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Recursion (Time Analysis Revision) 

Example 1: Write a recursive method to calculate the sum of squares of the first n natural numbers. n is to 

be given as an input.  
public int sumOfSquares(int n) { 
   if (n==1)  
         return 1; 

     return   (n*n) + sumOfSquares(n-1); 
} 

 

Recursion may sometimes be very intuitive and simple, but it may not be the best thing to do. 

Example 2: Fibonacci sequence: 

 F(n)  =   n  if  n=0, 1   ;   F(n) = F(n-1) + F(n-2)  if n > 1  

0 1 1 2 3 5 8 13 .. 

F(0) F(1) F(2) F(3) F(4) F(5) F(6) F(7) .. 

Solution 1: Iterative 

public static int fib1(int n){ 

        if(n<=1) return n; 

        int f1 = 0,   f2 = 1,   res=0; 

        for(int i=2; i<=n; i++){ 

            res =f1+f2; 

            f1=f2; 

            f2=res; 

        } 

        return res; 

} 

Solution 2: Recursion 

public static int fib2(int n){ 

        if(n<=1) return n; 

        return (fib2(n-1)+fib2(n-2)); 

 } 

Test for n=6 and n=40 

Why recursive solution is taking much time? 

Do analyze the 2 algorithms in term of calculating F(n) 

In Solution 1: 

We have F(0) and F(1) given 

Then we calculate  F(2) using F(1) and F(0) 

   F(3) using F(2) and F(1) 

F(4) using F(3) and F(2) 
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: 

F(n) using F(n-1) and F(n-2) 

In Solution 2: 

F(5) 

F(4)     F(3) 

F(3)  F(2)   F(2)  F(1) 

F(2) F(1) F(1) F(0)  F(1) F(0)   

F(1) F(0)         

 

Note: we are calculating the same value multiple times!! 

n F(2) F(3) .. 

5 3 2  

6 5   

8 13   

:    

40 63245986   

 

Exponential growth 

 Time and Space complexity Analysis of recursion 

Example: recursive factorial 

  fact(n){ 

   If (n==0) return 1; 

   Return n *  fact(n-1); 

} 

 Calculate operation costs: 

o If statement takes 1 unit of time 

o Multiplication (*)   takes 1 unit of time 

o Subtraction (-) takes 1 unit of time 

o Function call 

 So   T(0)  =   1    

T(n)  =  3 +  T(n-1)    for n > 0 

To solve this equation, reduce T(n) in term of its base conditions. 

T(n)  = T(n-1)  + 3 

 = T(n-2)  + 6 

 = T(n-3)  + 9 

 : 

 = T(n-k)  + 3k 

For    T(0)      n-k = 0    n = k 

Therefore    T(n)  =  T(0)  +  3n 

   =  1 + 3n         O(n) 
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Space analysis: 

 Recursive Tree 

  Fact(5)   Fact(4)   Fact(3)   Fact(2)   Fact(1)   Fact(0) 

  

Each function call will cause to save current function state into memory (call stack, push): 

 

 

Fact(1) 

Fact(2) 

Fact(3) 

Fact(4) 

Fact(5) 

 Each return statement will retrieve previous saved function state from memory (pop): 

So needed space is proportional to n       O(n) 

 

Fibonacci sequence time complexity analysis 

public static int fib2(int n){ 

        if(n<=1) return n; 

        return (fib2(n-1)+fib2(n-2)); 

 } 

 Calculate operation costs: 

o If statement takes 1 unit of time 

o 2 subtractions (-) takes 2 unit of time 

o 1 addition (+) takes 1 unit of time 

o 2 function calls 

 So   T(0)  = T(1)  =  1    

T(n)  =  T(n-1) + T(n-2) + 4    for n > 1 

To solve this equation, reduce T(n) in term of its base conditions. 

For approximation assume   T(n-1) ≈ T(n-2)         in reality T(n-1) > T(n-2)  

 T(n)   =   2 T(n-2)  + 4          c = 4 

  =  2 T(n-2)  + c          T(n-2) =  2 T(n-4) + c     

  = 2 { 2 T(n-4) + c } + c 

  = 4  T(n-4) + 3c 

  = 8  T(n-6) + 7c 

  = 16  T(n-8) + 15c 

  : 

  = 2k  T(n-2k) +(2k-1)c 

For T(0)     n-2k  = 0       k = n/2 

Therefore  T(n) =  2n/2 T(0) + (2n/2 - 1) c        2n/2  (1+c)  -  c 

  T(n) is proportional to   2n/2                  O(2n/2)            lower bound analysis 
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Similarly, for approximation assume   T(n-2) ≈ T(n-1)         in reality T(n-2) < T(n-1)  

 T(n)   =   2 T(n-1)  + c          T(n-1) =  2 T(n-2) + c     

  = 2 { 2 T(n-2) + c } + c 

  = 4  T(n-2) + 3c 

  = 8  T(n-3) + 7c 

  = 16  T(n-4) + 15c 

  : 

  = 2k  T(n-k) +(2k-1)c 

For T(0)     n-k  = 0       k = n 

Therefore  T(n) =  2n T(0) + (2n - 1) c        2n  (1+c)  -  c 

T(n) is proportional to   2n                  O(2n)            upper bound analysis  worst case analysis 

 

While for iterative solution    O(n) 

 

 

Recursion with memorization 

Solution: don’t calculate something already has been calculated. 

Algorithm: 

 

 fib(n){ 

  If (n<=1)   return n 

  If(F[n] is in memory) return F[n] 

  F[n] =  fib(n-1) + fib(n-2) 

  Return F[n] 

 } 

Time complexity     O(n) 

Calculate Xn using recursion 

Iterative solution:    O(n) 
Xn  =  X * X * X * X * …. * X 

n-1 multiplication 

Recursive solution 1:  O(n) 

Xn  =  X * Xn-1  if n > 0   
X0  = 1     if n > 0   

Recursive solution 2:  O(log n) 

Xn  =  Xn/2 * Xn/2 if n is even  
Xn  =  X * Xn-1  if n is odd  

X0  = 1     if n > 0   

res = 1 
for i1 to n 
    res  res * x 

pow(x, n){ 
    if n==0   return 1 
    return  x  *   pow(x, n-1) 
} 

pow(x, n){ 
    if n==0   return 1 
    if  n%2 == 0 { 
        y  pow(x, n/2) 
        return y * y 
    } 
    return  x  *   pow(x, n-1) 
} 
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Recursive solution 1: Time analysis 

 

T(1)   =  1  

T(n) =  T(n-1) + c 

 =  (T(n-2) + c) + c     T(n-2) + 2c 

 =  T(n-3)  + 3c 

 : 

 =  T(n-k)  + kc 

For T(0)     n-k = 0      n = k 

T(n) =  T(0)  + nc       1 + nc       O(n) 

 

Recursive solution 2: Time analysis 

 

 Xn   =   Xn/2  *  Xn/2        if n is even 

 Xn   =   X  *  Xn-1               if n is odd 

 Xn   =   1                      if n == 0 

 Xn   =   X  *  1        if n == 1 

 

If  even  T(n)   =   T(n/2)  + c1 

If odd  T(n)  =  T(n-1)  + c2 

If  0  T(0)  =   1 

If   1        T(1)  =  c3 

 

If odd, next call will become even: 

T(n)   =   T((n-1)/2) + c1 + c2 

If even 

T(n)    =  T(n/2) + c 

 =  T(n/4) + 2c 

 =  T(n/8) + 3c 

 : 

 =  T(n/2k) + k c        

For T(1)    T(0)  +  c     1 

n/2k = 1        n  =  2k        k  = log n  

             = c3  +  c  log  n        O(log n) 
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