
Physics 310

Notes on Coordinate Systems and Unit Vectors

A general system of coordinates uses a set of parameters to define a vector. For example, x, y
and z are the parameters that define a vector r in Cartesian coordinates:

r = ı̂x + ̂y + k̂z (1)

Similarly a vector in cylindrical polar coordinates is described in terms of the parameters r, θ
and z since a vector r can be written as r = rr̂ + zk̂. The dependence on θ is not obvious here,
but the unit vector r̂ is actually a function of the polar angle, θ. If you want, you can make this
dependence explicit by writing

r = rr̂(θ) + k̂z (2)

Finally, a vector in spherical coordinates is described in terms of the parameters r, the polar
angle θ and the azimuthal angle φ as follows:

r = rr̂(θ, φ) (3)

where the dependence of the unit vector r̂ on the parameters θ and φ has been made explicit.
It can be very useful to express the unit vectors in these various coordinate systems in terms of

their components in a Cartesian coordinate system. For example, in cylindrical polar coordinates,

x = r cos θ

y = r sin θ (4)

z = z

while in spherical coordinates

x = r sin θ cos φ

y = r sin θ sin φ (5)

z = r cos θ.

Using these representations, we can construct the components of all unit vectors in these coordinate
systems and in this way define explicitly the unit vectors r̂, θ̂, φ̂, etc.

If a vector, r depends on a parameters u, then a vector that points in the “direction” of
increasing u is defined by

eu =
∂r

∂u
. (6)
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This vector is not necessarily normalized to have unit length, but from it we can always construct
the unit vector

êu =
eu

|eu|
(7)

We will apply this definition to the Cartesian, cylindrical and spherical coordinate systems to
illustrate the construction of their unit vectors.

The case of Cartesian coordinates is almost trivial:

ex =
∂r

∂x
= ı̂ (8)

ey =
∂r

∂y
= ̂ (9)

ez =
∂r

∂z
= k̂. (10)

It also turns out that each of these vectors is already normalized to have unit length.
In the case of cylindrical polar coordinates, using Equations 2 and 4,

er =
∂r

∂r
= r̂(θ)

= ı̂ cos θ + ̂ sin θ, (11)

eθ =
∂r

∂θ
= r

∂r̂

∂θ
= −ı̂r sin θ + ̂r cos θ, (12)

ez =
∂r

∂z
= k (13)

The unit vectors r̂ and θ̂ are the constructed using Equation 7 as follows:

r̂ =
er√

cos2 θ + sin2 θ
= er (14)

θ̂ =
eθ

r
√

sin2 θ + cos2 θ
=

eθ

r
(15)

so it turns out that er was already normalized to unit length.
For the last example, in spherical coordinates, using Equations 3 and 5,

er =
∂r

∂r
= r̂(θ, φ)

= ı̂ sin θ cos φ + ̂ sin θ sin φ + k̂ cos θ, (16)
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eφ =
∂r

∂φ
= r

∂r̂

∂φ

= −ı̂r sin θ sin φ + ̂r sin θ cos φ, (17)

eθ =
∂r

∂θ
= r

∂r̂

∂θ

= ı̂r cos θ cos φ + ̂r cos θ sin φ− k̂r sin θ (18)

The unit vectors r̂, φ̂ and θ̂ are the constructed using Equation 7 as follows:

r̂ =
er√

sin2 θ(sin2 φ + cos2 φ) + cos2 θ
=

er√
sin2 θ + cos2 θ

= er (19)

φ̂ =
eφ

r sin θ
√

sin2 φ + cos2 φ
=

eφ

r sin θ
(20)

θ̂ =
eθ

r
√

sin2 θ(sin2 φ + cos2 φ) + cos2 θ
=

eθ

r
√

sin2 θ + cos2 θ
=

eθ

r
(21)

so it turns out that er was already normalized to unit length. From Equation 20 you can see that
the direction of φ̂ becomes completely undefined when θ = 0 or θ = π.

We usually express time derivatives of the unit vectors in a particular coordinate system in
terms of the unit vectors themselves. Since all unit vectors in a Cartesian coordinate system are
constant, their time derivatives vanish, but in the case of polar and spherical coordinates they do
not.

In polar coordinates,

dr̂

dt
= (−ı̂ sin θ + ̂ cos θ)

dθ

dt
= θ̂θ̇ (22)

dθ̂

dt
= (−ı̂ cos θ − ̂ sin θ)

dθ

dt
= −r̂θ̇ (23)

In spherical coordinates,

dr̂

dt
=

dr̂

dθ

dθ

dt
+

dr̂

dφ

dφ

dt

= (ı̂ cos θ cos φ + ̂ cos θ sin φ− k̂ sin θ)
dθ

dt
+ (−ı̂ sin θ sin φ + ̂ sin θ cos φ)

dφ

dt

= θ̂θ̇ + φ̂ sin θφ̇ (24)

dφ̂

dt
= −r̂φ̇ sin θ − φ̂φ̇ cos θ (25)

dθ̂

dt
= −r̂θ̇ + φ̂φ̇ cos θ (26)
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