confidence interval?

$$P\left\{\hat{\mu}_{x} - \frac{3\alpha}{2}\frac{\hat{\sigma}_{x}}{\sqrt{n}} \le \mu_{x} \le \hat{\mu}_{x} + \frac{3\alpha}{2}\frac{\hat{\sigma}_{x}}{\sqrt{n}}\right\} = 1 - \alpha$$

$$P\left\{180 - 2.05 * \frac{30}{\sqrt{1000}} \le \mu_{x} \le 180 + 2.05 * \frac{30}{\sqrt{1000}}\right\} = 0.96$$

$$P\left\{180 - 1.94 \le \mu_{x} \le 180 + 1.94\right\} = 0.96$$

- 2. For a certain commodity which you buy, you can make either a \$500 profit with probability 0.5 when you sell it, or \$200 with probability 0.3 or lose \$100 with probability 0.2.
- a. Find the mean and variance of your net profit if you sell one item.
- b. Suppose you sell 80 items separately and independently, find the mean and standard deviation of your total net profit.

$$\frac{\text{Profit}}{\text{probability}} = \frac{500}{0.5} = \frac{200}{0.3} = \frac{-100}{0.2}$$

$$\mu_x = \sum_{i=1}^n x_i P(X = x_i) = 500 * .5 + 200 * .3 - 100 * .2 = 300\$$$

$$\sigma_x^2 = \sum_{i=1}^n (x_i - \mu_x)^2 P(X = x_i) = 48000$$

$$\hat{\mu}_x = \mu_x = 300$$

$$\sigma_x^2 = 80 * 48000 = 3840000$$

$$\sqrt{\sigma_x^2} = \sqrt{3840000} = 1960\$$$
your total net profit 80 items $f_x(x) = \sum_{i=1}^{80} x_i$

$$\hat{\mu}_x = n\mu_x = 80 * 300 = 24000\$$$

$$\sqrt{\sigma_x^2} = n\sqrt{3840000} = 1960 * 80 = 156800\$$$

- 3. Two random variables X and Y are related by Y = aX + b, where X is a random variable with zero mean and unit variance.
- a. Find the mean and variance of Y

$$E[y] = aE[x] + b = b$$

STUDENTS-HUB.com

$$Var(y) = a^2 E[x] = a^2$$

- b. Find the correlation coefficient between X and Y. $cov(X,Y) = E[XY] - \mu_x \mu_y = E[X(aX + b)] - 0 * b = aE[X^2] + bE[X] = aE[X^2]$ $aE[X^2] = a(\sigma_x^2 + E[X]^2) = a(1 + 0)$ $\rho_{xy} = \frac{cov(X,Y)}{\sigma_x \sigma_y} = \frac{a}{1 * a^2} = \frac{1}{a}$
- 4. Let X and Y be random variables with a joint pdf $f_{X,Y}(x, y) = C$ for $0 \le X + Y \le 1$

$$0 \le X \le 1, \ 0 \le Y \le 1$$

- a. Find C so that this is a valid joint pdf
- b. Find the marginal density functions of X and Y.
- c. Are X and Y independent?
- d. Find the conditional pdf of Y given X = 0.5

$$\iint_{0}^{\infty} \int_{0}^{\infty} f(x, y) dy dx = 1 = \iint_{0}^{1} \int_{0}^{1-x} c dy dx = c \int_{0}^{1} (1-x) dx = c \left(x - \frac{x^2}{2}\right)_{0}^{1} = \frac{c}{2}$$

c = 2

the marginal density functions of X and Y

$$f(x) = \int_{0}^{1-x} 2dy = 2 - 2x$$
$$f(y) = \int_{0}^{1-y} 2dy = 2 - 2y$$

Are X and Y independent? No $f(x)f(y) \neq f(x, y)$

$$(2-2x)(2-2y) \neq 2$$

Find the conditional pdf of Y given X = 0.5

$$f(y \mid x = 0.5) = \frac{f(x, y)}{f(x = 0.5)} = \frac{2}{2 - 0.5 \cdot 2} = 2$$

- 1. variables with E(X) = 10, Var(X) = 4, E(Y) = 0, and Var(Y) = 9.
- a. Let T = X Y, find the mean and variance of T
- b. Let Z = XY, find the mean and variance of Z.

STUDENTS-HUB.com

See EXAMPLE (5-6)

$$T = X - Y$$

$$E(T) = E(X - Y) = E(X) - E(Y) = 10 - 0 = 10$$

$$Var(T) = Var(X - Y) = \sigma_x^2 + (-1)^2 \sigma_y^2 + 0 = 4 + 9 = 13$$

$$Z = XY$$

$$E(Z) = E(XY) = E(X)E(Y) = 10 * 0 = 0$$

$$Var(Z) = Var(XY) = E((XY)^2) - E(XY)^2 =$$

$$E(X^2)E(Y^2) - E(XY)^2 = (\sigma_x^2 + E(X)^2)(\sigma_y^2 + E(y)^2) - 0 =$$

$$(4 + 100)(9 + 0^2) = 936$$

2. The random variables X and Y are independent and uniformly distributed in the interval (0,1). Find $P(Y \le \sqrt{X})$.

$$f_{x,y}(x,y) = f_x(x) f_y(y) = \frac{1}{1-0} * \frac{1}{1-0} = 1$$
$$P(Y \le \sqrt{X}) = \int_0^1 \int_0^{\sqrt{X}} f_{x,y}(x,y) dy dx = \int_0^1 \int_0^{\sqrt{X}} 1 dy dx = \int_0^1 \sqrt{X} dx = \frac{2}{3}$$

- 3. Let X be a uniformly distributed random variable on the interval $0 \le x \le 10$ and zero elsewhere and let Y be another uniformly distributed random variable on $0 \le y \le 20$ and zero elsewhere. Assuming that X and Y are independent, find
- a. $P(X \le 4 \cap Y \le 8)$
- b. $E \{X + Y\}$
- c. $E \{XY\}$
- d. Var (X + Y)

$$f_{x,y}(x,y) = f_x(x) f_y(y) = \frac{1}{10-0} * \frac{1}{20+0} = \frac{1}{200}$$

$$P(X \le 4 \cap Y \le 8) = \int_0^4 \int_0^8 f_{x,y}(x,y) dy dx = \int_0^4 \int_0^8 \frac{1}{200} dy dx = \int_0^4 \frac{1}{25} dx = \frac{4}{25}$$

$$E(X+Y) = E(X) + E(Y) = \frac{10+0}{2} + \frac{20+0}{2} = 15$$

$$E(XY) = E(X)E(Y) = \frac{10+0}{2} * \frac{20+0}{2} = 50$$

$$Var(X+Y) = \sigma_x^2 + \sigma_y^2 + 0 = \frac{(10-0)^2}{12} * \frac{(20-0)^2}{12} = 277.78$$

4. For the joint density function shown in the figure, find the followings:

a- Marginal density functions of X and Y

 $P(Y \ge 2)=0.2+0.2+0.2=0.6$

P[X = x / (Y = 1)] = 0.4

 $P(X \ge Y)=0.1+0.3+0.2=0.6$

- 5. Let X1 and X2 be independent normal random variables with means 23 and 4 and variances 3 and 1, respectively. Find the probability density function of Y = 4X1 X2.
- 6. The joint pdf of two random variables X and Y is given by

$$f_{X,Y}(x,y) = \begin{cases} kxy & 0 \le x \le 2 \quad 0 \le y \le 3\\ 0 & otherwise \end{cases}$$

a. Find the constant k so that this is a valid pdf.

- b. Are X and Y statistically independent?
- c. Find the expected value of the function g(X,Y) = 2X + 3Y
- d. Find P(X + Y < 1), P(Y X < 1).

a)
$$f_{x,y}(x,y) = \int_0^2 \int_0^3 kxy \, dy \, dx = 1$$

 $\int_0^2 kx \frac{3^2}{2} \, dx = 1$

STUDENTS-HUB.com

$$k\frac{2^23^2}{4} = 1$$
$$k = \frac{1}{9}$$

b)
$$f_x(x) = \frac{1}{9} \int_0^3 xy \, dy = \frac{x}{2}$$

 $f_y(y) = \frac{1}{9} \int_0^2 xy \, dy = \frac{2y}{9}$
 $f_{x,y}(x, y) \stackrel{?}{=} f_x(x) f_x(y)$
 $\frac{xy}{9} = \frac{2yx}{92}$

X and Y statistically independent

d)
$$P(X + Y < 1) = P(Y < 1 - X) = \frac{1}{9} \int_{0}^{2} \int_{0}^{1-x} xy dy dx =$$

 $\frac{1}{9} \int_{0}^{2} x \frac{(1-x)^{2}}{2} dx = \frac{1}{9} \int_{0}^{2} \frac{x^{3} - 2x^{2} + x}{2} dx = \frac{1}{9} [\frac{x^{4}}{8} - \frac{x^{3}}{3} + \frac{x^{2}}{4}]_{0}^{2}] = \frac{1}{27}$
 $P(Y - X < 1) = P(Y < 1 + X) = \frac{1}{9} \int_{0}^{2} \int_{0}^{1+x} xy dy dx =$
 $\frac{1}{9} \int_{0}^{2} x \frac{(1+x)^{2}}{2} dx = \frac{1}{9} \int_{0}^{2} \frac{x^{3} + 2x^{2} + x}{2} dx = \frac{1}{9} [\frac{x^{4}}{8} + \frac{x^{3}}{3} + \frac{x^{2}}{4}]_{0}^{2}] = \frac{17}{27}$

- A manufacturer of semiconductor devices takes a random sample of size n of chips and tests them, classifying each chip as defective or non-defective. Let X_i = 0 if the chip is non-defective and X_i = 1 if the chip is defective.
- a. Find the mean and variance of the sample average defined as $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.
- b. Compare the sample variance for the case when n = 50 and n = 100. Comment on the effect of sample size on the variance of the sampling distribution
- c. If p is the probability of a defective chip, find an unbiased estimator of p.

See EXAMPLE (5-8)

$$E(\bar{X}) = \frac{1}{n}(\mu_1 + \mu_2 + \dots + \mu_n) = E(X)$$
$$Var(\bar{X}) = \frac{\sigma_x^2}{n}$$

when n = 50 and n = 100.

$$E(\bar{X}_{n=50}) = E(\bar{X}_{n=100}) = E(X)$$
$$Var(\bar{X}_{n=50}) = \frac{\sigma_{x,n=50}^2}{50} < Var(\bar{X}_{n=100}) = \frac{\sigma_{x,n=50}^2}{100}$$

STUDENTS-HUB.com

$$Var(\bar{X}_{n=50}) = 50 * \sigma_x^2 < Var(\bar{X}_{n=100}) = 100 * \sigma_x^2$$

If p is the probability of a defective chip, find an unbiased estimator of p

$$E(p) = \frac{1}{n}(\mu_1 + \mu_2 + \dots + \mu_n) = \frac{1}{n}(p + p + \dots + p) = p$$

8. Consider a random sample of size n taken from a discrete distribution, the pmf of which is given by: $f(x) = \theta^x (1-\theta)^{1-x}$, x = 0, 1. Two estimators for θ are proposed

$$\hat{\Theta}_1 = \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$$
$$\hat{\Theta}_2 = \frac{n\overline{X} + 1}{n+2}$$

- a. Which one of these two estimators is an unbiased estimator of the parameter θ ?
- b. Which one has a smaller variance?

$$E[\widehat{\Theta_1}] = \frac{1}{n} \sum_{i=1}^n X_i = \frac{1}{n} \sum_{i=1}^n \theta^{x_i} (1-\theta)^{1-x_i}$$

- 9. In a random sample of 500 persons in the city of Ramallah, it was found that 372 voted for Abu Mazen in the 2005 presidential elections for the Palestinian Authority. Determine a 95% confidence interval for p, the actual proportion of Ramallah residents supporting Abu Mazen.
- 10. The compressive strength of concrete is being tested by a civil engineer. He tests 12 specimens and obtains the following data (in psi)
- 2216 2237 2249 2204 2225 2301 2281 2283
- 2318 2255 2275 2295
 - a. Find point estimates for the mean and variance of the strength

$$\hat{\sigma}_x^2 = \frac{n \sum_{i=1}^n x_i}{n \sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2} = 426339$$

- b. Construct a 95% confidence interval on the mean strength
- c. Construct a 95% confidence interval on the variance of the strength.
- 11. A random sample of n = 36 observations has been drawn from a normal distribution with mean 50 and standard deviation 12. Find the probability that the sample mean is in the interval 47 to 53.
- 12. Given the following pair of measurements, which are suspected to be linearly related. Do a regression analysis to find the linear relationship $y = \alpha x + \beta$

Xi	0.77	4.39	4.11	2.91	0.56	0.89	4.09	2.38	0.78	2.52
Yi	14.62	22.21	20.12	19.42	14.69	15.23	24.48	16.88	8.56	16.24

$$\alpha = \frac{\sum_{i=1}^{n} x_i y_i - \frac{1}{n} \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{\sum_{i=1}^{n} x_i^2 - \frac{1}{n} (\sum_{i=1}^{n} x_i)^2} = \frac{457.6 - \frac{1}{10} * 23.4 * 172.5}{75.7 - \frac{1}{10} * (23.4)^2}$$
$$\beta = \hat{\mu}_y + \alpha \hat{\mu}_x$$

13. A machine produces metal rods used in an automobile suspension system. A random sample of 9 rods is selected and the diameter is measured. The resulting data (in mm) are:

8.24 8.23 8.20 8.21 8.22 8.28 8.17 8.26 8.19 If the sampling comes from a normal population with a mean rod diameter μ and a variance σ^2 , find

- a. point estimates for the mean and the variance
- b. a 95% confidence interval on the mean
- c. a 95% confidence interval on the variance
- 14. A random sample of n = 10 structural elements is tested for compressive strength. We know that the true mean compressive strength is $\mu = 5000$ psi and the standard deviation is $\sigma = 100$ psi. Find the probability that the sample mean compressive strength exceeds 4985 psi.
- 15. Let X_1 and X_2 be a sample of size two drawn from a population with mean μ and variance σ^2 . Two estimators for μ are proposed:

$$\hat{\mu}_1 = \frac{X_1 + X_2}{2}$$
$$\hat{\mu}_2 = \frac{X_1 + 2X_2}{3}$$

Which is the better estimator and in what sense? See EXAMPLE (5-16): the same

16. Suppose that X has the following discrete distribution

$$P(X = x) = \begin{cases} 1/3 & x = 1,2,3 \\ 0 & otherwise \end{cases}$$

A random sample of n = 200 is selected from this population. Approximate the probability that the sample mean is greater than 2.1 but less than 2.5.

17. The amount of waiting time that a customer spends waiting at a bank is a random variable with mean 8.2 minutes and standard deviation 1.5 minutes. Suppose that a random sample of n = 50 customers is observed. Find the probability that the average waiting time for these customers is less than 8 minutes.

18. A computer, in adding numbers, round each number to the nearest integer. Suppose that all rounding errors are independent and uniformly distributed over (-0.5, 0.5). If 1500 numbers are added, what is the probability that the magnitude of the total error exceeds 15?

The exact answer.

$$P(X > 15) = 1 - \frac{1}{n!} \sum_{0}^{n} {\binom{15}{x_i}} P^x (1 - P)^{n - x} = 1 - \sum_{0}^{15} {\binom{n}{x_i}} P^x (1 - P)^{n - x}$$

We need to compute:

Using the normal approximation:

$$\hat{\mu}_x = \frac{0.5 + -0.5}{2} = 0$$

$$\hat{\sigma}_x^2 = \frac{(-0.5 - 0.5)^2}{12} = \frac{1}{12}$$

$$P\{z > 15\} = 1 - \phi\left(\frac{15}{\sqrt{\frac{1 * 1500}{12}}}\right) = 0.1797$$

19. Suppose that X has a normal distribution with mean μ and variance σ^2 , where μ and σ^2 are unknown. A sample of size 15 yielded the values $\sum_{i=1}^{15} X_i = 8.7$ and $\sum_{i=1}^{15} X_i^2 = 27.3$. Obtain a 95% confidence interval on the variance.

$$\begin{aligned} \hat{\mu}_{x} &= \frac{1}{n} \sum_{i=1}^{n} x_{i} = \frac{1}{15} 8.7 = 0.58\\ \hat{\sigma}_{x}^{2} &= \frac{n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}}{n(n-1)}\\ \hat{\sigma}_{x}^{2} &= \frac{15 * 27.3 - 8.7^{2}}{15(15-1)} = 1.59\\ t_{0.025,14} &= 0.6938\\ P\left\{\hat{\mu}_{x} - t_{\frac{\alpha}{2},14} \frac{\hat{\sigma}_{x}}{\sqrt{n}} \le \mu_{x} \le \hat{\mu}_{x} + t_{\frac{\alpha}{2},14} \frac{\hat{\sigma}_{x}}{\sqrt{n}}\right\} = 1 - \alpha\end{aligned}$$

STUDENTS-HUB.com

$$P\left\{0.58 - 0.6938 \frac{\sqrt{1.59}}{\sqrt{15}} \le \mu_x \le 0.58 + 0.6938 \frac{\sqrt{1.59}}{\sqrt{15}}\right\} = 0.95$$

$$P\left\{0.354 \le \mu_x \le 0.58 + 0.805\right\} = 0.95$$

$$\chi^2_{0.025,14} = 26.119$$

$$\chi^2_{0.975,14} = 5.629$$

$$P\left\{\frac{(n-1)\hat{\sigma}_x^2}{\chi^2_{2,14}} \le \sigma_x^2 \le \frac{(n-1)\hat{\sigma}_x^2}{\chi^2_{1-\frac{\alpha}{2},14}}\right\} = 1 - \alpha$$

$$P\left\{\frac{14 * 1.59}{26.119} \le \sigma_x^2 \le \frac{14 * 1.59}{5.629}\right\} = 0.95$$

$$P\left\{0.852 \le \sigma_x^2 \le 4.2\right\} = 0.95$$

Numbers in each row of the table are values on a *t*-distribution with (*df*) degrees of freedom for selected right-tail (greater-than) probabilities (*p*).

df/p	0.40	0.25	0.10	0.05	0.025	0.01	0.005	0.0005
1	0.324920	1.000000	3.077684	6.313752	12.70620	31.82052	63.65674	636.6192
2	0.288675	0.816497	1.885618	2.919986	4.30265	6.96456	9.92484	31.5991
3	0.276671	0.764892	1.637744	2.353363	3.18245	4.54070	5.84091	12.9240
4	0.270722	0.740697	1.533206	2.131847	2.77645	3.74695	4.60409	8.6103
5	0.267181	0.726687	1.475884	2.015048	2.57058	3.36493	4.03214	6.8688
6	0.264835	0.717558	1.439756	1.943180	2.44691	3.14267	3.70743	5.9588
7	0.263167	0.711142	1.414924	1.894579	2.36462	2.99795	3.49948	5.4079
8	0.261921	0.706387	1.396815	1.859548	2.30600	2.89646	3.35539	5.0413
9	0.260955	0.702722	1.383029	1.833113	2.26216	2.82144	3.24984	4.7809
10	0.260185	0.699812	1.372184	1.812461	2.22814	2.76377	3.16927	4.5869
11	0.259556	0.697445	1.363430	1.795885	2.20099	2.71808	3.10581	4.4370
12	0.259033	0.695483	1.356217	1.782288	2.17881	2.68100	3.05454	43178
13	0.258591	0.693829	1.350171	1.770933	2.16037	2.65031	3.01228	4.2208
14	0.258213	0.692417	1.345030	1.761310	2.14479	2.62449	2.97684	4.1405
15	0.257885	0.691197	1.340606	1.753050	2.13145	2.60248	2.94671	4.0728
16	0.257599	0.690132	1.336757	1.745884	2.11991	2.58349	2.92078	4.0150
17	0.257347	0.689195	1.333379	1.739607	2.10982	2.56693	2.89823	3.9651
18	0.257123	0.688364	1.330391	1.734064	2.10092	2.55238	2.87844	3.9216
19	0.256923	0.687621	1.327728	1.729133	2.09302	2.53948	2.86093	3.8834
20	0.256743	0.686954	1.325341	1.724718	2.08596	2.52798	2.84534	3.8495
21	0.256580	0.686352	1.323188	1.720743	2.07961	2.51765	2.83136	3.8193
22	0.256432	0.685805	1.321237	1.717144	2.07387	2.50832	2.81876	3.7921
23	0.256297	0.685306	1.319460	1.713872	2.06866	2.49987	2.80734	3.7676
24	0.256173	0.684850	1.317836	1.710882	2.06390	2.49216	2.79694	3.7454
25	0.256060	0.684430	1.316345	1.708141	2.05954	2.48511	2.78744	3.7251
26	0.255955	0.684043	1.314972	1.705618	2.05553	2.47863	2.77871	3.7066
27	0.255858	0.683685	1.313703	1.703288	2.05183	2.47266	2.77068	3.6896
28	0.255768	0.683353	1.312527	1.701131	2.04841	2.46714	2.76326	3.6739
29	0.255684	0.683044	1.311434	1.699127	2.04523	2.46202	2.75639	3.6594
30	0.255605	0.682756	1.310415	1.697261	2.04227	2.45726	2.75000	3.6460
z	0.253347	0.674490	1.281552	1.644854	1.95996	2.32635	2.57583	3.2905
CI			80%	90%	95%	98%	99%	99.9%

Degrees of				Probability	of a larger	value of x ²			
Freedom	0.99	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.01
1	0.000	0.004	0.016	0.102	0.455	1.32	2.71	3.84	6.63
2	0.020	0.103	0.211	0.575	1.386	2.77	4.61	5.99	9.21
3	0.115	0.352	0.584	1.212	2.366	4.11	6.25	7.81	11.34
4	0.297	0.711	1.064	1.923	3.357	5.39	7.78	9.49	13.28
5	0.554	1.145	1.610	2.675	4.351	6.63	9.24	11.07	15.09
6	0.872	1.635	2.204	3.455	5.348	7.84	10.64	12.59	16.81
7	1.239	2.167	2.833	4.255	6.346	9.04	12.02	14.07	18.48
8	1.647	2.733	3.490	5.071	7.344	10.22	13.36	15.51	20.09
9	2.088	3.325	4.168	5.899	8.343	11.39	14.68	16.92	21.6
10	2.558	3.940	4.865	6.737	9.342	12.55	15.99	18.31	23.2
11	3.053	4.575	5.578	7.584	10.341	13.70	17.28	19.68	24.72
12	3.571	5.226	6.304	8.438	11.340	14.85	18.55	21.03	26.22
13	4.107	5.892	7.042	9.299	12.340	15.98	19.81	22.36	27.65
14	4.660	6.571	7.790	10.165	13.339	17.12	21.06	23.68	29.14
15	5.229	7.261	8.547	11.037	14.339	18.25	22.31	25.00	30.58
16	5.812	7.962	9.312	11.912	15.338	19.37	23.54	26.30	32.00
17	6.408	8.672	10.085	12.792	16.338	20.49	24.77	27.59	33.4
18	7.015	9.390	10.865	13.675	17.338	21.60	25.99	28.87	34.80
19	7.633	10.117	11.651	14.562	18.338	22.72	27.20	30.14	36.19
20	8.260	10.851	12.443	15.452	19.337	23.83	28.41	31.41	37.5
22	9.542	12.338	14.041	17.240	21.337	26.04	30.81	33.92	40.29
24	10.856	13.848	15.659	19.037	23.337	28.24	33.20	36.42	42.98
26	12.198	15.379	17.292	20.843	25.336	30.43	35.56	38.89	45.64
28	13.565	16.928	18.939	22.657	27.336	32.62	37.92	41.34	48.28
30	14.953	18.493	20.599	24.478	29.336	34.80	40.26	43.77	50.89
40	22.164	26.509	29.051	33.660	39.335	45.62	51.80	55.76	63.69
50	27.707	34.764	37.689	42.942	49.335	56.33	63.17	67.50	76.15
60	37.485	43.188	46.459	52.294	59.335	66.98	74.40	79.08	88.38

Percentage Points of the Chi-Square Distribution

Ζ	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9924	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9958	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986

Chi-Square Table

Table 5-2 Critical Values of the χ^2 Distribution

\ p										
df 🔪	0.995	0.975	0.9	0.5	0.1	0.05	0.025	0.01	0.005	df
1	.000	.000	0.016	0.455	2.706	3.841	5.024	6.635	7.879	1
2	0.010	0.051	0.211	1.386	4.605	5,991	7.378	9,210	10.597	2
З	0.072	0.216	0.584	2.366	6.251	7,815	9.348	11,345	12,838	з
4	0.207	0.484	1.064	3.357	7.779	9.488	11.143	13.277	14.860	4
5	0.412	0.831	1.610	4.351	9.236	11.070	12.832	15,086	16,750	5
6	0.676	1.237	2.204	5.348	10.645	12.592	14.449	16,812	18.548	6
7	0.989	1.690	2.833	6.346	12.017	14.067	16.013	18,475	20.278	7
8	1.344	2.180	3.490	7.344	13.362	15.507	17.535	20.090	21.955	8
9	1.735	2.700	4.168	8.343	14.684	16.919	19.023	21,666	23,589	9
10	2.156	3.247	4.865	9.342	15.987	18.307	20.483	23,209	25,188	10
11	2.603	3.816	5.578	10.341	17.275	19.675	21.920	24.725	26.757	11
12	3.074	4.404	6.304	11.340	18.549	21,026	23.337	26.217	28,300	12
13	3.565	5.009	7.042	12.340	19.812	22.362	24.736	27,688	29.819	13
14	4.075	5.629	7.790	13.339	21.064	23.685	26.119	29.141	31.319	14
15	4.601	6.262	8.547	14.339	22.307	24.996	27.488	30.578	32,801	15

Examples Ch(4,5)

The weight of an item is normally distributed with a mean of 0.1 Kg and a standard deviation of 0.01 ounce. Suppose that 16 items are placed in a package and that the weights are independent,

a. Find the mean and the variance of the net weight.

b. Find the probability that the net weight exceeds 1.65 Kg.

 $X_T = X_1 + X_2 + \dots + X_n$

 $\hat{\mu}_x = n\mu_x = 1.6$ $\hat{\sigma}_x^2 = n\sigma_x^2 = 16 * (0.01)^2 = 0.0016$

$$P\{z > 1.65\} = 1 - \phi\left(\frac{1.65 - 1.6}{\sqrt{0.0016}}\right) = 1 - \phi(1.25)$$

A bank teller serves customers standing in the queue one by one. Suppose that the service time x_i for customer i has mean $E\{x_i\} = 2$ (minutes) and $Var\{x_i\} = 1$. We assume that service times for different bank customers are independent. Let Y be the total time the bank teller spends serving 50 customers. Find P(90 < Y < 110).

$$X_T = X_1 + X_2 + \dots + X_n$$

 $\hat{\mu}_x = n\mu_x = 50 * 2 = 100 \min \qquad \qquad \hat{\sigma}_x^2 = n\sigma_x^2 = 50 * (1)^2 = 50$ $P\{90 < Y < 110\} = \phi\left(\frac{110 - 100}{\sqrt{50}}\right) - \phi\left(\frac{90 - 100}{\sqrt{50}}\right) = 1 - 2\phi\left(\frac{10}{\sqrt{50}}\right)$

Suppose we want to estimate the average weight of an adult male in a County. We draw a random sample of 40 men from a population of 1,000,000 men and weigh them. We find that the average man in our sample weighs 180 pounds, and the standard deviation of the sample is 30 pounds. What is the 96% confidence interval?

$$P\left\{\hat{\mu}_{x} - \frac{3\alpha}{2}\frac{\hat{\sigma}_{x}}{\sqrt{n}} \le \mu_{x} \le \hat{\mu}_{x} + \frac{3\alpha}{2}\frac{\hat{\sigma}_{x}}{\sqrt{n}}\right\} = 1 - \alpha$$

$$P\left\{180 - 2.05 * \frac{30}{\sqrt{1000}} \le \mu_{x} \le 180 + 2.05 * \frac{30}{\sqrt{1000}}\right\} = 0.96$$

$$P\left\{180 - 1.94 \le \mu_{x} \le 180 + 1.94\right\} = 0.96$$

Let X be a random variable with the following probability density function

$$f_X(x) = \begin{cases} (\theta+1)x^{\theta}, & 0 \le x \le 1\\ 0, & otherwise \end{cases}$$

a. Use the maximum likelihood estimator to estimate the parameter heta

See Example 6-4 $\hat{\theta} = \frac{1}{-\sum_{i=1}^{n} \ln x_i/n} - 1$

A manufacturer of semiconductor devices takes a random sample of size n of chips and tests them, classifying each chip as defective or non-defective. Let $X_i = 0$ if the chip is nondefective and $X_i = 1$ if the chip is defective. a. Find the mean and variance of the sample average defined $a\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

 $n \sum_{i=1}^{n} i$

b. Compare the sample variance for the case when n = 50 and n = 100. Comment on the effect of sample size on the variance of the sampling distribution

c. If p is the probability of a defective chip, find an unbiased estimator of p. 1^{1}

$$E(X) = \frac{1}{n}(\mu_1 + \mu_2 + \dots + \mu_n) = E(X)$$
$$Var(\bar{X}) = \frac{\sigma_x^2}{n}$$

when n = 50 and n = 100.

$$E(X_{n=50}) = E(X_{n=100}) = E(X)$$
$$Var(\bar{X}_{n=50}) = \frac{\sigma_{x,n=50}^2}{50} < Var(\bar{X}_{n=100}) = \frac{\sigma_{x,n=50}^2}{100}$$

 $Var(\bar{X}_{n=50}) = 50 * \sigma_x^2 < Var(\bar{X}_{n=100}) = 100 * \sigma_x^2$

If p is the probability of a defective chip, find an unbiased estimator of p

$$E(p) = \frac{1}{n}(\mu_1 + \mu_2 + \dots + \mu_n) = \frac{1}{n}(p + p + \dots + p) = p$$

Consider a random sample of size n taken from a discrete distribution, the pmf of which is given by:

$$f(x) = \theta^{x} (1-\theta)^{1-x}, x = 0, 1. \text{ Two estimators for } \theta \text{ are proposed}$$

$$\hat{\Theta}_{1} = \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

$$\hat{\Theta}_{2} = \frac{n\overline{X}+1}{n+2}$$
a. Which one of these two estimators is an unbiased estimator of the parameter θ ?
b. Which one has a smaller variance?

$$E[\hat{\Theta}_{1}] = E\left[\frac{1}{n} \sum_{i=1}^{n} x_{i}\right] = \frac{1}{n} \sum_{i=1}^{n} x_{i} = \hat{\Theta}_{1} \quad \text{unbiased}$$

$$E[\hat{\Theta}_{2}] = E\left[\frac{nE[X]+1}{n+2}\right] = \frac{nE[X]}{n+2} + \frac{n}{n+2} = \frac{nE[X]+1}{n+2} = \hat{\Theta}_{2} \quad \text{unbiased}$$

$$Var[\hat{\Theta}_{1}] = Var[E[X]]$$

$$Var[\hat{\Theta}_{2}] = Var\left[\frac{nE[X]+1}{n+2}\right] = \frac{n^{2}Var[E[X]]}{(n+2)^{2}} + 0 < Var[\hat{\Theta}_{1}] = Var[E[X]]$$

The compressive strength of concrete is being tested by a civil engineer. He tests 12 specimens and obtains the followingdata (in psi)221622372249220422252301228122832318225522752295

a. Find point estimates for the mean and variance of the strength

b. Construct a 95% confidence interval on the mean strength

c. Construct a 95% confidence interval on the variance of the strength.

$$\hat{\mu}_x = \frac{1}{n} \sum_{i=1}^n x_i = 2261$$
$$\hat{\sigma}_x^2 = \frac{n \sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2}{n(n-1)} = 426339$$

$$P\left\{2261 - 2.05\frac{\sqrt{426339}}{\sqrt{12}} \le \mu_x \le 2261 + 2.05\frac{\sqrt{426339}}{\sqrt{12}}\right\} = 0.95$$
$$P\left\{\frac{(12 - 1)426339}{\chi^2_{0.025,12}} \le \sigma_x^2 \le \frac{(12 - 1)426339}{\chi^2_{0.975,12}^2}\right\} = 1 - 0.05$$
$$P\left\{\frac{11 * 426339}{23.34} \le \sigma_x^2 \le \frac{11 * 426339}{4.4}\right\} = 0.95$$

A random sample of n = 36 observations has been drawn from a normal distribution with mean 50 and standard deviation 12. Find the probability that the sample mean is in the interval 47 to 53.

$$X_{T} = \frac{1}{n} (X_{1} + X_{2} + \dots + X_{n})$$
$$\hat{\mu}_{x} = \mu_{x} = 50$$
$$\hat{\sigma}_{x}^{2} = \frac{\sigma_{x}^{2}}{n} = \frac{12^{2}}{50}$$
$$P\{47 < \hat{\mu}_{x} < 53\} = \phi \left(\frac{53 - 50}{\sqrt{\frac{12^{2}}{50}}}\right) - \phi \left(\frac{47 - 50}{\sqrt{\frac{12^{2}}{50}}}\right)$$

Given the following pair of measurements, which are suspected to be linearly related. Do a regression analysis to find the linear relationship

$$y = \alpha x + \beta$$

$$x_{i} = 0.77 + 4.39 + 4.11 + 2.91 + 0.56 + 0.89 + 4.09 + 2.38 + 0.78 + 2.52 + 0.18 +$$

Suppose that X has a normal distribution with mean μ and variance σ^2 , where μ and σ^2 are unknown. A sample of size 15 yielded the values

$$\sum_{i=1}^{3} X_i = 8.7 \text{ and } \sum_{i=1}^{n} X_i^2 = 27.3 \text{ Obtain a 95\% confidence interval on the variance.} \\ \hat{\mu}_x = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{15} \cdot 8.7 = 0.58 \\ \hat{\sigma}_x^2 = \frac{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2}{n(n-1)} \\ \hat{\sigma}_x^2 = \frac{15 \cdot 27.3 - 8.7^2}{15(15-1)} = 1.59 \\ t_{0.025,14} = 2.15 \\ P\left\{\hat{\mu}_x - t_{\underline{\alpha}, 14} \frac{\hat{\sigma}_x}{\sqrt{n}} \le \mu_x \le \hat{\mu}_x + t_{\underline{\alpha}, 14} \frac{\hat{\sigma}_x}{\sqrt{n}}\right\} = 1 - \alpha \\ P\left\{0.58 - 2.15 \frac{\sqrt{1.59}}{\sqrt{15}} \le \mu_x \le 0.58 + 2.15 \frac{\sqrt{1.59}}{\sqrt{15}}\right\} = 0.95 \\ \chi^2_{0.025,15} = 27.5 \\ \chi^2_{0.975,15} = 6.3 \end{aligned}$$

- For a certain commodity which you buy, you can make either a \$500 profit with probability 0.5 when you sell it, or \$200 with probability 0.3 or lose \$100 with probability 0.2.
- a. Find the mean and variance of your net profit if you sell one item.
- b. Suppose you sell 80 items separately and independently, find the mean and standard deviation of your total net profit.

$$\frac{\text{Profit}}{\text{probability}} = \frac{500}{0.5} \frac{200}{0.3} - \frac{100}{0.2}$$

$$\mu_x = \sum_{i=1}^n x_i P(X = x_i) = 500 * .5 + 200 * .3 - 100 * .2 = 300\$$$

$$\sigma_x^2 = \sum_{i=1}^n (x_i - \mu_x)^2 P(X = x_i) = 48000$$

$$\hat{\mu}_x = \mu_x = 300$$

$$\sigma_x^2 = 80 * 48000 = 3840000$$

$$\sqrt{\sigma_x^2} = \sqrt{3840000} = 1960\$$$
your total net profit 80 items $f_x(x) = \sum_{i=1}^{80} x_i$

$$\hat{\mu}_x = n\mu_x = 80 * 300 = 24000\$$$

$$\sqrt{\sigma_x^2} = n\sqrt{3840000} = 1960 * 80 = 156800\$$$

Two random variables X and Y are related by Y = aX + b, where X is a random variable with zero mean and .unit variance

a. Find the mean and variance of Y

$$E[y] = aE[x] + b = b$$

$$Var(y) = a^2 E[x] = a^2$$

b. Find the correlation coefficient between X and Y.

$$cov(X, Y) = E[XY] - \mu_x \mu_y = E[X(aX + b)] - 0 * b = aE[X^2] + bE[X] = aE[X^2]$$
$$aE[X^2] = a(\sigma_x^2 + E[X]^2) = a(1 + 0)$$
$$\rho_{xy} = \frac{cov(X, Y)}{\sigma_x \sigma_y} = \frac{a}{1 * a^2} = \frac{1}{a}$$

5/26/2018

Degrees of .		Area to the Right of Critical Value							
Freedom	0.99	0.975	0.95	0.90	0.10	0.05	0.025	0.01	
1 2 3 4 5	0.020 0.115 0.297 0.554	0.001 0.051 0.216 0.484 0.831	0.004 0.103 0.352 0.711 1.145	0.016 0.211 0.584 1.064 1.610	2.706 4.605 6.251 7.779 9.236	3.841 5.991 7.815 9.488 11.071	5.024 7.378 9.348 11.143 12.833	6.635 9.210 11.345 13.277 15.086	
6	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	
7	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	
8	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	
9	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	
10	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	
11	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	
12	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	
13	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	
14	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	
15	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	
16	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	
17	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	
18	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	
19	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	
20	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	
21	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932	
22	9.542	10.982	12.338	14.042	30.813	33.924	36.781	40.289	
23	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638	
24	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	
25	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314	
26	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	
27	12.879	14.573	16.151	18.114	36.741	40.113	43.194	46.963	
28	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	
29	14.257	16.047	17.708	19.768	39.087	42.557	45.722	49.588	
30	14.954	16.791	18.493	20.599	40.256	43.773	46.979	50.892	