5 0 —< o 9},& LAT
g{v);k_r//w\

Chapter 6

Binary Search Trees

1st semester
2007/2008

Instructor; Mamoun Nawahdah

Heaps

Full Binary Tree

m Every non-leaf node has two children

m All the leaves are on the same level

;{

OOOO

Complete Binary Tree

m A binary tree that is either full or full through the
next-to-last level

m The last level is full from left to right (i.e., leaves are
as far to the left as possible)

° %4

(a) Full and complete (b) Meither full nor (c) Complete
complete

S

QO

0000 OO OO

(d) Full and complete (e) Neither full nor (f) Complete
complete

Array-based representation of complete binary trees

m Preserve parent-child relationships by storing the tree
elements in the array

tree.nodes

(01 [G]

no

0 2]

lmla— G 3] E

/ \ [4] L

1 b i 2 (5] (K|

fs1 [)|

/ \ 4 5 / \ 6 il |

3(s F H] 18] S
ol | E

7 / \s o / :
A c E [maxElements -1] ||

tree.numElements = 10

Array-based representation of complete binary trees

m Parent-child relationships:
o left child of tree.nodes[index] = tree.nodes[2*index+1]
e right child of tree.nodes[index] = tree.nodes[2*index+2]

e parent node of tree.nodes[index] = tree.nodes[(index-1)/2]
(int division-truncate)

m Leaf nodes:

e tree.nodes[numElements/2] to tree.nodes[numElements - 1]

Array-based representation of complete binary trees

]
m Full or complete trees can be implemented easily using
an array-based representation (elements occupy
contiguous array slots)
= "Dummy nodes" are required for trees which are not
full or complete e —
tree }—’ 50 (0] E
/ \ 1 [30]
a0 60 (2] 60]
131 | 29
SN N o [35
29 s {) (w (51]=1}
R (6] [70
A [
(Y () (= 51 =
D (01 | 42
[maxElements - 1] —
tree.numElements = 10

m [t is a binary tree with the following
properties:

e Property 1: it is a complete binary tree

e Property 2: the value stored at a node is
greater or equal to the values stored at
the children

What is a heap? (cont.)

Largest heap element

m From Property 2, the largest value of the heap is
always stored at the root

heap.elements

B ! (0]
H I (2l
[3]

N\ / N\ o

D G F A :5}

6

/ \! r/ [7]
C E [8]

[9]

heap

HlO|@|»>|m|Q[T=|T|—

Heap implementation using array
representation

m A heap is a complete binary tree, so it is easy to
be implemented using an array representation

heap.elements

heap H—»] 0117
/ \) [T

H I 21|

31| D

/ \ / \ 4] | G

D G F A (51| F
[6] | A

/ 0\ / 7 I
C E 8] C

9| E

The ReheapDown function
(used by deleteltem)

m Assumption: heap property is violated at the root of the tree

mpg_/(a e [0 g
Q/Q@ @Q@) é@@
® © @%@

(b)

heap B—/’(K
ﬁ Q Swapped

ol c o
§ s |

The ReheapUp function

at the last level of the tree

heap E—v hi_ap

oy
AR S @R@
- E|—/‘(D\ heap El\

® © ®

(<) (d)

ReheapDown function

template<class ItemType> /

m Assumption: heap property is violated at the rightmost node

(a) Add K (b} Swapped

Swapped R Swapped
Qp\@ S /@\/@KQ

ofcXolo o Q@@é

rightmost node
in the last level

void HeapType<IltemType>::ReheapDown(int root, int bottom) {

int maxChild, rightChild, leftChild;

leftChild = 2*root+1;
rightChild = 2*root+2;

if(leftChild <= bottom) { // left child is part of the heap
if(leftChild == bottom) // only one child
maxChild = leftChild;
else {
if(elements[leftChild] <= elements[rightChild])
maxChild = rightChild;
else
maxChild = leftChild;

if(elements[root] < elements[maxChild]) {
Swap(elements, root, maxChild);
ReheapDown(maxChild, bottom);

ReheapUp function

Assumption:
heap property
is violated at bottom

template<class ItemType> /

void HeapType<ltemType>::ReheapUp(int
root, int bottom){

int parent;

if(bottom >root) { // tree is not empty
parent = (bottom-1)/2;
if(elements[parent] < elements[bottom]) {
Swap(elements, parent, bottom);
ReheapUp(root, parent);

}
1

Removing the largest element from the heap

1) Copy the bottom rightmost element to
the root

2) Delete the bottom rightmost node

3) Fix the heap property by calling
ReheapDown

Removing the largest element from the
heap (cont.)

heap

Inserting a new element into the heap

1) Insert the new element in the next
bottom leftmost place

2) Fix the heap property by calling
ReheapUp

Inserting a new element into

the heap (cont.)

o[l
aN
H I heaPB—’
A R PN
/\ / \ N\
B C E @ D H F
. /\ /\

(b) ReheapUp

Priority Queues

I

/\

m\What is a priority queue?

e It is @ queue with each element being
associated with a "priority"

e From the elements in the queue, the one
with the highest priority is dequeued first

A

10

