m Data Structure: Recursion 2016/2017 Prepared by: Dr. Mamoun Nawahdah

e ‘*‘%) X
BIRZEIT UNIVERSITY

COMP242
Data Structure

Lectures Note: Recursion

Prepared by: Dr. Mamoun Nawahdah
2016/2017

1

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Recursion 2016/2017

Recursion (Time Analysis Revision)

Prepared by: Dr. Mamoun Nawahdah

Example 1: Write a recursive method to calculate the sum of squares of the first n natural numbers. nis to

be given as an input.
public int sumOfSquares(int n) {
if (n==1)
return 1;
return (n*n) + sumOfSquares(n-1);

}

Recursion may sometimes be very intuitive and simple, but it may not be the best thing to do.

Example 2: Fibonacci sequence:
F(n) = nif n=0,1 ; F(n)=F(n-1)+F(n-2) ifn

>1
0 1 1 2 3 5 8 13
F(O) | F(1) | F(2) [F(3) | F(4) | F(5) | F(6) | F(7)

Solution 1: Iterative
public static int fib1(int n){
if(n<=1) return n;
intfl=0, f2=1, res=0;
for(int i=2; i<=n; i++){
res =f1+f2;
f1=f2;
f2=res;
!
return res;
!
Solution 2: Recursion
public static int fib2(int n){
if(n<=1) return n;
return (fib2(n-1)+fib2(n-2));

Test for n=6 and n=40

Why recursive solution is taking much time?

Do analyze the 2 algorithms in term of calculating F(n)

In Solution 1:

We have F(0) and F(1) given

Then we calculate F(2) using F(1) and F(0)
F(3) using F(2) and F(1)
F(4) using F(3) and F(2)

STUDENTS-HUB.com

Uploaded By: anonymous

E Data Structure: Recursion 2016/2017 Prepared by: Dr. Mamoun Nawahdah

F(n) using F(n-1) and F(n-2)
In Solution 2:
F(5)
F(4) F(3)
F(3)‘/ F(2) F(2) F(1)
F(2) F(1) F(1) F0O) F(1) F(0)
F(1) F(0)

Note: we are calculating the same value multiple times!!

n F(2) F(3)
5 3 2
6 5

8 13

40 | 63245986
o\

Exponential growth

Time and Space complexity Analysis of recursion
Example: recursive factorial
fact(n){
If (n==0) return 1;
Return n * fact(n-1);
}
e Calculate operation costs:
If statement takes 1 unit of time
Multiplication (*) takes 1 unit of time
Subtraction (-) takes 1 unit of time

O

(@]

Function call
e So T0) = 1
T(n) = 3+ T(n-1) forn>0
To solve this equation, reduce T(n) in term of its base conditions.
T(n) =T(n-1) +3

(@)

=T(n-2) +6

=T(n-3) +9

=T(n-k) + 3k
For T(0) = n-k=0 = n=k
Therefore T(n) = T(0) + 3n

=1+3n = 0O(n)

STUDENTS-HUB.com Uploaded By: anonymous

m Data Structure: Recursion 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Space analysis:
Recursive Tree
Fact(5) = Fact(4) > Fact(3) 2 Fact(2) > Fact(1) = Fact(0)

Each function call will cause to save current function state into memory (call stack, push):

Fact(1)
Fact(2)
Fact(3)
Fact(4)
Fact(5)
Each return statement will retrieve previous saved function state from memory (pop):

So needed space is proportionalton = 0O(n)

Fibonacci sequence time complexity analysis
public static int fib2(int n){
if(n<=1) return n;
return (fib2(n-1)+fib2(n-2));
}
e Calculate operation costs:
If statement takes 1 unit of time
2 subtractions (-) takes 2 unit of time
1 addition (+) takes 1 unit of time
2 function calls
e So TO) =T(1) = 1
T(n) = T(n-1) +T(n-2)+4 forn>1
To solve this equation, reduce T(n) in term of its base conditions.

O

O

o

For approximation assume T(n-1) = T(n-2) =>» in reality T(n-1) > T(n-2)
T(n) = 2T(n-2) +4 2> c=4
= 2T(n-2) +c -2 T(n-2)=2T(n-4)+c
= 2{2T(n-4)+c}+c
= 4 T(n-4) + 3c
= 8 T(n-6) + 7c

= 16 T(n-8) + 15c

2X T(n-2k) +(2%-1)c
ForT(0) = n-2k =0 = k=n/2
Therefore T(n) = 2"27(0)+(2"%-1)c > 2"% (14c) - ¢
T(n) is proportionalto 2"? > 0(2"/2) € lower bound analysis

STUDENTS-HUB.com Uploaded By: anonymous

m Data Structure: Recursion 2016/2017 Prepared by: Dr. Mamoun Nawahdah

=>» in reality T(n-2) < T(n-1)
2 T(n-1)= 2T(n-2) +c

Similarly, for approximation assume T(n-2) = T(n-1)
T(n) = 2T(n-1) +c
= 2{2T(n-2)+c}+c
= 4 T(n-2) + 3c
= 8 T(n-3) +7c
= 16 T(n-4) + 15c

= 2X T(n-k) +(2%1)c
ForT(0) = n-k =0 = k=n
Therefore T(n) =2"T(O)+(2"-1)c => 2" (1+c) - ¢
T(n) is proportionalto 2" 2> O0(2") € upper bound analysis = worst case analysis

While for iterative solution & O(n)

Recursion with memorization
Solution: don’t calculate something already has been calculated.

Algorithm:
fib(n){
If (n<=1) returnn
If(F[n] is in memory) return F[n]
F[n] = fib(n-1) + fib(n-2)
Return F[n]
}

Time complexity = O(n)
Calculate X" using recursion

Iterative solution: O(n) Recursive solution 1: O(n) Recursive solution 2: O(log n)
X" = XEXKX*EX* L *FX X" = X*X"ifn>0 X" = X2 * X2 if nis even
n-1 multiplication X*=1 ifn>0 X" = X *X"! if nis odd
X’=1 ifn>0
res=1 pow(x, n){ pow(x, n){
fori<1ton if n==0 return1 if n==0 return1
res € res * x return x * pow(x, n-1) if N%2==0{
} y € pow(x, n/2)
returny *y
}
return x * pow(x, n-1)
}

STUDENTS-HUB.com

Uploaded By: anonymous

m Data Structure: Recursion 2016/2017 Prepared by: Dr. Mamoun Nawahdah

Recursive solution 1: Time analysis

T(1) =1
T(n) = T(n-1)+c
= (T(n-2)+c)+c = T(n-2)+2c
= T(n-3) + 3c
= T(n-k) + kc
ForT(0) = n-k=0=> n=k
T(n) =T(0) +nc & 1+nc & 0O(n)

Recursive solution 2: Time analysis

o X" = X2 x X2 if nis even
o X" = x*x™! if n is odd
o X" =1 if n==

e X" = X*1 ifn==1

If even=> T(n) = T(n/2) +cl
Ifodd=» T(n) = T(n-1) +c2
If 0=> T(0) = 1
If 1 =» T(1) = c3

If odd, next call will become even:

T(n) = T((n-1)/2) +cl+c2
If even
T(n) = T(n/2) +c
= T(n/4) + 2c
= T(n/8) + 3c
= T(n/2" +kc

ForT(1)=» T(0) +c = 1
n/2=1 9 n=2" 9 k=logn
=c3 + c log n = O(logn)

STUDENTS-HUB.com Uploaded By: anonymous

