
 Data Structure: Recursion 2016/2017 Prepared by: Dr. Mamoun Nawahdah

1

COMP242

Data Structure

Lectures Note: Recursion

Prepared by: Dr. Mamoun Nawahdah

2016/2017

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Recursion 2016/2017 Prepared by: Dr. Mamoun Nawahdah

2

Recursion (Time Analysis Revision)

Example 1: Write a recursive method to calculate the sum of squares of the first n natural numbers. n is to

be given as an input.
public int sumOfSquares(int n) {
 if (n==1)
 return 1;

 return (n*n) + sumOfSquares(n-1);
}

Recursion may sometimes be very intuitive and simple, but it may not be the best thing to do.

Example 2: Fibonacci sequence:

 F(n) = n if n=0, 1 ; F(n) = F(n-1) + F(n-2) if n > 1

0 1 1 2 3 5 8 13 ..

F(0) F(1) F(2) F(3) F(4) F(5) F(6) F(7) ..

Solution 1: Iterative

public static int fib1(int n){

 if(n<=1) return n;

 int f1 = 0, f2 = 1, res=0;

 for(int i=2; i<=n; i++){

 res =f1+f2;

 f1=f2;

 f2=res;

 }

 return res;

}

Solution 2: Recursion

public static int fib2(int n){

 if(n<=1) return n;

 return (fib2(n-1)+fib2(n-2));

 }

Test for n=6 and n=40

Why recursive solution is taking much time?

Do analyze the 2 algorithms in term of calculating F(n)

In Solution 1:

We have F(0) and F(1) given

Then we calculate F(2) using F(1) and F(0)

 F(3) using F(2) and F(1)

F(4) using F(3) and F(2)

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Recursion 2016/2017 Prepared by: Dr. Mamoun Nawahdah

3

:

F(n) using F(n-1) and F(n-2)

In Solution 2:

F(5)

F(4) F(3)

F(3) F(2) F(2) F(1)

F(2) F(1) F(1) F(0) F(1) F(0)

F(1) F(0)

Note: we are calculating the same value multiple times!!

n F(2) F(3) ..

5 3 2

6 5

8 13

:

40 63245986

Exponential growth

 Time and Space complexity Analysis of recursion

Example: recursive factorial

 fact(n){

 If (n==0) return 1;

 Return n * fact(n-1);

}

 Calculate operation costs:

o If statement takes 1 unit of time

o Multiplication (*) takes 1 unit of time

o Subtraction (-) takes 1 unit of time

o Function call

 So T(0) = 1

T(n) = 3 + T(n-1) for n > 0

To solve this equation, reduce T(n) in term of its base conditions.

T(n) = T(n-1) + 3

 = T(n-2) + 6

 = T(n-3) + 9

 :

 = T(n-k) + 3k

For T(0)  n-k = 0  n = k

Therefore T(n) = T(0) + 3n

 = 1 + 3n  O(n)

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Recursion 2016/2017 Prepared by: Dr. Mamoun Nawahdah

4

Space analysis:

 Recursive Tree

 Fact(5)  Fact(4)  Fact(3)  Fact(2)  Fact(1)  Fact(0)

Each function call will cause to save current function state into memory (call stack, push):

Fact(1)

Fact(2)

Fact(3)

Fact(4)

Fact(5)

 Each return statement will retrieve previous saved function state from memory (pop):

So needed space is proportional to n  O(n)

Fibonacci sequence time complexity analysis

public static int fib2(int n){

 if(n<=1) return n;

 return (fib2(n-1)+fib2(n-2));

 }

 Calculate operation costs:

o If statement takes 1 unit of time

o 2 subtractions (-) takes 2 unit of time

o 1 addition (+) takes 1 unit of time

o 2 function calls

 So T(0) = T(1) = 1

T(n) = T(n-1) + T(n-2) + 4 for n > 1

To solve this equation, reduce T(n) in term of its base conditions.

For approximation assume T(n-1) ≈ T(n-2)  in reality T(n-1) > T(n-2)

 T(n) = 2 T(n-2) + 4  c = 4

 = 2 T(n-2) + c  T(n-2) = 2 T(n-4) + c

 = 2 { 2 T(n-4) + c } + c

 = 4 T(n-4) + 3c

 = 8 T(n-6) + 7c

 = 16 T(n-8) + 15c

 :

 = 2k T(n-2k) +(2k-1)c

For T(0)  n-2k = 0  k = n/2

Therefore T(n) = 2n/2 T(0) + (2n/2 - 1) c  2n/2 (1+c) - c

 T(n) is proportional to 2n/2  O(2n/2)  lower bound analysis

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Recursion 2016/2017 Prepared by: Dr. Mamoun Nawahdah

5

Similarly, for approximation assume T(n-2) ≈ T(n-1)  in reality T(n-2) < T(n-1)

 T(n) = 2 T(n-1) + c  T(n-1) = 2 T(n-2) + c

 = 2 { 2 T(n-2) + c } + c

 = 4 T(n-2) + 3c

 = 8 T(n-3) + 7c

 = 16 T(n-4) + 15c

 :

 = 2k T(n-k) +(2k-1)c

For T(0)  n-k = 0  k = n

Therefore T(n) = 2n T(0) + (2n - 1) c  2n (1+c) - c

T(n) is proportional to 2n  O(2n)  upper bound analysis  worst case analysis

While for iterative solution  O(n)

Recursion with memorization

Solution: don’t calculate something already has been calculated.

Algorithm:

 fib(n){

 If (n<=1) return n

 If(F[n] is in memory) return F[n]

 F[n] = fib(n-1) + fib(n-2)

 Return F[n]

 }

Time complexity  O(n)

Calculate Xn using recursion

Iterative solution: O(n)
Xn = X * X * X * X * …. * X

n-1 multiplication

Recursive solution 1: O(n)

Xn = X * Xn-1 if n > 0
X0 = 1 if n > 0

Recursive solution 2: O(log n)

Xn = Xn/2 * Xn/2 if n is even
Xn = X * Xn-1 if n is odd

X0 = 1 if n > 0

res = 1
for i1 to n
 res  res * x

pow(x, n){
 if n==0 return 1
 return x * pow(x, n-1)
}

pow(x, n){
 if n==0 return 1
 if n%2 == 0 {
 y  pow(x, n/2)
 return y * y
 }
 return x * pow(x, n-1)
}

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Recursion 2016/2017 Prepared by: Dr. Mamoun Nawahdah

6

Recursive solution 1: Time analysis

T(1) = 1

T(n) = T(n-1) + c

 = (T(n-2) + c) + c  T(n-2) + 2c

 = T(n-3) + 3c

 :

 = T(n-k) + kc

For T(0)  n-k = 0  n = k

T(n) = T(0) + nc  1 + nc  O(n)

Recursive solution 2: Time analysis

 Xn = Xn/2 * Xn/2 if n is even

 Xn = X * Xn-1 if n is odd

 Xn = 1 if n == 0

 Xn = X * 1 if n == 1

If even  T(n) = T(n/2) + c1

If odd  T(n) = T(n-1) + c2

If 0  T(0) = 1

If 1  T(1) = c3

If odd, next call will become even:

T(n) = T((n-1)/2) + c1 + c2

If even

T(n) = T(n/2) + c

 = T(n/4) + 2c

 = T(n/8) + 3c

 :

 = T(n/2k) + k c

For T(1)  T(0) + c  1

n/2k = 1  n = 2k  k = log n

 = c3 + c log n  O(log n)

Uploaded By: anonymousSTUDENTS-HUB.com

