JavaFX Basics

Objectives

To distinguish between JavaFX, Swing, and AWT (§14.2).

To write a simple JavaFX program and understand the relationship
among stages, scenes, and nodes (§14.3).

To create user interfaces using panes, groups, UI controls, and shapes
(§14.4).

To update property values automatically through property binding
(§14.5).

To use the common properties style and rotate for nodes (§14.6).
To create colors using the Color class (§14.7).
To create fonts using the Font class (§14.8).

To create images using the Image class, and to create image views
using the ImageView class (§14.9).

To layout nodes using Pane, StackPane, FlowPane, GridPane,
BorderPane, HBox, and VBox (§14.10).

To display text using the Text class, and create shapes using the
Line, Circle, Rectangle, E111ipse, Arc, Polygon, and Polyline
classes (§14.11).

To develop the reusable GUI component C1ockPane for displaying
an analog clock (§14.12).

M14_LIAN9966_12_SE_C1d.indd 541 @

STUDENTS-HUB.com

CHAPTER

16/09/19 8:13 PM

https://students-hub.com

542 Chapter 14 JavaFX Basics

&
P

oint

AWT
Swing

JavaFX

why teaching JavaFX

ﬁeck
Point

Key
Point

>

VideoNote
Getting started with JavaFX

M14_LIAN9966_12_SE_C14.indd 542

STUDENTS-HUB.com

4.1 Introduction

JavaFX is an excellent pedagogical tool for learning object-oriented programming.

JavaFX is a new framework for developing Java GUI programs. The JavaFX APl is an excellent
example of how the object-oriented principles are applied. This chapter serves two purposes.
First, it presents the basics of JavaFX programming. Second, it uses JavaFX to demonstrate
object-oriented design and programming. Specifically, this chapter introduces the framework
of JavaFX and discusses JavaFX GUI components and their relationships. You will learn how
to develop simple GUI programs using layout panes, groups, buttons, labels, text fields, colors,
fonts, images, image views, and shapes.

14.2 JavaFX vs. Swing and AWT

Swing and AWT are replaced by the JavaFX platform for developing rich GUI
applications.

When Java was introduced, the GUI classes were bundled in a library known as the Abstract
Windows Toolkit (AWT). AWT is fine for developing simple graphical user interfaces, but
not for developing comprehensive GUI projects. In addition, AWT is prone to platform-
specific bugs. The AWT user-interface components were replaced by a more robust, versatile,
and flexible library known as Swing. Swing components are painted directly on canvases
using Java code. Swing components depend less on the target platform, and use less of the
native GUI resources. Swing is designed for developing desktop GUI applications. It is now
replaced by a completely new GUI platform known as JavaFX. JavaFX incorporates modern
GUI technologies to enable you to develop rich GUI applications. In addition, JavaFX pro-
vides a multitouch support for touch-enabled devices such as tablets and smart phones.
JavaFX has a built-in 2D, 3D, animation support, and video and audio playback. Using third-
party software, you can develop JavaFX programs to be deployed on devices running iOS or
Android.

This book teaches Java GUI programming using JavaFX for three reasons. First, JavaFX is
much simpler to learn and use for new Java programmers. Second, JavaFX is a better
pedagogical tool for demonstrating object-oriented programming than Swing. Third, Swing is
essentially dead because it will not receive any further enhancement. JavaFX is the new GUI
tool for developing cross-platform rich GUI applications on desktop computers and on
handheld devices.

14.2.1 Explain the evolution of Java GUI technologies.
14.2.2 Explain why this book teaches Java GUI using JavaFX.

4.3 The Basic Structure of a JavaFX Program

The javafx.application.Application class defines the essential framework for
writing JavaFX programs.

We begin by writing a simple JavaFX program that illustrates the basic structure of a JavaFX
program. Every JavaFX program is defined in a class that extends javafx.application
.Application, as shown in Listing 14.1.

LISTING 14.1

import javafx.application.Application;
import javafx.scene.Scene;

import javafx.scene.control.Button;
import javafx.stage.Stage;

MyJavaFX. java

AON -

16/09/19 8:13 PM

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

14.3 The Basic Structure of a JavaFX Program 543

5

6 public class MyJavaFX extends Application {

7 @Override // Override the start method in the Application class
8 public void start(Stage primaryStage) {

9 /| Create a scene and place a button in the scene

10 Button btOK = new Button("O0K");

11 Scene scene = new Scene(btOK, 200, 250);

12 primaryStage.setTitle("MyJavaFX"); // Set the stage title

13 primaryStage.setScene(scene); // Place the scene in the stage
14 primaryStage.show(); // Display the stage

15 }

16

17 [**

18 * The main method is only needed for the IDE with Timited

19 * JavaFX support. Not needed for running from the command 1line.
20 */

21 public static void main(String[] args) {

22 Application.Tlaunch(args);

23 }

24 '}

You can test and run your program from a command window or from an IDE such
as NetBeans or Eclipse. A sample run of the program is shown in Figure 14.1. Since JDK 11,
JavaFX has become a separate module. Supplements II.F-H give the tips for running JavaFX
programs from a command window, NetBeans, and Eclipse using JDK 11.

® O O MyjavaFx =

oK

FIGURE 14.1 A simple JavaFX displays a button in the window.

The Taunch method (line 22) is a static method defined in the Application class for
launching a stand-alone JavaFX application. The main method (lines 21-23) is not needed
if you run the program from the command line. It may be needed to launch a JavaFX program
from an IDE with a limited JavaFX support. When you run a JavaFX application without a
main method, JVM automatically invokes the Taunch method to run the application.

The main class overrides the start method defined in javafx.application
.AppTication (line 8). After a JavaFX application is launched, the JVM constructs an instance
of the class using its no-arg constructor and invokes its start method. The start method
normally places Ul controls in a scene and displays the scene in a stage, as shown in Figure 14.2a.

Line 10 creates a Button object and places it in a Scene object (line 11). A Scene object
can be created using the constructor Scene (node, width, height). This constructor
specifies the width and height of the scene and places the node in the scene.

A Stage object is a window. A Stage object called primary stage is automatically created
by the JVM when the application is launched. Line 13 sets the scene to the primary stage and
line 14 displays the primary stage. JavaFX names the Stage and Scene classes using the
analogy from the theater. You may think of stage as the platform to support scenes, and nodes
as actors to perform in the scenes.

You can create additional stages if needed. The JavaFX program in Listing 14.2 displays
two stages, as shown in Figure 14.2b.

M14_LIAN9966_12_SE_C14.indd 543 @

STUDENTS-HUB.com

extend Application
override start

create a button

create a scene
set stage title

set a scene
display stage

main method
launch application

JavaFX on NetBeans and
Eclipse

Taunch

construct application

start application

scene

primary stage

16/09/19 8:13 PM

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

544 Chapter 14 JavaFX Basics

primary stage in start

display primary stage

create second stage

display second stage

main method omitted

prevent stage resizing

ﬁeck
Point

M14_LIAN9966_12_SE_C14.indd 544

STUDENTS-HUB.com

— Stage

1 Button |

® O O MylavaFX ' | ® O O Second Stage ™

Scene

OK New Stage

(a)

(b)

FIGURE 14.2 (a) Stage is a window for displaying a scene that contains nodes. (b) Multiple
stages can be displayed in a JavaFX program.

LisTING 14.2 MultipleStageDemo.java

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

21}

import javafx.application.Application;
import javafx.scene.Scene;

import javafx.scene.control.Button;
import javafx.stage.Stage;

public class MultipleStageDemo extends Application {
@Override // Override the start method in the Application class
public void start(Stage primaryStage) {

/'l Create a scene and place a button in the scene

Scene scene = new Scene(new Button("OK"), 200, 250);
primaryStage.setTitle("MyJavaFX"); // Set the stage title
primaryStage.setScene(scene); // Place the scene in the stage
primaryStage.show(); // Display the stage

Stage stage = new Stage(); // Create a new stage
stage.setTitle("Second Stage"); // Set the stage title

/| Set a scene with a button in the stage

stage.setScene(new Scene(new Button("New Stage"), 200, 250));
stage.show(); // Display the stage

Note the main method is omitted in the listing since it is identical for every JavaFX appli-
cation. From now on, we will not list the main method in our JavaFX source code for brevity.

By default, the user can resize the stage. To prevent the user from resizing the stage, invoke
stage.setResizable(false).

14.3.1

14.3.2

How do you define a JavaFX main class? What is the signature of the start
method? What is a stage? What is a primary stage? Is a primary stage automatically
created? How do you display a stage? Can you prevent the user from resizing the
stage? Can you replace Application.Taunch (args) by Taunch(args) in
line 22 in Listing 14.1?

Show the output of the following JavaFX program:

import javafx.application.Application;
import javafx.stage.Stage;

public class Test extends Application {
public Test() {
System.out.printin("Test constructor is invoked");

}

16/09/19 8:13 PM

mnawahdah
Highlight

https://students-hub.com

14.4 Panes, Groups, Ul Controls, and Shapes 545

@Override // Override the start method in the Application class
public void start(Stage primaryStage) ({
System.out.println("start method is invoked");

}

public static void main(String[] args) {
System.out.println("launch application");
Application.Tlaunch(args);

}
}

4.4 Panes, Groups, Ul Controls, and Shapes

Panes, Groups, Ul controls, and shapes are subtypes of Node.

When you run MyJavaFX in Listing 14.1, the window is displayed as shown in Figure 14.1. The

Ke
button is always centered in the scene and occupies the entire window no matter how you resize P(Z’int
it. You can fix the problem by setting the position and size properties of a button. However, a better
approach is to use Containerclasses;calledpanesyforautomaticallyllaying out themodesing pane
(desiredlocation'and'sizeé: You place nodes inside a pane then place the pane into a scene.A70dé node
is a visual component such as a shape, an image view, a UI control, a group, or a pane. A shape shape
refers to a text, line, circle, ellipse, rectangle, arc, polygon, polyline, and so on. A UI control refers Ul control
(automatically apply toall'the childreninthe group) A scene can be displayed in a stage, as shown
in Figure 14.3a. The relationship among Stage, Scene, Node, Control, Group, and Pane is group

illustrated in the UML diagram, as shown in Figure 14.3b. Note a Scene can contain a Contro1,
Group, or a Pane, but not a Shape or an ImageView. A Pane or a Group can contain any subtype
of Node. You can create a Scene using the constructor Scene (Parent, width, height) or
Scene (Parent). The dimension of the scene is automatically decided in the latter constructor.
Every subclass of Node has a no-arg constructor for creating a default node.

Listing 14.3 gives a program that places a button in a pane, as shown in Figure 14.4.

Stage
1
1

@ Scene I

— Node |<|—

Shapes such as Line, Circle,
— Shape | Ellipse, Rectangle, Arc,
Polygon, Polyline, and Text are

subclasses of Shape.

— ImageView I For displaying an image.
Ul controls such as Label,
— Control |

TextField, Button, CheckBox,
RadioButton, and TextArea are
subclasses of Control.

—— FlowPane I

— Group I

[<— Stage
L—— GridPane I
L1 Parent
Scene Iq
Parent —— BorderPane |

(Pane, Group, Control)
— Pane

— HBox |
— VBox |
—— StackPane I

Nodes *

L]
L]

(a) (b)

FIGURE 14.3 (a) Panes and groups are used to hold nodes. (b) Nodes can be shapes, image views, Ul controls, groups,
and panes.

M14_LIAN9966_12_SE_C14.indd 545 16/09/19 8:13 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

546 Chapter 14 JavaFX Basics

create a pane
add a button
add pane to scene

display stage

main method omitted

Observablelist

M14_LIAN9966_12_SE_C14.indd 546

STUDENTS-HUB.com

LisTING 14.3 ButtonInPane.java

1 import javafx.application.Application;

2 import javafx.scene.Scene;

3 import javafx.scene.control.Button;

4 import javafx.stage.Stage;

5 import javafx.scene.layout.StackPane;

6

7 public class ButtonInPane extends Application {

8 @Override // Override the start method in the Application class
9 public void start(Stage primaryStage) {

10 /| Create a scene and place a button in the scene

11 StackPane pane = new StackPane();

12 pane.getChildren().add(new Button("0K"));

13 Scene scene = new Scene(pane, 200, 50);

14 primaryStage.setTitle("Button in a pane”); // Set the stage title
15 primaryStage.setScene(scene); // Place the scene in the stage
16 primaryStage.show(); // Display the stage

17 }

18 }

® O O Button in a pane "

FIGURE 14.4 A button is placed in the center of the pane.

The program creates a StackPane (line 11) and adds a button as a child of the pane (line
12). The getChildren() method returns an instance of javafx.collections
.ObservableList. ObservableList behaves very much like an ArrayList for storing a
collection of elements. Invoking add (e) adds an element to the list. The StackPane places
the nodes in the center of the pane on top of each other. Here, there is only one node in the
pane. The StackPane respects a node’s preferred size. Therefore, you see the button displayed
in its preferred size.

Along with many other constructors, each pane and group have a no-arg constructor, and
also a constructor that adds one or more children to the pane or group. Thus, the code in lines 11
and 12 can be replaced using one statement:

StackPane pane = new StackPane(new Button("0K"));

Listing 14.4 gives an example that displays a circle in the center of the pane, as shown in
Figure 14.5a.

LISTING 14.4 ShowCircle.java

1 import javafx.application.Application;
2 import javafx.scene.Scene;

3 import javafx.scene.layout.Pane;

4 import javafx.scene.paint.Color;

5 import javafx.scene.shape.Circle;

6 import javafx.stage.Stage;
7
8
9
0

public class ShowCircle extends Application {
@Override // Override the start method in the Application class

1 public void start(Stage primaryStage) {

16/09/19 8:13 PM

https://students-hub.com

14.4 Panes, Groups, Ul Controls, and Shapes 547

11 /| Create a circle and set its properties
12 Circle circle = new Circle(); create a circle
13 circle.setCenterX(100); set circle properties
14 circle.setCenterY(100);
15 circle.setRadius(50);
16 circle.setStroke(Color.BLACK) ;
17 circle.setFill1(Color .WHITE);
18
19 /1 Create a pane to hold the circle
20 Pane pane = new Pane(); create a pane
21 pane.getChildren().add(circle); add circle to pane
22
23 /| Create a scene and place it in the stage
24 Scene scene = new Scene(pane, 200, 200); add pane to scene
25 primaryStage.setTitle("ShowCircle"); // Set the stage title
26 primaryStage.setScene(scene); // Place the scene in the stage
27 primaryStage.show(); // Display the stage display stage
28 }
29 } main method omitted
® O O ShowCircle "l ® O O ShowCir... ™
00— 0.0 —"]
(100, 100) = (100, 100) —

(a) (b)

FIGURE 14.5 (a) A circle is displayed in the center of the scene. (b) The circle is not
centered after the window is resized.

The program creates a Circle (line 12) and sets its center at (100, 100) (lines 13 and 14),
which is also the center for the scene, since the scene is created with the width and height of
200 (line 24). The radius of the circle is set to 50 (line 15). Note the measurement units for
graphics in Java are all in pixels. pixels
The stroke color (i.e., the color to draw the circle) is set to black (line 16). The fill color (i.e.,
the color to fill the circle) is set to white (line 17). You may set the color to nul1 to specify set color
that no color is set.
The program creates a Pane (line 20) and places the circle in the pane (line 21). Note the
coordinates of the upper-left corner of the pane is (0, 0) in the Java coordinate system, as shown
in Figure 14.6a, as opposed to the conventional coordinate system, where (0, 0) is at the center
of the window, as shown in Figure 14.6b. The x-coordinate increases from left to right, and the
y-coordinate increases downward in the Java coordinate system.
The pane is placed in the scene (line 24) and the scene is set in the stage (line 26). The
circle is displayed in the center of the stage, as shown in Figure 14.5a. However, if you
resize the window, the circle is not centered, as shown in Figure 14.5b. In order to display
the circle centered as the window resizes, the x- and y-coordinates of the circle center need
to be reset to the center of the pane. This can be done by using property binding, introduced
in the next section.

M14_LIAN9966_12_SE_C14.indd 547 @ 16/0919 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

548 Chapter 14 JavaFX Basics

= Y axis
(0, 0) X axis
v
(x, y)
A 0,0 X axis
Java Coordinate Conventional
System Coordinate
System

Y axis

(a) b

FIGURE 14.6 The Java coordinate system is measured in pixels, with (0, 0) atits
upper-left corner.

ﬁeck 14.4.1 How do you create a Scene object? How do you set a scene in a stage? How do you
Point place a circle into a scene?

14.4.2 What is a pane? What is a node? How do you place a node in a pane? Can you
directly place a Shape or an ImageView into a Scene? Can you directly place a
Control ora Pane into a Scene?

14.4.3 How do you create a Circle? How do you set its center location and radius? How
do you set its stroke color and fill color?

14.4.4 How do you replace the code in lines 20 and 21 in Listing 14.4 using one
@ statement?

[4.5

You can bind a target object to a source object. A change in the source object will be
«automatically reflected in the target object.
Key

target object Point ™ JavaFX introduces a new concept called property binding that enables a target object to be
source object bound to a source object. If the value in the source object changes, the target object is also
binding object automatically changed. The target object is called a binding object or a binding property, and
binding property (thessourceobjectiscalledavindableiobjectorobservableiobject, As discussed in Listing 14.4,
bindable object ShowCircle.java, the circle is not centered after the window is resized. In order to display the
observable object circle centered as the window resizes, the x- and y-coordinates of the circle center need to be

reset to the center of the pane. This can be done by binding the centerX with pane’s width/2

and centerY with pane’s height/2, as given in lines 16-17 Listing 14.5.

LisTING 14.5 ShowCircleCentered.java
VideoNote import javafx.application.Application;

1
Understand property binding 2 import javafx.scene.Scene;
3 import javafx.scene.layout.Pane;
4 import javafx.scene.paint.Color;
5 1import javafx.scene.shape.Circle;
6 import javafx.stage.Stage;
7
8 public class ShowCircleCentered extends Application {
9 @Override // Override the start method in the Application class
10 public void start(Stage primaryStage) {

M14_LIAN9966_12_SE_C14.indd 548 @ 16/09/19 8:13 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

14.5 Property Binding 549

11 /| Create a pane to hold the circle

12 Pane pane = new Pane();

13

14 /| Create a circle and set its properties

15 Circle circle = new Circle();

16 circle.centerXProperty().bind(pane.widthProperty().divide(2));
17 circle.centerYProperty().bind(pane.heightProperty().divide(2));
18 circle.setRadius(50);

19 circle.setStroke(Color.BLACK);

20 circle.setFill(Color.WHITE);

21 pane.getChildren() .add(circle); // Add circle to the pane

22

23 /| Create a scene and place it in the stage

24 Scene scene = new Scene(pane, 200, 200);

25 primaryStage.setTitle("ShowCircleCentered"); // Set the stage title
26 primaryStage.setScene(scene); // Place the scene in the stage
27 primaryStage.show(); // Display the stage

28 }

29 }

The Circle class has the centerX property for representing the x-coordinate of the
circle center. This property like many properties in JavaFX classes can be used both as
target and source in a property binding. A binding property is an object that can be bound
to a source object. A target listens to the changes in the source and automatically updates
itself once a change is made in the source. A target binds with a source using the bind
method as follows:

‘target.bind(source);
‘The bind method is defined in the javafx.beans.property.Property interface. A

binding property is an instance of javafx.beans.property.Property. An observable
source object is an instance of the javafx.beans.value.ObservableValue interface.

‘An ObservableValue is an entity that wraps a value and allows to observe the value for
changes.

A binding property is an object. JavaFX defines binding properties for primitive types and
strings. For a double/fToat/Tong/int/boolean value, its binding property type is Dou-
bleProperty/FloatProperty/LongProperty/IntegerProperty/BooleanProperty,
respectively. For a string, its binding property type is StringProperty. These properties are
(@lso'subtypesof ObservableValue) Therefore, they can be used as both source and target in
a binding.

By convention, each binding property (e.g., centerX) in a JavaFX class (e.g., Circle) has
a getter (e.g., getCenterX()) and setter (e.g., setCenterX(double)) method for returning
and setting the property’s value. It also has a getter method for returning the property itself.
The naming convention for this method is the property name followed by the word Property.
For example, the property getter method for centerX is centerXProperty (). We call the
getCenterX() method as the value getter method, the setCenterX(double) method as
the value setter method, and centerXProperty () as the property getter method. Note
getCenterX() returns a double value, and centerXProperty () returns an object of the
DoubleProperty type. Figure 14.7a shows the convention for defining a binding property in
a class, and Figure 14.7b shows a concrete example in which centerX is a binding property
of the type Doub1eProperty.

The program in Listing 14.5 is the same as in Listing 14.4 except that it binds circle’s
centerX and centerY properties to half of pane’s width and height (lines 16 and 17). Note
circle.centerXProperty () returns centerX and pane.widthProperty () returns

M14_LIAN9966_12_SE_C14.indd 549 @

STUDENTS-HUB.com

create a pane

create a circle

bind properties

add circle to pane

add pane to scene

display stage

main method omitted

the Property interface

the ObservableValue
interface

common binding properties

common ObservableValue
objects

value getter method
value setter method

property getter method

16/09/19 8:13 PM

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

550 Chapter 14 JavaFX Basics

public class SomeClassName {
private PropertyType x;

/** Value getter method */
public propertyValueType getX() { ... }

/** Value setter method */
public void setX (propertyValueType value)

/** Property getter method */
public PropertyType xProperty() { ... }

(...

public class Circle {
private DoubleProperty centerX;

/** Value getter method */
public double getCenterX() { ... }

/** Value setter method */
public void setCenterX (double value) { ... }

/** Property getter method */
public DoubleProperty centerXProperty() { ... }

(a) X is a binding property

(b) centerX is binding property in the Circle class

FIGURE 14.7 A binding property has a value getter method, setter method, and property getter method.

create a DoubleProperty
create a DoubleProperty
bind property

set a new source value

2

M14_LIAN9966_12_SE_C14.indd 550

STUDENTS-HUB.com

width. Both centerX and width are binding properties of the DoubTleProperty type. The
‘numeric binding property classes such as DoubleProperty and IntegerProperty contain
the add, subtract, multiply, and divide methods for adding, subtracting, multiplying,
and dividing a value in a binding property and returning a new observable property. Therefore.

pane.widthProperty () .divide(2) returns a new observable property that represents half
of the pane’s width. The statement

circle.centerXProperty().bind(pane.widthProperty().divide(2));
is the same as

DoubleProperty centerX = circle.centerXProperty();
DoubleProperty width = pane.widthProperty();
centerX.bind(width.divide(2));

Listing 14.6 gives another example that demonstrates bindings.

LISTING 14.6 BindingDemo.java

import javafx.beans.property.DoubleProperty;
import javafx.beans.property.SimpleDoubleProperty;

1
2
3
4 public class BindingDemo ({

5 public static void main(String[] args) {

6 DoubleProperty d1 = new SimpleDoubleProperty(1);
7 DoubleProperty d2 = new SimpleDoubleProperty(2);
8 d1.bind(d2);

9 System.out.println("d1 is " + d1.getValue()
10 + " and d2 is " + d2.getValue());

11 d2.setValue(70.2);

12 System.out.printin("d1 is " + d1.getValue()
13 + " and d2 is " + d2.getValue());

14 }

15 }

d1 is 2.0 and d2 is 2.0
d1 is 70.2 and d2 is 70.2

16/09/19 8:13 PM

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

4.6 Common Properties and Methods for Nodes 551

The program creates an instance of DoubleProperty using Simp1eDoubleProperty (1)
(line 6). Note that DoubleProperty, FloatProperty, LongProperty,
IntegerProperty, and BooleanProperty are abstract classes. Their concrete sub-
classes SimpleDoubleProperty, SimpleFloatProperty, SimpleLongProperty,
SimpleIntegerProperty, and SimpleBooleanProperty are used to create instances of
these properties. These classes are very much like wrapper classes Double, Float, Long,
Integer, and Boolean with additional features for property binding.

The program binds d1 with d2 (line 8). Now the values in d1 and d2 are the same. After
setting d2 to 70.2 (line 11), d1 also becomes 70. 2 (line 13).

The binding demonstrated in this example is known as unidirectional binding. Occasionally,
it is useful to synchronize two properties so a change in one property is reflected in another
object, and vice versa. This is called a bidirectional binding. If the target and source are both
binding properties and observable properties, they can be bound bidirectionally using the
bindBidirectional method.

14.5.1 What is a binding property? What interface defines a binding property? What inter-
face defines a source object? What are the binding object types for int, Tong,
float, double, and boolean? Are Integer and Doub1e binding properties? Can
Integer and Doub1e be used as source objects in a binding?

14.5.2 Following the JavaFX binding property naming convention, for a binding property
named age of the IntegerProperty type, what is its value getter method, value
setter method, and property getter method?

14.5.3 Can you create an object of IntegerProperty using new IntegerProperty(3)?
If not, what is the correct way to create it? What will be the output if line 8 is replaced
by d1.bind(d2.multiply(2)) in Listing 14.6? What will be the output if line 8
is replaced by d1.bind (d2.add (2)) in Listing 14.6?

14.5.4 What is unidirectional binding and what is bidirectional binding? Are all binding
properties capable of bidirectional binding? Write a statement to bind property d1
with property d2 bidirectionally.

14.6 Common Properties and Methods for Nodes

Nodes share many common properties. (hiSiSectionintroduces twoisuchipropertiesstyle
and rotate.

JavaFX style properties are similar to cascading style sheets (CSS) used to specify the styles
(for HTML elementsin'a Webpage) Therefore, the style properties in JavaFX are called JavaFX
CSS. In JavaFX, a style property is defined with a prefix —fx-. Each node has its own style

properties. You can find these properties at @GESIORaCISCOmYjavalx/2/api/javaix/scene/deeHiles/)
(@sstefihtml For information on HTML and CSS, see Supplements V.A and V.B. If you are not

familiar with HTML and CSS, you can still use JavaFX CSS.
The syntax for setting a style is styTeName: value. Multiple style properties for a node
can be set together separated by semicolon (;). For example, the following statement:

sets two JavaFX CSS properties for a circle. This statement is equivalent to the following two
statements:

circle.setStroke(Color.BLACK) ;
circle.setFill1(Color.RED);

If an incorrect JavaFX CSS is used, your program will still compile and run, but the style
will be ignored.

M14_LIAN9966_12_SE_C14.indd 551 @

STUDENTS-HUB.com

unidirectional binding

bidirectional binding

ﬁeck
Point

&
P

oint

JavaFX CSS

setStyle

16/09/19 8:13 PM

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

552 Chapter 14 JavaFX Basics

rotate the pane
set style for pane

®

main method omitted

contains method
setScaleX method
setScaleY method

ﬁeck
Point

M14_LIAN9966_12_SE_C14.indd 552

STUDENTS-HUB.com

The rotate property enables you to specify an angle in degrees for rotating a node from its
center. If the degree is positive, the rotation is performed clockwise; otherwise, it is performed
counterclockwise. For example, the following code rotates a button 80 degrees:

button.setRotate(80);

Listing 14.7 gives an example that creates a button, sets its style, and adds it to a pane. It
then rotates the pane 45 degrees and sets its style with border color red and background color
light gray, as shown in Figure 14.8.

LisTING 14.7 NodeStyleRotateDemo.java

1 1import javafx.application.Application;

2 import javafx.scene.Scene;

3 import javafx.scene.control.Button;

4 import javafx.stage.Stage;

5 import javafx.scene.layout.StackPane;

6

7 public class NodeStyleRotateDemo extends Application {

8 @Override // Override the start method in the Application class
9 public void start(Stage primaryStage) {

10 /| Create a scene and place a button in the scene

11 StackPane pane = new StackPane();

12 Button btOK = new Button("OK");

13 btOK.setStyle("-fx-border-color: blue;");

14 pane.getChildren().add(btOK);

15

16 pane.setRotate(45);

17 pane.setStyle(

18 "—fx-border-color: red; —-fx-background-color: Tlightgray;");
19
20 Scene scene = new Scene(pane, 200, 250);
21 primaryStage.setTitle("NodeStyleRotateDemo"); // Set the stage title
22 primaryStage.setScene(scene); // Place the scene in the stage
23 primaryStage.show(); // Display the stage
24 }
25 }

® O O NodeStyleRotateDemo ™

FIGURE 14.8 A pane’s style is set and the pane is rotated 45 degrees.

As seen in Figure 14.8, rotating a pane causes all its containing nodes rotated as well.

The Node class contains many useful methods that can be applied to all nodes. For example,
you can use the contains (double x, double y) method to test whether a point (x, y) is
inside the boundary of a node and use the setScaleX(double scale) and
setScaleY (double scale) methods to scale a node.

14.6.1 How do you set a style of a node with border color red? Modify the code to set the
text color for the button to red.

14.6.2 Can you rotate a pane, a text, or a button? Modify the code to rotate the button 15
degrees counterclockwise? How do you test if a point is inside a node? How do you
scale up or down a node?

16/09/19 8:13 PM

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

14.7 The Color Class 553

14.7 The Color Class

The Color class can be used to create colors.

JavaFX defines the abstract Paint class for painting a node. The javafx.scene.paint.Color

Key
is a concrete subclass of Paint, which is used to encapsulate colors, as shown in Figure 14.9. Point
The getter methods for property
values are provided in the class, but
omitted in the UML diagram for brevity.
-red: double The red value of this color (between 0.0 and 1.0).
—green: double The green value of this color (between 0.0 and 1.0).
-blue: double The blue value of this color (between 0.0 and 1.0).
—opacity: double The opacity of this color (between 0.0 and 1.0).
+Color (r: double, g: double, b: Creates a Color with the specified red, green, blue, and opacity values.
double, opacity: double)
+brighter(): Color Creates a Color that is a brighter version of this Color.
+darker () : Color Creates a Color that is a darker version of this Color.
tcolor(r: double, g: double, b: Creates an opaque Color with the specified red, green, and blue values.
double) : Color
tcolor(r: double, g: double, b: Creates a Color with the specified red, green, blue, and opacity values.
double, opacity: double): Color
trgb(r: int, g: int, b: int): Creates a Color with the specified red, green, and blue values in the
Color range from O to 255.
trgb(r: int, g: int, b: int, Creates a Color with the specified red, green, and blue values in the
opacity: double): Color range from O to 255 and a given opacity.
FIGURE 14.9 Color encapsulates information about colors.
A color instance can be constructed using the following constructor:
public Color (double r, double g, double b, double opacity);
in which r, g, and b specify a color by its red, green, and blue components with values in the
range from 0. 0 (darkest shade) to 1.0 (lightest shade). The opaci ty value defines the trans-
parency of a color within the range from 0.0 (completely transparent) to 1.0 (completely
opaque). This is known as the RGBA model, where RGBA stands for red, green, blue, and RBGA model

alpha. The alpha value indicates the opacity. For example,

Color color = new Color(0.25, 0.14, 0.333, 0.51);

For an interactive demo, see liveexample.pearsoncmg.com/dsanimation/FigureSection14_7
html.

The CoTlor class is immutable. Once a Color object is created, its properties cannot be
changed. The brighter () method returns a new Color with a larger red, green, and blue
values, and the darker () method returns a new Color with a smaller red, green, and blue
values. The opacity value is the same as in the original Color object.

You can also create a Color object using the static methods color (r, g, b),color(r,
g, b, opacity), rgb(r, g, b),and rgb(r, g, b, opacity).

Alternatively, you can use one of the many standard colors such as BEIGE, BLACK, BLUE,
BROWN, CYAN, DARKGRAY, GOLD, GRAY, GREEN, LIGHTGRAY, MAGENTA, NAVY, ORANGE, PINK,
RED, SILVER, WHITE, and YELLOW defined as constants in the Color class. The following
code, for instance, sets the fill color of a circle to red:

circle.setFill1(Color.RED);

M14_LIAN9966_12_SE_C14.indd 553 @

STUDENTS-HUB.com

16/09/19 8:13 PM

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

554 Chapter 14 JavaFX Basics

ﬁeck
Point

Key
Point

-size: double The size of this font.

-name: String

14.7.1 How do you create a color? What is wrong about creating a Color using new
Color (1.2, 2.3, 3.5, 4)?Which of two colors is darker, new Color (0, 0,
0, 1) ornew Color(1, 1, 1, 1)? Does invoking c.darker () change the
color value in c?

14.7.2 How do you create a Color object with a random color?

14.7.3 How do you set a circle object ¢ with blue fill color using the setFi11 method and
the setSty1e method?

14.8 The Font Class

A Font describes font name, weight, and size.

You can set fonts for rendering the text. The javafx.scene.text.Font class is used to
create fonts, as shown in Figure 14.10.

A Font instance can be constructed using its constructors or using its static methods. A
Font is defined by its name, weight, posture, and size. Times New Roman, Courier, and Arial
are examples of font names. You can obtain a list of available font family names by invoking
the static getFontNames () method. This method returns List<String>. List is an inter-
face that defines common methods for lists. ArrayList, introduced in Section 11.11, is a
concrete class that implements List. There are two font postures defined as constants in the
FontPosture class: FontPosture.ITALIC and FontPosture.REGULAR.

Font font1 new Font ("SansSerif", 16);
Font font2 = Font.font("Times New Roman", FontWeight.BOLD,
FontPosture.ITALIC, 12);

Listing 14.8 gives a program that displays a label using the font (Times New Roman, bold,
italic, and size 20), as shown in Figure 14.11.

The getter methods for property
values are provided in the class, but

The name of this font.

—family: String The family of this font.

+Font (size: double) Creates a Font with the specified size.

+Font (name: String, size: Creates a Font with the specified full font name and size.
double)

+font (name: String, size: Creates a Font with the specified name and size.
double)

+font (name: String, w

Creates a Font with the specified name, weight, and size.

FontWeight,

size: double)

t+font (name: String, w: FontWeight, Creates a Font with the specified name, weight, posture, and size.

p: FontPosture, size: double)

t+getFontNames () :

List<String>

Returns a list of all font names installed on the user system.

FIGURE 14.10 Font encapsulates information about fonts.

M14_LIAN9966_12_SE_C14.indd 554

STUDENTS-HUB.com

LIsTING 14.8 FontDemo.java

import javafx.application.Application;
import javafx.scene.Scene;

import javafx.scene.layout.*;

import javafx.scene.paint.Color;

A ON -

16/09/19 8:13 PM

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

[4.8 The Font Class 555

5 import javafx.scene.shape.Circle;
6 import javafx.scene.text.*;
7 import javafx.scene.control.*;
8 import javafx.stage.Stage;
9
10 public class FontDemo extends Application {
11 @Override // Override the start method in the Application class
12 public void start(Stage primaryStage) {
13 /1 Create a pane to hold the circle
14 Pane pane = new StackPane(); create a StackPane
15
16 /| Create a circle and set its properties
17 Circle circle = new Circle(); create aCircle
18 circle.setRadius(50);
19 circle.setStroke(Color.BLACK) ;
20 circle.setFill(new Color (0.5, 0.5, 0.5, 0.1)); create a Color
21 pane.getChildren().add(circle); // Add circle to the pane add circle to the pane
22
23 /| Create a label and set its properties
24 Label l1abel = new Label("JavaFX"); create a 1abel
25 Tabel.setFont (Font.font("Times New Roman", create a font
26 FontWeight.BOLD, FontPosture.ITALIC, 20));
27 pane.getChildren().add(1abel); add label to the pane
28
29 /'l Create a scene and place it in the stage
30 Scene scene = new Scene(pane);
31 primaryStage.setTitle("FontDemo"); // Set the stage title
32 primaryStage.setScene(scene); // Place the scene in the stage
33 primaryStage.show(); // Display the stage
® 34}
35 } main method omitted

® O O FontDemo "

FIGURE 14.11 A label is on top of a circle displayed in the center of the scene.

The program creates a StackPane (line 14) and adds a circle and a label to it (lines 21 and
27). These two statements can be combined using the following one statement:

pane.getChildren().addA11(circle, Tabel);

A StackPane places the nodes in the center and nodes are placed on top of each other. A
custom color is created and set as a fill color for the circle (line 20). The program creates a
label and sets a font (line 25) so that the text in the label is displayed in Times New Roman,
bold, italic, and 20 pixels.

As you resize the window, the circle and label are displayed in the center of the window
because the circle and label are placed in the stack pane. Stack pane automatically places nodes
in the center of the pane.

A Font object is immutable. Once a Font object is created, its properties cannot be changed.

heck

14.8.1 How do you create a Font object with font name Courier, size 20, and weight bo1d? l
Point

14.8.2 How do you find all available fonts on your system?

M14_LIAN9966_12_SE_C14.indd 555 @ 16/0919 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

556 Chapter 14 JavaFX Basics

14.9 The Image and ImageView Classes

The Image class represents a graphical image, and the ImageV1iew class can be used

to display an image.
Key o . .
Point The javafx.scene.image. Image class represents a graphical image and is used for loading

u an image from a specified filename or a URL. For example, new Image ("image/us.gif")
creates an Image object for the image file us.gif under the directory image in the Java
class directory and new Image ("http://1iveexample.pearsoncmg.com/book/image/
us.gif") creates an Image object for the image file in the URL on the Web.
The javafx.scene.image . ImageView is a node for displaying an image. An ImageView
can be created from an Image object. For example, the following code creates an ImageView
from an image file:

VideoNote

Use Image and ImageView

Image image = new Image("image/us.gif");
ImageView imageView = new ImageView(image);

Alternatively, you can create an ImageView directly from a file or a URL as follows:
ImageView imageView = new ImageView("image/us.gif");

The UML diagrams for the Image class and ImageV1iew classes are illustrated in Figures 14.12
and 14.13.

The getter methods for property
@ values are provided in the class, but
omitted in the UML diagram for brevity.

—error: ReadOnlyBooleanProperty Indicates whether the image is loaded correctly?

~height: ReadOnlyDoubleProperty The height of the image.

-width: ReadOnlyDoubleProperty The width of the image.

-progress: ReadOnlyDoubleProperty The approximate percentage of image’s loading that is completed.
+Image (filenameOrURL: String) Creates an Image with contents loaded from a file or a URL.

FIGURE 14.12 Image encapsulates information about images.

The getter and setter methods for property \
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

—fitHeight: DoubleProperty

—fitWidth: DoubleProperty The width of the bounding box within which the image is resized to fit.
-x: DoubleProperty The x-coordinate of the ImageView origin.

-y: DoubleProperty The y-coordinate of the ImageView origin.

—image: ObjectProperty<Image> The image to be displayed in the image view.

+ImageView () Creates an ImageView.

+ImageView (image: Image) Creates an ImageView with the specified image.

+ImageView (filenameOrURL: String) Creates an ImageView with image loaded from the specified file or URL.

FIGURE 14.13 ImageView is a node for displaying an image.

M14_LIAN9966_12_SE_C14.indd 556 @ 16/09/19 8:13 PM

STUDENTS-HUB.com

mnawahdah
Highlight

BelalHamdeh
Highlight

https://students-hub.com

14.9 The Image and ImageView Classes 557

Listing 14.9 displays an image in three image views, as shown in Figure 14.14.

LISTING 14.9 ShowImage.java

O~NO O~ WN =

-
o ©

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

FIGURE 14.14 An image is displayed in three image views placed in a pane. Source: booka/Fotolia.

import javafx.application.Application;
import javafx.scene.Scene;

import javafx.scene.layout.HBox;
import javafx.scene.layout.Pane;
import javafx.geometry.Insets;

import javafx.stage.Stage;

import javafx.scene.image.Image;
import javafx.scene.image.ImageView;

public class ShowImage extends Application {
@Override // Override the start method in the Application class
public void start(Stage primaryStage) {
/| Create a pane to hold the image views
Pane pane = new HBox(10);
pane.setPadding(new Insets(5, 5, 5, 5));
Image image = new Image("image/us.gif");
pane.getChildren() .add(new ImageView(image));

ImageView imageView2 = new ImageView(image) ;
imageView2.setFitHeight(100);
imageView2.setFitWidth(100);
pane.getChildren() .add(imageView2) ;

ImageView imageView3 = new ImageView(image) ;
imageView3.setRotate (90);
pane.getChildren() .add(imageView3) ;

/| Create a scene and place it in the stage

Scene scene = new Scene(pane);
primaryStage.setTitle("ShowImage"); // Set the stage title
primaryStage.setScene(scene); // Place the scene in the stage
primaryStage.show(); // Display the stage

Showlmage

The program creates an HBox (line 14). An HBox is a pane that places all nodes horizontally
in one row. The program creates an Image, then an ImageV1iew for displaying the image, and

places the ImageView in the HBox (line 17).

The program creates the second ImageView (line 19), sets its fitHeight and fitWidth
properties (lines 20 and 21), and places the ImageV1iew into the HBox (line 22). The program
creates the third ImageView (line 24), rotates it 90 degrees (line 25), and places it into the
HBox (line 26). The setRotate method is defined in the Node class and can be used for any
node. Note an Image object can be shared by multiple nodes. In this case, it is shared by three
ImageView. However, a node such as ImageView cannot be shared. You cannot place an

ImageView multiple times into a pane or scene.

M14_LIAN9966_12_SE_C14.indd 557 @

STUDENTS-HUB.com

create an HBox

create an image
add an image view to pane

create an image view
set image view properties

add an image to pane
create an image view

rotate an image view
add an image to pane

main method omitted

16/09/19 8:13 PM

https://students-hub.com

558 Chapter 14 JavaFX Basics

Note you must place the image file in the same directory as the class file, as shown in the
following figure.

Directoryl

ShowImage.class

image I

If you use the URL to locate the image file, the URL protocol http:// must be present.
Therefore, the following code is wrong:

new Image("1iveexample.pearsoncmg.com/book/image/us.gif");
It must be replaced by
new Image("http://1iveexample.pearsoncmg.com/book/image/us.gif");

ﬁeck 14.9.1 How do you create an Image from a URL or a filename?
Point 14.9.2 How do you create an ImageView from an Image or directly from a file or a URL?

14.9.3 Can you set an Image to multiple ImageViews? Can you display the same
ImageV1iew multiple times?

14.10 Layout Panes and Groups

location and size.
Key
Point ™ Panes and groups are the containers for holding nodes. The Group class is often used to group
D modesiandstorperformutransformationiandiscalerasiagroupy Panes and UI control objects are
resizable, but group, shape, and text objects are not resizable. JavaFX provides many types of

VideoNote panes for organizing nodes in a container, as shown in Table 14.1. You have used the layout

Use layout panes panes Pane, StackPane, and HBox in the preceding sections for containing nodes. This sec-
tion introduces the panes in more details.

TABLE 14.1 Panes for Containing and Organizing Nodes

Class Description

IIIIII :
@ I|||||||

M14_LIAN9966_12_SE_C14.indd 558 16/09/19 8:13 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

BelalHamdeh
Highlight

https://students-hub.com

[4.10 Layout Panes and Groups 559

You have used the Pane in Listing 14.4, ShowCircle.java. A Pane is usually used as a
canvas for displaying shapes. Pane is the base class for all specialized panes. You have used
a specialized pane StackPane in Listing 14.3, ButtonInPane.java. Nodes are placed in the
center of a StackPane. Each pane contains a list for holding nodes in the pane. This list is an
instance of ObservableList, which can be obtained using pane’s getChildren () method.
You can use add (node) to add an element to the list and addA11 (node1, node2, ...)
to add a variable number of nodes.

14.10. FlowPane
FlowPane arranges the nodes in the pane horizontally from left to right, or vertically from
top to bottom, in the order in which they were added. When one row or one column is filled,
‘a new row or column is started. You can specify the way the nodes are placed horizontally
oor vertically using one of two constants: Orientation.HORIZONTAL or Orientation.

VERTICAL. You can also specify the gap between the nodes in pixels. The class diagram for

FlowPane is shown in Figure 14.15.

Data fields alignment, orientation, hgap, and vgap are binding properties. Recall
that each binding property in JavaFX has a getter method (e.g., getHgap ()) that returns its
value, a setter method (e.g., setHGap (double)) for setting a value, and a getter method that
returns the property itself (e.g., hgapProperty ()). For a data field of ObjectProperty<T>
type, the value getter method returns a value of type T, and the property getter method returns
a property value of type ObjectProperty<T>.

The getter and setter methods for property
values and a getter for property itself are provided

ObservablelList
getChildren()

in the class, but omitted in the UML diagram for brevity.

-EEGHRSREE) ObjectProperty<Pos> The overall alignment of the content in this pane (default: Pos.LEFT).

ObjectProperty<Orientation>

The orientation in this pane (default: Orientation. HORIZONTAL).

-hgap: DoubleProperty The horizontal gap between the nodes (default: 0).

—-vgap: DoubleProperty The vertical gap between the nodes (default: 0).

+FlowPane () Creates a default FlowPane.

+FlowPane (hgap: double, vgap: Creates a FlowPane with a specified horizontal and vertical gap.
double)

+FlowPane (orientation: Creates a FlowPane with a specified orientation.
ObjectProperty<Orientation>)

+FlowPane (orientation: Creates a FlowPane with a specified orientation, horizontal gap and
ObjectProperty<Orientation>, vertical gap.

hgap: double, vgap: double)

FIGURE 14.15 FlowPane lays out nodes row-by-row horizontally or column-by-column vertically.

Listing 14.10 gives a program that demonstrates F1owPane. The program adds labels and
text fields to a FlowPane, as shown in Figure 14.16.

LISTING 14.10 ShowFlowPane.java

import javafx.application.Application;
import javafx.geometry.Insets;

import javafx.scene.Scene;

import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.FlowPane;
import javafx.stage.Stage;

~NOoO O~ WN =

M14_LIAN9966_12_SE_C14.indd 559 @

STUDENTS-HUB.com

16/09/19 8:13 PM

BelalHamdeh
Highlight
محاذاة

BelalHamdeh
Highlight
اتجاه

mnawahdah
Highlight

https://students-hub.com

560 Chapter 14

extend Application

create F1owPane

add UI controls to pane

add pane to scene

place scene to stage
display stage

main method omitted

Left side —

JavaFX Basics

8
9 public class ShowFlowPane extends Application {
10 @Override // Override the start method in the Application class
11 public void start(Stage primaryStage) {
12 /| Create a pane and set its properties
13 FlowPane pane = new FlowPane();
14 pane.setPadding(new Insets(11, 12, 13, 14));
15 pane.setHgap(5) ;
16 pane.setVgap(5);
17
18 /1 Place nodes in the pane
19 pane.getChildren().addA11(new Label ("First Name:"),
20 new TextField(), new Label("MI:"));
21 TextField tfMi = new TextField();
22 tfMi.setPrefColumnCount(1);
23 pane.getChildren().addA11(tfMi, new Label("Last Name:"),
24 new TextField());
25
26 /| Create a scene and place it in the stage
27 Scene scene = new Scene(pane, 200, 250);
28 primaryStage.setTitle("ShowFlowPane"); // Set the stage title
29 primaryStage.setScene(scene); // Place the scene in the stage
30 primaryStage.show(); // Display the stage
31 }
32 }

® O O ShowFlowPane Pl ® O O ShowFlowPane ")

‘ First Name: First Name: ‘

Last Name: Last Name:

(a) (b)
FIGURE 14.16 The nodes fill in the rows in the F1owPane one after another.

The program creates a FlowPane (line 13) and sets its padding property with an Insets
object (line 14). An Insets object specifies the size of the border of a pane. The constructor
Insets (11, 12, 13, 14) creates an Insets with the border sizes for top (11), right (12),
bottom (13), and left (14) in pixels, as shown in Figure 14.17. You can also use the construc-
tor Insets(value) to create an Insets with the same value for all four sides. The hGap
and vGap properties are in lines 15 and 16 to specify the horizontal gap and vertical gap,
respectively, between two nodes in the pane, as shown in Figure 14.17.

hGap Top side

Insets: top, right, bottom, left Top side

¥ |<— Pane \\ Y |<— Pane

~¢— Right side ~«+— Right side

Left side ==

Bottom side Bottom side

FIGURE 14.17 You can specify hGap and vGap between the nodes in a F1owLPane.

M14_LIAN9966_12_SE_C14.indd 560

STUDENTS-HUB.com

16/09/19 8:13 PM

https://students-hub.com

STUDENTS-HUB.com

14.10 Layout Panes and Groups 561

Each F1owPane contains an object of ObservableList for holding the nodes. This list can
be obtained using the getChildren () method (line 19). To add a node into a F1owPane is to
add it to this list using the add (node) or addA11 (node1, node2, ...) method. You can
also remove a node from the list using the remove (node) method, or use the removeAl1 ()
method to remove all nodes from the pane. The program adds the labels and text fields into
the pane (lines 19-24). Invoking tfMi.setPrefColumnCount (1) sets the preferred column
count to 1 for the MI text field (line 22). The program declares an explicit reference tfMi for
a TextField object for MI. The explicit reference is necessary because we need to reference
the object directly to set its prefCoTumnCount property.

The program adds the pane to the scene (line 27), sets the scene in the stage (line 29), and
displays the stage (line 30). Note if you resize the window, the nodes are automatically rear-
ranged to fit in the pane. In Figure 14.16a, the first row has three nodes, but in Figure 14.16b,
the first row has four nodes because the width has been increased.

Suppose you wish to add the object tfMi to a pane 10 times; will 10 text fields appear in
the pane? No, a node such as a text field can be added to only one pane and once. Adding a
node to a pane multiple times or to different panes will cause a runtime error.

14.10.2 GridPane

‘A GridPane arranges nodes in a grid (matrix) formation. The nodes are placed in the specified
(column and row indicesi The class diagram for GridPane is shown in Figure 14.18.

The getter and setter methods for property values
and a getter for property itself are provided in the class,

but omitted in the UML diagram for brevity.

—alignment: ObjectProperty<Pos> The overall alignment of the content in this pane (default: Pos.LEFT).
-gridLinesVisible: Is the grid line visible? (default: false)
BooleanProperty
~-hgap: DoubleProperty The horizontal gap between the nodes (default: 0).
-vgap: DoubleProperty The vertical gap between the nodes (default: 0).
+GridPane () Creates a GridPane.
+add (child: Node, columnIndex: Adds a node to the specified column and row.
int, rowIndex: int): void
+addColumn (columnIndex: 1int, Adds multiple nodes to the specified column.
children: Node...): void
+addRow (rowIndex: int, Adds multiple nodes to the specified row.
children: Node...): void
tgetColumnIndex (child: Node): Returns the column index for the specified node.
int
t+setColumnIindex (child: Node, Sets a node to a new column. This method repositions the node.
columnIndex: int): void
+getRowlIndex (child:Node): int Returns the row index for the specified node.
t+setRowlndex (child: Node, Sets a node to a new row. This method repositions the node.
rowIndex: int): void
+setHalighnment (child: Node, Sets the horizontal alignment for the child in the cell.
value: HPos): void
t+setValighnment (child: Node, Sets the vertical alignment for the child in the cell.

value: VPos): void

FIGURE 14.18 GridPane lays out nodes in the specified cell in a grid.

Listing 14.11 gives a program that demonstrates GridPane. The program is similar to the
one in Listing 14.10, except that it adds three labels and three text fields, and a button to the
specified location in a grid, as shown in Figure 14.19.

M14_LIAN9966_12_SE_C14.indd 561 @

16/09/19 8:13 PM

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

562 Chapter 14 JavaFX Basics

create a grid pane
set properties

add label
add text field

add button
align button right

create a scene

display stage

main method omitted

M14_LIAN9966_12_SE_C14.indd 562

STUDENTS-HUB.com

® O O ShowGridPane % 8006 ShowGridPane 2
MI: ME:
Last Name: Last Name:
Add Name
Add Name

FIGURE 14.19 The GridPane places the nodes in a grid with a specified column and row
indices.

LIsTING 14.11 ShowGridPane. java

© oO~NOOUAWN=

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

import javafx.application.Application;
import javafx.geometry.HPos;

import javafx.geometry.Insets;

import javafx.geometry.Pos;

import javafx.scene.Scene;

import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.GridPane;
import javafx.stage.Stage;

public class ShowGridPane extends Application {
@Override // Override the start method in the Application class
public void start(Stage primaryStage) {
/1 Create a pane and set its properties
GridPane pane = new GridPane();
pane.setAlignment (Pos.CENTER) ;
pane.setPadding(new Insets(11.5, 12.5, 13.5, 14.5));
pane.setHgap(5.5);
pane.setVgap(5.5);

/1 Place nodes in the pane

pane.add(new Label("First Name:"), 0, 0);
pane.add(new TextField(), 1, 0);
pane.add(new Label ("MI:"), 0, 1);
pane.add(new TextField(), 1, 1);
pane.add(new Label("Last Name:"), 0, 2);
pane.add(new TextField(), 1, 2);

Button btAdd = new Button("Add Name");
pane.add(btAdd, 1, 3);
GridPane.setHalignment (btAdd, HPos.RIGHT);

/'l Create a scene and place it in the stage
Scene scene = new Scene(pane);
primaryStage.setTitle("ShowGridPane"); // Set the stage title
primaryStage.setScene(scene); // Place the scene in the stage
primaryStage.show(); // Display the stage
}
}

The program creates a GridPane (line 16) and sets its properties (line 17-20). The

alignment is set to the center position (line 17), which causes the nodes to be placed in the
center of the grid pane. If you resize the window, you will see the nodes remained in the center
of the grid pane.

16/09/19 8:13 PM

https://students-hub.com

14.10 Layout Panes and Groups 563

The program adds the label in column 0 and row 0 (line 23). The column and row
index starts from 0. The add method places a node in the specified column and row. Not every
cell in the grid needs to be filled. A button is placed in column 1 and row 3 (line 30), but
there are no nodes placed in column 0 and row 3. (To'femove anode from'a GridPane; use
pane.getChildren() .remove (node). To remove all nodes, use pane.getChildren() remove nodes
.removeATl ().

The program invokes the static setHalignment method to align the button right in the
cell (line 31).

Note the scene size is not set (line 34). In this case, the scene size is automatically computed
according to the sizes of the nodes placed inside the scene.

By default, the grid pane will resize rows and columns to the preferred sizes of its contents,
even if the grid pane is resized larger than its preferred size. (You may purposely setalargeé remove nodes
wvalue for the preferred width and height of its contents by invoking the setPrefWidth and = setPrefwidth
setPrefHeight methods, o the contents will be automatically stretched to fill in the grid setPrefHeignt
(pane when the grid paneiisienlarged (see Programming Exercise 14.8).

14.10.3 BorderPane

A BorderPane can place nodes in five regions: top, bottom, left, right, and center, using
the setTop (node), setBottom(node), setLeft (node), setRight (node), and
setCenter (node) methods. The class diagram for BorderPane is shown in Figure 14.20.

The getter and setter methods for property values
and a getter for property itself are provided in the class,
but omitted in the UML diagram for brevity.

—top: ObjectProperty<Node> The node placed in the top region (default: null).
-right: ObjectProperty<Node> The node placed in the right region (default: null).
-bottom: ObjectProperty<Node> The node placed in the bottom region (default: null).
-left: ObjectProperty<Node> The node placed in the left region (default: null).
-center: ObjectProperty<Node> The node placed in the center region (default: null).
+BorderPane () Creates a BorderPane.
+BorderPane (node: Node) Creates a Borde rPane with the node placed in the
+setAlignment (child: Node, pos: center of the plane.

Pos) Sets the alignment of the node in the BorderPane.

FIGURE 14.20 BorderPane places the nodes in top, bottom, left, right, and center regions.

Listing 14.12 gives a program that demonstrates BorderPane. The program places five
buttons in the five regions of the pane, as shown in Figure 14.21.

LISTING 14.12 ShowBorderPane. java

import javafx.application.Application;
import javafx.geometry.Insets;

import javafx.scene.Scene;

import javafx.scene.control.LlLabel;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;

public class ShowBorderPane extends Application {
@Override // Override the start method in the Application class

O OWoO~NOO OGO~ WN=

N

M14_LIAN9966_12_SE_C14.indd 563 @ 16/09/19 8:13 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

564 Chapter 14 JavaFX Basics

11 public void start(Stage primaryStage) {

12 /| Create a border pane
create a border pane 13 BorderPane pane = new BorderPane();
14
15 /1 Place nodes in the pane
add to top 16 pane.setTop(new CustomPane("Top"));
add to right 17 pane.setRight(new CustomPane("Right"));
add to bottom 18 pane.setBottom(new CustomPane("Bottom™));
add to left 19 pane.setlLeft(new CustomPane("Left"));
add to center 20 pane.setCenter (new CustomPane("Center™));
21
22 /| Create a scene and place it in the stage
23 Scene scene = new Scene(pane);
24 primaryStage.setTitle("ShowBorderPane"); // Set the stage title
25 primaryStage.setScene(scene); // Place the scene in the stage
26 primaryStage.show(); // Display the stage
27 }
28 }
29
30 // Define a custom pane to hold a label in the center of the pane
define a custom pane 31 class CustomPane extends StackPane {
32 public CustomPane(String title) {
add a label to pane 33 getChildren().add(new Label(title));
set style 34 setStyle("-fx-border-color: red");
set padding 35 setPadding(new Insets(11.5, 12.5, 13.5, 14.5));
36 }
main method omitted 37 }

® O O ShowBorderPane 2.

Top

Left Center Right

Bottom

FiGUuRe 14.21 The BorderPane places the nodes in five regions of the pane.

The program defines CustomPane that extends StackPane (line 31). The constructor of
CustomPane adds a label with the specified title (line 33), sets a style for the border color,
and sets a padding using insets (line 35).

The program creates a BorderPane (line 13) and places five instances of CustomPane
into five regions of the border pane (lines 16-20). Note a pane is a node. Therefore, a pane can
be added into another pane. To remove a node from the top region, invoke setTop (nulT1).
If a region is not occupied, no space will be allocated for this region.

14.10.4 HBox and VBox

An HBox lays out its children in a single horizontal row. A VBox lays out its children in a single
vertical column. Recall that a F1owPane can lay out its children in multiple rows or multiple
columns, but an HBox or a VBox can lay out children only in one row or one column. The class
diagrams for HBox and VBox are shown in Figures 14.22 and 14.23.

M14_LIAN9966_12_SE_C14.indd 564 @ 16/0919 8:13 PM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

—alignment: ObjectProperty<Pos>
—-fillHeight: BooleanProperty
—spacing: DoubleProperty

[4.10 Layout Panes and Groups 565

The getter and setter methods for property values
and a getter for property itself are provided in the class,
but omitted in the UML diagram for brevity.

+HBox ()
+HBox (spacing: double)

+setMargin (node: Node, value:
Insets) : void

The overall alignment of the children in the box (default: Pos. TOP_LEFT).
Is resizable children fill the full height of the box (default: true).

The horizontal gap between two nodes (default: 0).

Creates a default HBox.
Creates an HBox with the specified horizontal gap between nodes.

Sets the margin for the node in the pane.

FIGURE 14.22 HBox places the nodes in one row.

—alignment: ObjectProperty<Pos>
—fillwWwidth: BooleanProperty
—-spacing: DoubleProperty

The getter and setter methods for properties
values and a getter for property itself are provided in
the class, but omitted in the UML diagram for brevity.

+VBox ()
+VBox (spacing: double)

t+setMargin (node: Node, value:

Insets): void

The overall alignment of the children in the box (default: Pos. TOP_LEFT).
Is resizable children fill the full width of the box (default: true).
The vertical gap between two nodes (default: 0).

Creates a default VBox.
Creates a VBox with the specified horizontal gap between nodes.

Sets the margin for the node in the pane.

FIGURE 14.23 VBox places the nodes in one column.

Listing 14.13 gives a program that demonstrates HBox and VBox. The program places two

buttons and an image view in an HBox and five labels in a VBox, as shown in Figure 14.24.

LiIsTING 14.13 ShowHBoxVBox.java

1 import javafx.application.Application;
2 import javafx.geometry.Insets;

3 1import javafx.scene.Scene;

4 import javafx.scene.control.Button;

5 1import javafx.scene.control.Label;

6 import javafx.scene.layout.BorderPane;
7 import javafx.scene.layout.HBox;

8 1import javafx.scene.layout.VBox;

9 1import javafx.stage.Stage;

10 dimport javafx.scene.image.Image;

11 dimport javafx.scene.image.ImageView;
12

13 public class ShowHBoxVBox extends Application {

14 @Override // Override the start method in the Application class
15 public void start(Stage primaryStage) {

16 /| Create a border pane
17 BorderPane pane = new BorderPane(); create a border pane
18
M14_LIAN9966_12_SE_C14.indd 565 @ 16/09/19 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

566 Chapter 14 JavaFX Basics

19 // Place nodes in the pane
add an HBox to top 20 pane.setTop(getHBox());
add a VBox to left 21 pane.setlLeft (getVBox());
22
23 /'l Create a scene and place it in the stage
create a scene 24 Scene scene = new Scene(pane);
25 primaryStage.setTitle("ShowHBoxVBox"); // Set the stage title
26 primaryStage.setScene(scene); // Place the scene in the stage
display stage 27 primaryStage.show(); // Display the stage
28 }
29
getHBox 30 private HBox getHBox() {
31 HBox hBox = new HBox(15);
32 hBox.setPadding(new Insets(15, 15, 15, 15));
33 hBox.setStyle("-fx-background-color: gold");
add buttons to HBox 34 hBox.getChildren().add(new Button("Computer Science"));
35 hBox.getChildren().add(new Button("Chemistry"));
36 ImageView imageView = new ImageView(new Image("image/us.gif"));
37 hBox.getChildren().add(imageView) ;
return an HBox 38 return hBox;
39 }
40
getVBox 41 private VBox getVBox() {
42 VBox vBox = new VBox(15);
43 vBox.setPadding(new Insets(15, 5, 5, 5));
add a label 44 vBox.getChildren().add(new Label ("Courses"));
45
46 Label[] courses = {new Label ("CSCI 1301"), new Label("CSCI 1302"),
@ 47 new Label("CSCI 2410"), new Label("CSCI 3720")};
48
49 for (Label course: courses) {
set margin 50 VBox.setMargin(course, new Insets(0, 0, 0, 15));
add a label 51 vBox.getChildren() .add(course);
52 }
53
return vBox 54 return vBox;
55 }
main method omitted 56 }
® O 0 ShowHBoxVBox %)

Computer Science Chemistry

Courses

CsCl 1301

CsClI 1302

CsCl 2410

CsCi 3720

FiIGURE 14.24 The HBox places the nodes in one row, and the VBox places the nodes in one
column. Source: booka/Fotolia.

The program defines the getHBox () method. This method returns an HBox that contains
two buttons and an image view (lines 30-39). The background color of the HBox is set to gold
using Java CSS (line 33). The program defines the getVBox () method. This method returns a
VBox that contains five labels (lines 41-55). The first label is added to the VBox in line 44 and

M14_LIAN9966_12_SE_C14.indd 566 @ 16/0919 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

14.11 Shapes 567

the other four are added in line 51. The setMargin method is used to set a node’s margin
when placed inside the VBox (line 50).

heck

14.10.1 How do you add a node to a Pane, StackPane, FlowPane, GridPane,
BorderPane, HBox, and VBox? How do you remove a node from these panes? Point

14.10.2 How do you set the alignment to right for nodes in a F1owPane, GridPane, HBox,
and VBox?

14.10.3 How do you set the horizontal gap and vertical gap between nodes in 8 pixels in
a FlowPane and GridPane and set spacing in 8 pixels in an HBox and VBox?

14.10.4 How do you get the column and row index of a node in a GridPane? How do you
reposition a node in a GridPane?

14.10.5 What are the differences between a F1owPane and an HBox or a VBox?

[4.11 Shapes QQ
K;y

oint

VideoNote
Use shapes

fi11 property

All these are stroke property
@ subclasses of Shape, as shown in Figure 14.25. strokeWidth property

Node lq— Shape Iq—— Text |
— Line I
—— Rectangle I
— Circle |
—— Ellipse I
— Arc

—— Polygon |
—— Polyline |

FIGURE 14.25 A shape is a node. The Shape class is the root of all shape classes.

14.11.1 Text
The Text class defines a node that displays a string at a starting point (x, y), as shown in

Figure 14.27a. A Text object is usually placed in a pane. The pane’s upper-left corner point
is (0, 0) and the bottom-right point is (pane.getWidth (), pane.getHeight()). A string
may be displayed in multiple lines separated by \n. The UML diagram for the Text class is
shown in Figure 14.26. Listing 14.14 gives an example that demonstrates text, as shown in
Figure 14.27b.

M14_LIAN9966_12_SE_C14.indd 567 @ 16/09/19 8:13 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

568 Chapter 14 JavaFX Basics

The getter and setter methods for property value
and a getter for property itself are provided in the class,

—text:

StringProperty

—x: DoubleProperty

—y: DoubleProperty

—underline:

—strikethrough: BooleanProperty

—font:

ObjectProperty

BooleanProperty

Defines the text to be displayed.

Defines the x-coordinate of text (default 0).

Defines the y-coordinate of text (default 0).

Defines if each line has an underline below it (default false).
Defines if each line has a line through it (default false).
Defines the font for the text.

+Text ()

+Text (text:

+Text (x:
text:

String)

double, y:
String)

Creates an empty Text.
Creates a Tex t with the specified text.

double, Creates a Tex t with the specified x-, y-coordinates and text.

FIGURE 14.26 Text defines a node for displaying a text.

(0,

FIGURE 14.27

create a pane

create a Text

set text font

add text to pane

M14_LIAN9966_12_SE_C14.indd 568

STUDENTS-HUB.com

A
(getwidth(), 0) © O O ShowText "

Programming is fun

Programming is fun

Display text
—— text is displayed SRy
P it
Displaytext
getHeight()) (getwidth (), getHeight())

(a) Text(x,y, text)

LISTING

©oO~NOO~WN=

12 publ

import
import
import
import
import
import
import
import
import
10 import

(b) Three Text objects are displayed

A Text object is created to display a text.

14.14 ShowText.java

javafx.application.Application;
javafx.scene.Scene;
javafx.scene.layout.Pane;
javafx.scene.paint.Color;
javafx.geometry.Insets;
javafx.stage.Stage;
javafx.scene.text.Text;
javafx.scene.text.Font;
javafx.scene.text.FontWeight;
javafx.scene.text.FontPosture;

ic class ShowText extends Application {

13 @Override // Override the start method in the Application class
14 public void start(Stage primaryStage) {

/|l Create a pane to hold the texts

Pane pane = new Pane();

pane.setPadding(new Insets(5, 5, 5, 5));

Text text1 = new Text(20, 20, "Programming is fun");

text1.setFont(Font.font("Courier”™, FontWeight.BOLD,
FontPosture.ITALIC, 15));

pane.getChildren().add(text1);

16/09/19 8:13 PM

https://students-hub.com

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Text text2

pane.getChildren() .add(text2);

Text text3

text3.setFill(Color.RED);
text3.setUnderline(true);
text3.setStrikethrough(true);
pane.getChildren() .add(text3);

/| Create

[14.11 Shapes 569

create a two-line Text
add text to pane

= new Text (60, 60, "Programming is fun\nDisplay text");

create a Text
set text color
set underline
set strike line
add text to pane

= new Text (10, 100, "Programming is fun\nDisplay text");

a scene and place it in the stage

Scene scene = new Scene(pane);

primaryStage.setTitle("ShowText");
primaryStage.setScene(scene);
primaryStage.show();

}
}

/1 Set the stage title
/1 Place the scene in the stage
/1 Display the stage

main method omitted

The program creates a Text (line 18), sets its font (line 19), and places it to the pane

(line 21). The program creates another Text with multiple lines (line 23) and places it to the
pane (line 24). The program creates the third Text (line 26), sets its color (line 27), sets an
underline and a strike through line (lines 28 and 29), and places it to the pane (line 30).

14.11.2 Line

A line connects two points with four parameters startX, startY, endX, and endY, as shown
in Figure 14.29a. The Line class defines a line. The UML diagram for the Line class is
shown in Figure 14.28. Listing 14.15 gives an example that demonstrates the line shape,
as shown in Figure 14.29b.

LISTING 14.15 ShowLine.java

-
COWoO~NOORWN-=

A A A A aa aa a
O~NOO O~ WN =

-
[¢e]

20
21
22
23
24
25
26

import javafx.
import javafx.
import javafx.
import javafx.
import javafx.
import javafx.

application.Application;
scene.Scene;

scene. layout.Pane;
scene.paint.Color;
stage.Stage;
scene.shape.Line;

public class ShowLine extends Application {
@Override // Override the start method in the Application class

public void
/| Create

Scene scene = new Scene(new LinePane(), 200, 200);
primaryStage.setTitle("ShowLine");
primaryStage.setScene(scene);
primaryStage.show();

}
}

class LinePane extends Pane {

start(Stage primaryStage) {

a scene and place it in the stage

create a pane in scene
/'l Set the stage title

// Place the scene in the stage

/1 Display the stage

main method omitted

define a custom pane

public LinePane() {

Line Tine1

= new Line(10, 10, 10, 10); create a line

line1.endXProperty () .bind(widthProperty().subtract(10));
line1.endYProperty().bind(heightProperty().subtract(10));

Tinel.setStrokeWidth(5);
Tine1.setStroke(Color.GREEN) ;
getChildren().add(1ine1);

M14_LIAN9966_12_SE_C14.indd 569

STUDENTS-HUB.com

set stroke width
set stroke
add line to pane

@ 16/0919 8:13 PM

mnawahdah
Highlight

https://students-hub.com

570 Chapter 14 JavaFX Basics

create a line

add line to pane

FIGURE 14.28

27
28
29
30
31
32
33
34
35 }

Line 1ine2 = new Line(10, 10, 10, 10);
Tine2.startXProperty().bind(widthProperty().subtract(10));
Tine2.endYProperty().bind(heightProperty().subtract(10));
Tine2.setStrokeWidth(5);

Tine2.setStroke(Color.GREEN) ;

getChildren().add(1ine2);

—startX: DoubleProperty

—startY: DoubleProperty

—endX: DoubleProperty

—endY: DoubleProperty

The getter and setter methods for property value
and a getter for property itself are provided in the class,
but omitted in the UML diagram for brevity.

+Line ()

+Line (startX: double, startY:

double, endX:
double)

double, endY:

The x-coordinate of the start point.
The y-coordinate of the start point.
The x-coordinate of the end point.
The y-coordinate of the end point.

Creates an empty Line.

Creates a Line with the specified starting and ending points.

The Line class defines a line.

H |
(0, 0) (getWidth (), 0) ® O O Showline
(startX, starty)
(endX, endY)
(0, getHeight()) (getWidth (), getHeight())
(a) Line (startX, startY, endX, endY) (b) Two lines are displayed

across the pane.

FIGURE 14.29 A Line object is created to display a line.

M14_LIAN9966_12_SE_C14.indd 570

STUDENTS-HUB.com

The program defines a custom pane class named LinePane (line 19). The custom pane
class creates two lines and binds the starting and ending points of the line with the width and
height of the pane (lines 22, 23, 29, and 30) so the two points of the lines are changed as the
pane is resized.

14.11.3 Rectangle

A rectangle is defined by the parameters x, y, width, height, arcWidth, and arcHeight,
as shown in Figure 14.31a. The rectangle’s upper-left corner point is at (x, y), parameter
aw (arcWidth) is the horizontal diameter of the arcs at the corner, and ah (arcHeight) is
the vertical diameter of the arcs at the corner.

The Rectangle class defines a rectangle. The UML diagram for the Rectangle class is
shown in Figure 14.30. Listing 14.16 gives an example that demonstrates rectangles, as shown
in Figure 14.31b.

16/09/19 8:13 PM

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

FIGURE 14.30 Rectangle defines a rectangle.

FIGURE 14.31

[4.11 Shapes 571

The getter and setter methods for property values
and a getter for property itself are provided in the class,

_/ but omitted in the UML diagram for brevity.

—x: DoubleProperty
—y: DoubleProperty
-width: DoubleProperty
—height: DoubleProperty
—arcWidth: DoubleProperty

—arcHeight: DoubleProperty

+Rectangle ()

+Rectangle (x: double, y:
double, width: double,
height: double)

The x-coordinate of the upper-left corner of the rectangle (default 0).
The y-coordinate of the upper-left corner of the rectangle (default 0).
The width of the rectangle (default: 0).

The height of the rectangle (default: 0).

The arcWidth of the rectangle (default: 0). arcWidth is the horizontal
diameter of the arcs at the corner (see Figure 14.31a).

The arcWidth of the rectangle (default: 0). arcHeight is the vertical
diameter of the arcs at the corner (see Figure 14.31a).

Creates an empty Rectangle.

Creates a Rectangle with the specified upper-left corner point, width, and
height.

aw/2
(2, y -

)
ah/2 J_(\

<—height —>

N /

~—— width——

(a) Rectangle (x, y, w, h)

_©® O O ShowRectangle ™

® O O ShowRectangle "

]]
. ‘.
- -

>

(b) Multiple rectangles are displayed.

(c) Transparent rectangles are displayed.

A Rectangle object is created to display a rectangle.

LIsTING 14.16 ShowRectangle.java

import javafx.application.Application;

O~NOORA WN =

N
o ©

11
12
13
14
15
16
17
18
19
20
21

import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.
import javafx.scene.
import javafx.stage.Stage;

import javafx.scene.text.Text;
import javafx.scene.

Tayout .BorderPane;
paint.Color;

shape.Rectangle;

public class ShowRectangle extends Application {
@Override // Override the start method in the Application class
public void start(Stage primaryStage) {

/'l Create rectangles
Rectangle r1 =
r1.setStroke(Color.BLACK) ;
r1.setFill(Color.WHITE);

Rectangle r2 = new Rectangle(25, 50, 60, 30);
Rectangle r3 = new Rectangle(25, 90, 60, 30);

r3.setArcWidth(15);
r3.setArcHeight(25);

M14_LIAN9966_12_SE_C14.indd 571

STUDENTS-HUB.com

new Rectangle(25, 10, 60, 30);

create a rectangle r1

set r1’s properties

create rectangle r2

create rectangle r3
set r3’s arc width

set r3’s arc height

16/09/19 8:13 PM

https://students-hub.com

572 Chapter 14 JavaFX Basics

create a group
add nodes to group

create a rectangle
rotate a rectangle

add rectangle to group

main method omitted

M14_LIAN9966_12_SE_C14.indd 572

STUDENTS-HUB.com

22 /| Create a group and add nodes to the group

23 Group group = new Group();

24 group.getChildren().addA11 (new Text (10, 27, "r1"), r1,

25 new Text(10, 67, "r2"), r2, new Text(10, 107, "r3"), r3);
26

27 for (int i = 0; i < 4; i++) {

28 Rectangle r = new Rectangle (100, 50, 100, 30);

29 r.setRotate(i * 360 / 8);

30 r.setStroke(Color.color(Math.random(), Math.random(),

31 Math.random()));

32 r.setFill(Color .WHITE);

33 group.getChildren().add(r);

34 }

35

36 /| Create a scene and place it in the stage

37 Scene scene = new Scene(new BorderPane(group),250, 150);

38 primaryStage.setTitle("ShowRectangle"); // Set the stage title
39 primaryStage.setScene(scene); // Place the scene in the stage
40 primaryStage.show(); // Display the stage

41 }

42}

The program creates multiple rectangles. By default, the fill color is black. Thus, a rectangle
is filled with black color. The stroke color is white by default. Line 15 sets stroke color of
rectangle r1 to black. The program creates rectangle r3 (line 18) and sets its arc width and arc
height (lines 19 and 20). Thus, r3 is displayed as a rounded rectangle.

The program creates a Group to hold the nodes (lines 23-25). The program repeatedly
creates a rectangle (line 28), rotates it (line 29), sets a random stroke color (lines 30 and 31),
its fill color to white (line 32), and adds the rectangle to the group (line 33).

If line 32 is replaced by the following line:

r.setFill (null);

the rectangle is not filled with a color. Thus, they are displayed as shown in Figure 14.31c.
To center the nodes in the window, the program creates a BorderPane with the group in
the center of the pane (line 37). If line 23 is replaced by the following?

Pane group = new Pane();

the rectangle will not be centered in the window. Therefore, using Group along with the
BorderPane displays the contents of the group in the center of the window. Another advantage
of using group is you can apply transformation to all nodes in the group. For example, if you
add the following two lines in line 35:

group.setScaleX(2);
group.setScaleY(2);

the sizes of the nodes in the group are doubled.

14.11.4 CircleandEllipse

You have used circles in several examples early in this chapter. A circle is defined by its
parameters centerX, centerY, and radius. The Circle class defines a circle. The UML
diagram for the Circ1le class is shown in Figure 14.32.

An ellipse is defined by its parameters centerX, centerY, radiusX, and radiusY, as
shown in Figure 14.34a. The E111ipse class defines an ellipse. The UML diagram for the
E111ipse class is shown in Figure 14.33. Listing 14.17 gives an example that demonstrates
ellipses, as shown in Figure 14.34b.

16/09/19 8:13 PM

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

®

[4.11 Shapes 573

The getter and setter methods for property values
and a getter for property itself are provided in the class,
but omitted in the UML diagram for brevity.

—centerX: DoubleProperty The x-coordinate of the center of the circle (default 0).

—centerY: DoubleProperty The y-coordinate of the center of the circle (default 0).

-radius: DoubleProperty The radius of the circle (default: 0).

+Circle () Creates an empty Circle.

+Circle (x: double, y: double) Creates a Circle with the specified center.

+Circle (x: double, y: double, Creates a Circle with the specified center and radius.
radius: double)

FIGURE 14.32 The Circle class defines circles.

The getter and setter methods for property values
and a getter for property itself are provided in the class,
but omitted in the UML diagram for brevity.

—centerX: DoubleProperty The x-coordinate of the center of the ellipse (default 0).
—centerY: DoubleProperty The y-coordinate of the center of the ellipse (default 0).
—-radiusX: DoubleProperty The horizontal radius of the ellipse (default: 0).
—radiusY: DoubleProperty The vertical radius of the ellipse (default: 0).
+Ellipse () Creates an empty E11ipse.
@ +Ellipse (x: double, y: double) Creates an E111ipse with the specified center.
+Ellipse (x: double, y: double, Creates an E111pse with the specified center and radiuses.
radiusX: double, radiusY:
double)

FIGURE 14.33 The E111pse class defines ellipses.

i A
(centerX, centerY) ® O O ShowEllipse i

() Ellipse (centerX, centery, (b) Multiple ellipses are displayed.
radiusX, radiusY)

FIGURE 14.34 An ET111ipse object is created to display an ellipse.

LISTING 14.17 ShowEl1l1ipse.java

1 import javafx.application.Application;
2 1import javafx.scene.Scene;
3 1import javafx.scene.layout.Pane;
4 import javafx.scene.paint.Color;
5 1import javafx.stage.Stage;
6 1import javafx.scene.shape.Ellipse;
M14_LIAN9966_12_SE_C14.indd 573 @ 16/09/19 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

574 Chapter 14 JavaFX Basics

create a pane

main method omitted

create an ellipse
set random color for stroke
set fill color

rotate ellipse
add ellipse to pane

M14_LIAN9966_12_SE_C14.indd 574

STUDENTS-HUB.com

7

8 public class ShowEl1ipse extends Application {

9 @Override // Override the start method in the Application class
10 public void start(Stage primaryStage) {

11 /'l Create a scene and place it in the stage

12 Scene scene = new Scene(new MyEllipse(), 300, 200);

13 primaryStage.setTitle("ShowEllipse"); // Set the stage title
14 primaryStage.setScene(scene); // Place the scene in the stage
15 primaryStage.show(); // Display the stage

16 }

17 3}

18

19 class MyEllipse extends Pane {
20 private void paint() {

21 getChildren().clear();

22 for (int i = 0; i < 16; i++) {

23 /'l Create an ellipse and add it to pane

24 E1lipse el = new Ellipse(getWidth() / 2, getHeight() / 2,
25 getWidth() / 2 - 50, getHeight() / 2 - 50);

26 el.setStroke(Color.color (Math.random(), Math.random(),
27 Math.random()));

28 el.setFil1(Color.WHITE);

29 el.setRotate(i * 180 / 16);

30 getChildren().add(el);

31 }

32 }

33

34 @Override
35 public void setWidth(double width) {

36 super.setWidth(width);
37 paint();

38 }

39

40 @Override
41 public void setHeight (double height) {

42 super.setHeight (height);
43 paint();

44 }

45 '}

The program defines the MyE111ipse class to draw the ellipses (lines 19-45) rather than
creating ellipses directly in the start method (line 10) for two reasons. First, by defining
the MyE111ipse class for displaying the ellipses, you can easily reuse the code. Second, the
MyE111ipse class extends Pane. The contents in the pane can be resized when the stage
is resized.

The MyE111ipse class extends Pane and overrides the setWidth and setHeight
methods (lines 34—44). A MyE111ipse object’s width and height are automatically set by
invoking its setWidth and setHeight methods when it is displayed. When you resize
the stage that contains a MyE111 pse, the MyE111pse’s width and height are automatically
resized by again invoking the setWidth and setHeight methods. The setWidth and
setHeight methods invoke the paint () method for displaying the ellipses (lines 37 and
43). The paint () method first clears the contents in the pane (line 21), then repeatedly
creates ellipses (lines 24 and 25), sets a random stroke color (lines 26 and 27), sets its fill
color to white (line 28), rotates it (line 29), and adds the rectangle to the pane (line 30). Thus,
when the stage that contains a MyE111pse object is resized, the contents in MyE111ipse
are redisplayed.

16/09/19 8:13 PM

https://students-hub.com

14.11.5 Arc

[4.11 Shapes 575

An arc is conceived as part of an ellipse, defined by the parameters centerX, centerY,
radiusX, radiusY, startAngle, Tength, and an arc type (ArcType.OPEN, ArcType
.CHORD, or ArcType .ROUND). The parameter startAngTe is the starting angle, and Tength
is the spanning angle (i.e., the angle covered by the arc). Angles are measured in degrees and
follow the usual mathematical conventions (i.e., 0 degrees is in the easterly direction and
positive angles indicate counterclockwise rotation from the easterly direction), as shown in

Figure 14.36a.

The Arc class defines an arc. The UML diagram for the Arc class is shown in Figure 14.35.
Listing 14.18 gives an example that demonstrates arcs, as shown in Figure 14.36b.

The getter and setter methods for property values
and a getter for property itself are provided in the class,

_/ but omitted in the UML diagram for brevity.

—centerX:
—centerY:
—radiusX:

—radiusY:

DoubleProperty
DoubleProperty
DoubleProperty
DoubleProperty

—startAngle: DoubleProperty

—length: DoubleProperty

—type: 0bj

ectProperty<ArcType>

+Arc ()

+Arc(x: double, y: double,
radiusX: double, radiusY:

double,
length:

startAngle: double,
double)

The x-coordinate of the center of the ellipse (default 0).
The y-coordinate of the center of the ellipse (default 0).
The horizontal radius of the ellipse (default: 0).

The vertical radius of the ellipse (default: 0).

The start angle of the arc in degrees.

The angular extent of the arc in degrees.

The closure type of the arc (ArcType . OPEN, ArcType . CHORD,
ArcType.ROUND).

Creates an empty Arc.
Creates an Arc with the specified arguments.

FIGURE 14.35 The Arc class defines an arc.

radiusX radiusY length

(a) Arc (centerX

e \ """" / .. sStartAngle

s,
N,

ko

o

> (centerX,
"""""""" centerY)

, centerY, radiusX,

radiusY, startAngle, length)

0 degree

| 8 0 6 ShowArc "

|
arc2: opey ' arcl: round

arc3: cho& Aﬂ: chord

(b) Multiple ellipses are displayed.

FIGURE 14.36 An Arc object is created to display an arc.

LisTING 14.18

b ON =

M14_LIAN9966_12_SE_C14.indd 575

STUDENTS-HUB.com

import javafx.
import javafx.
import javafx.
import javafx.
import javafx.

ShowArc. java

scene.Scene;
scene.Group;

scene.paint.Color;

application.Application;

scene. layout.BorderPane;

16/09/19 8:13 PM

mnawahdah
Highlight

https://students-hub.com

576 Chapter 14 JavaFX Basics

create arc1
set fill color for arc1

set arc1 as round arc

create arc2
set fill color for arc2
set arc2 as round arc

create arc3
set fill color for arc3
set arc3 as chord arc

create arc4

@ create a group
add arcs and text to group

main method omitted

negative degrees

M14_LIAN9966_12_SE_C14.indd 576

STUDENTS-HUB.com

6 import javafx.stage.Stage;

7 dimport javafx.scene.shape.Arc;

8 import javafx.scene.shape.ArcType;
9 import javafx.scene.text.Text;

10

11 public class ShowArc extends Application {

12 @Override // Override the start method in the Application class
13 public void start(Stage primaryStage) {

14 Arc arc1 = new Arc(150, 100, 80, 80, 30, 35); // Create an arc
15 arc1.setFil11(Color.RED); // Set fill color

16 arci1.setType (ArcType.ROUND); // Set arc type

17

18 Arc arc2 = new Arc(150, 100, 80, 80, 30 + 90, 35);

19 arc2.setFil11(Color.WHITE);

20 arc2.setType(ArcType.OPEN) ;

21 arc2.setStroke(Color.BLACK) ;

22

23 Arc arc3 = new Arc(150, 100, 80, 80, 30 + 180, 35);

24 arc3.setFill(Color.WHITE);

25 arc3.setType(ArcType.CHORD) ;

26 arc3.setStroke(Color.BLACK) ;

27

28 Arc arc4 = new Arc(150, 100, 80, 80, 30 + 270, 35);

29 arc4.setFil11(Color.GREEN) ;

30 arc4.setType(ArcType.CHORD) ;

31 arc4.setStroke(Color.BLACK) ;

32

33 // Create a group and add nodes to the group

34 Group group = new Group();

35 group.getChildren().addA11 (new Text (210, 40, "arci1: round"),
36 arc1l, new Text (20, 40, "arc2: open"), arc2,

37 new Text(20, 170, "arc3: chord"), arc3,

38 new Text (210, 170, "arc4: chord"), arc4);

39

40 /1 Create a scene and place it in the stage

41 Scene scene = new Scene(new BorderPane(group), 300, 200);

42 primaryStage.setTitle("ShowArc"); // Set the stage title

43 primaryStage.setScene(scene); // Place the scene in the stage
44 primaryStage.show(); // Display the stage

45 }

46 }

The program creates an arc arc1 centered at (150, 100) with radiusX 80 and radiusY 80.
The starting angle is 30 with length 35 (line 14). arc1’s arc type is set to ArcType . ROUND
(line 16). Since arc1’s fill color is red, arc1 is displayed filled with red round.

The program creates an arc arc3 centered at (150, 100) with radiusX 80 and radiusY 80.
The starting angle is 30+180 with length 35 (line 23). Arc3’s arc type is set to ArcType
.CHORD (line 25). Since arc3’s fill color is white and stroke color is black, arc3 is displayed
with black outline as a chord.

Angles may be negative. A negative starting angle sweeps clockwise from the easterly
direction, as shown in Figure 14.37. A negative spanning angle sweeps clockwise from the
starting angle. The following two statements define the same arc:

new Arc(x, y, radiusX, radiusY, -30, -20);
new Arc(x, y, radiusX, radiusY, -50, 20);

The first statement uses negative starting angle -30 and negative spanning angle —20, as
shown in Figure 14.37a. The second statement uses negative starting angle —50 and positive
spanning angle 20, as shown in Figure 14.37b.

16/09/19 8:13 PM

https://students-hub.com

14.11 Shapes 577

| —50°

20°

R VN A
.
Seeeel e

‘)j/ —20°
(b) Negative starting angle —50°

and positive spanning angle 20°

FIGURE 14.37

(a) Negative starting angle —30° and
negative spanning angle —20°

Angles may be negative.

in the Arc class are in degrees.

[4.11.6 Polygon and Polyline

lassismovautomaticallyselosedyasishown in Figure 14.38b.

(x[1], y[1])

Note the trigonometric methods in the Math class use the angles in radians, but the angles

(x[1], y[1])

(x[01, y[0])

(x[31, y[3])

(x[0], y[OD)

(x[4], y[4D

(x[2], y[2])

(b) Polyline

(x[4], y[4D

(x[2], y[2])

(a) Polygon

FIGURE 14.38 Polygon is closed and Poly11ine is not closed.

The UML diagram for the Polygon class is shown in Figure 14.39. Listing 14.19 gives an

example that creates a hexagon, as shown in Figure 14.40.

. points)

+Polygon ()
+Polygon (double. .

+getPoints () :
ObservableList<Double>

Creates an empty Polygon.
Creates a Polygon with the given points.
Returns a list of Double objects as x- and y-coordinates of the points.

FIGURE 14.39 The Polygon class defines a polygon.

M14_LIAN9966_12_SE_C14.indd 577

STUDENTS-HUB.com

®

16/09/19 8:13 PM

mnawahdah
Highlight

https://students-hub.com

578 Chapter 14 JavaFX Basics

® O O ShowPolygon ™

(centerX, centerY)

— () ® O O ShowPolygon ™

x is centerX + radius X cos(2m/6)
yis centerY — radius X sin(2/6)

| ~radius

(a)

(b)

FIGURE 14.40 (a) A Polygon is displayed. (b) A PolyTine is displayed.

LIsTING 14.19 ShowPolygon.java

import javafx.application.Application;
import javafx.collections.ObservablelList;
import javafx.scene.Scene;

import javafx.scene.layout.Pane;

import javafx.scene.paint.Color;

import javafx.stage.Stage;

import javafx.scene.shape.Polygon;

©oO~NOO U~ WN-=

add pane to scene 13

main method omitted 18

extends Pane 20

create a polygon 23

get alist of points 26

add x-coordinate of a point 33
add y-coordinate of a point 34

M14_LIAN9966_12_SE_C14.indd 578

STUDENTS-HUB.com

public class ShowPolygon extends Application {
@Override // Override the start method in the Application class
public void start(Stage primaryStage) {

}
}

/1 Create a scene and place it in the stage

Scene scene = new Scene(new MyPolygon(), 400, 400);
primaryStage.setTitle("ShowPolygon"); // Set the stage title
primaryStage.setScene(scene); // Place the scene in the stage
primaryStage.show(); // Display the stage

class MyPolygon extends Pane {
private void paint() {

}

/| Create a polygon and place polygon to pane
Polygon polygon = new Polygon();
polygon.setFil1(Color.WHITE);

polygon.setStroke (Color.BLACK) ;
ObservablelList<Double> 1list = polygon.getPoints();

double centerX = getWidth() / 2, centerY = getHeight() / 2;
double radius = Math.min(getWidth(), getHeight()) * 0.4;

/1 Add points to the polygon Tlist
for (int i = 0; i < 6; i++) {
Tist.add(centerX + radius * Math.cos(2 * i * Math.PI / 6));
Tist.add(centerY - radius * Math.sin(2 * i * Math.PI / 6));
}

getChildren().clear();
getChildren() .add(polygon);

@Override

16/09/19 8:13 PM

https://students-hub.com

[14.11 Shapes 579

42 public void setWidth(double width) {

43 super.setWidth(width);
44 paint();

45 }

46

47 @Override
48 public void setHeight(double height) ({

49 super.setHeight (height) ;
50 paint();

51 }

52 }

The program defines the MyPolygon class that extends Pane (lines 20-52). The setWidth override setWidth and
and setHeight methods in the Pane class are overridden in MyPo1ygon to invoke the setHeight
paint () method.
The paint () method creates a polygon (line 23) and adds it to a pane (line 38). The
polygon.getPoints() method returns an ObservableList<Double> (line 26), which
contains the add method for adding an element to the list (lines 33 and 34). Note the value
passed to add (value) must be a double value. If an int value is passed, the int value
would be automatically boxed into an Integer. This would cause an error, because the
ObservableList<Double> consists of Double elements.
The centerX, centerY, and radius are obtained in proportion to the width and height of
the pane (lines 28 and 29). The loop adds six points to the polygon (lines 32-35). Each point
is represented by its x- and y-coordinates, computed using centerX, centerY, and radius.
For each point, its x-coordinate is added to the polygon’s list (line 33) then its y-coordinate is
added to the list (line 34). The formula for computing the x- and y-coordinates for a point in
@ the hexagon is illustrated in Figure 14.40a.
If you replace Polygon by Poly11ine (line 23), the program displays a polyline as shown
in Figure 14.40b. The Poly11ine class is used in the same way as Polygon, except that the
starting and ending points are not connected in Poly11ine.

14.11.1 How do you display a text, line, rectangle, circle, ellipse, arc, polygon, and ﬁeck
polyline? Point
14.11.2 Write code fragments to display a string rotated 45 degrees in the center of
the pane.
14.11.3 Write code fragments to display a thick line of 10 pixels from (10, 10) to (70, 30).
14.11.4 Write code fragments to fill red color in a rectangle of width 100 and height 50
with the upper-left corner at (10, 10).

14.11.5 Write code fragments to display a round-cornered rectangle with width 100,
height 200 with the upper-left corner at (10, 10), corner horizontal diameter 40,
and corner vertical diameter 20.

14.11.6 Write code fragments to display an ellipse with horizontal radius 50 and vertical
radius 100.

14.11.7 Write code fragments to display the outline of the upper half of a circle with
radius 50.

14.11.8 Write code fragments to display the lower half of a circle with radius 50 filled
with the red color.

14.11.9 Write code fragments to display a polygon connecting the following points: (20,
40), (30, 50), (40, 90), (90, 10), and (10, 30), and fill the polygon with green color.

14.11.10 Write code fragments to display a polyline connecting the following points: (20,
40), (30, 50), (40, 90), (90, 10), and (10, 30).

M14_LIAN9966_12_SE_C14.indd 579 @ 16/0919 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

580 Chapter 14 JavaFX Basics

14.11.11 What is wrong in the following code?

public void start(Stage primaryStage) {
/'l Create a polygon and place it in the scene
Scene scene = new Scene(new Polygon(), 400, 400);

primaryStage.setScene(scene);

primaryStage.show();
}

14.12 Case Study: The ClockPane Class

This case study develops a class that displays a clock on a pane.

Key
Point

javafx.scene.layout.Pane

—hour: int /

-minute: int

—-second: int

The contract of the ClockPane class is shown in Figure 14.41.

The getter and setter methods for
these data fields are provided in the class,

but omitted in the UML diagram for brevity.

/'l Place the scene in the stage
/1 Display the stage

+ClockPane ()

+ClockPane (hour: int, minute:
@ int, second: int)

+setCurrentTime () : void
+setWidth (width: double): void

+setHeight (height: double) :
void

The hour in the clock.
The minute in the clock.

The second in the clock.

Constructs a default clock for the current time.

Constructs a clock with the specified time.

Sets hour, minute, and second for current time.
Sets clock pane’s width and repaint the clock.

Sets clock pane’s height and repaint the clock.

FIGURE 14.41 ClockPane displays an analog clock.

Assume ClockPane is available; we write a test program in Listing 14.20 to display an analog
clock and use a label to display the hour, minute, and second, as shown in Figure 14.42a.

0,0

® O O DisplayClock .

17:25:13

(xEnd, yEnd)

(a)

FIGURE 14.42 (a) The DisplayClock program displays a clock that shows the current
time. (b) The endpoint of a clock hand can be determined, given the spanning angle, the

hand length, and the center point.

M14_LIAN9966_12_SE_C14.indd 580 @

STUDENTS-HUB.com

(b)

16/09/19 8:13 PM

mnawahdah
Highlight

https://students-hub.com

14.12 Case Study: The ClockPane Class 581

LisTING 14.20 DisplayClock.java

1 1import javafx.application.Application;

2 import javafx.geometry.Pos;

3 import javafx.stage.Stage;

4 import javafx.scene.Scene;

5 import javafx.scene.control.Label;

6 import javafx.scene.layout.BorderPane;

7

8 public class DisplayClock extends Application {

9 @Override // Override the start method in the Application class

10 public void start(Stage primaryStage)

11 /| Create a clock and a label

12 ClockPane clock = new ClockPane(); create a clock
13 String timeString = clock.getHour() + ":" + clock.getMinute()

14 + ":" + clock.getSecond();

15 Label 1b1CurrentTime = new Label (timeString); create a label
16

17 /'l Place clock and Tabel in border pane

18 BorderPane pane = new BorderPane();

19 pane.setCenter (clock) ; add a clock
20 pane.setBottom(1b1CurrentTime) ; add a label
21 BorderPane.setAlignment (1b1CurrentTime, Pos.TOP_CENTER);
22
23 /| Create a scene and place it in the stage
24 Scene scene = new Scene(pane, 250, 250);
25 primaryStage.setTitle("DisplayClock"); // Set the stage title
26 primaryStage.setScene(scene); // Place the scene in the stage

N N
o ~
-

N
©
-

primaryStage.show(); // Display the stage

main method omitted

The rest of this section explains how to implement the ClockPane class. Since you can
use the class without knowing how it is implemented, you may skip the implementation if skip implementation?

you wish.

implementation

To draw a clock, you need to draw a circle and three hands for the second, minute, and hour.
To draw a hand, you need to specify the two ends of the line. As shown in Figure 14.42b, one
end is the center of the clock at (centerX, centerY);the other end, at (endX, endY), is

determined by the following formula:

endX = centerX + handLength x sin(6)
endY = centerY - handlLength x cos(6)

Since there are 60 seconds in one minute, the angle for the second hand is

second x (2m/60)

The position of the minute hand is determined by the minute and second. The exact minute
value combined with seconds isminute + second/60. For example, if the time is 3 minutes
and 30 seconds, the total minutes are 3.5. Since there are 60 minutes in one hour, the angle

for the minute hand is

(minute + second/60) x (27/60)

Since one circle is divided into 12 hours, the angle for the hour hand is

(hour + minute/60 + second/(60 x 60)) x (2n/12)

M14_LIAN9966_12_SE_C14.indd 581

STUDENTS-HUB.com

16/09/19 8:13 PM

https://students-hub.com

582 Chapter 14 JavaFX Basics

clock properties

®

no-arg constructor

constructor

set a new hour

paint clock

set a new minute

M14_LIAN9966_12_SE_C14.indd 582

STUDENTS-HUB.com

For simplicity in computing the angles of the minute and hour hands, you can omit the seconds
because they are negligibly small. Therefore, the endpoints for the second, minute, and hour
hands can be computed as follows:

secondX = centerX + secondHandLength x sin(second x (27/60))
secondY = centerY - secondHandLength x cos(second x (27/60))
minuteX = centerX + minuteHandLength x sin(minute x (271/60))
minuteY = centerY - minuteHandLength x cos(minute x (27/60))
hourX = centerX + hourHandLength x sin((hour + minute/60) x (21/12))
hourY = centerY - hourHandLength x cos((hour + minute/60) x (27/12))

The ClockPane class is implemented in Listing 14.21.

LisTING 14.21 ClockPane.java

1 dimport java.util.Calendar;

2 dmport java.util.GregorianCalendar;

3 dimport javafx.scene.layout.Pane;

4 import javafx.scene.paint.Color;

5 dmport javafx.scene.shape.Circle;

6 dimport javafx.scene.shape.Line;

7 dimport javafx.scene.text.Text;

8

9 public class ClockPane extends Pane ({

10 private int hour;

11 private int minute;

12 private int second;

13

14 /** Construct a default clock with the current time*/
15 public ClockPane() ({

16 setCurrentTime();

17 }

18

19 /** Construct a clock with specified hour, minute, and second */
20 public ClockPane(int hour,int minute,int second) {
21 this.hour = hour;
22 this.minute = minute;
23 this.second = second;
24 }
25

26 /** Return hour */
27 public int getHour() {

28 return hour;

29 }

30

31 /** Set a new hour */

32 public void setHour(int hour) {
33 this.hour = hour;

34 paintClock();

35 }

36

37 /** Return minute */

38 public int getMinute() {

39 return minute;

40 }

41

42 /** Set a new minute */

43 public void setMinute(int minute) {
44 this.minute = minute;

https://students-hub.com

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
@& 74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

M14_LIAN9966_12_SE_C14.indd 583

STUDENTS-HUB.com

14.12 Case Study

paintClock();
}

/** Return second */
public int getSecond() {
return second;

}

/** Set a new second */

public void setSecond(int second) {
this.second = second;
paintClock();

}

/* Set the current time for the clock */

public void setCurrentTime() {
/1 Construct a calendar for the current date and time
Calendar calendar = new GregorianCalendar () ;

/1 Set current hour, minute and second
this.hour = calendar.get(Calendar.HOUR_OF_DAY) ;
this.minute = calendar.get(Calendar.MINUTE);
this.second = calendar.get(Calendar.SECOND) ;
paintClock(); // Repaint the clock
}

/** Paint the clock */
private void paintClock() ({
// Initialize clock parameters
double clockRadius =
Math.min(getWidth(), getHeight()) * 0.8 * 0.5;
double centerX = getWidth() /2;
double centerY = getHeight() /2;

// Draw circle

Circle circle = new Circle(centerX, centerY, clockRadius);
circle.setFill(Color.WHITE);
circle.setStroke(Color.BLACK) ;

: The ClockPane Class 583

paint clock

set a new second

paint clock

set current time

paint clock
paint clock
get radius

get center

create a circle

Text t1 = new Text(centerX — 5, centerY - clockRadius + 12, "12");
Text t2 = new Text(centerX - clockRadius + 3, centerY + 5, "9");
Text t3 = new Text(centerX + clockRadius - 10, centerY + 3, "3");
Text t4 = new Text(centerX — 3, centerY + clockRadius - 3, "6");

/1 Draw second hand
double sLength = clockRadius * 0.8;
double secondX = centerX + slLength *
Math.sin(second * (2 * Math.PI / 60));
double secondY = centerY - sLength *
Math.cos(second * (2 * Math.PI / 60));
Line sLine = new Line(centerX, centerY, secondX, secondY);
sLine.setStroke(Color.RED);

/1 Draw minute hand
double mLength = clockRadius * 0.65;
double xMinute = centerX + mLength *

Math.sin(minute * (2 * Math.PI / 60));
double minuteY = centerY - mLength *
Math.cos(minute * (2 * Math.PI / 60));
Line mLine = new Line(centerX, centerY, xMinute, minuteY);

create texts

create second hand

create minute hand

16/09/19 8:13 PM

https://students-hub.com

584 Chapter 14 JavaFX Basics

create hour hand

clear pane
add nodes to pane

set a new width

paint clock

set a new height

paint clock

override setWidth and
setHeight

M14_LIAN9966_12_SE_C14.indd 584

STUDENTS-HUB.com

105 mLine.setStroke(Color.BLUE);

106

107 // Draw hour hand

108 double hLength = clockRadius * 0.5;

109 double hourX = centerX + hLength *

110 Math.sin((hour % 12 + minute / 60.0) * (2 * Math.PI / 12));
111 double hourY = centerY - hLength *

112 Math.cos((hour % 12 + minute / 60.0) * (2 * Math.PI / 12));
113 Line hLine = new Line(centerX, centerY, hourX, hourY);

114 hLine.setStroke(Color.GREEN) ;

115

116 getChildren().clear();

117 getChildren().addAl11(circle, t1, t2, t3, t4, sLine, mLine, hLine);
118 }

119

120 @0verride
121 public void setWidth(double width) {

122 super.setWidth(width);
123 paintClock();

124 }

125

126 @Override
127 public void setHeight(double height) {

128 super.setHeight (height);
129 paintClock();

130 }

131}

The program displays a clock for the current time using the no-arg constructor (lines 15-17)
and displays a clock for the specified hour, minute, and second using the other constructor
(lines 20-24).

The class defines the properties hour, minute, and second to store the time repre-
sented in the clock (lines 10-12). The current hour, minute, and second are obtained by
using the GregorianCalendar class (lines 62-67). The GregorianCalendar class
in the Java API enables you to create a Calendar instance for the current time using its
no-arg constructor. You can then use its methods get (Calendar.HOUR), get (Calendar
.MINUTE), and get (Calendar.SECOND) to return the hour, minute, and second from a
Calendar object.

The paintClock () method paints the clock (lines 73—118). The clock radius is propor-
tional to the width and height of the pane (lines 75-78). A circle for the clock is created at
the center of the pane (line 81). The text for showing the hours 12, 3, 6, and 9 are created in
lines 84—87. The second, minute, and hour hands are the lines created in lines 90-114. The
paintClock () method places all these shapes in the pane using the addA11 method (line
117). Before adding new contents into the pane, the old contents are cleared from the pane
(line 116).

The setWidth and setHeight methods defined in the Pane class are overridden in the
ClockPane class to repaint the clock after the width or height is changed in the clock pane
(lines 120-130). The paintClock () method is invoked whenever a new property (hour,
minute, second, width, and height) is set (lines 34, 45, 56, 69, 123, and 129).

In Listing 14.20, the clock is placed inside a border pane, the border pane is placed in the
scene, and the scene is placed in the stage. When a stage is displayed or resized, all these com-
ponents inside the stage are automatically resized by invoking their respective setWidth and
setHeight methods. Since the setWidth and setHeight methods are overridden to invoke
the paintClock () method, the clock is automatically resized in response to the change of
the stage size.

16/09/19 8:13 PM

https://students-hub.com

14.12.1 What will happen if lines 120-130 are removed in Listing 14.21? Run the
DisplayClock class in Listing 14.20 to test it.

Key TERMS

Chapter Summary 585

ﬁeck
Point

AWT 542
bidirectional binding 551
bindable object 548
binding object 548
binding property 548
JavaFX 551

node 545

observable object 548
pane 545

CHAPTER SUMMARY

primary stage 543
property getter method 549
shape 545

Swing 542

Ul control 545
unidirectional binding 551
value getter method 549
value setter method 549

I. JavaFXis the new framework for developing rich GUI applications. JavaFX completely

replaces Swing and AWT.

2. A main JavaFX class must extend javafx.application.Application and
implement the start method. The primary stage is automatically created by the JVM

and passed to the start method.

3. A stageis a window for displaying a scene. You can add nodes to a scene. Panes, groups,
controls, and shapes are nodes. Panes can be used as the containers for nodes.

4. A binding property can be bound to an observable source object. A change in the source
object will be automatically reflected in the binding property. A binding property has a
value getter method, value setter method, and property getter method.

5. The Node class defines many properties that are common to all nodes. You can apply
these properties to panes, groups, controls, and shapes.

6. You can create a Color object with the specified red, green, blue components, and

opacity value.

7. You can create a Font object and set its name, size, weight, and posture.

8. The javafx.scene.image.Image class can be used to load an image, and this image
can be displayed in an ImageView object.

9. JavaFX provides many types of panes for automatically laying out nodes in
a desired location and size. The Pane is the base class for all panes. It contains
the getChildren() method to return an ObservableList. You can use

ObservableList’s add(node) and addA11 (node1,
adding nodes into a pane.

node2, . ..) methods for

10. A FlowPane arranges the nodes in the pane horizontally from left to right or vertically
from top to bottom, in the order in which they were added. A GridPane arranges nodes

M14_LIAN9966_12_SE_C14.indd 585

STUDENTS-HUB.com

16/09/19 8:13 PM

https://students-hub.com

586 Chapter 14 JavaFX Basics

in a grid (matrix) formation. The nodes are placed in the specified column and row indi-
ces. A BorderPane can place nodes in five regions: top, bottom, left, right, and center.
An HBox lays out its children in a single horizontal row. A VBox lays out its children in
a single vertical column.

I'l. JavaFX provides many shape classes for drawing texts, lines, circles, rectangles, ellipses,
arcs, polygons, and polylines.

QL“Z
") Answer the quiz for this chapter online at the book Companion Website.

MyProgrammingLab® PROGRAMMING EXERCISES

Note
download image files z The image files used in the exercises can be obtained from liveexample.pearsoncmg.com/
resource/image.zip under the image folder.
Sections 14.2-14.9

14.1 (Display images) Write a program that displays four images in a grid pane, as
shown in Figure 14.43a.

® O O Exercisel4 02 v @ O O Exerciseld 03 e

XO [[[sa
X s
OX * *)

FiIGURe 14.43 (a) Exercise 14.1 displays four images. Source: booka/Fotolia. Figure 14.43a4: United States
Government. (b) Exercise 14.2 displays a tic-tac-toe board with images. (c) Three cards are randomly selected. Source:

(c)

pandawild/Fotolia.

B *14.2 (Tic-tac-toe board) Write a program that displays a tic-tac-toe board, as
. shown in Figure 14.43b. A cell may be X, O, or empty. What to display

VideoNote

at each cell is randomly decided. The X and O are the image files x.gif

Display a tic-tac-toe board and o.gif.

*14.3 (Display three cards) Write a program that displays three cards randomly
selected from a deck of 52, as shown in Figure 14.43c. The card image files are
named 1.png, 2.png, . . ., 52.png and stored in the image/card directory. All
three cards are distinct and selected randomly. (Hint: You can select random
cards by storing the numbers 1-52 to an array list, perform a random shuffle
introduced in Section 11.12, and use the first three numbers in the array list as
the file names for the image.)

14.4 (Color and fonr) Write a program that displays five texts vertically, as shown in
Figure 14.44a. Set a random color and opacity for each text and set the font of
each text to Times Roman, bold, italic, and 22 pixels.

M14_LIAN9966_12_SE_C14.indd 586 @

STUDENTS-HUB.com

16/09/19 8:13 PM

https://students-hub.com

Programming Exercises 587

® O O Exercisel4_05 " ® O O Exerciseld 06 7

JAP
® O O Exerciseld 04 7 @) ¥
~ <

& (S &
= 8 & 3 “ro"

(a) (b) (c)

FIGURE 14.44 (a) Five texts are displayed with a random color and a specified font. (b) A string is displayed around
the circle. (c) A checkerboard is displayed using rectangles.

14.5 (Characters around circle) Write a program that displays a string “Welcome to
Java” around the circle, as shown in Figure 14.44b. (Hint: You need to display
each character in the right location with appropriate rotation using a loop.)

*14.6 (Game: display a checkerboard) Write a program that displays a checkerboard
in which each white and black cell is a Rectangle with a fill color black or
white, as shown in Figure 14.44c.

Sections 14.10 and 14.11

*14.7 (Display random 0 or 1) Write a program that displays a 10-by-10 square matrix, Display a random matrix
@ as shown in Figure 14.45a. Each element in the matrix is 0 or 1, randomly gener-

ated. Display each number centered in a text field. Use TextField’s setText
method to set value 0 or 1 as a string.

® O O Exercisel4_07 o ® O O Exerciseld 09 7 ® O O Exerciseld 10 ™
[B]1]1]00fo[1]0]0]o0

f1j1j1j1{ofj1j0j1]1|1

i1j]o0|jocjofo|j1j0|]1]|0|O -
oj1|1j0|0|lO0|J]O]jO]jO|O

ojoji1jojojo|j1]j0]|1|0O

ofl1[1]1]o]afof1]0]2

ijoj1y1f1|j1)1f1)1|1

ol1lololol1]1]1]0]l0

i1j]o0|j1j0f1|j0|J1|1]|]0]|1

i1j]oj1j0f1|j1|j1|{0]|1]|1

(a) (b) (c)

FIGURE 14.45 (a) The program randomly generates Os and 1s. (b) Exercise 14.9 draws four
fans. (c) Exercise 14.10 draws a cylinder.

14.8 (Display 54 cards) Expand Exercise 14.3 to display all 54 cards (including two
jokers), nine per row. The image files are jokers and are named 53.png and 54.png.

*14.9 (Create four fans) Write a program that places four fans in a GridPane with two
rows and two columns, as shown in Figure 14.45b.

*14.10 (Display a cylinder) Write a program that draws a cylinder, as shown in Figure 14.45c.
You can use the following method to set the dashed stroke for an arc:

arc.getStrokeDashArray().addA11(6.0, 21.0);

M14_LIAN9966_12_SE_C14.indd 587 @ 16/09/19 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

588 Chapter 14 JavaFX Basics

® O O Exercisel4 11 7

® A@

e

The solution posted on the website enables the cylinder to resize horizontally.
Can you revise it to resize vertically as well?

*14.11 (Paint a smiley face) Write a program that paints a smiley face, as shown in
Figure 14.46a.
® O 0 Exercisel4 12 | .© O O Exercisel4 13 7
Final -- 40% Quiz - 10%
Midterm -- 30%
Project -- 20%

Quiz -- 10%

Final -- 40%

(a)

(b) (c)

FIGURE 14.46 (a) Exercise 14.11 paints a smiley face. (b) Exercise 14.12 paints a bar chart. (c) Exercise 14.13 paints

a pie chart.

VideoNote
Display a bar chart

M14_LIAN9966_12_SE_C14.indd 588

STUDENTS-HUB.com

**14.12

**14.13

14.14

® O O Exerciseld_14 7 ® O O Exercisel4_15 ® O O Exerciseld_16 "

(Display a bar chart) Write a program that uses a bar chart to display the
percentages of the overall grade represented by projects, quizzes, midterm
exams, and the final exam, as shown in Figure 14.46b. Suppose projects take
20% and are displayed in red, quizzes take 10% and are displayed in blue,
midterm exams take 30% and are displayed in green, and the final exam takes
40% and is displayed in orange. Use the Rectangle class to display the bars.
Interested readers may explore the JavaFX BarChart class for further study.

(Display a pie chart) Write a program that uses a pie chart to display the per-
centages of the overall grade represented by projects, quizzes, midterm exams,
and the final exam, as shown in Figure 14.46¢. Suppose projects take 20% and
are displayed in red, quizzes take 10% and are displayed in blue, midterm exams
take 30% and are displayed in green, and the final exam takes 40% and is dis-
played in orange. Use the Arc class to display the pies. Interested readers may
explore the JavaFX PieChart class for further study.

(Display a rectanguloid) Write a program that displays a rectanguloid, as
shown in Figure 14.47a. The cube should grow and shrink as the window grows
or shrinks.

() (b) ()

FIGURE 14.47 (a) Exercise 14.14 paints a rectanguloid. (b) Exercise 14.15 paints a
STOP sign. (c) Exercise 14.16 paints a grid.

16/09/19 8:13 PM

https://students-hub.com

Programming Exercises 589

*14.15 (Display a STOP sign) Write a program that displays a STOP sign, as shown
in Figure 14.47b. The octagon is in red and the sign is in white. (Hint: Place an
octagon and a text in a stack pane.)

*14.16 (Display a 3 X 3 grid) Write a program that displays a 3 X 3 grid, as shown in
Figure 14.47c. Use red color for vertical lines and blue for horizontals. The lines
are automatically resized when the window is resized.

14.17 (Game: hangman) Write a program that displays a drawing for the popular hang-
man game, as shown in Figure 14.48a.

O O O Exercisel4_17 Y [©006 Exercisel4_18 2 @06 Exercisel4 19 %
. »
¥

N\ AN AN SAN
NANZANVAN

(a) (b) (c)

N

FIGURE 14.48 (a) Exercise 14.17 draws a sketch for the hangman game. (b) Exercise 14.18 plots the quadratic function.
(c) Exercise 14.19 plots the sine/cosine functions.

*14.18 (Plot the square function) Write a program that draws a diagram for the function
@ fix) = X% (see Figure 14.48b).
Hint: Add points to a polyline using the following code:

Polyline polyline = new Polyline();
ObservableList<Double> 1ist = polyline.getPoints();
double scaleFactor = 0.0125;
for (int x = -100; x <= 100; x++) {

list.add(x + 200.0);

list.add(scaleFactor * x * x);

!

**14.19 (Plot the sine and cosine functions) Write a program that plots the sine function
in red and cosine in blue, as shown in Figure 14.48c.

Hint: The Unicode for 77 is \u03c0. To display —27r, use Text (x, y, "-2\
u03c0"). For a trigonometric function like sin(x), x is in radians. Use the
following loop to add the points to a polyline:

Polyline polyline = new Polyline();
ObservablelList<Double> Tist = polyline.getPoints();
double scaleFactor = 50;
for (int x = -170; x <= 170; x++) {
list.add(x + 200.0);
list.add(100 - scaleFactor * Math.sin((x / 100.0) * 2 *
Math.PI));

}

Note that x in the loop is a point in the X-Axis and x does not correspond to
angles in degrees. The entire expression (x / 100.0) * 2 * Math.PI rep-
resents an angle in radians.

M14_LIAN9966_12_SE_C14.indd 589 @ 16/0919 8:13 PM

STUDENTS-HUB.com

https://students-hub.com

590 Chapter 14 JavaFX Basics

® 0 0

**14.20

Exercisel4_20

When x is -100, Math.sin((x / 100.0) * 2 * Math.PI) is O
When x is -75, Math.sin((x / 100.0) * 2 * Math.PI) 1is 1
When x is -50, Math.sin((x / 100.0) * 2 * Math.PI) is O
When x is -25, Math.sin((x / 100.0) * 2 * Math.PI) is -1
When x is 0, Math.sin((x / 100.0) * 2 * Math.PI) is O
When x is 25, Math.sin((x / 100.0) * 2 * Math.PI)

When x is 50, Math.sin((x / 100.0) * 2 * Math.PI)

When x is 75, Math.sin((x / 100.0) * 2 * Math.PI) is -1
When x is 100, Math.sin((x / 100.0) * 2 * Math.PI) is O

(
(
(
(

is 1

is 0

(Draw an arrow line) Write a static method that draws an arrow line from a
starting point to an ending point in a pane using the following method header:

public static void drawArrowlLine(double startX, double starty,
double endX, double endY, Pane pane)

Write a test program that randomly draws an arrow line, as shown in Figure 14.49a.

=) ® O O Exercisel4 21 ! ® O O Exercisel4_22 =

197.7710829908327

(a)

(b) (©

FIGURE 14.49 (a) The program displays an arrow line. (b) Exercise 14.21 connects the centers of two filled circles.
(c) Exercise 14.22 connects two circles from their perimeter.

M14_LIAN9966_12_SE_C14.indd 590

STUDENTS-HUB.com

*14.21

*14.22

*14.23

(Two circles and their distance) Write a program that draws two circles with
radius 15 pixels, centered at random locations, with a line connecting the two
circles. The distance between the two centers is displayed on the line, as shown
in Figure 14.49b.

(Connect two circles) Write a program that draws two filled circles with radius
15 pixels, centered at random locations, with a line connecting the two circles.
The line should not cross inside the circles, as shown in Figure 14.49c.

(Geometry: two rectangles) Write a program that prompts the user to enter the
center coordinates, width, and height of two rectangles from the command line.
The program displays the rectangles and a text indicating whether the two are
overlapping, whether one is contained in the other, or whether they don’t over-
lap, as shown in Figure 14.50. See Programming Exercise 10.13 for checking the
relationship between two rectangles.

16/09/19 8:13 PM

https://students-hub.com

Programming Exercises 591

*14.24 (Geometry: Inside a polygon?) Write a program that prompts the user to enter
the coordinates of five points from the command line. The first four points form a
polygon, and the program displays the polygon and a text that indicates whether
the fifth point is inside the polygon, as shown in Figure 14.51a. (Hint: Use the
Node’s contains method to test whether a point is inside a node.)

® O O Exercisel4 23 ® 00 Exercisel4 23 o ® O O Exercisel4_23

0

The rectangles overlap One rectangle is contained in another The rectangles do not overlap

(a) (b) (c)

FIGURE 14.50 Two rectangles are displayed.

*14.25 (Random points on a circle) Modify Programming Exercise 4.6 to create five
random points on a circle, form a polygon by connecting the points clockwise,
and display the circle and the polygon, as shown in Figure 14.51b.

Section 14.12

14.26 (Use the ClockPane class) Write a program that displays two clocks. The hour,
minute, and second values are 4, 20, 45 for the first clock, and 22, 46, 15 for the
second clock, as shown in Figure 14.51c.

*14.27 (Draw adetailed clock) Modify the C1ockPane class in Section 14.12 to draw
the clock with more details on the hours and minutes, as shown in Figure

14.52a.
® 006 Exercisel4 24 el ® O O Exercisel4 25 7 ® O O Exercisel4d 26 ‘H
[

The point is not inside the polygon

(2) (®) ©

FIGURE 14.51 (a) The polygon and a point are displayed. (b) Exercise 14.25 connects five random points on a circle.

(c) Exercise 14.26 displays two clocks.

M14_LIAN9966_12_SE_C14.indd 591 @

STUDENTS-HUB.com

16/09/19 8:13 PM

https://students-hub.com

592 Chapter 14 JavaFX Basics

® O O Exercisel4 27 o) ® O O Exerciseld 28 7 ® O O Exercisel4 29

18:54:59 10:13:0

() (b) (©)

FIGURE 14.52 (a) Exercise 14.27 displays a detailed clock. (b) Exercise 14.28 displays a
clock with random hour and minute values. (c) Exercise 14.29 displays a bean machine.

*14.28

**14.29

M14_LIAN9966_12_SE_C14.indd 592

STUDENTS-HUB.com

(Random time) Modify the ClockPane class with three new Bool-
ean properties—hourHandVisible, minuteHandVisible, and
secondHandVisible—and their associated accessor and mutator methods.
You can use the set methods to make a hand visible or invisible. Write a test
program that displays only the hour and minute hands. The hour and minute
values are randomly generated. The hour is between 0 and 11, and the minute is
either 0 or 30, as shown in Figure 14.52b.

(Game: bean machine) Write a program that displays a bean machine introduced
in Programming Exercise 7.37, as shown in Figure 14.52c.

16/09/19 8:13 PM

https://students-hub.com

