A Simple Example

it sum (int n)

i
” 2 mt partial sum=0;
ZI int i
i=1 for(i=1l:1<=n;1++)
Time Units to Compute partial_sum = partial_sum +(i*1):
\.__ return partial sum;
» 1 for the assignment. }
+ 1 assignment, 71+ tests,
and » increments. i=1
* 1 loops of 3 units for an if i<=n) {
assignment, an addition, [“ partial sum = partial sum+ (i *1);
and two multiplications. =i
+ 1 for the return statement.

}

Total: /+(1+n+1+n)+3n+1

_ Analysis too complex
= 5Sn+4 =0(n)

General Rules
= Loops

— The running time of a “for” loop is at most the
running time of the statements inside the “for” loop
(including tests) times the number of iterations.

for(i=1;1<=n;it++) {
sum = sum + i;

}
m The above example is O(n).

= Nested loops

— The total running time of a statement inside a
group of nested loops is the running time of the
statement multiplied by the product of the sizes of
all the loops.

for(1=1:1<=n;1+t) {
for(j=1:j<=m:j+o) { Imn = O(mn)
sum = sum +1+j;
}
}

m The above example is O(mn).



m Consecutive statements
— These just add, and the maximum is the one that
counts.
for(i=l:1<=n:1+t) {
Sum = sum + 1;

}
for(=1l:1<=n;1++) { N
for=Lj<=mjH{ <*“— O®)
sum = sum + 1+ j;

O(n)

H
}

®= The above example is O(h?+n) = O(n2).

for(i=1;1<=n;1++) {
for j=1:J<=n;j++) {
sum =sum+ 1+ j;

)
A Question:  un-cum/n

for(i=1;1<=n;i++) {
sum = sum + i;

J

forG=1; j<=n;j+) {
sum = sum + j*;

}
B N?+1+n+n=0(n°+2n+1) = O(n).

m |f (test) s1 else s2

— The running time is never more than the running
time of the test plus the larger of the running times
of s1 and s2. if (test==1) {

for(i=lLi1<=nit) {
sum = sum + 1;
¥
}
elsefor(i=1:1<=n;1++) {
for=1:j<=n:j++) {
sum=sum+1-+j:
J
}

® The running time = 1 + max(n,n?) = O(n2).



m Recursion:

— Analyze from the inside (or deepest part) first and
work outwards. If there are function calls, these
must be analyzed first. This even works for

recursive functions: , _
Time Units to Compute

long factorial (int n) { S

ifn<=1) 1 for the test.
return 1: 1 for the multiplication statement.
else
return n * factorial(n-1); What about the function call?
H
®= The running time of factorial(n) = T(n) = 2+T(n-1) =
4+T(n-2) = 6+T(n-3) = ... = 2n = O(n).

Another Recursive Example

. .
ong i ) Time Unis o Compute
if(n<=1) . _
1. 1 for the test.
else
) refurn fib(n-1) + fib(n-2); 1 for the addition.

What about the function calls?
m The running time of fib(n) = T(n) = T(n-1) +
T(n-2) + 2. Can we estimate T(n) from this?

Fibonacci Analysis

Let F'(n)be the nth Fibonacci number.
We can prove that (1) 7(n) = F(n)and
2)Fm) 2 (3/2)". ThusTm) = (3/2)",
which means the running time grows

exponentially. This 1s quite bad.



