
Objectives
 ■ To distinguish between JavaFX, Swing, and AWT (§14.2).

 ■ To write a simple JavaFX program and understand the relationship
among stages, scenes, and nodes (§14.3).

 ■ To create user interfaces using panes, groups, UI controls, and shapes
(§14.4).

 ■ To update property values automatically through property binding
(§14.5).

 ■ To use the common properties style and rotate for nodes (§14.6).

 ■ To create colors using the Color class (§14.7).

 ■ To create fonts using the Font class (§14.8).

 ■ To create images using the Image class, and to create image views
using the ImageView class (§14.9).

 ■ To layout nodes using Pane, StackPane, FlowPane, GridPane,
BorderPane, HBox, and VBox (§14.10).

 ■ To display text using the Text class, and create shapes using the
Line, Circle, Rectangle, Ellipse, Arc, Polygon, and Polyline
classes (§14.11).

 ■ To develop the reusable GUI component ClockPane for displaying
an analog clock (§14.12).

JùĎùFX Bùċāûċ

CHAPTER

14

M14_LIAN9966_12_SE_C14.indd 541 16/09/19 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

542 Chapter 14 JavaFX Basics

14.1 Introduction
JavaFX is an excellent pedagogical tool for learning object-oriented programming.

JavaFX is a new framework for developing Java GUI programs. The JavaFX API is an excellent
example of how the object-oriented principles are applied. This chapter serves two purposes.
First, it presents the basics of JavaFX programming. Second, it uses JavaFX to demonstrate
object-oriented design and programming. Specifically, this chapter introduces the framework
of JavaFX and discusses JavaFX GUI components and their relationships. You will learn how
to develop simple GUI programs using layout panes, groups, buttons, labels, text fields, colors,
fonts, images, image views, and shapes.

14.2 JavaFX vs. Swing and AWT
Swing and AWT are replaced by the JavaFX platform for developing rich GUI
applications.

When Java was introduced, the GUI classes were bundled in a library known as the Abstract
Windows Toolkit (AWT). AWT is fine for developing simple graphical user interfaces, but
not for developing comprehensive GUI projects. In addition, AWT is prone to platform-
specific bugs. The AWT user-interface components were replaced by a more robust, versatile,
and flexible library known as Swing. Swing components are painted directly on canvases
using Java code. Swing components depend less on the target platform, and use less of the
native GUI resources. Swing is designed for developing desktop GUI applications. It is now
replaced by a completely new GUI platform known as JavaFX. JavaFX incorporates modern
GUI technologies to enable you to develop rich GUI applications. In addition, JavaFX pro-
vides a multitouch support for touch-enabled devices such as tablets and smart phones.
JavaFX has a built-in 2D, 3D, animation support, and video and audio playback. Using third-
party software, you can develop JavaFX programs to be deployed on devices running iOS or
Android.

This book teaches Java GUI programming using JavaFX for three reasons. First, JavaFX is
much simpler to learn and use for new Java programmers. Second, JavaFX is a better
 pedagogical tool for demonstrating object-oriented programming than Swing. Third, Swing is
essentially dead because it will not receive any further enhancement. JavaFX is the new GUI
tool for developing cross-platform rich GUI applications on desktop computers and on
 handheld devices.

 14.2.1 Explain the evolution of Java GUI technologies.

 14.2.2 Explain why this book teaches Java GUI using JavaFX.

14.3 The Basic Structure of a JavaFX Program
The javafx.application.Application class defines the essential framework for
writing JavaFX programs.

We begin by writing a simple JavaFX program that illustrates the basic structure of a JavaFX
program. Every JavaFX program is defined in a class that extends javafx.application
.Application, as shown in Listing 14.1.

LISTING 14.1 MyJavaFX.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.control.Button;
 4 import javafx.stage.Stage;

Point
Key

Point
Key

AWT

Swing

JavaFX

why teaching JavaFX

Point
Check

Point
Key

VideoNote

Getting started with JavaFX

M14_LIAN9966_12_SE_C14.indd 542 16/09/19 8:13 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

14.3 The Basic Structure of a JavaFX Program 543

 5
 6 public class MyJavaFX extends Application {
 7 @Override // Override the start method in the Application class
 8 public void start(Stage primaryStage) {
 9 // Create a scene and place a button in the scene
10 Button btOK = new Button("OK");
11 Scene scene = new Scene(btOK, 200, 250);
12 primaryStage.setTitle("MyJavaFX"); // Set the stage title
13 primaryStage.setScene(scene); // Place the scene in the stage
14 primaryStage.show(); // Display the stage
15 }
16
17 /**
18 * The main method is only needed for the IDE with limited
19 * JavaFX support. Not needed for running from the command line.
20 */
21 public static void main(String[] args) {
22 Application.launch(args);
23 }
24 }

You can test and run your program from a command window or from an IDE such
as NetBeans or Eclipse. A sample run of the program is shown in Figure 14.1. Since JDK 11,
JavaFX has become a separate module. Supplements II.F–H give the tips for running JavaFX
programs from a command window, NetBeans, and Eclipse using JDK 11.

launch

main method

display stage
set a scene
set stage title
create a scene
create a button

override start

extend Application

JavaFX on NetBeans and
Eclipse

FIGURE 14.1 A simple JavaFX displays a button in the window.

The launch method (line 22) is a static method defined in the Application class for
launching a stand-alone JavaFX application. The main method (lines 21–23) is not needed
if you run the program from the command line. It may be needed to launch a JavaFX program
from an IDE with a limited JavaFX support. When you run a JavaFX application without a
main method, JVM automatically invokes the launch method to run the application.

The main class overrides the start method defined in javafx.application
.Application (line 8). After a JavaFX application is launched, the JVM constructs an instance
of the class using its no-arg constructor and invokes its start method. The start method
normally places UI controls in a scene and displays the scene in a stage, as shown in Figure 14.2a.

Line 10 creates a Button object and places it in a Scene object (line 11). A Scene object
can be created using the constructor Scene(node, width, height). This constructor
specifies the width and height of the scene and places the node in the scene.

A Stage object is a window. A Stage object called primary stage is automatically created
by the JVM when the application is launched. Line 13 sets the scene to the primary stage and
line 14 displays the primary stage. JavaFX names the Stage and Scene classes using the
analogy from the theater. You may think of stage as the platform to support scenes, and nodes
as actors to perform in the scenes.

You can create additional stages if needed. The JavaFX program in Listing 14.2 displays
two stages, as shown in Figure 14.2b.

launch application

construct application

start application

scene

primary stage

M14_LIAN9966_12_SE_C14.indd 543 16/09/19 8:13 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

544 Chapter 14 JavaFX Basics

LISTING 14.2 MultipleStageDemo.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.control.Button;
 4 import javafx.stage.Stage;
 5
 6 public class MultipleStageDemo extends Application {
 7 @Override // Override the start method in the Application class
 8 public void start(Stage primaryStage) {
 9 // Create a scene and place a button in the scene
10 Scene scene = new Scene(new Button("OK"), 200, 250);
11 primaryStage.setTitle("MyJavaFX"); // Set the stage title
12 primaryStage.setScene(scene); // Place the scene in the stage
13 primaryStage.show(); // Display the stage
14
15 Stage stage = new Stage(); // Create a new stage
16 stage.setTitle("Second Stage"); // Set the stage title
17 // Set a scene with a button in the stage
18 stage.setScene(new Scene(new Button("New Stage"), 200, 250));
19 stage.show(); // Display the stage
20 }
21 }

Note the main method is omitted in the listing since it is identical for every JavaFX appli-
cation. From now on, we will not list the main method in our JavaFX source code for brevity.

By default, the user can resize the stage. To prevent the user from resizing the stage, invoke
stage.setResizable(false).

 14.3.1 How do you define a JavaFX main class? What is the signature of the start
method? What is a stage? What is a primary stage? Is a primary stage automatically
 created? How do you display a stage? Can you prevent the user from resizing the
stage? Can you replace Application.launch(args) by launch(args) in
line 22 in Listing 14.1?

 14.3.2 Show the output of the following JavaFX program:

import javafx.application.Application;
import javafx.stage.Stage;

public class Test extends Application {
 public Test() {
 System.out.println("Test constructor is invoked");
 }

primary stage in start

display primary stage

create second stage

display second stage

main method omitted

Point
Check

FIGURE 14.2 (a) Stage is a window for displaying a scene that contains nodes. (b) Multiple
stages can be displayed in a JavaFX program.

Stage

Scene

Button

(a) (b)

prevent stage resizing

M14_LIAN9966_12_SE_C14.indd 544 16/09/19 8:13 PM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

14.4 Panes, Groups, UI Controls, and Shapes 545

FIGURE 14.3 (a) Panes and groups are used to hold nodes. (b) Nodes can be shapes, image views, UI controls, groups,
and panes.

Stage

Scene

Parent
(Pane, Group, Control)

Nodes

UI controls such as Label,
TextField, Button, CheckBox,
RadioButton, and TextArea are
subclasses of Control.

1

Stage

Node

Control

Group

*

FlowPane

BorderPane

GridPane

HBox

VBox

StackPane

1

Pane

Parent

Shape

ImageView For displaying an image.

(a) (b)

Scene

Shapes such as Line, Circle,
Ellipse, Rectangle, Arc,
Polygon, Polyline, and Text are
subclasses of Shape.

 @Override // Override the start method in the Application class
 public void start(Stage primaryStage) {
 System.out.println("start method is invoked");
 }

 public static void main(String[] args) {
 System.out.println("launch application");
 Application.launch(args);
 }
}

14.4 Panes, Groups, UI Controls, and Shapes
Panes, Groups, UI controls, and shapes are subtypes of Node.

When you run MyJavaFX in Listing 14.1, the window is displayed as shown in Figure 14.1. The
button is always centered in the scene and occupies the entire window no matter how you resize
it. You can fix the problem by setting the position and size properties of a button. However, a better
approach is to use container classes, called panes, for automatically laying out the nodes in a
desired location and size. You place nodes inside a pane then place the pane into a scene. A node
is a visual component such as a shape, an image view, a UI control, a group, or a pane. A shape
refers to a text, line, circle, ellipse, rectangle, arc, polygon, polyline, and so on. A UI control refers
to a label, button, check box, radio button, text field, text area, and so on. A group is a container
that groups a collection of nodes. You can apply transformations or effects to a group, which
automatically apply to all the children in the group. A scene can be displayed in a stage, as shown
in Figure 14.3a. The relationship among Stage, Scene, Node, Control, Group, and Pane is
illustrated in the UML diagram, as shown in Figure 14.3b. Note a Scene can contain a Control,
Group, or a Pane, but not a Shape or an ImageView. A Pane or a Group can contain any subtype
of Node. You can create a Scene using the constructor Scene(Parent, width, height) or
Scene(Parent). The dimension of the scene is automatically decided in the latter constructor.
Every subclass of Node has a no-arg constructor for creating a default node.

Listing 14.3 gives a program that places a button in a pane, as shown in Figure 14.4.

Point
Key

pane
node
shape
UI control

group

M14_LIAN9966_12_SE_C14.indd 545 16/09/19 8:13 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

546 Chapter 14 JavaFX Basics

LISTING 14.3 ButtonInPane.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.control.Button;
 4 import javafx.stage.Stage;
 5 import javafx.scene.layout.StackPane;
 6
 7 public class ButtonInPane extends Application {
 8 @Override // Override the start method in the Application class
 9 public void start(Stage primaryStage) {
10 // Create a scene and place a button in the scene
11 StackPane pane = new StackPane();
12 pane.getChildren().add(new Button("OK"));
13 Scene scene = new Scene(pane, 200, 50);
14 primaryStage.setTitle("Button in a pane"); // Set the stage title
15 primaryStage.setScene(scene); // Place the scene in the stage
16 primaryStage.show(); // Display the stage
17 }
18 }

create a pane
add a button
add pane to scene

display stage

main method omitted

The program creates a StackPane (line 11) and adds a button as a child of the pane (line
12). The getChildren() method returns an instance of javafx.collections
. ObservableList. ObservableList behaves very much like an ArrayList for storing a
collection of elements. Invoking add(e) adds an element to the list. The StackPane places
the nodes in the center of the pane on top of each other. Here, there is only one node in the
pane. The StackPane respects a node’s preferred size. Therefore, you see the button displayed
in its preferred size.

Along with many other constructors, each pane and group have a no-arg constructor, and
also a constructor that adds one or more children to the pane or group. Thus, the code in lines 11
and 12 can be replaced using one statement:

StackPane pane = new StackPane(new Button("OK"));

Listing 14.4 gives an example that displays a circle in the center of the pane, as shown in
Figure 14.5a.

LISTING 14.4 ShowCircle.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.paint.Color;
 5 import javafx.scene.shape.Circle;
 6 import javafx.stage.Stage;
 7
 8 public class ShowCircle extends Application {
 9 @Override // Override the start method in the Application class
10 public void start(Stage primaryStage) {

ObservableList

FIGURE 14.4 A button is placed in the center of the pane.

M14_LIAN9966_12_SE_C14.indd 546 16/09/19 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

14.4 Panes, Groups, UI Controls, and Shapes 547

11 // Create a circle and set its properties
12 Circle circle = new Circle();
13 circle.setCenterX(100);
14 circle.setCenterY(100);
15 circle.setRadius(50);
16 circle.setStroke(Color.BLACK);
17 circle.setFill(Color.WHITE);
18
19 // Create a pane to hold the circle
20 Pane pane = new Pane();
21 pane.getChildren().add(circle);
22
23 // Create a scene and place it in the stage
24 Scene scene = new Scene(pane, 200, 200);
25 primaryStage.setTitle("ShowCircle"); // Set the stage title
26 primaryStage.setScene(scene); // Place the scene in the stage
27 primaryStage.show(); // Display the stage
28 }
29 }

add pane to scene

add circle to pane
create a pane

set circle properties
create a circle

display stage

main method omitted

The program creates a Circle (line 12) and sets its center at (100, 100) (lines 13 and 14),
which is also the center for the scene, since the scene is created with the width and height of
200 (line 24). The radius of the circle is set to 50 (line 15). Note the measurement units for
graphics in Java are all in pixels.

The stroke color (i.e., the color to draw the circle) is set to black (line 16). The fill color (i.e.,
the color to fill the circle) is set to white (line 17). You may set the color to null to specify
that no color is set.

The program creates a Pane (line 20) and places the circle in the pane (line 21). Note the
coordinates of the upper-left corner of the pane is (0, 0) in the Java coordinate system, as shown
in Figure 14.6a, as opposed to the conventional coordinate system, where (0, 0) is at the center
of the window, as shown in Figure 14.6b. The x-coordinate increases from left to right, and the
y-coordinate increases downward in the Java coordinate system.

The pane is placed in the scene (line 24) and the scene is set in the stage (line 26). The
circle is displayed in the center of the stage, as shown in Figure 14.5a. However, if you
resize the window, the circle is not centered, as shown in Figure 14.5b. In order to display
the circle centered as the window resizes, the x- and y-coordinates of the circle center need
to be reset to the center of the pane. This can be done by using property binding, introduced
in the next section.

FIGURE 14.5 (a) A circle is displayed in the center of the scene. (b) The circle is not
 centered after the window is resized.

(a) (b)

(0, 0)(0, 0)

(100, 100)(100, 100)

pixels

set color

M14_LIAN9966_12_SE_C14.indd 547 16/09/19 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

548 Chapter 14 JavaFX Basics

 14.4.1 How do you create a Scene object? How do you set a scene in a stage? How do you
place a circle into a scene?

 14.4.2 What is a pane? What is a node? How do you place a node in a pane? Can you
directly place a Shape or an ImageView into a Scene? Can you directly place a
Control or a Pane into a Scene?

 14.4.3 How do you create a Circle? How do you set its center location and radius? How
do you set its stroke color and fill color?

 14.4.4 How do you replace the code in lines 20 and 21 in Listing 14.4 using one
statement?

14.5 Property Binding
You can bind a target object to a source object. A change in the source object will be
automatically reflected in the target object.

JavaFX introduces a new concept called property binding that enables a target object to be
bound to a source object. If the value in the source object changes, the target object is also
automatically changed. The target object is called a binding object or a binding property, and
the source object is called a bindable object or observable object. As discussed in Listing 14.4,
ShowCircle.java, the circle is not centered after the window is resized. In order to display the
circle centered as the window resizes, the x- and y-coordinates of the circle center need to be
reset to the center of the pane. This can be done by binding the centerX with pane’s width/2
and centerY with pane’s height/2, as given in lines 16–17 Listing 14.5.

LISTING 14.5 ShowCircleCentered.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.paint.Color;
 5 import javafx.scene.shape.Circle;
 6 import javafx.stage.Stage;
 7
 8 public class ShowCircleCentered extends Application {
 9 @Override // Override the start method in the Application class
10 public void start(Stage primaryStage) {

Point
Check

Point
Key

target object
source object
binding object

binding property
bindable object
observable object

VideoNote

Understand property binding

FIGURE 14.6 The Java coordinate system is measured in pixels, with (0, 0) at its
 upper-left corner.

(0, 0) X axis

Y axis

(x, y)

x

y

Java Coordinate
System

X axis
Conventional
Coordinate
System

(0, 0)

Y axis

(a) (b)

M14_LIAN9966_12_SE_C14.indd 548 16/09/19 8:13 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

14.5 Property Binding 549

11 // Create a pane to hold the circle
12 Pane pane = new Pane();
13
14 // Create a circle and set its properties
15 Circle circle = new Circle();
16 circle.centerXProperty().bind(pane.widthProperty().divide(2));
17 circle.centerYProperty().bind(pane.heightProperty().divide(2));
18 circle.setRadius(50);
19 circle.setStroke(Color.BLACK);
20 circle.setFill(Color.WHITE);
21 pane.getChildren().add(circle); // Add circle to the pane
22
23 // Create a scene and place it in the stage
24 Scene scene = new Scene(pane, 200, 200);
25 primaryStage.setTitle("ShowCircleCentered"); // Set the stage title
26 primaryStage.setScene(scene); // Place the scene in the stage
27 primaryStage.show(); // Display the stage
28 }
29 }

The Circle class has the centerX property for representing the x-coordinate of the
circle center. This property like many properties in JavaFX classes can be used both as
target and source in a property binding. A binding property is an object that can be bound
to a source object. A target listens to the changes in the source and automatically updates
itself once a change is made in the source. A target binds with a source using the bind
method as follows:

target.bind(source);

The bind method is defined in the javafx.beans.property.Property interface. A
binding property is an instance of javafx.beans.property.Property. An observable
source object is an instance of the javafx.beans.value. ObservableValue interface.
An ObservableValue is an entity that wraps a value and allows to observe the value for
changes.

A binding property is an object. JavaFX defines binding properties for primitive types and
strings. For a double/float/long/int/boolean value, its binding property type is Dou-
bleProperty/FloatProperty/LongProperty/IntegerProperty/BooleanProperty,
respectively. For a string, its binding property type is StringProperty. These properties are
also subtypes of ObservableValue. Therefore, they can be used as both source and target in
a binding.

By convention, each binding property (e.g., centerX) in a JavaFX class (e.g., Circle) has
a getter (e.g., getCenterX()) and setter (e.g., setCenterX(double)) method for returning
and setting the property’s value. It also has a getter method for returning the property itself.
The naming convention for this method is the property name followed by the word Property.
For example, the property getter method for centerX is centerXProperty(). We call the
getCenterX() method as the value getter method, the setCenterX(double) method as
the value setter method, and centerXProperty() as the property getter method. Note
 getCenterX() returns a double value, and centerXProperty() returns an object of the
DoubleProperty type. Figure 14.7a shows the convention for defining a binding property in
a class, and Figure 14.7b shows a concrete example in which centerX is a binding property
of the type DoubleProperty.

The program in Listing 14.5 is the same as in Listing 14.4 except that it binds circle’s
centerX and centerY properties to half of pane’s width and height (lines 16 and 17). Note
circle.centerXProperty() returns centerX and pane.widthProperty() returns

main method omitted

display stage

add pane to scene

add circle to pane

bind properties
create a circle

create a pane

the Property interface

the ObservableValue
interface

common binding properties

common ObservableValue
objects

value getter method
value setter method

property getter method

M14_LIAN9966_12_SE_C14.indd 549 16/09/19 8:13 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

550 Chapter 14 JavaFX Basics

width. Both centerX and width are binding properties of the DoubleProperty type. The
numeric binding property classes such as DoubleProperty and IntegerProperty contain
the add, subtract, multiply, and divide methods for adding, subtracting, multiplying,
and dividing a value in a binding property and returning a new observable property. Therefore,
pane.widthProperty().divide(2) returns a new observable property that represents half
of the pane’s width. The statement

circle.centerXProperty().bind(pane.widthProperty().divide(2));

is the same as

DoubleProperty centerX = circle.centerXProperty();
DoubleProperty width = pane.widthProperty();
centerX.bind(width.divide(2));

Since centerX is bound to width.divide(2), when pane’s width is changed, centerX
automatically updates itself to match pane’s width / 2.

Listing 14.6 gives another example that demonstrates bindings.

LISTING 14.6 BindingDemo.java
 1 import javafx.beans.property.DoubleProperty;
 2 import javafx.beans.property.SimpleDoubleProperty;
 3
 4 public class BindingDemo {
 5 public static void main(String[] args) {
 6 DoubleProperty d1 = new SimpleDoubleProperty(1);

 7 DoubleProperty d2 = new SimpleDoubleProperty(2);
 8 d1.bind(d2);
 9 System.out.println("d1 is " + d1.getValue()
10 + " and d2 is " + d2.getValue());
11 d2.setValue(70.2);
12 System.out.println("d1 is " + d1.getValue()
13 + " and d2 is " + d2.getValue());
14 }
15 }

bind property

create a DoubleProperty

create a DoubleProperty

set a new source value

d1 is 2.0 and d2 is 2.0

d1 is 70.2 and d2 is 70.2

FIGURE 14.7 A binding property has a value getter method, setter method, and property getter method.

public class SomeClassName {
private PropertyType x;

/** Value getter method */
public propertyValueType getX() { ... }

/** Value setter method */
public void setX(propertyValueType value) { ... }

/** Property getter method */
public PropertyType xProperty() { ... }

}

public class Circle {
private DoubleProperty centerX;

/** Value getter method */
public double getCenterX() { ... }

/** Value setter method */
public void setCenterX(double value) { ... }

/** Property getter method */
public DoubleProperty centerXProperty() { ... }

}

(a) x is a binding property (b) centerX is binding property in the Circle class

M14_LIAN9966_12_SE_C14.indd 550 16/09/19 8:13 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

14.6 Common Properties and Methods for Nodes 551

The program creates an instance of DoubleProperty using SimpleDoubleProperty(1)
(line 6). Note that DoubleProperty , FloatProperty , LongProperty ,
 IntegerProperty, and BooleanProperty are abstract classes. Their concrete sub-
classes SimpleDoubleProperty, SimpleFloatProperty, SimpleLongProperty,
 SimpleIntegerProperty, and SimpleBooleanProperty are used to create instances of
these properties. These classes are very much like wrapper classes Double, Float, Long,
Integer, and Boolean with additional features for property binding.

The program binds d1 with d2 (line 8). Now the values in d1 and d2 are the same. After
setting d2 to 70.2 (line 11), d1 also becomes 70.2 (line 13).

The binding demonstrated in this example is known as unidirectional binding. Occasionally,
it is useful to synchronize two properties so a change in one property is reflected in another
object, and vice versa. This is called a bidirectional binding. If the target and source are both
binding properties and observable properties, they can be bound bidirectionally using the
bindBidirectional method.

 14.5.1 What is a binding property? What interface defines a binding property? What inter-
face defines a source object? What are the binding object types for int, long,
float, double, and boolean? Are Integer and Double binding properties? Can
Integer and Double be used as source objects in a binding?

 14.5.2 Following the JavaFX binding property naming convention, for a binding property
named age of the IntegerProperty type, what is its value getter method, value
setter method, and property getter method?

 14.5.3 Can you create an object of IntegerProperty using new IntegerProperty(3)?
If not, what is the correct way to create it? What will be the output if line 8 is replaced
by d1.bind(d2.multiply(2)) in Listing 14.6? What will be the output if line 8
is replaced by d1.bind(d2.add(2)) in Listing 14.6?

 14.5.4 What is unidirectional binding and what is bidirectional binding? Are all binding
properties capable of bidirectional binding? Write a statement to bind property d1
with property d2 bidirectionally.

14.6 Common Properties and Methods for Nodes
The Node class defines many properties and methods that are common to all nodes.

Nodes share many common properties. This section introduces two such properties: style
and rotate.

JavaFX style properties are similar to cascading style sheets (CSS) used to specify the styles
for HTML elements in a Web page. Therefore, the style properties in JavaFX are called JavaFX
CSS. In JavaFX, a style property is defined with a prefix –fx–. Each node has its own style
properties. You can find these properties at docs.oracle.com/javafx/2/api/javafx/scene/doc-files/
cssref.html. For information on HTML and CSS, see Supplements V.A and V.B. If you are not
familiar with HTML and CSS, you can still use JavaFX CSS.

The syntax for setting a style is styleName:value. Multiple style properties for a node
can be set together separated by semicolon (;). For example, the following statement:

circle.setStyle("−fx−stroke: black; −fx−fill: red;");

sets two JavaFX CSS properties for a circle. This statement is equivalent to the following two
statements:

circle.setStroke(Color.BLACK);
circle.setFill(Color.RED);

If an incorrect JavaFX CSS is used, your program will still compile and run, but the style
will be ignored.

unidirectional binding

bidirectional binding

Point
Check

Point
Key

JavaFX CSS

setStyle

M14_LIAN9966_12_SE_C14.indd 551 16/09/19 8:13 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

552 Chapter 14 JavaFX Basics

The rotate property enables you to specify an angle in degrees for rotating a node from its
center. If the degree is positive, the rotation is performed clockwise; otherwise, it is performed
counterclockwise. For example, the following code rotates a button 80 degrees:

button.setRotate(80);

Listing 14.7 gives an example that creates a button, sets its style, and adds it to a pane. It
then rotates the pane 45 degrees and sets its style with border color red and background color
light gray, as shown in Figure 14.8.

LISTING 14.7 NodeStyleRotateDemo.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.control.Button;
 4 import javafx.stage.Stage;
 5 import javafx.scene.layout.StackPane;
 6
 7 public class NodeStyleRotateDemo extends Application {
 8 @Override // Override the start method in the Application class
 9 public void start(Stage primaryStage) {
10 // Create a scene and place a button in the scene
11 StackPane pane = new StackPane();
12 Button btOK = new Button("OK");
13 btOK.setStyle("-fx-border-color: blue;");
14 pane.getChildren().add(btOK);
15
16 pane.setRotate(45);
17 pane.setStyle(
18 "−fx−border−color: red; −fx−background−color: lightgray;");
19
20 Scene scene = new Scene(pane, 200, 250);
21 primaryStage.setTitle("NodeStyleRotateDemo"); // Set the stage title
22 primaryStage.setScene(scene); // Place the scene in the stage
23 primaryStage.show(); // Display the stage
24 }
25 }main method omitted

rotate the pane
set style for pane

FIGURE 14.8 A pane’s style is set and the pane is rotated 45 degrees.

As seen in Figure 14.8, rotating a pane causes all its containing nodes rotated as well.
The Node class contains many useful methods that can be applied to all nodes. For example,

you can use the contains(double x, double y) method to test whether a point (x, y) is
inside the boundary of a node and use the setScaleX(double scale) and
 setScaleY(double scale) methods to scale a node.

 14.6.1 How do you set a style of a node with border color red? Modify the code to set the
text color for the button to red.

 14.6.2 Can you rotate a pane, a text, or a button? Modify the code to rotate the button 15
degrees counterclockwise? How do you test if a point is inside a node? How do you
scale up or down a node?

contains method
setScaleX method

setScaleY method

Point
Check

M14_LIAN9966_12_SE_C14.indd 552 16/09/19 8:13 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

14.7 The Color Class 553

A color instance can be constructed using the following constructor:

public Color(double r, double g, double b, double opacity);

in which r, g, and b specify a color by its red, green, and blue components with values in the
range from 0.0 (darkest shade) to 1.0 (lightest shade). The opacity value defines the trans-
parency of a color within the range from 0.0 (completely transparent) to 1.0 (completely
opaque). This is known as the RGBA model, where RGBA stands for red, green, blue, and
alpha. The alpha value indicates the opacity. For example,

Color color = new Color(0.25, 0.14, 0.333, 0.51);

For an interactive demo, see liveexample.pearsoncmg.com/dsanimation/FigureSection14_7
.html.

The Color class is immutable. Once a Color object is created, its properties cannot be
changed. The brighter() method returns a new Color with a larger red, green, and blue
values, and the darker() method returns a new Color with a smaller red, green, and blue
values. The opacity value is the same as in the original Color object.

You can also create a Color object using the static methods color(r, g, b), color(r,
g, b, opacity), rgb(r, g, b), and rgb(r, g, b, opacity).

Alternatively, you can use one of the many standard colors such as BEIGE, BLACK, BLUE,
BROWN, CYAN, DARKGRAY, GOLD, GRAY, GREEN, LIGHTGRAY, MAGENTA, NAVY, ORANGE, PINK,
RED, SILVER, WHITE, and YELLOW defined as constants in the Color class. The following
code, for instance, sets the fill color of a circle to red:

circle.setFill(Color.RED);

RBGA model

14.7 The Color Class
The Color class can be used to create colors.

JavaFX defines the abstract Paint class for painting a node. The javafx.scene.paint.Color
is a concrete subclass of Paint, which is used to encapsulate colors, as shown in Figure 14.9. Point

Key

FIGURE 14.9 Color encapsulates information about colors.

javafx.scene.paint.Color

–red: double

–green: double

–blue: double

–opacity: double

+Color(r: double, g: double, b:
 double, opacity: double)

+brighter(): Color

+darker(): Color

+color(r: double, g: double, b:
 double): Color

+color(r: double, g: double, b:
 double, opacity: double): Color

+rgb(r: int, g: int, b: int):
 Color

+rgb(r: int, g: int, b: int,
 opacity: double): Color

The red value of this color (between 0.0 and 1.0).

The green value of this color (between 0.0 and 1.0).

The blue value of this color (between 0.0 and 1.0).

The opacity of this color (between 0.0 and 1.0).

Creates a Color with the specified red, green, blue, and opacity values.

Creates a Color that is a brighter version of this Color.

Creates a Color that is a darker version of this Color.

Creates an opaque Color with the specified red, green, and blue values.

Creates a Color with the specified red, green, blue, and opacity values.

Creates a Color with the specified red, green, and blue values in the
 range from 0 to 255.

Creates a Color with the specified red, green, and blue values in the
 range from 0 to 255 and a given opacity.

The getter methods for property
values are provided in the class, but
omitted in the UML diagram for brevity.

M14_LIAN9966_12_SE_C14.indd 553 16/09/19 8:13 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

554 Chapter 14 JavaFX Basics

 14.7.1 How do you create a color? What is wrong about creating a Color using new
Color(1.2, 2.3, 3.5, 4)? Which of two colors is darker, new Color(0, 0,
0, 1) or new Color(1, 1, 1, 1)? Does invoking c.darker() change the
color value in c?

 14.7.2 How do you create a Color object with a random color?

 14.7.3 How do you set a circle object c with blue fill color using the setFill method and
the setStyle method?

14.8 The Font Class
A Font describes font name, weight, and size.

You can set fonts for rendering the text. The javafx.scene.text.Font class is used to
create fonts, as shown in Figure 14.10.

A Font instance can be constructed using its constructors or using its static methods. A
Font is defined by its name, weight, posture, and size. Times New Roman, Courier, and Arial
are examples of font names. You can obtain a list of available font family names by invoking
the static getFontNames() method. This method returns List<String>. List is an inter-
face that defines common methods for lists. ArrayList, introduced in Section 11.11, is a
concrete class that implements List. There are two font postures defined as constants in the
FontPosture class: FontPosture.ITALIC and FontPosture.REGULAR.

Font font1 = new Font("SansSerif", 16);
Font font2 = Font.font("Times New Roman", FontWeight.BOLD,
 FontPosture.ITALIC, 12);

Listing 14.8 gives a program that displays a label using the font (Times New Roman, bold,
italic, and size 20), as shown in Figure 14.11.

Point
Check

Point
Key

FIGURE 14.10 Font encapsulates information about fonts.

javafx.scene.text.Font

–size: double

–name: String

–family: String

+Font(size: double)

+Font(name: String, size:
 double)

+font(name: String, size:
 double)

+font(name: String, w:
 FontWeight, size: double)

+font(name: String, w: FontWeight,
 p: FontPosture, size: double)

+getFontNames(): List<String>

The size of this font.

The name of this font.

The family of this font.

Creates a Font with the specified size.

Creates a Font with the specified full font name and size.

Creates a Font with the specified name and size.

Creates a Font with the specified name, weight, and size.

Creates a Font with the specified name, weight, posture, and size.

Returns a list of all font names installed on the user system.

The getter methods for property
values are provided in the class, but
omitted in the UML diagram for brevity.

LISTING 14.8 FontDemo.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.*;
 4 import javafx.scene.paint.Color;

M14_LIAN9966_12_SE_C14.indd 554 16/09/19 8:13 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

14.8 The Font Class 555

 5 import javafx.scene.shape.Circle;
 6 import javafx.scene.text.*;
 7 import javafx.scene.control.*;
 8 import javafx.stage.Stage;
 9
10 public class FontDemo extends Application {
11 @Override // Override the start method in the Application class
12 public void start(Stage primaryStage) {
13 // Create a pane to hold the circle
14 Pane pane = new StackPane();
15
16 // Create a circle and set its properties
17 Circle circle = new Circle();
18 circle.setRadius(50);
19 circle.setStroke(Color.BLACK);
20 circle.setFill(new Color(0.5, 0.5, 0.5, 0.1));
21 pane.getChildren().add(circle); // Add circle to the pane
22
23 // Create a label and set its properties
24 Label label = new Label("JavaFX");
25 label.setFont(Font.font("Times New Roman",
26 FontWeight.BOLD, FontPosture.ITALIC, 20));
27 pane.getChildren().add(label);
28
29 // Create a scene and place it in the stage
30 Scene scene = new Scene(pane);
31 primaryStage.setTitle("FontDemo"); // Set the stage title
32 primaryStage.setScene(scene); // Place the scene in the stage
33 primaryStage.show(); // Display the stage
34 }
35 } main method omitted

FIGURE 14.11 A label is on top of a circle displayed in the center of the scene.

The program creates a StackPane (line 14) and adds a circle and a label to it (lines 21 and
27). These two statements can be combined using the following one statement:

pane.getChildren().addAll(circle, label);

A StackPane places the nodes in the center and nodes are placed on top of each other. A
custom color is created and set as a fill color for the circle (line 20). The program creates a
label and sets a font (line 25) so that the text in the label is displayed in Times New Roman,
bold, italic, and 20 pixels.

As you resize the window, the circle and label are displayed in the center of the window
because the circle and label are placed in the stack pane. Stack pane automatically places nodes
in the center of the pane.

A Font object is immutable. Once a Font object is created, its properties cannot be changed.

 14.8.1 How do you create a Font object with font name Courier, size 20, and weight bold?

 14.8.2 How do you find all available fonts on your system? Point
Check

create a StackPane

create a Circle

create a Color
add circle to the pane

create a label
create a font

add label to the pane

M14_LIAN9966_12_SE_C14.indd 555 16/09/19 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

556 Chapter 14 JavaFX Basics

14.9 The Image and ImageView Classes
The Image class represents a graphical image, and the ImageView class can be used
to display an image.

The javafx.scene.image.Image class represents a graphical image and is used for loading
an image from a specified filename or a URL. For example, new Image("image/us.gif")
creates an Image object for the image file us.gif under the directory image in the Java
class directory and new Image("http://liveexample.pearsoncmg.com/book/image/
us.gif") creates an Image object for the image file in the URL on the Web.

The javafx.scene.image.ImageView is a node for displaying an image. An ImageView
can be created from an Image object. For example, the following code creates an ImageView
from an image file:

Image image = new Image("image/us.gif");
ImageView imageView = new ImageView(image);

Alternatively, you can create an ImageView directly from a file or a URL as follows:

ImageView imageView = new ImageView("image/us.gif");

The UML diagrams for the Image class and ImageView classes are illustrated in Figures 14.12
and 14.13.

Point
Key

VideoNote

Use Image and ImageView

FIGURE 14.12 Image encapsulates information about images.

–error: ReadOnlyBooleanProperty

–height: ReadOnlyDoubleProperty

–width: ReadOnlyDoubleProperty

–progress: ReadOnlyDoubleProperty

javafx.scene.image.Image

Indicates whether the image is loaded correctly?

The height of the image.

The width of the image.

The approximate percentage of image’s loading that is completed.

+Image(filenameOrURL: String)

The getter methods for property
values are provided in the class, but
omitted in the UML diagram for brevity.

Creates an Image with contents loaded from a file or a URL.

FIGURE 14.13 ImageView is a node for displaying an image.

–f itHeight: DoubleProperty

–f itWidth: DoubleProperty

–x: DoubleProperty

–y: DoubleProperty

–image: ObjectProperty<Image>

javafx.scene.image.ImageView

The height of the bounding box within which the image is resized to fit.

The width of the bounding box within which the image is resized to fit.

The x-coordinate of the ImageView origin.

The y-coordinate of the ImageView origin.

The image to be displayed in the image view.

+ImageView()

+ImageView(image: Image)

+ImageView(filenameOrURL: String)

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

Creates an ImageView.

Creates an ImageView with the specified image.

Creates an ImageView with image loaded from the specified file or URL.

M14_LIAN9966_12_SE_C14.indd 556 16/09/19 8:13 PM

STUDENTS-HUB.com

mnawahdah
Highlight

BelalHamdeh
Highlight

https://students-hub.com

14.9 The Image and ImageView Classes 557

Listing 14.9 displays an image in three image views, as shown in Figure 14.14.

LISTING 14.9 ShowImage.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.HBox;
 4 import javafx.scene.layout.Pane;
 5 import javafx.geometry.Insets;
 6 import javafx.stage.Stage;
 7 import javafx.scene.image.Image;
 8 import javafx.scene.image.ImageView;
 9
10 public class ShowImage extends Application {
11 @Override // Override the start method in the Application class
12 public void start(Stage primaryStage) {
13 // Create a pane to hold the image views
14 Pane pane = new HBox(10);
15 pane.setPadding(new Insets(5, 5, 5, 5));
16 Image image = new Image("image/us.gif");
17 pane.getChildren().add(new ImageView(image));
18
19 ImageView imageView2 = new ImageView(image);
20 imageView2.setFitHeight(100);
21 imageView2.setFitWidth(100);
22 pane.getChildren().add(imageView2);
23
24 ImageView imageView3 = new ImageView(image);
25 imageView3.setRotate(90);
26 pane.getChildren().add(imageView3);
27
28 // Create a scene and place it in the stage
29 Scene scene = new Scene(pane);
30 primaryStage.setTitle("ShowImage"); // Set the stage title
31 primaryStage.setScene(scene); // Place the scene in the stage
32 primaryStage.show(); // Display the stage
33 }
34 } main method omitted

FIGURE 14.14 An image is displayed in three image views placed in a pane. Source: booka/Fotolia.

The program creates an HBox (line 14). An HBox is a pane that places all nodes horizontally
in one row. The program creates an Image, then an ImageView for displaying the image, and
places the ImageView in the HBox (line 17).

The program creates the second ImageView (line 19), sets its fitHeight and fitWidth
properties (lines 20 and 21), and places the ImageView into the HBox (line 22). The program
creates the third ImageView (line 24), rotates it 90 degrees (line 25), and places it into the
HBox (line 26). The setRotate method is defined in the Node class and can be used for any
node. Note an Image object can be shared by multiple nodes. In this case, it is shared by three
ImageView. However, a node such as ImageView cannot be shared. You cannot place an
ImageView multiple times into a pane or scene.

add an image to pane
rotate an image view
create an image view

add an image to pane

set image view properties
create an image view

add an image view to pane

create an image

create an HBox

M14_LIAN9966_12_SE_C14.indd 557 16/09/19 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

558 Chapter 14 JavaFX Basics

Note you must place the image file in the same directory as the class file, as shown in the
following figure.

Directory

ShowImage.class

image

us.gif

If you use the URL to locate the image file, the URL protocol http:// must be present.
Therefore, the following code is wrong:

new Image("liveexample.pearsoncmg.com/book/image/us.gif");

It must be replaced by

new Image("http://liveexample.pearsoncmg.com/book/image/us.gif");

 14.9.1 How do you create an Image from a URL or a filename?

 14.9.2 How do you create an ImageView from an Image or directly from a file or a URL?

 14.9.3 Can you set an Image to multiple ImageViews? Can you display the same
 ImageView multiple times?

14.10 Layout Panes and Groups
JavaFX provides many types of panes for automatically laying out nodes in a desired
location and size.

Panes and groups are the containers for holding nodes. The Group class is often used to group
nodes and to perform transformation and scale as a group. Panes and UI control objects are
resizable, but group, shape, and text objects are not resizable. JavaFX provides many types of
panes for organizing nodes in a container, as shown in Table 14.1. You have used the layout
panes Pane, StackPane, and HBox in the preceding sections for containing nodes. This sec-
tion introduces the panes in more details.

Point
Check

Point
Key

VideoNote

Use layout panes

Class Description

Pane Base class for layout panes. It contains the getChildren() method for
returning a list of nodes in the pane.

StackPane Places the nodes on top of each other in the center of the pane.

FlowPane Places the nodes row-by-row horizontally or column-by-column vertically.

GridPane Places the nodes in the cells in a two-dimensional grid.

BorderPane Places the nodes in the top, right, bottom, left, and center regions.

HBox Places the nodes in a single row.

VBox Places the nodes in a single column.

TABLE 14.1 Panes for Containing and Organizing Nodes

M14_LIAN9966_12_SE_C14.indd 558 16/09/19 8:13 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

BelalHamdeh
Highlight

https://students-hub.com

14.10 Layout Panes and Groups 559

You have used the Pane in Listing 14.4, ShowCircle.java. A Pane is usually used as a
canvas for displaying shapes. Pane is the base class for all specialized panes. You have used
a specialized pane StackPane in Listing 14.3, ButtonInPane.java. Nodes are placed in the
center of a StackPane. Each pane contains a list for holding nodes in the pane. This list is an
instance of ObservableList, which can be obtained using pane’s getChildren() method.
You can use add(node) to add an element to the list and addAll(node1, node2, ...)
to add a variable number of nodes.

14.10.1 FlowPane
FlowPane arranges the nodes in the pane horizontally from left to right, or vertically from
top to bottom, in the order in which they were added. When one row or one column is filled,
a new row or column is started. You can specify the way the nodes are placed horizontally
or vertically using one of two constants: Orientation.HORIZONTAL or Orientation.
VERTICAL. You can also specify the gap between the nodes in pixels. The class diagram for
FlowPane is shown in Figure 14.15.

Data fields alignment, orientation, hgap, and vgap are binding properties. Recall
that each binding property in JavaFX has a getter method (e.g., getHgap()) that returns its
value, a setter method (e.g., setHGap(double)) for setting a value, and a getter method that
returns the property itself (e.g., hgapProperty()). For a data field of ObjectProperty<T>
type, the value getter method returns a value of type T, and the property getter method returns
a property value of type ObjectProperty<T>.

FIGURE 14.15 FlowPane lays out nodes row-by-row horizontally or column-by-column vertically.

–alignment: ObjectProperty<Pos>

–orientation:
 ObjectProperty<Orientation>

–hgap: DoubleProperty

–vgap: DoubleProperty

javafx.scene.layout.FlowPane

The overall alignment of the content in this pane (default: Pos.LEFT).

The orientation in this pane (default: Orientation.HORIZONTAL).

The horizontal gap between the nodes (default: 0).

The vertical gap between the nodes (default: 0).

+FlowPane()

+FlowPane(hgap: double, vgap:
 double)

+FlowPane(orientation:
 ObjectProperty<Orientation>)

+FlowPane(orientation:
 ObjectProperty<Orientation>,
 hgap: double, vgap: double)

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

Creates a default FlowPane.

Creates a FlowPane with a specified horizontal and vertical gap.

Creates a FlowPane with a specified orientation.

Creates a FlowPane with a specified orientation, horizontal gap and
 vertical gap.

Listing 14.10 gives a program that demonstrates FlowPane. The program adds labels and
text fields to a FlowPane, as shown in Figure 14.16.

LISTING 14.10 ShowFlowPane.java
 1 import javafx.application.Application;
 2 import javafx.geometry.Insets;
 3 import javafx.scene.Scene;
 4 import javafx.scene.control.Label;
 5 import javafx.scene.control.TextField;
 6 import javafx.scene.layout.FlowPane;
 7 import javafx.stage.Stage;

ObservableList

getChildren()

M14_LIAN9966_12_SE_C14.indd 559 16/09/19 8:13 PM

STUDENTS-HUB.com

BelalHamdeh
Highlight
محاذاة

BelalHamdeh
Highlight
اتجاه

mnawahdah
Highlight

https://students-hub.com

560 Chapter 14 JavaFX Basics

 8
 9 public class ShowFlowPane extends Application {
10 @Override // Override the start method in the Application class
11 public void start(Stage primaryStage) {
12 // Create a pane and set its properties
13 FlowPane pane = new FlowPane();
14 pane.setPadding(new Insets(11, 12, 13, 14));
15 pane.setHgap(5);
16 pane.setVgap(5);
17
18 // Place nodes in the pane
19 pane.getChildren().addAll(new Label("First Name:"),
20 new TextField(), new Label("MI:"));
21 TextField tfMi = new TextField();
22 tfMi.setPrefColumnCount(1);
23 pane.getChildren().addAll(tfMi, new Label("Last Name:"),
24 new TextField());
25
26 // Create a scene and place it in the stage
27 Scene scene = new Scene(pane, 200, 250);
28 primaryStage.setTitle("ShowFlowPane"); // Set the stage title
29 primaryStage.setScene(scene); // Place the scene in the stage
30 primaryStage.show(); // Display the stage
31 }
32 }main method omitted

extend Application

create FlowPane

add UI controls to pane

add pane to scene

place scene to stage
display stage

FIGURE 14.16 The nodes fill in the rows in the FlowPane one after another.

(a) (b)

FIGURE 14.17 You can specify hGap and vGap between the nodes in a FlowLPane.

Insets: top, right, bottom, left

Pane

Right side Right side

Bottom side

Top side

Left side

vGap

hGap

Pane

Bottom side

Top side

Left side

The program creates a FlowPane (line 13) and sets its padding property with an Insets
object (line 14). An Insets object specifies the size of the border of a pane. The constructor
Insets(11, 12, 13, 14) creates an Insets with the border sizes for top (11), right (12),
bottom (13), and left (14) in pixels, as shown in Figure 14.17. You can also use the construc-
tor Insets(value) to create an Insets with the same value for all four sides. The hGap
and vGap properties are in lines 15 and 16 to specify the horizontal gap and vertical gap,
 respectively, between two nodes in the pane, as shown in Figure 14.17.

M14_LIAN9966_12_SE_C14.indd 560 16/09/19 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

14.10 Layout Panes and Groups 561

Each FlowPane contains an object of ObservableList for holding the nodes. This list can
be obtained using the getChildren() method (line 19). To add a node into a FlowPane is to
add it to this list using the add(node) or addAll(node1, node2, ...) method. You can
also remove a node from the list using the remove(node) method, or use the removeAll()
method to remove all nodes from the pane. The program adds the labels and text fields into
the pane (lines 19–24). Invoking tfMi.setPrefColumnCount(1)sets the preferred column
count to 1 for the MI text field (line 22). The program declares an explicit reference tfMi for
a TextField object for MI. The explicit reference is necessary because we need to reference
the object directly to set its prefColumnCount property.

The program adds the pane to the scene (line 27), sets the scene in the stage (line 29), and
displays the stage (line 30). Note if you resize the window, the nodes are automatically rear-
ranged to fit in the pane. In Figure 14.16a, the first row has three nodes, but in Figure 14.16b,
the first row has four nodes because the width has been increased.

Suppose you wish to add the object tfMi to a pane 10 times; will 10 text fields appear in
the pane? No, a node such as a text field can be added to only one pane and once. Adding a
node to a pane multiple times or to different panes will cause a runtime error.

14.10.2 GridPane
A GridPane arranges nodes in a grid (matrix) formation. The nodes are placed in the specified
column and row indices. The class diagram for GridPane is shown in Figure 14.18.

FIGURE 14.18 GridPane lays out nodes in the specified cell in a grid.

–alignment: ObjectProperty<Pos>

–gridLinesVisible:
 BooleanProperty

–hgap: DoubleProperty

–vgap: DoubleProperty

javafx.scene.layout.GridPane

The overall alignment of the content in this pane (default: Pos.LEFT).

Is the grid line visible? (default: false)

The horizontal gap between the nodes (default: 0).

The vertical gap between the nodes (default: 0).

Creates a GridPane.

Adds a node to the specified column and row.

Adds multiple nodes to the specified column.

Adds multiple nodes to the specified row.

Returns the column index for the specified node.

Sets a node to a new column. This method repositions the node.

Returns the row index for the specified node.

Sets a node to a new row. This method repositions the node.

Sets the horizontal alignment for the child in the cell.

Sets the vertical alignment for the child in the cell.

+GridPane()

+add(child: Node, columnIndex:
 int, rowIndex: int): void

+addColumn(columnIndex: int,
 children: Node...): void

+addRow(rowIndex: int,
 children: Node...): void

+getColumnIndex(child: Node):
 int

+setColumnIndex(child: Node,
 columnIndex: int): void

+getRowIndex(child:Node): int

+setRowIndex(child: Node,
 rowIndex: int): void

+setHalighnment(child: Node,
 value: HPos): void

+setValighnment(child: Node,
 value: VPos): void

The getter and setter methods for property values
and a getter for property itself are provided in the class,
but omitted in the UML diagram for brevity.

Listing 14.11 gives a program that demonstrates GridPane. The program is similar to the
one in Listing 14.10, except that it adds three labels and three text fields, and a button to the
specified location in a grid, as shown in Figure 14.19.

M14_LIAN9966_12_SE_C14.indd 561 16/09/19 8:13 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

562 Chapter 14 JavaFX Basics

LISTING 14.11 ShowGridPane.java
 1 import javafx.application.Application;
 2 import javafx.geometry.HPos;
 3 import javafx.geometry.Insets;
 4 import javafx.geometry.Pos;
 5 import javafx.scene.Scene;
 6 import javafx.scene.control.Button;
 7 import javafx.scene.control.Label;
 8 import javafx.scene.control.TextField;
 9 import javafx.scene.layout.GridPane;
10 import javafx.stage.Stage;
11
12 public class ShowGridPane extends Application {
13 @Override // Override the start method in the Application class
14 public void start(Stage primaryStage) {
15 // Create a pane and set its properties
16 GridPane pane = new GridPane();
17 pane.setAlignment(Pos.CENTER);
18 pane.setPadding(new Insets(11.5, 12.5, 13.5, 14.5));
19 pane.setHgap(5.5);
20 pane.setVgap(5.5);
21
22 // Place nodes in the pane
23 pane.add(new Label("First Name:"), 0, 0);
24 pane.add(new TextField(), 1, 0);
25 pane.add(new Label("MI:"), 0, 1);
26 pane.add(new TextField(), 1, 1);
27 pane.add(new Label("Last Name:"), 0, 2);
28 pane.add(new TextField(), 1, 2);
29 Button btAdd = new Button("Add Name");
30 pane.add(btAdd, 1, 3);
31 GridPane.setHalignment(btAdd, HPos.RIGHT);
32
33 // Create a scene and place it in the stage
34 Scene scene = new Scene(pane);
35 primaryStage.setTitle("ShowGridPane"); // Set the stage title
36 primaryStage.setScene(scene); // Place the scene in the stage
37 primaryStage.show(); // Display the stage
38 }
39 }

The program creates a GridPane (line 16) and sets its properties (line 17–20). The
 alignment is set to the center position (line 17), which causes the nodes to be placed in the
center of the grid pane. If you resize the window, you will see the nodes remained in the center
of the grid pane.

main method omitted

create a grid pane

set properties

add label
add text field

add button

align button right

create a scene

display stage

FIGURE 14.19 The GridPane places the nodes in a grid with a specified column and row
indices.

M14_LIAN9966_12_SE_C14.indd 562 16/09/19 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

14.10 Layout Panes and Groups 563

The program adds the label in column 0 and row 0 (line 23). The column and row
index starts from 0. The add method places a node in the specified column and row. Not every
cell in the grid needs to be filled. A button is placed in column 1 and row 3 (line 30), but
there are no nodes placed in column 0 and row 3. To remove a node from a GridPane, use
pane.getChildren().remove(node). To remove all nodes, use pane.getChildren()
.removeAll().

The program invokes the static setHalignment method to align the button right in the
cell (line 31).

Note the scene size is not set (line 34). In this case, the scene size is automatically computed
according to the sizes of the nodes placed inside the scene.

By default, the grid pane will resize rows and columns to the preferred sizes of its contents,
even if the grid pane is resized larger than its preferred size. You may purposely set a large
value for the preferred width and height of its contents by invoking the setPrefWidth and
setPrefHeight methods, so the contents will be automatically stretched to fill in the grid
pane when the grid pane is enlarged (see Programming Exercise 14.8).

14.10.3 BorderPane
A BorderPane can place nodes in five regions: top, bottom, left, right, and center, using
the setTop(node), setBottom(node), setLeft(node), setRight(node), and
setCenter(node) methods. The class diagram for BorderPane is shown in Figure 14.20.

remove nodes

remove nodes
setPrefWidth

setPrefHeight

FIGURE 14.20 BorderPane places the nodes in top, bottom, left, right, and center regions.

–top: ObjectProperty<Node>

–right: ObjectProperty<Node>

–bottom: ObjectProperty<Node>

–left: ObjectProperty<Node>

–center: ObjectProperty<Node>

javafx.scene.layout.BorderPane

The node placed in the top region (default: null).

The node placed in the right region (default: null).

The node placed in the bottom region (default: null).

The node placed in the left region (default: null).

The node placed in the center region (default: null).

Creates a BorderPane.

Creates a BorderPane with the node placed in the

 center of the plane.

Sets the alignment of the node in the BorderPane.

+BorderPane()

+BorderPane(node: Node)

+setAlignment(child: Node, pos:
 Pos)

The getter and setter methods for property values
and a getter for property itself are provided in the class,
but omitted in the UML diagram for brevity.

Listing 14.12 gives a program that demonstrates BorderPane. The program places five
buttons in the five regions of the pane, as shown in Figure 14.21.

LISTING 14.12 ShowBorderPane.java
 1 import javafx.application.Application;
 2 import javafx.geometry.Insets;
 3 import javafx.scene.Scene;
 4 import javafx.scene.control.Label;
 5 import javafx.scene.layout.BorderPane;
 6 import javafx.scene.layout.StackPane;
 7 import javafx.stage.Stage;
 8
 9 public class ShowBorderPane extends Application {
10 @Override // Override the start method in the Application class

M14_LIAN9966_12_SE_C14.indd 563 16/09/19 8:13 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

564 Chapter 14 JavaFX Basics

11 public void start(Stage primaryStage) {
12 // Create a border pane
13 BorderPane pane = new BorderPane();
14
15 // Place nodes in the pane
16 pane.setTop(new CustomPane("Top"));
17 pane.setRight(new CustomPane("Right"));
18 pane.setBottom(new CustomPane("Bottom"));
19 pane.setLeft(new CustomPane("Left"));
20 pane.setCenter(new CustomPane("Center"));
21
22 // Create a scene and place it in the stage
23 Scene scene = new Scene(pane);
24 primaryStage.setTitle("ShowBorderPane"); // Set the stage title
25 primaryStage.setScene(scene); // Place the scene in the stage
26 primaryStage.show(); // Display the stage
27 }
28 }
29
30 // Define a custom pane to hold a label in the center of the pane
31 class CustomPane extends StackPane {
32 public CustomPane(String title) {
33 getChildren().add(new Label(title));
34 setStyle("−fx−border−color: red");
35 setPadding(new Insets(11.5, 12.5, 13.5, 14.5));
36 }
37 }

create a border pane

main method omitted

set padding
set style
add a label to pane

define a custom pane

add to center
add to left
add to bottom

add to right
add to top

FIGURE 14.21 The BorderPane places the nodes in five regions of the pane.

 The program defines CustomPane that extends StackPane (line 31). The constructor of
CustomPane adds a label with the specified title (line 33), sets a style for the border color,
and sets a padding using insets (line 35).

The program creates a BorderPane (line 13) and places five instances of CustomPane
into five regions of the border pane (lines 16–20). Note a pane is a node. Therefore, a pane can
be added into another pane. To remove a node from the top region, invoke setTop(null).
If a region is not occupied, no space will be allocated for this region.

14.10.4 HBox and VBox
An HBox lays out its children in a single horizontal row. A VBox lays out its children in a single
vertical column. Recall that a FlowPane can lay out its children in multiple rows or multiple
columns, but an HBox or a VBox can lay out children only in one row or one column. The class
diagrams for HBox and VBox are shown in Figures 14.22 and 14.23.

M14_LIAN9966_12_SE_C14.indd 564 16/09/19 8:13 PM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

14.10 Layout Panes and Groups 565

Listing 14.13 gives a program that demonstrates HBox and VBox. The program places two
buttons and an image view in an HBox and five labels in a VBox, as shown in Figure 14.24.

LISTING 14.13 ShowHBoxVBox.java
 1 import javafx.application.Application;
 2 import javafx.geometry.Insets;
 3 import javafx.scene.Scene;
 4 import javafx.scene.control.Button;
 5 import javafx.scene.control.Label;
 6 import javafx.scene.layout.BorderPane;
 7 import javafx.scene.layout.HBox;
 8 import javafx.scene.layout.VBox;
 9 import javafx.stage.Stage;
10 import javafx.scene.image.Image;
11 import javafx.scene.image.ImageView;
12
13 public class ShowHBoxVBox extends Application {
14 @Override // Override the start method in the Application class
15 public void start(Stage primaryStage) {
16 // Create a border pane
17 BorderPane pane = new BorderPane();
18

create a border pane

FIGURE 14.22 HBox places the nodes in one row.

–alignment: ObjectProperty<Pos>

–fillHeight: BooleanProperty

–spacing: DoubleProperty

javafx.scene.layout.HBox

The overall alignment of the children in the box (default: Pos.TOP_LEFT).

Is resizable children fill the full height of the box (default: true).

The horizontal gap between two nodes (default: 0).

Creates a default HBox.

Creates an HBox with the specified horizontal gap between nodes.

Sets the margin for the node in the pane.

+HBox()

+HBox(spacing: double)

+setMargin(node: Node, value:
 Insets): void

The getter and setter methods for property values
and a getter for property itself are provided in the class,
but omitted in the UML diagram for brevity.

FIGURE 14.23 VBox places the nodes in one column.

–alignment: ObjectProperty<Pos>

–fillWidth: BooleanProperty

–spacing: DoubleProperty

javafx.scene.layout.VBox

The overall alignment of the children in the box (default: Pos.TOP_LEFT).

Is resizable children fill the full width of the box (default: true).

The vertical gap between two nodes (default: 0).

Creates a default VBox.

Creates a VBox with the specified horizontal gap between nodes.

Sets the margin for the node in the pane.

+VBox()

+VBox(spacing: double)

+setMargin(node: Node, value:
 Insets): void

The getter and setter methods for properties
values and a getter for property itself are provided in
the class, but omitted in the UML diagram for brevity.

M14_LIAN9966_12_SE_C14.indd 565 16/09/19 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

566 Chapter 14 JavaFX Basics

19 // Place nodes in the pane
20 pane.setTop(getHBox());
21 pane.setLeft(getVBox());
22
23 // Create a scene and place it in the stage
24 Scene scene = new Scene(pane);
25 primaryStage.setTitle("ShowHBoxVBox"); // Set the stage title
26 primaryStage.setScene(scene); // Place the scene in the stage
27 primaryStage.show(); // Display the stage
28 }
29
30 private HBox getHBox() {
31 HBox hBox = new HBox(15);
32 hBox.setPadding(new Insets(15, 15, 15, 15));
33 hBox.setStyle("−fx−background−color: gold");
34 hBox.getChildren().add(new Button("Computer Science"));
35 hBox.getChildren().add(new Button("Chemistry"));
36 ImageView imageView = new ImageView(new Image("image/us.gif"));
37 hBox.getChildren().add(imageView);
38 return hBox;
39 }
40
41 private VBox getVBox() {
42 VBox vBox = new VBox(15);
43 vBox.setPadding(new Insets(15, 5, 5, 5));
44 vBox.getChildren().add(new Label("Courses"));
45
46 Label[] courses = {new Label("CSCI 1301"), new Label("CSCI 1302"),
47 new Label("CSCI 2410"), new Label("CSCI 3720")};
48
49 for (Label course: courses) {
50 VBox.setMargin(course, new Insets(0, 0, 0, 15));
51 vBox.getChildren().add(course);
52 }
53
54 return vBox;
55 }
56 }main method omitted

add an HBox to top
add a VBox to left

create a scene

display stage

add buttons to HBox

return an HBox

getVBox

add a label

set margin

return vBox

getHBox

add a label

FIGURE 14.24 The HBox places the nodes in one row, and the VBox places the nodes in one
column. Source: booka/Fotolia.

The program defines the getHBox() method. This method returns an HBox that contains
two buttons and an image view (lines 30–39). The background color of the HBox is set to gold
using Java CSS (line 33). The program defines the getVBox() method. This method returns a
VBox that contains five labels (lines 41–55). The first label is added to the VBox in line 44 and

M14_LIAN9966_12_SE_C14.indd 566 16/09/19 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

14.11 Shapes 567

the other four are added in line 51. The setMargin method is used to set a node’s margin
when placed inside the VBox (line 50).

 14.10.1 How do you add a node to a Pane, StackPane, FlowPane, GridPane,
 BorderPane, HBox, and VBox? How do you remove a node from these panes?

 14.10.2 How do you set the alignment to right for nodes in a FlowPane, GridPane, HBox,
and VBox?

 14.10.3 How do you set the horizontal gap and vertical gap between nodes in 8 pixels in
a FlowPane and GridPane and set spacing in 8 pixels in an HBox and VBox?

 14.10.4 How do you get the column and row index of a node in a GridPane? How do you
reposition a node in a GridPane?

 14.10.5 What are the differences between a FlowPane and an HBox or a VBox?

14.11 Shapes
JavaFX provides many shape classes for drawing texts, lines, circles, rectangles,
 ellipses, arcs, polygons, and polylines.

The Shape class is the abstract base class that defines the common properties for all shapes.
Among them are the fill, stroke, and strokeWidth properties. The fill property
 specifies a color that fills the interior of a shape. The stroke property specifies a color that
is used to draw the outline of a shape. The strokeWidth property specifies the width of the
outline of a shape. This section introduces the classes Text, Line, Rectangle, Circle,
Ellipse, Arc, Polygon, and Polyline for drawing texts and simple shapes. All these are
subclasses of Shape, as shown in Figure 14.25.

Point
Check

Point
Key

VideoNote

Use shapes

FIGURE 14.25 A shape is a node. The Shape class is the root of all shape classes.

ShapeNode Text

Rectangle

Line

Circle

Ellipse

Arc

Polygon

Polyline

fill property
stroke property
strokeWidth property

14.11.1 Text
The Text class defines a node that displays a string at a starting point (x, y), as shown in
Figure 14.27a. A Text object is usually placed in a pane. The pane’s upper-left corner point
is (0, 0) and the bottom-right point is (pane.getWidth(), pane.getHeight()). A string
may be displayed in multiple lines separated by \n. The UML diagram for the Text class is
shown in Figure 14.26. Listing 14.14 gives an example that demonstrates text, as shown in
Figure 14.27b.

M14_LIAN9966_12_SE_C14.indd 567 16/09/19 8:13 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

568 Chapter 14 JavaFX Basics

FIGURE 14.26 Text defines a node for displaying a text.

FIGURE 14.27 A Text object is created to display a text.

(0, 0) (getWidth(), 0)

(getWidth(), getHeight())(0, getHeight())

(x, y)
text is displayed

(a) Text(x, y, text) (b) Three Text objects are displayed

–text: StringProperty

–x: DoubleProperty

–y: DoubleProperty

–underline: BooleanProperty

–strikethrough: BooleanProperty

–font: ObjectProperty

javafx.scene.text.Text

Defines the text to be displayed.

Defines the x-coordinate of text (default 0).

Defines the y-coordinate of text (default 0).

Defines if each line has an underline below it (default false).

Defines if each line has a line through it (default false).

Defines the font for the text.

Creates an empty Text.

Creates a Text with the specified text.

Creates a Text with the specified x-, y-coordinates and text.

+Text()

+Text(text: String)

+Text(x: double, y: double,
 text: String)

The getter and setter methods for property value
and a getter for property itself are provided in the class,
but omitted in the UML diagram for brevity.

LISTING 14.14 ShowText.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.paint.Color;
 5 import javafx.geometry.Insets;
 6 import javafx.stage.Stage;
 7 import javafx.scene.text.Text;
 8 import javafx.scene.text.Font;
 9 import javafx.scene.text.FontWeight;
10 import javafx.scene.text.FontPosture;
11
12 public class ShowText extends Application {
13 @Override // Override the start method in the Application class
14 public void start(Stage primaryStage) {
15 // Create a pane to hold the texts
16 Pane pane = new Pane();
17 pane.setPadding(new Insets(5, 5, 5, 5));
18 Text text1 = new Text(20, 20, "Programming is fun");

19 text1.setFont(Font.font("Courier", FontWeight.BOLD,
20 FontPosture.ITALIC, 15));
21 pane.getChildren().add(text1);

create a pane

set text font

create a Text

add text to pane

M14_LIAN9966_12_SE_C14.indd 568 16/09/19 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

14.11 Shapes 569

22
23 Text text2 = new Text(60, 60, "Programming is fun\nDisplay text");
24 pane.getChildren().add(text2);
25
26 Text text3 = new Text(10, 100, "Programming is fun\nDisplay text");
27 text3.setFill(Color.RED);
28 text3.setUnderline(true);
29 text3.setStrikethrough(true);
30 pane.getChildren().add(text3);
31
32 // Create a scene and place it in the stage
33 Scene scene = new Scene(pane);
34 primaryStage.setTitle("ShowText"); // Set the stage title
35 primaryStage.setScene(scene); // Place the scene in the stage
36 primaryStage.show(); // Display the stage
37 }
38 }

The program creates a Text (line 18), sets its font (line 19), and places it to the pane
(line 21). The program creates another Text with multiple lines (line 23) and places it to the
pane (line 24). The program creates the third Text (line 26), sets its color (line 27), sets an
underline and a strike through line (lines 28 and 29), and places it to the pane (line 30).

14.11.2 Line
A line connects two points with four parameters startX, startY, endX, and endY, as shown
in Figure 14.29a. The Line class defines a line. The UML diagram for the Line class is
shown in Figure 14.28. Listing 14.15 gives an example that demonstrates the line shape,
as shown in Figure 14.29b.

LISTING 14.15 ShowLine.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.paint.Color;
 5 import javafx.stage.Stage;
 6 import javafx.scene.shape.Line;
 7
 8 public class ShowLine extends Application {
 9 @Override // Override the start method in the Application class
10 public void start(Stage primaryStage) {
11 // Create a scene and place it in the stage
12 Scene scene = new Scene(new LinePane(), 200, 200);
13 primaryStage.setTitle("ShowLine"); // Set the stage title
14 primaryStage.setScene(scene); // Place the scene in the stage
15 primaryStage.show(); // Display the stage
16 }
17 }
18
19 class LinePane extends Pane {
20 public LinePane() {

21 Line line1 = new Line(10, 10, 10, 10);
22 line1.endXProperty().bind(widthProperty().subtract(10));
23 line1.endYProperty().bind(heightProperty().subtract(10));
24 line1.setStrokeWidth(5);
25 line1.setStroke(Color.GREEN);
26 getChildren().add(line1);

main method omitted

create a two-line Text
add text to pane

create a Text
set text color
set underline
set strike line
add text to pane

create a line

define a custom pane

create a pane in scene

set stroke width
set stroke
add line to pane

main method omitted

M14_LIAN9966_12_SE_C14.indd 569 16/09/19 8:13 PM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

570 Chapter 14 JavaFX Basics

27
28 Line line2 = new Line(10, 10, 10, 10);
29 line2.startXProperty().bind(widthProperty().subtract(10));
30 line2.endYProperty().bind(heightProperty().subtract(10));
31 line2.setStrokeWidth(5);
32 line2.setStroke(Color.GREEN);
33 getChildren().add(line2);
34 }
35 }

create a line

add line to pane

FIGURE 14.29 A Line object is created to display a line.

(0, 0) (getWidth(), 0)

(getWidth(), getHeight())(0, getHeight())

(startX, startY)

(endX, endY)

(a) Line(startX, startY, endX, endY) (b) Two lines are displayed
 across the pane.

FIGURE 14.28 The Line class defines a line.

–startX: DoubleProperty

–startY: DoubleProperty

–endX: DoubleProperty

–endY: DoubleProperty

javafx.scene.shape.Line

The x-coordinate of the start point.

The y-coordinate of the start point.

The x-coordinate of the end point.

The y-coordinate of the end point.

Creates an empty Line.

Creates a Line with the specified starting and ending points.

+Line()

+Line(startX: double, startY:
 double, endX: double, endY:
 double)

The getter and setter methods for property value
and a getter for property itself are provided in the class,
but omitted in the UML diagram for brevity.

The program defines a custom pane class named LinePane (line 19). The custom pane
class creates two lines and binds the starting and ending points of the line with the width and
height of the pane (lines 22, 23, 29, and 30) so the two points of the lines are changed as the
pane is resized.

14.11.3 Rectangle
A rectangle is defined by the parameters x, y, width, height, arcWidth, and arcHeight,
as shown in Figure 14.31a. The rectangle’s upper-left corner point is at (x, y), parameter
aw (arcWidth) is the horizontal diameter of the arcs at the corner, and ah (arcHeight) is
the vertical diameter of the arcs at the corner.

The Rectangle class defines a rectangle. The UML diagram for the Rectangle class is
shown in Figure 14.30. Listing 14.16 gives an example that demonstrates rectangles, as shown
in Figure 14.31b.

M14_LIAN9966_12_SE_C14.indd 570 16/09/19 8:13 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

14.11 Shapes 571

LISTING 14.16 ShowRectangle.java
 1 import javafx.application.Application;
 2 import javafx.scene.Group;
 3 import javafx.scene.Scene;
 4 import javafx.scene.layout.BorderPane;
 5 import javafx.scene.paint.Color;
 6 import javafx.stage.Stage;
 7 import javafx.scene.text.Text;
 8 import javafx.scene.shape.Rectangle;
 9
10 public class ShowRectangle extends Application {
11 @Override // Override the start method in the Application class
12 public void start(Stage primaryStage) {
13 // Create rectangles
14 Rectangle r1 = new Rectangle(25, 10, 60, 30);
15 r1.setStroke(Color.BLACK);
16 r1.setFill(Color.WHITE);
17 Rectangle r2 = new Rectangle(25, 50, 60, 30);
18 Rectangle r3 = new Rectangle(25, 90, 60, 30);
19 r3.setArcWidth(15);
20 r3.setArcHeight(25);
21

create rectangle r2

set r1’s properties

create a rectangle r1

create rectangle r3
set r3’s arc width
set r3’s arc height

FIGURE 14.31 A Rectangle object is created to display a rectangle.

width

h
e
i
g
h
t

(a) Rectangle(x, y, w, h) (b) Multiple rectangles are displayed. (c) Transparent rectangles are displayed.

(x, y)
aw/2

ah/2

FIGURE 14.30 Rectangle defines a rectangle.

–x: DoubleProperty

–y: DoubleProperty

–width: DoubleProperty

–height: DoubleProperty

–arcWidth: DoubleProperty

–arcHeight: DoubleProperty

javafx.scene.shape.Rectangle

The x-coordinate of the upper-left corner of the rectangle (default 0).

The y-coordinate of the upper-left corner of the rectangle (default 0).

The width of the rectangle (default: 0).

The height of the rectangle (default: 0).

The arcWidth of the rectangle (default: 0). arcWidth is the horizontal
 diameter of the arcs at the corner (see Figure 14.31a).

The arcWidth of the rectangle (default: 0). arcHeight is the vertical
 diameter of the arcs at the corner (see Figure 14.31a).

Creates an empty Rectangle.

Creates a Rectangle with the specified upper-left corner point, width, and
 height.

+Rectangle()

+Rectangle(x: double, y:
 double, width: double,
 height: double)

The getter and setter methods for property values
and a getter for property itself are provided in the class,
but omitted in the UML diagram for brevity.

M14_LIAN9966_12_SE_C14.indd 571 16/09/19 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

572 Chapter 14 JavaFX Basics

22 // Create a group and add nodes to the group
23 Group group = new Group();
24 group.getChildren().addAll(new Text(10, 27, "r1"), r1,
25 new Text(10, 67, "r2"), r2, new Text(10, 107, "r3"), r3);
26
27 for (int i = 0; i < 4; i++) {
28 Rectangle r = new Rectangle(100, 50, 100, 30);
29 r.setRotate(i * 360 / 8);
30 r.setStroke(Color.color(Math.random(), Math.random(),
31 Math.random()));
32 r.setFill(Color.WHITE);
33 group.getChildren().add(r);
34 }
35
36 // Create a scene and place it in the stage
37 Scene scene = new Scene(new BorderPane(group),250, 150);
38 primaryStage.setTitle("ShowRectangle"); // Set the stage title
39 primaryStage.setScene(scene); // Place the scene in the stage
40 primaryStage.show(); // Display the stage
41 }
42 }

The program creates multiple rectangles. By default, the fill color is black. Thus, a rectangle
is filled with black color. The stroke color is white by default. Line 15 sets stroke color of
rectangle r1 to black. The program creates rectangle r3 (line 18) and sets its arc width and arc
height (lines 19 and 20). Thus, r3 is displayed as a rounded rectangle.

The program creates a Group to hold the nodes (lines 23–25). The program repeatedly
creates a rectangle (line 28), rotates it (line 29), sets a random stroke color (lines 30 and 31),
its fill color to white (line 32), and adds the rectangle to the group (line 33).

If line 32 is replaced by the following line:

r.setFill(null);

the rectangle is not filled with a color. Thus, they are displayed as shown in Figure 14.31c.
To center the nodes in the window, the program creates a BorderPane with the group in

the center of the pane (line 37). If line 23 is replaced by the following?

Pane group = new Pane();

the rectangle will not be centered in the window. Therefore, using Group along with the
 BorderPane displays the contents of the group in the center of the window. Another advantage
of using group is you can apply transformation to all nodes in the group. For example, if you
add the following two lines in line 35:

group.setScaleX(2);
group.setScaleY(2);

the sizes of the nodes in the group are doubled.

14.11.4 Circle and Ellipse
You have used circles in several examples early in this chapter. A circle is defined by its
parameters centerX, centerY, and radius. The Circle class defines a circle. The UML
diagram for the Circle class is shown in Figure 14.32.

An ellipse is defined by its parameters centerX, centerY, radiusX, and radiusY, as
shown in Figure 14.34a. The Ellipse class defines an ellipse. The UML diagram for the
Ellipse class is shown in Figure 14.33. Listing 14.17 gives an example that demonstrates
ellipses, as shown in Figure 14.34b.

main method omitted

create a group
add nodes to group

create a rectangle
rotate a rectangle

add rectangle to group

M14_LIAN9966_12_SE_C14.indd 572 16/09/19 8:13 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

14.11 Shapes 573

LISTING 14.17 ShowEllipse.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.paint.Color;
 5 import javafx.stage.Stage;
 6 import javafx.scene.shape.Ellipse;

FIGURE 14.34 An Ellipse object is created to display an ellipse.

(centerX, centerY)

radiusYradiusX

(a) Ellipse(centerX, centerY,

 radiusX, radiusY)

(b) Multiple ellipses are displayed.

FIGURE 14.32 The Circle class defines circles.

–centerX: DoubleProperty

–centerY: DoubleProperty

–radius: DoubleProperty

javafx.scene.shape.Circle

The x-coordinate of the center of the circle (default 0).

The y-coordinate of the center of the circle (default 0).

The radius of the circle (default: 0).

Creates an empty Circle.

Creates a Circle with the specified center.

Creates a Circle with the specified center and radius.

+Circle()

+Circle(x: double, y: double)

+Circle(x: double, y: double,
 radius: double)

The getter and setter methods for property values
and a getter for property itself are provided in the class,
but omitted in the UML diagram for brevity.

FIGURE 14.33 The Ellipse class defines ellipses.

–centerX: DoubleProperty

–centerY: DoubleProperty

–radiusX: DoubleProperty

–radiusY: DoubleProperty

javafx.scene.shape.Ellipse

The x-coordinate of the center of the ellipse (default 0).

The y-coordinate of the center of the ellipse (default 0).

The horizontal radius of the ellipse (default: 0).

The vertical radius of the ellipse (default: 0).

Creates an empty Ellipse.

Creates an Ellipse with the specified center.

Creates an Ellipse with the specified center and radiuses.

+Ellipse()

+Ellipse(x: double, y: double)

+Ellipse(x: double, y: double,
 radiusX: double, radiusY:
 double)

The getter and setter methods for property values
and a getter for property itself are provided in the class,
but omitted in the UML diagram for brevity.

M14_LIAN9966_12_SE_C14.indd 573 16/09/19 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

574 Chapter 14 JavaFX Basics

 7
 8 public class ShowEllipse extends Application {
 9 @Override // Override the start method in the Application class
10 public void start(Stage primaryStage) {
11 // Create a scene and place it in the stage
12 Scene scene = new Scene(new MyEllipse(), 300, 200);
13 primaryStage.setTitle("ShowEllipse"); // Set the stage title
14 primaryStage.setScene(scene); // Place the scene in the stage
15 primaryStage.show(); // Display the stage
16 }
17 }
18
19 class MyEllipse extends Pane {
20 private void paint() {
21 getChildren().clear();
22 for (int i = 0; i < 16; i++) {
23 // Create an ellipse and add it to pane
24 Ellipse e1 = new Ellipse(getWidth() / 2, getHeight() / 2,
25 getWidth() / 2 – 50, getHeight() / 2 – 50);
26 e1.setStroke(Color.color(Math.random(), Math.random(),
27 Math.random()));
28 e1.setFill(Color.WHITE);
29 e1.setRotate(i * 180 / 16);
30 getChildren().add(e1);
31 }
32 }
33
34 @Override
35 public void setWidth(double width) {
36 super.setWidth(width);
37 paint();
38 }
39
40 @Override
41 public void setHeight(double height) {
42 super.setHeight(height);
43 paint();
44 }
45 }

The program defines the MyEllipse class to draw the ellipses (lines 19–45) rather than
creating ellipses directly in the start method (line 10) for two reasons. First, by defining
the MyEllipse class for displaying the ellipses, you can easily reuse the code. Second, the
 MyEllipse class extends Pane. The contents in the pane can be resized when the stage
is resized.

The MyEllipse class extends Pane and overrides the setWidth and setHeight
 methods (lines 34–44). A MyEllipse object’s width and height are automatically set by
invoking its setWidth and setHeight methods when it is displayed. When you resize
the stage that contains a MyEllipse, the MyEllipse’s width and height are automatically
resized by again invoking the setWidth and setHeight methods. The setWidth and
setHeight methods invoke the paint() method for displaying the ellipses (lines 37 and
43). The paint() method first clears the contents in the pane (line 21), then repeatedly
creates ellipses (lines 24 and 25), sets a random stroke color (lines 26 and 27), sets its fill
color to white (line 28), rotates it (line 29), and adds the rectangle to the pane (line 30). Thus,
when the stage that contains a MyEllipse object is resized, the contents in MyEllipse
are redisplayed.

main method omitted

create a pane

create an ellipse

set random color for stroke

set fill color
rotate ellipse
add ellipse to pane

M14_LIAN9966_12_SE_C14.indd 574 16/09/19 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

14.11 Shapes 575

14.11.5 Arc
An arc is conceived as part of an ellipse, defined by the parameters centerX, centerY,
 radiusX, radiusY, startAngle, length, and an arc type (ArcType.OPEN, ArcType
.CHORD, or ArcType.ROUND). The parameter startAngle is the starting angle, and length
is the spanning angle (i.e., the angle covered by the arc). Angles are measured in degrees and
follow the usual mathematical conventions (i.e., 0 degrees is in the easterly direction and
positive angles indicate counterclockwise rotation from the easterly direction), as shown in
Figure 14.36a.

The Arc class defines an arc. The UML diagram for the Arc class is shown in Figure 14.35.
Listing 14.18 gives an example that demonstrates arcs, as shown in Figure 14.36b.

FIGURE 14.36 An Arc object is created to display an arc.

length

startAngle

0 degree

(centerX,
centerY)

radiusYradiusX

(a) Arc(centerX, centerY, radiusX,

radiusY, startAngle, length)

(b) Multiple ellipses are displayed.

FIGURE 14.35 The Arc class defines an arc.

–centerX: DoubleProperty

–centerY: DoubleProperty

–radiusX: DoubleProperty

–radiusY: DoubleProperty

–startAngle: DoubleProperty

–length: DoubleProperty

–type: ObjectProperty<ArcType>

javafx.scene.shape.Arc

The x-coordinate of the center of the ellipse (default 0).

The y-coordinate of the center of the ellipse (default 0).

The horizontal radius of the ellipse (default: 0).

The vertical radius of the ellipse (default: 0).

The start angle of the arc in degrees.

The angular extent of the arc in degrees.

The closure type of the arc (ArcType.OPEN, ArcType.CHORD,
 ArcType.ROUND).

Creates an empty Arc.

Creates an Arc with the specified arguments.

+Arc()

+Arc(x: double, y: double,
 radiusX: double, radiusY:
 double, startAngle: double,
 length: double)

The getter and setter methods for property values
and a getter for property itself are provided in the class,
but omitted in the UML diagram for brevity.

LISTING 14.18 ShowArc.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.Group;
 4 import javafx.scene.layout.BorderPane;
 5 import javafx.scene.paint.Color;

M14_LIAN9966_12_SE_C14.indd 575 16/09/19 8:13 PM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

576 Chapter 14 JavaFX Basics

 6 import javafx.stage.Stage;
 7 import javafx.scene.shape.Arc;
 8 import javafx.scene.shape.ArcType;
 9 import javafx.scene.text.Text;
10
11 public class ShowArc extends Application {
12 @Override // Override the start method in the Application class
13 public void start(Stage primaryStage) {
14 Arc arc1 = new Arc(150, 100, 80, 80, 30, 35); // Create an arc
15 arc1.setFill(Color.RED); // Set fill color
16 arc1.setType(ArcType.ROUND); // Set arc type
17
18 Arc arc2 = new Arc(150, 100, 80, 80, 30 + 90, 35);
19 arc2.setFill(Color.WHITE);
20 arc2.setType(ArcType.OPEN);
21 arc2.setStroke(Color.BLACK);
22
23 Arc arc3 = new Arc(150, 100, 80, 80, 30 + 180, 35);
24 arc3.setFill(Color.WHITE);
25 arc3.setType(ArcType.CHORD);
26 arc3.setStroke(Color.BLACK);
27
28 Arc arc4 = new Arc(150, 100, 80, 80, 30 + 270, 35);
29 arc4.setFill(Color.GREEN);
30 arc4.setType(ArcType.CHORD);
31 arc4.setStroke(Color.BLACK);
32
33 // Create a group and add nodes to the group
34 Group group = new Group();
35 group.getChildren().addAll(new Text(210, 40, "arc1: round"),
36 arc1, new Text(20, 40, "arc2: open"), arc2,
37 new Text(20, 170, "arc3: chord"), arc3,
38 new Text(210, 170, "arc4: chord"), arc4);
39
40 // Create a scene and place it in the stage
41 Scene scene = new Scene(new BorderPane(group), 300, 200);
42 primaryStage.setTitle("ShowArc"); // Set the stage title
43 primaryStage.setScene(scene); // Place the scene in the stage
44 primaryStage.show(); // Display the stage
45 }
46 }

The program creates an arc arc1 centered at (150, 100) with radiusX 80 and radiusY 80.
The starting angle is 30 with length 35 (line 14). arc1’s arc type is set to ArcType.ROUND
(line 16). Since arc1’s fill color is red, arc1 is displayed filled with red round.

The program creates an arc arc3 centered at (150, 100) with radiusX 80 and radiusY 80.
The starting angle is 30+180 with length 35 (line 23). Arc3’s arc type is set to ArcType
.CHORD (line 25). Since arc3’s fill color is white and stroke color is black, arc3 is displayed
with black outline as a chord.

Angles may be negative. A negative starting angle sweeps clockwise from the easterly
direction, as shown in Figure 14.37. A negative spanning angle sweeps clockwise from the
starting angle. The following two statements define the same arc:

new Arc(x, y, radiusX, radiusY, –30, –20);
new Arc(x, y, radiusX, radiusY, –50, 20);

The first statement uses negative starting angle -30 and negative spanning angle –20, as
shown in Figure 14.37a. The second statement uses negative starting angle –50 and positive
spanning angle 20, as shown in Figure 14.37b.

main method omitted

create arc1
set fill color for arc1
set arc1 as round arc

create arc2
set fill color for arc2
set arc2 as round arc

create arc3
set fill color for arc3
set arc3 as chord arc

create arc4

create a group
add arcs and text to group

negative degrees

M14_LIAN9966_12_SE_C14.indd 576 16/09/19 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

14.11 Shapes 577

FIGURE 14.38 Polygon is closed and Polyline is not closed.

(x[0], y[0]) (x[0], y[0])

(x[1], y[1]) (x[1], y[1])

(x[3], y[3]) (x[3], y[3])

(x[4], y[4]) (x[4], y[4])

(x[2], y[2]) (x[2], y[2])

(a) Polygon (b) Polyline

FIGURE 14.37 Angles may be negative.

(a) Negative starting angle 2308 and
negative spanning angle 2208

2308

2208

(b) Negative starting angle 2508
 and positive spanning angle 208

2508

208

FIGURE 14.39 The Polygon class defines a polygon.

+Polygon()

+Polygon(double... points)

+getPoints():
 ObservableList<Double>

javafx.scene.shape.Polygon

Creates an empty Polygon.

Creates a Polygon with the given points.

Returns a list of Double objects as x- and y-coordinates of the points.

Note the trigonometric methods in the Math class use the angles in radians, but the angles
in the Arc class are in degrees.

14.11.6 Polygon and Polyline
The Polygon class defines a polygon that connects a sequence of points, as shown in
 F igure 14.38a. The Polyline class is similar to the Polygon class except that the Polyline
class is not automatically closed, as shown in Figure 14.38b.

The UML diagram for the Polygon class is shown in Figure 14.39. Listing 14.19 gives an
example that creates a hexagon, as shown in Figure 14.40.

M14_LIAN9966_12_SE_C14.indd 577 16/09/19 8:13 PM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

578 Chapter 14 JavaFX Basics

FIGURE 14.40 (a) A Polygon is displayed. (b) A Polyline is displayed.

(a) (b)

radius

(x, y)
x is centerX 1 radius 3 cos(2p/6)
y is centerY 2 radius 3 sin(2p/6)

(centerX, centerY)

2p
6

LISTING 14.19 ShowPolygon.java
 1 import javafx.application.Application;
 2 import javafx.collections.ObservableList;
 3 import javafx.scene.Scene;
 4 import javafx.scene.layout.Pane;
 5 import javafx.scene.paint.Color;
 6 import javafx.stage.Stage;
 7 import javafx.scene.shape.Polygon;
 8
 9 public class ShowPolygon extends Application {
10 @Override // Override the start method in the Application class
11 public void start(Stage primaryStage) {
12 // Create a scene and place it in the stage
13 Scene scene = new Scene(new MyPolygon(), 400, 400);
14 primaryStage.setTitle("ShowPolygon"); // Set the stage title
15 primaryStage.setScene(scene); // Place the scene in the stage
16 primaryStage.show(); // Display the stage
17 }
18 }
19
20 class MyPolygon extends Pane {
21 private void paint() {
22 // Create a polygon and place polygon to pane
23 Polygon polygon = new Polygon();
24 polygon.setFill(Color.WHITE);
25 polygon.setStroke(Color.BLACK);
26 ObservableList<Double> list = polygon.getPoints();
27
28 double centerX = getWidth() / 2, centerY = getHeight() / 2;
29 double radius = Math.min(getWidth(), getHeight()) * 0.4;
30
31 // Add points to the polygon list
32 for (int i = 0; i < 6; i++) {
33 list.add(centerX + radius * Math.cos(2 * i * Math.PI / 6));
34 list.add(centerY – radius * Math.sin(2 * i * Math.PI / 6));
35 }
36
37 getChildren().clear();
38 getChildren().add(polygon);
39 }
40
41 @Override

extends Pane

create a polygon

get a list of points

add y-coordinate of a point

add pane to scene

add x-coordinate of a point

main method omitted

M14_LIAN9966_12_SE_C14.indd 578 16/09/19 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

14.11 Shapes 579

42 public void setWidth(double width) {
43 super.setWidth(width);
44 paint();
45 }
46
47 @Override
48 public void setHeight(double height) {
49 super.setHeight(height);
50 paint();
51 }
52 }

The program defines the MyPolygon class that extends Pane (lines 20–52). The setWidth
and setHeight methods in the Pane class are overridden in MyPolygon to invoke the
paint() method.

The paint() method creates a polygon (line 23) and adds it to a pane (line 38). The
 polygon.getPoints() method returns an ObservableList<Double> (line 26), which
contains the add method for adding an element to the list (lines 33 and 34). Note the value
passed to add(value) must be a double value. If an int value is passed, the int value
would be automatically boxed into an Integer. This would cause an error, because the
ObservableList<Double> consists of Double elements.

The centerX, centerY, and radius are obtained in proportion to the width and height of
the pane (lines 28 and 29). The loop adds six points to the polygon (lines 32–35). Each point
is represented by its x- and y-coordinates, computed using centerX, centerY, and radius.
For each point, its x-coordinate is added to the polygon’s list (line 33) then its y-coordinate is
added to the list (line 34). The formula for computing the x- and y-coordinates for a point in
the hexagon is illustrated in Figure 14.40a.

If you replace Polygon by Polyline (line 23), the program displays a polyline as shown
in Figure 14.40b. The Polyline class is used in the same way as Polygon, except that the
starting and ending points are not connected in Polyline.

 14.11.1 How do you display a text, line, rectangle, circle, ellipse, arc, polygon, and
polyline?

 14.11.2 Write code fragments to display a string rotated 45 degrees in the center of
the pane.

 14.11.3 Write code fragments to display a thick line of 10 pixels from (10, 10) to (70, 30).

 14.11.4 Write code fragments to fill red color in a rectangle of width 100 and height 50
with the upper-left corner at (10, 10).

 14.11.5 Write code fragments to display a round-cornered rectangle with width 100,
height 200 with the upper-left corner at (10, 10), corner horizontal diameter 40,
and corner vertical diameter 20.

 14.11.6 Write code fragments to display an ellipse with horizontal radius 50 and vertical
radius 100.

 14.11.7 Write code fragments to display the outline of the upper half of a circle with
radius 50.

 14.11.8 Write code fragments to display the lower half of a circle with radius 50 filled
with the red color.

 14.11.9 Write code fragments to display a polygon connecting the following points: (20,
40), (30, 50), (40, 90), (90, 10), and (10, 30), and fill the polygon with green color.

 14.11.10 Write code fragments to display a polyline connecting the following points: (20,
40), (30, 50), (40, 90), (90, 10), and (10, 30).

override setWidth and
setHeight

Point
Check

M14_LIAN9966_12_SE_C14.indd 579 16/09/19 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

580 Chapter 14 JavaFX Basics

 14.11.11 What is wrong in the following code?

public void start(Stage primaryStage) {
 // Create a polygon and place it in the scene
 Scene scene = new Scene(new Polygon(), 400, 400);
 primaryStage.setScene(scene); // Place the scene in the stage
 primaryStage.show(); // Display the stage
}

14.12 Case Study: The ClockPane Class
This case study develops a class that displays a clock on a pane.

The contract of the ClockPane class is shown in Figure 14.41.
Point
Key

FIGURE 14.42 (a) The DisplayClock program displays a clock that shows the current
time. (b) The endpoint of a clock hand can be determined, given the spanning angle, the
hand length, and the center point.

(a)

handLength

(centerX, centerY)

(xEnd, yEnd)

12

6

9 3

(0, 0)

u

(b)

FIGURE 14.41 ClockPane displays an analog clock.

javafx.scene.layout.Pane

ClockPane

–hour: int

–minute: int

–second: int

+ClockPane()

+ClockPane(hour: int, minute:
 int, second: int)

+setCurrentTime(): void

+setWidth(width: double): void

+setHeight(height: double):
 void

The hour in the clock.

The minute in the clock.

The second in the clock.

Constructs a default clock for the current time.

Constructs a clock with the specified time.

Sets hour, minute, and second for current time.

Sets clock pane’s width and repaint the clock.

Sets clock pane’s height and repaint the clock.

The getter and setter methods for
these data fields are provided in the class,
but omitted in the UML diagram for brevity.

Assume ClockPane is available; we write a test program in Listing 14.20 to display an analog
clock and use a label to display the hour, minute, and second, as shown in Figure 14.42a.

M14_LIAN9966_12_SE_C14.indd 580 16/09/19 8:13 PM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

14.12 Case Study: The ClockPane Class 581

LISTING 14.20 DisplayClock.java
 1 import javafx.application.Application;
 2 import javafx.geometry.Pos;
 3 import javafx.stage.Stage;
 4 import javafx.scene.Scene;
 5 import javafx.scene.control.Label;
 6 import javafx.scene.layout.BorderPane;
 7
 8 public class DisplayClock extends Application {
 9 @Override // Override the start method in the Application class
10 public void start(Stage primaryStage) {
11 // Create a clock and a label
12 ClockPane clock = new ClockPane();
13 String timeString = clock.getHour() + ":" + clock.getMinute()
14 + ":" + clock.getSecond();
15 Label lblCurrentTime = new Label(timeString);
16
17 // Place clock and label in border pane
18 BorderPane pane = new BorderPane();
19 pane.setCenter(clock);
20 pane.setBottom(lblCurrentTime);
21 BorderPane.setAlignment(lblCurrentTime, Pos.TOP_CENTER);
22
23 // Create a scene and place it in the stage
24 Scene scene = new Scene(pane, 250, 250);
25 primaryStage.setTitle("DisplayClock"); // Set the stage title
26 primaryStage.setScene(scene); // Place the scene in the stage
27 primaryStage.show(); // Display the stage
28 }
29 }

The rest of this section explains how to implement the ClockPane class. Since you can
use the class without knowing how it is implemented, you may skip the implementation if
you wish.

To draw a clock, you need to draw a circle and three hands for the second, minute, and hour.
To draw a hand, you need to specify the two ends of the line. As shown in Figure 14.42b, one
end is the center of the clock at (centerX, centerY); the other end, at (endX, endY), is
determined by the following formula:

endX = centerX + handLength × sin(u)
endY = centerY – handLength × cos(u)

Since there are 60 seconds in one minute, the angle for the second hand is

second × (2π/60)

The position of the minute hand is determined by the minute and second. The exact minute
value combined with seconds is minute + second/60. For example, if the time is 3 minutes
and 30 seconds, the total minutes are 3.5. Since there are 60 minutes in one hour, the angle
for the minute hand is

(minute + second/60) × (2π/60)

Since one circle is divided into 12 hours, the angle for the hour hand is

(hour + minute/60 + second/(60 × 60)) × (2π/12)

create a clock

create a label

add a clock
add a label

main method omitted

skip implementation?

implementation

M14_LIAN9966_12_SE_C14.indd 581 16/09/19 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

582 Chapter 14 JavaFX Basics

For simplicity in computing the angles of the minute and hour hands, you can omit the seconds
because they are negligibly small. Therefore, the endpoints for the second, minute, and hour
hands can be computed as follows:

secondX = centerX + secondHandLength × sin(second × (2π/60))
secondY = centerY – secondHandLength × cos(second × (2π/60))
minuteX = centerX + minuteHandLength × sin(minute × (2π/60))
minuteY = centerY – minuteHandLength × cos(minute × (2π/60))
hourX = centerX + hourHandLength × sin((hour + minute/60) × (2π/12))
hourY = centerY – hourHandLength × cos((hour + minute/60) × (2π/12))

The ClockPane class is implemented in Listing 14.21.

LISTING 14.21 ClockPane.java
 1 import java.util.Calendar;
 2 import java.util.GregorianCalendar;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.paint.Color;
 5 import javafx.scene.shape.Circle;
 6 import javafx.scene.shape.Line;
 7 import javafx.scene.text.Text;
 8
 9 public class ClockPane extends Pane {
 10 private int hour;
 11 private int minute;
 12 private int second;
 13
 14 /** Construct a default clock with the current time*/
 15 public ClockPane() {
 16 setCurrentTime();
 17 }
 18
 19 /** Construct a clock with specified hour, minute, and second */
 20 public ClockPane(int hour,int minute,int second) {
 21 this.hour = hour;
 22 this.minute = minute;
 23 this.second = second;
 24 }
 25
 26 /** Return hour */
 27 public int getHour() {
 28 return hour;
 29 }
 30
 31 /** Set a new hour */
 32 public void setHour(int hour) {
 33 this.hour = hour;
 34 paintClock();
 35 }
 36
 37 /** Return minute */
 38 public int getMinute() {
 39 return minute;
 40 }
 41
 42 /** Set a new minute */
 43 public void setMinute(int minute) {
 44 this.minute = minute;

no-arg constructor

constructor

clock properties

paint clock

set a new minute

set a new hour

M14_LIAN9966_12_SE_C14.indd 582 16/09/19 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

14.12 Case Study: The ClockPane Class 583

 45 paintClock();
 46 }
 47
 48 /** Return second */
 49 public int getSecond() {
 50 return second;
 51 }
 52
 53 /** Set a new second */
 54 public void setSecond(int second) {
 55 this.second = second;
 56 paintClock();
 57 }
 58
 59 /* Set the current time for the clock */
 60 public void setCurrentTime() {
 61 // Construct a calendar for the current date and time
 62 Calendar calendar = new GregorianCalendar();
 63
 64 // Set current hour, minute and second
 65 this.hour = calendar.get(Calendar.HOUR_OF_DAY);
 66 this.minute = calendar.get(Calendar.MINUTE);
 67 this.second = calendar.get(Calendar.SECOND);
 68
 69 paintClock(); // Repaint the clock
 70 }
 71
 72 /** Paint the clock */
 73 private void paintClock() {
 74 // Initialize clock parameters
 75 double clockRadius =
 76 Math.min(getWidth(), getHeight()) * 0.8 * 0.5;
 77 double centerX = getWidth() /2;
 78 double centerY = getHeight() /2;
 79
 80 // Draw circle
 81 Circle circle = new Circle(centerX, centerY, clockRadius);
 82 circle.setFill(Color.WHITE);
 83 circle.setStroke(Color.BLACK);
 84 Text t1 = new Text(centerX – 5, centerY – clockRadius + 12, "12");
 85 Text t2 = new Text(centerX – clockRadius + 3, centerY + 5, "9");
 86 Text t3 = new Text(centerX + clockRadius – 10, centerY + 3, "3");
 87 Text t4 = new Text(centerX – 3, centerY + clockRadius – 3, "6");
 88
 89 // Draw second hand
 90 double sLength = clockRadius * 0.8;
 91 double secondX = centerX + sLength *
 92 Math.sin(second * (2 * Math.PI / 60));
 93 double secondY = centerY – sLength *
 94 Math.cos(second * (2 * Math.PI / 60));
 95 Line sLine = new Line(centerX, centerY, secondX, secondY);
 96 sLine.setStroke(Color.RED);
 97
 98 // Draw minute hand
 99 double mLength = clockRadius * 0.65;
100 double xMinute = centerX + mLength *
101 Math.sin(minute * (2 * Math.PI / 60));
102 double minuteY = centerY – mLength *
103 Math.cos(minute * (2 * Math.PI / 60));
104 Line mLine = new Line(centerX, centerY, xMinute, minuteY);

paint clock

set a new second

paint clock

set current time

paint clock

paint clock

get radius

get center

create a circle

create texts

create second hand

create minute hand

M14_LIAN9966_12_SE_C14.indd 583 16/09/19 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

584 Chapter 14 JavaFX Basics

105 mLine.setStroke(Color.BLUE);
106
107 // Draw hour hand
108 double hLength = clockRadius * 0.5;
109 double hourX = centerX + hLength *
110 Math.sin((hour % 12 + minute / 60.0) * (2 * Math.PI / 12));
111 double hourY = centerY – hLength *
112 Math.cos((hour % 12 + minute / 60.0) * (2 * Math.PI / 12));
113 Line hLine = new Line(centerX, centerY, hourX, hourY);
114 hLine.setStroke(Color.GREEN);
115
116 getChildren().clear();
117 getChildren().addAll(circle, t1, t2, t3, t4, sLine, mLine, hLine);
118 }
119
120 @Override
121 public void setWidth(double width) {
122 super.setWidth(width);
123 paintClock();
124 }
125
126 @Override
127 public void setHeight(double height) {
128 super.setHeight(height);
129 paintClock();
130 }
131 }

The program displays a clock for the current time using the no-arg constructor (lines 15–17)
and displays a clock for the specified hour, minute, and second using the other constructor
(lines 20–24).

The class defines the properties hour, minute, and second to store the time repre-
sented in the clock (lines 10–12). The current hour, minute, and second are obtained by
using the GregorianCalendar class (lines 62–67). The GregorianCalendar class
in the Java API enables you to create a Calendar instance for the current time using its
 no-arg constructor. You can then use its methods get(Calendar.HOUR), get(Calendar
.MINUTE), and get(Calendar.SECOND) to return the hour, minute, and second from a
Calendar object.

The paintClock() method paints the clock (lines 73–118). The clock radius is propor-
tional to the width and height of the pane (lines 75–78). A circle for the clock is created at
the center of the pane (line 81). The text for showing the hours 12, 3, 6, and 9 are created in
lines 84–87. The second, minute, and hour hands are the lines created in lines 90–114. The
 paintClock() method places all these shapes in the pane using the addAll method (line
117). Before adding new contents into the pane, the old contents are cleared from the pane
(line 116).

The setWidth and setHeight methods defined in the Pane class are overridden in the
ClockPane class to repaint the clock after the width or height is changed in the clock pane
(lines 120–130). The paintClock() method is invoked whenever a new property (hour,
minute, second, width, and height) is set (lines 34, 45, 56, 69, 123, and 129).

In Listing 14.20, the clock is placed inside a border pane, the border pane is placed in the
scene, and the scene is placed in the stage. When a stage is displayed or resized, all these com-
ponents inside the stage are automatically resized by invoking their respective setWidth and
setHeight methods. Since the setWidth and setHeight methods are overridden to invoke
the paintClock() method, the clock is automatically resized in response to the change of
the stage size.

create hour hand

clear pane
add nodes to pane

set a new width

paint clock

set a new height

paint clock

override setWidth and
setHeight

M14_LIAN9966_12_SE_C14.indd 584 16/09/19 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

Chapter Summary 585

AWT 542
bidirectional binding 551
bindable object 548
binding object 548
binding property 548
JavaFX 551
node 545
observable object 548
pane 545

KEY TERMS

 14.12.1 What will happen if lines 120–130 are removed in Listing 14.21? Run the
 DisplayClock class in Listing 14.20 to test it. Point

Check

primary stage 543
property getter method 549
shape 545
Swing 542
UI control 545
unidirectional binding 551
value getter method 549
value setter method 549

CHAPTER SUMMARY

1. JavaFX is the new framework for developing rich GUI applications. JavaFX completely
replaces Swing and AWT.

2. A main JavaFX class must extend javafx.application.Application and
 implement the start method. The primary stage is automatically created by the JVM
and passed to the start method.

3. A stage is a window for displaying a scene. You can add nodes to a scene. Panes, groups,
controls, and shapes are nodes. Panes can be used as the containers for nodes.

4. A binding property can be bound to an observable source object. A change in the source
object will be automatically reflected in the binding property. A binding property has a
value getter method, value setter method, and property getter method.

5. The Node class defines many properties that are common to all nodes. You can apply
these properties to panes, groups, controls, and shapes.

6. You can create a Color object with the specified red, green, blue components, and
opacity value.

7. You can create a Font object and set its name, size, weight, and posture.

8. The javafx.scene.image.Image class can be used to load an image, and this image
can be displayed in an ImageView object.

9. JavaFX provides many types of panes for automatically laying out nodes in
a desired location and size. The Pane is the base class for all panes. It contains
the getChildren() method to return an ObservableList . You can use
 ObservableList’s add(node) and addAll(node1, node2,...) methods for
adding nodes into a pane.

10. A FlowPane arranges the nodes in the pane horizontally from left to right or vertically
from top to bottom, in the order in which they were added. A GridPane arranges nodes

M14_LIAN9966_12_SE_C14.indd 585 16/09/19 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

586 Chapter 14 JavaFX Basics

FIGURE 14.43 (a) Exercise 14.1 displays four images. Source: booka/Fotolia. Figure 14.43a4: United States
 Government. (b) Exercise 14.2 displays a tic-tac-toe board with images. (c) Three cards are randomly selected. Source:
pandawild/Fotolia.

(a) (b) (c)

in a grid (matrix) formation. The nodes are placed in the specified column and row indi-
ces. A BorderPane can place nodes in five regions: top, bottom, left, right, and center.
An HBox lays out its children in a single horizontal row. A VBox lays out its children in
a single vertical column.

11. JavaFX provides many shape classes for drawing texts, lines, circles, rectangles, ellipses,
arcs, polygons, and polylines.

QUIZ

Answer the quiz for this chapter online at the book Companion Website.

PROGRAMMING EXERCISES

Note
The image files used in the exercises can be obtained from liveexample.pearsoncmg.com/
resource/image.zip under the image folder.

Sections 14.2–14.9
 14.1 (Display images) Write a program that displays four images in a grid pane, as

shown in Figure 14.43a.

 *14.2 (Tic-tac-toe board) Write a program that displays a tic-tac-toe board, as
shown in Figure 14.43b. A cell may be X, O, or empty. What to display
at each cell is randomly decided. The X and O are the image files x.gif
and o.gif.

 *14.3 (Display three cards) Write a program that displays three cards randomly
selected from a deck of 52, as shown in Figure 14.43c. The card image files are
named 1.png, 2.png, . . . , 52.png and stored in the image/card directory. All
three cards are distinct and selected randomly. (Hint: You can select random
cards by storing the numbers 1–52 to an array list, perform a random shuffle
introduced in Section 11.12, and use the first three numbers in the array list as
the file names for the image.)

 14.4 (Color and font) Write a program that displays five texts vertically, as shown in
Figure 14.44a. Set a random color and opacity for each text and set the font of
each text to Times Roman, bold, italic, and 22 pixels.

download image files

VideoNote

Display a tic-tac-toe board

M14_LIAN9966_12_SE_C14.indd 586 16/09/19 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

Programming Exercises 587

FIGURE 14.44 (a) Five texts are displayed with a random color and a specified font. (b) A string is displayed around
the circle. (c) A checkerboard is displayed using rectangles.

(a) (b) (c)

 14.5 (Characters around circle) Write a program that displays a string “Welcome to
Java” around the circle, as shown in Figure 14.44b. (Hint: You need to display
each character in the right location with appropriate rotation using a loop.)

 *14.6 (Game: display a checkerboard) Write a program that displays a checkerboard
in which each white and black cell is a Rectangle with a fill color black or
white, as shown in Figure 14.44c.

Sections 14.10 and 14.11
 *14.7 (Display random 0 or 1) Write a program that displays a 10-by-10 square matrix,

as shown in Figure 14.45a. Each element in the matrix is 0 or 1, randomly gener-
ated. Display each number centered in a text field. Use TextField’s setText
method to set value 0 or 1 as a string.

FIGURE 14.45 (a) The program randomly generates 0s and 1s. (b) Exercise 14.9 draws four
fans. (c) Exercise 14.10 draws a cylinder.

(a) (b) (c)

 14.8 (Display 54 cards) Expand Exercise 14.3 to display all 54 cards (including two
jokers), nine per row. The image files are jokers and are named 53.png and 54.png.

 *14.9 (Create four fans) Write a program that places four fans in a GridPane with two
rows and two columns, as shown in Figure 14.45b.

 *14.10 (Display a cylinder) Write a program that draws a cylinder, as shown in Figure 14.45c.
You can use the following method to set the dashed stroke for an arc:

 arc.getStrokeDashArray().addAll(6.0, 21.0);

Display a random matrix

M14_LIAN9966_12_SE_C14.indd 587 16/09/19 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

588 Chapter 14 JavaFX Basics

The solution posted on the website enables the cylinder to resize horizontally.
Can you revise it to resize vertically as well?

 *14.11 (Paint a smiley face) Write a program that paints a smiley face, as shown in
 Figure 14.46a.

FIGURE 14.46 (a) Exercise 14.11 paints a smiley face. (b) Exercise 14.12 paints a bar chart. (c) Exercise 14.13 paints
a pie chart.

(a) (b) (c)

FIGURE 14.47 (a) Exercise 14.14 paints a rectanguloid. (b) Exercise 14.15 paints a
STOP sign. (c) Exercise 14.16 paints a grid.

(a) (b) (c)

 **14.12 (Display a bar chart) Write a program that uses a bar chart to display the
percentages of the overall grade represented by projects, quizzes, midterm
exams, and the final exam, as shown in Figure 14.46b. Suppose projects take
20Ƣ and are displayed in red, quizzes take 10Ƣ and are displayed in blue,
midterm exams take 30Ƣ and are displayed in green, and the final exam takes
40Ƣ and is displayed in orange. Use the Rectangle class to display the bars.
Interested readers may explore the JavaFX BarChart class for further study.

 **14.13 (Display a pie chart) Write a program that uses a pie chart to display the per-
centages of the overall grade represented by projects, quizzes, midterm exams,
and the final exam, as shown in Figure 14.46c. Suppose projects take 20Ƣ and
are displayed in red, quizzes take 10Ƣ and are displayed in blue, midterm exams
take 30Ƣ and are displayed in green, and the final exam takes 40Ƣ and is dis-
played in orange. Use the Arc class to display the pies. Interested readers may
explore the JavaFX PieChart class for further study.

 14.14 (Display a rectanguloid) Write a program that displays a rectanguloid, as
shown in Figure 14.47a. The cube should grow and shrink as the window grows
or shrinks.

VideoNote

Display a bar chart

M14_LIAN9966_12_SE_C14.indd 588 16/09/19 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

Programming Exercises 589

 *14.15 (Display a STOP sign) Write a program that displays a STOP sign, as shown
in Figure 14.47b. The octagon is in red and the sign is in white. (Hint: Place an
octagon and a text in a stack pane.)

 *14.16 (Display a 3 * 3 grid) Write a program that displays a 3 * 3 grid, as shown in
Figure 14.47c. Use red color for vertical lines and blue for horizontals. The lines
are automatically resized when the window is resized.

 14.17 (Game: hangman) Write a program that displays a drawing for the popular hang-
man game, as shown in Figure 14.48a.

FIGURE 14.48 (a) Exercise 14.17 draws a sketch for the hangman game. (b) Exercise 14.18 plots the quadratic function.
(c) Exercise 14.19 plots the sine/cosine functions.

(a) (b) (c)

 *14.18 (Plot the square function) Write a program that draws a diagram for the function
f(x) = x2 (see Figure 14.48b).

Hint: Add points to a polyline using the following code:

 Polyline polyline = new Polyline();
 ObservableList<Double> list = polyline.getPoints();
 double scaleFactor = 0.0125;
 for (int x = –100; x <= 100; x++) {
 list.add(x + 200.0);
 list.add(scaleFactor * x * x);
 }

 **14.19 (Plot the sine and cosine functions) Write a program that plots the sine function
in red and cosine in blue, as shown in Figure 14.48c.

Hint: The Unicode for p is \u03c0. To display -2p, use Text(x, y, "–2\
u03c0"). For a trigonometric function like sin(x), x is in radians. Use the
 following loop to add the points to a polyline:

 Polyline polyline = new Polyline();
 ObservableList<Double> list = polyline.getPoints();
 double scaleFactor = 50;
 for (int x = −170; x <= 170; x++) {
 list.add(x + 200.0);
 list.add(100 – scaleFactor * Math.sin((x / 100.0) * 2 *

Math.PI));
 }

Note that x in the loop is a point in the X-Axis and x does not correspond to
angles in degrees. The entire expression (x / 100.0) * 2 * Math.PI rep-
resents an angle in radians.

M14_LIAN9966_12_SE_C14.indd 589 16/09/19 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

590 Chapter 14 JavaFX Basics

When x is -100, Math.sin((x / 100.0) * 2 * Math.PI) is 0

When x is -75, Math.sin((x / 100.0) * 2 * Math.PI) is 1

When x is -50, Math.sin((x / 100.0) * 2 * Math.PI) is 0

When x is -25, Math.sin((x / 100.0) * 2 * Math.PI) is -1

When x is 0, Math.sin((x / 100.0) * 2 * Math.PI) is 0

When x is 25, Math.sin((x / 100.0) * 2 * Math.PI) is 1

When x is 50, Math.sin((x / 100.0) * 2 * Math.PI) is 0

When x is 75, Math.sin((x / 100.0) * 2 * Math.PI) is -1

When x is 100, Math.sin((x / 100.0) * 2 * Math.PI) is 0

 **14.20 (Draw an arrow line) Write a static method that draws an arrow line from a
 starting point to an ending point in a pane using the following method header:

public static void drawArrowLine(double startX, double startY,
 double endX, double endY, Pane pane)

Write a test program that randomly draws an arrow line, as shown in Figure 14.49a.

 *14.21 (Two circles and their distance) Write a program that draws two circles with
radius 15 pixels, centered at random locations, with a line connecting the two
circles. The distance between the two centers is displayed on the line, as shown
in Figure 14.49b.

 *14.22 (Connect two circles) Write a program that draws two filled circles with radius
15 pixels, centered at random locations, with a line connecting the two circles.
The line should not cross inside the circles, as shown in Figure 14.49c.

 *14.23 (Geometry: two rectangles) Write a program that prompts the user to enter the
center coordinates, width, and height of two rectangles from the command line.
The program displays the rectangles and a text indicating whether the two are
overlapping, whether one is contained in the other, or whether they don’t over-
lap, as shown in Figure 14.50. See Programming Exercise 10.13 for checking the
relationship between two rectangles.

FIGURE 14.49 (a) The program displays an arrow line. (b) Exercise 14.21 connects the centers of two filled circles.
(c) Exercise 14.22 connects two circles from their perimeter.

(a) (b) (c)

M14_LIAN9966_12_SE_C14.indd 590 16/09/19 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

Programming Exercises 591

FIGURE 14.50 Two rectangles are displayed.

(c)(b)(a)

FIGURE 14.51 (a) The polygon and a point are displayed. (b) Exercise 14.25 connects five random points on a circle.
(c) Exercise 14.26 displays two clocks.

(a) (b) (c)

 *14.25 (Random points on a circle) Modify Programming Exercise 4.6 to create five
random points on a circle, form a polygon by connecting the points clockwise,
and display the circle and the polygon, as shown in Figure 14.51b.

Section 14.12
 14.26 (Use the ClockPane class) Write a program that displays two clocks. The hour,

minute, and second values are 4, 20, 45 for the first clock, and 22, 46, 15 for the
second clock, as shown in Figure 14.51c.

 *14.27 (Draw a detailed clock) Modify the ClockPane class in Section 14.12 to draw
the clock with more details on the hours and minutes, as shown in Figure
14.52a.

 *14.24 (Geometry: Inside a polygon?) Write a program that prompts the user to enter
the coordinates of five points from the command line. The first four points form a
polygon, and the program displays the polygon and a text that indicates whether
the fifth point is inside the polygon, as shown in Figure 14.51a. (Hint: Use the
Node’s contains method to test whether a point is inside a node.)

M14_LIAN9966_12_SE_C14.indd 591 16/09/19 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

592 Chapter 14 JavaFX Basics

 *14.28 (Random time) Modify the ClockPane class with three new Bool-
ean properties—hourHandVisible, minuteHandVisible, and
 secondHandVisible—and their associated accessor and mutator methods.
You can use the set methods to make a hand visible or invisible. Write a test
program that displays only the hour and minute hands. The hour and minute
values are randomly generated. The hour is between 0 and 11, and the minute is
either 0 or 30, as shown in Figure 14.52b.

 **14.29 (Game: bean machine) Write a program that displays a bean machine introduced
in Programming Exercise 7.37, as shown in Figure 14.52c.

FIGURE 14.52 (a) Exercise 14.27 displays a detailed clock. (b) Exercise 14.28 displays a
clock with random hour and minute values. (c) Exercise 14.29 displays a bean machine.

(a) (b) (c)

M14_LIAN9966_12_SE_C14.indd 592 16/09/19 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

