
B.B. Karki, LSU1CSC 3102

B-Trees

B.B. Karki, LSU2CSC 3102

Multiway Trees

 For any binary tree (e.g., binary search tree, AVL tree) or even for 2-3 tree, the
outdegree is restricted to two or three.

 As the trees grow in size, their height can become significant.
 A binary tree with 1,000 entries has height of at least 9 while a tree with

100,000 entries has a height of at least 16 assuming that h = 0 for single
entry.

 In case of unbalanced trees, the height can be significantly larger.

 For multiway trees, the outdegree is not restricted to two or three while retaining
the general properties of binary search trees.
 A m-way tree is a search tree in which each node can have from zero to m

subtrees, where m is defined as the order of the tree.
 A m-way tree is not a balanced tree.
 A balanced m-way search tree is a B tree.

B.B. Karki, LSU3CSC 3102

B-Trees

 A B-tree provides an efficient index organization for data sets of
structured records
 Introduced by R. Bayer and E. McGreight in 1972
 Extends the idea of the 2-3 tree by permitting more than a single key in the

same node of a search tree.

 In a B-tree, all data records (or record keys) are stored at the leaves, in
increasing order of the keys
 The parental nodes are used for indexing

Usually called B+ tree
 When used for storing a large data file on a disk, the nodes of a B-tree usually

correspond to the disk pages (blocks).

B.B. Karki, LSU4CSC 3102

Parental Node of a B-Tree

 Each B-tree node contains n -1 ordered keys K1 < K2 …….< Kn-1

 The keys are interposed with n pointers or references to the node’s children so that
all the keys in subtree T0 are smaller than K1, all the keys in subtree T1 are greater
than or equal to K1 and smaller than K2 with K1 being equal to the smallest key in
T1, and so on.

 The keys of the last subtree Tn-1 are greater than or equal to Kn-1 with Kn-1 being
equal to the smallest key in Tn-1.

 A n-node is shown here.

T0 T1 Ti-1 Ti Tn-2 Tn-1

K1P0 P1 KiPi-1 Pi Kn-1Pn-1 Pn-1.

B.B. Karki, LSU5CSC 3102

Properties of B-Trees
 The root is either a leaf or has between 2 and m children.

 A leaf has between 1 and m -1 entries or keys.

 Each node, except the root and the leaves, has between m/2 and m children
 Has keys between m/2 - 1 and m -1.

 The tree is perfectly balanced
 All its leaves are at the same level.

20 51

11 15 25 34 40 60

4, 7, 10 11, 14 15, 16, 19 20, 24 25, 28 34, 38 51, 55 60, 68, 8040, 43, 46

B-Tree of order 4

A node can have 2, 3 or 4
children, which means that a
node can have 1, 2 or 3 keys or
data entries.

max entries min entries

B.B. Karki, LSU6CSC 3102

Example of B-Tree Insertion
 Inserting 65 into the B-tree under

restriction that the tree’s leaves
cannot contain more than three
items.

 Can also be done by moving 60,
the smallest key of the full leaf, to
its sibling with keys 51 and 55 and
replacing the key value of their
parent by 65, the new smallest
value in the second child. 20 51

11 15 25 34 40 60 68

4, 7, 10 11, 14 15, 16, 19 20, 24 25, 28 34, 38 51, 55 68, 8040, 43, 46

Inserting 65

60, 65

65

51, 55, 60 65, 68, 80

Lending the entry 60 to the left

B.B. Karki, LSU7CSC 3102

Efficiency of B-Tree

 Time efficiency depends on the height (h) of the tree
 The number of nodes we need to access during a search for a record with a given key value is equal to

the height of the tree plus one.

 Find the smallest number of keys a B-tree of order m and height h can have:
 The root of the tree will contain, at least, one key
 Level 1 will have at least two nodes with at least m/2 - 1 keys in each of them, for the total

minimum number of keys 2(m/2 -1).
 Level 2 will have at least 2m/2 nodes (the children of the nodes at level 1) with at least m/2 -1 in

each of them, for the total minimum number of keys 2m/2(m/2 -1).
 In general, the nodes at the level i, will contain at least 2m/2i-1 (m/2 - 1) keys.
 Finally, level h, the leaf level, will have at least 2m/2h-1

 Thus we have the following inequality

€

n ≥1+ 2 m
2

 


 

i−1 m
2

 


 
−1









 + 2

m
2

 


 

h−1

i=1

h−1

∑

n ≥ 4 m
2

 


 

h−1

−1.

h ≤ log m / 2 
n +1
4



 


 
+1.

The searching in a B-tree is a O(log n)
operation

The h’s upper bound is 6, 5 and 4, respectively,
for order m of 50, 100, 250 for a file of 100
million entries.

B.B. Karki, LSU8CSC 3102

B-Tree Abstract Data Type

 B-Tree data structure: Implementation
requires three types of structures:
 Head structure (B_TREE)
 Data node (NODE)
 Entry structure (ENTRY)

 B-Tree functions to build and maintain the
tree:
 Basic algorithms

BTreeCreate, BTreeInsert,
BTreeDelete

 Tree data processing
BTreeRetrieval, BTreeTraversal

 Tree utility functions
BTreeSearch, BTreeEmpty,

BTreeFull, BTreeCount,
BTreeDestroy

B_TREE
 count <integer>
 root <node pointer>
 compare <pointer>
end B_TREE

NODE
 firstPtr <node ponter>
 numEntries <integer>
 entries[m-1] <ENTRY>
end NODE

ENTRY
 key <keyType>
 data <dataType>
 rightPtr <node pointer>
end ENTRY

B.B. Karki, LSU9CSC 3102

Searching

 Similar to searching in the binary search tree and even more so in the 2-3 tree.

 Starting with root, we follow a chain of pointers to the leaf that may contain the
search key.

 Search for the search key among the keys of that leaf.

 Since keys are stored in the sorted order, at both parental nodes and leaves, one can
use binary search if the number of keys in a node is very large.

B.B. Karki, LSU10CSC 3102

Insertion

 Apply search procedure to the new record’s key K to find
the appropriate leaf for the new record.

 If there is room for the record in that leaf, place it there.

 If there is no room for the record, the leaf is split in half
by sending the second half of the records to a new node
 The smallest key K in the new node and the pointer to it have to be

inserted into the old leaf’s parent.

 This recursive procedure may percolate up to the tree’s
root.
 If the root is already full too, a new root is created with the two

halves of the old keys split between two children of the new root.
 One can avoid the possibility of recursive node splits by

 Splitting full nodes as we are searching for an appropriate leaf
for the new record.

 Moving a key to the node’s sibling to avoid some node splits.

Insert logic requires several
algorithms

ADT Interface function

Internal functions:
Search node, Insert node, Insert
entry and Split node functions

B.B. Karki, LSU11CSC 3102

B-Tree Deletion

 Process involves several steps:
 Search for the data to be deleted.
 Once the data entry is deleted, determine whether it has caused an

underflow.
A deletion that results in a node with fewer than minimum number of

entries is an underflow.
 Correct the underflow structural deficiency as node delete backs out of the

recursion.

 Delete logic requires two algorithms
 ADT delete interface

 This user interface function calls the recursive delete function and
checks for root overflow.

 Internal functions
Delete entry
Delete middle
Reflow

B.B. Karki, LSU12CSC 3102

B-Tree Delete Internal Functions
 Delete node: Searches for the node (delete key) to be deleted. If the key is not in the current node, it

calls itself recursively with a new subtree. If the key is found, it deletes the key by calling either delete
entry or delete mid. Then it checks for underflow and if necessary repairs the underflow (reflow).

 Delete entry: Removes the entry from a node and compresses it (i.e., moves the entries to the right of
the deleted key to the left).

 Delete middle: When the data to be deleted are not in leaf node, then the immediate predecessor (i.e.,
the largest node on the left subtree of the entry to be deleted) is used as the substitute data. The
function recursively follows the left subtree’s right pointer in the last entry until it comes to a leaf
node. Then it replaces the deleted data with the data in the leaf’s last entry and then physically deletes
the predecessor from the leaf node.

 Reflow: Brings the underflowed node up to a minimum state by adding at least one entry to it.
 Balance: shifts an entry from one sibling to another through the parent.

 Borrow left: Checks whether the left subtree is above the minimum, and if it is, burrows one
entry from the left to right subtree which has gone underflowed.

 Borrow right: Burrows one entry from the right subtree if it is above minimum to the
underflowed left subtree.

 Combine: Joins the data from an underflowed entry, a minimal sibling and a parent in one node
 It results in one node with the maximum number of entries.
 The empty node is recycled.

B.B. Karki, LSU13CSC 3102

Balance: Borrow from Left
 Steps: Right subtree borrows

the left.
 First shift data right
 Rotate parent node down
 Rotate data up

 For order m = 5,
Minimum number of of entries

= m/2 -1 = 2
Maximum number of entries

= m - 1 = 4

Deleting 91 in the right subtree causes an underflow

78

45 63 74 85

45 63 74 78 85
74

45 63 78 85

78

45 63 74 85 91

78

45 63 74 85

Balancing by by borrow left algorithm

Right shift of 85

Parent (78) down-rotation

Left data (74) up-rotation

21 95

21 95

Underflowed node

B.B. Karki, LSU14CSC 3102

Combine
 Steps: Combines the underflowed node (right

node, 78), the left subtree (with minimal entries,
45 and 63) and their parent node 74.
 Move root to the left subtree
 Move entries in the underflowed node to the left

subtree
 Shift the root.

 For order m = 5,
Minimum number of of entries

= m/2 -1 = 2
Maximum number of entries

= m - 1 = 4

Deleting 85 in the right subtree causes an underflow

45 63 74 78

45 63 74 78

45 63 74 78

21 74 95

45 63 78 85

74

45 63 78

Balancing by by burrow left algorithm

Move parent 74 to left

Move right entry 78

Shift root

21 95

21 95

21 95

Underflowed node

