B-Trees

CSC 3102 1 B.B. Karki, LSU

Multiway Trees

B For any binary tree (e.g., binary search tree, AVL tree) or even for 2-3 tree, the
outdegree is restricted to two or three.

B As the trees grow in size, their height can become significant.

A binary tree with 1,000 entries has height of at least 9 while a tree with
100,000 entries has a height of at least 16 assuming that /4 = O for single
entry.

In case of unbalanced trees, the height can be significantly larger.

B For multiway trees, the outdegree is not restricted to two or three while retaining
the general properties of binary search trees.

A m-way tree is a search tree in which each node can have from zero to m
subtrees, where m 1s defined as the order of the tree.

A m-way tree is not a balanced tree.
A balanced m-way search tree is a B tree.

CSC 3102 2 B.B. Karki, LSU

B-Trees

B A B-tree provides an efficient index organization for data sets of
structured records

Introduced by R. Bayer and E. McGreight in 1972

Extends the idea of the 2-3 tree by permitting more than a single key in the
same node of a search tree.

M In a B-tree, all data records (or record keys) are stored at the leaves, in
increasing order of the keys

The parental nodes are used for indexing
Usually called B* tree

When used for storing a large data file on a disk, the nodes of a B-tree usually
correspond to the disk pages (blocks).

CSC 3102 3 B.B. Karki, LSU

Parental Node of a B-Tree

M Each B-tree node contains n -1 ordered keys K, <K, <K

B The keys are interposed with n pointers or references to the node’s children so that
all the keys in subtree T, are smaller than K, all the keys in subtree T, are greater
than or equal to K, and smaller than K, with K, being equal to the smallest key in
T,, and so on.

M The keys of the last subtree T, , are greater than or equal to K _, with K, | being
equal to the smallest key in T, .

B A n-node is shown here.

P, | K, P, - P., Ki P, - Pt | Kiil Pos

CSC 3102 4 B.B. Karki, LSU

Properties of B-Trees

B The root is either a leaf or has between 2 and m children.
A leaf has between 1 and m -1 entries or keys.

B Each node, except the root and the leaves, has between [m/2] and m children
Has keys between [m/2] - 1 and m -1.
B-Tree of order 4

B The tree is perfectly balanced
All its leaves are at the same level. A T‘Ode can _have 2,30r4
children, which means that a
node can have 1, 2 or 3 keys or

20 I 51 data entries.
/ \ max entries min entries
[11]]15] | 25 | |34] 40 60 |
4,7,10 11,14 15, 16, 19 20, 24] |25, 28| |34, 38 40, 43, 46 51,55 60, 68, 80
B.B. Karki, LSU

(¢,

CSC 3102

Example of B-Tree Insertion

65 |

B Inserting 65 into the B-tree under
restriction that the tree’s leaves
cannot contain more than three
1tems.

B Can also be done by moving 60, 51.55. 60 65. 68. 80
the smallest key of the full leaf, to — —
its sibling with keys 51 and 55 and Lending the entry 60 to the left
replacing the key value of their l

parent by 65, the new smallest
value in the second child.

/

11 || 15 | 25 [|34]] 40 60 || | 68
5

15, 16, 19 20, 24] |25, 28| |34, 38| | 40, 43, 46 51, 55| |60, 65| |68, 80

20 |[]51] Inserting 65

4,7,10] |1

Y
-—h
E oY

CSC 3102 6 B.B. Karki, LSU

the height of the tree plus one.

minimum number of keys 2([m/2] -1).

Thus we have the following inequality

The searching in a B-tree is a O(log n)
operation

The h’s upper bound is 6, 5 and 4, respectively,
for order m of 50, 100, 250 for a file of 100
million entries.

CSC 3102 .

B Time efficiency depends on the height (k) of the tree
The number of nodes we need to access during a search for a record with a given key value is equal to

Efficiency of B-Tree

B Find the smallest number of keys a B-tree of order m and height 4 can have:
The root of the tree will contain, at least, one key
Level 1 will have at least two nodes with at least [m/2] - 1 keys in each of them, for the total

Level 2 will have at least 2[m/2] nodes (the children of the nodes at level 1) with at least [m/2] -1 in
each of them, for the total minimum number of keys 2[m/2]([m/2] -1).

In general, the nodes at the level i, will contain at least 2[m/2]*! ([m/2] - 1) keys.
Finally, level h, the leaf level, will have at least 2[m/2]"1

B.B. Karki, LSU

B-Tree Abstract Data Type

B B-Tree data structure: Implementation B_TREE
requires three types of structures: count <integer>
Head structure (B_TREE) root <node pointer>
Data node (NODE) compare <pointer>
Entry structure (ENTRY) end B_TREE
] t]?ﬁe—:'ell“zree functions to build and maintain the NODE
Basic algorithms firstPtr _ <.node ponter>
v BTreeCreate, BTreelnsert, numEntries <integer>
BTreeDelete entriesf[m-1] <ENTRY>
Tree data processing end NODE
v BTreeRetrieval, BTreeTraversal
Tree utility functions ENTRY
v BTreeSearch, BTreeEmpty, key <keyType>
BTreeFull, BTreeCount, data <dataType>
BTreeDestroy rightPtr <node pointer>
end ENTRY

CSC 3102 8 B.B. Karki, LSU

Searching

B Similar to searching in the binary search tree and even more so in the 2-3 tree.

B Starting with root, we follow a chain of pointers to the leaf that may contain the
search key.

B Search for the search key among the keys of that leaf.

B Since keys are stored in the sorted order, at both parental nodes and leaves, one can
use binary search if the number of keys in a node is very large.

CSC 3102 9 B.B. Karki, LSU

Insertion

B Apply search procedure to the new record’s key K to find
the appropriate leaf for the new record.

B If there is room for the record in that leaf, place it there.

B If there is no room for the record, the leaf is split in half
by sending the second half of the records to a new node

The smallest key K in the new node and the pointer to it have to be
inserted into the old leaf’s parent.

B This recursive procedure may percolate up to the tree’s
root.

If the root is already full too, a new root is created with the two
halves of the old keys split between two children of the new root.

One can avoid the possibility of recursive node splits by

v Splitting full nodes as we are searching for an appropriate leaf
for the new record.

v Moving a key to the node’s sibling to avoid some node splits.

CSC 3102 10

Insert logic requires several
algorithms

ADT Interface function

Internal functions:

Search node, Insert node, Insert
entry and Split node functions

B.B. Karki, LSU

B-Tree Deletion

B Process involves several steps:
Search for the data to be deleted.

Once the data entry is deleted, determine whether it has caused an
underflow.

v A deletion that results in a node with fewer than minimum number of
entries 1s an underflow.

Correct the underflow structural deficiency as node delete backs out of the
recursion.

B Delete logic requires two algorithms
ADT delete interface

v This user interface function calls the recursive delete function and
checks for root overflow.

Internal functions

v Delete entry
v Delete middle
v Reflow

CSC 3102 11 B.B. Karki, LSU

B-Tree Delete Internal Functions

B Delete node: Searches for the node (delete key) to be deleted. If the key is not in the current node, it
calls itself recursively with a new subtree. If the key is found, it deletes the key by calling either delete
entry or delete mid. Then it checks for underflow and if necessary repairs the underflow (reflow).

B Delete entry: Removes the entry from a node and compresses it (i.e., moves the entries to the right of
the deleted key to the left).

B Delete middle: When the data to be deleted are not in leaf node, then the immediate predecessor (i.e.,
the largest node on the left subtree of the entry to be deleted) is used as the substitute data. The
function recursively follows the left subtree’s right pointer in the last entry until it comes to a leaf
node. Then it replaces the deleted data with the data in the leaf’s last entry and then physically deletes
the predecessor from the leaf node.

B Reflow: Brings the underflowed node up to a minimum state by adding at least one entry to it.
Balance: shifts an entry from one sibling to another through the parent.

Borrow left: Checks whether the left subtree is above the minimum, and if it is, burrows one
entry from the left to right subtree which has gone underflowed.

Borrow right: Burrows one entry from the right subtree if it is above minimum to the
underflowed left subtree.

Combine: Joins the data from an underflowed entry, a minimal sibling and a parent in one node
It results in one node with the maximum number of entries.

The empty node is recycled.
CSC 3102 12 B.B. Karki, LSU

B Steps: Right subtree borrows
the left.

First shift data right

Balance: Borrow from Left

Rotate parent node down 145 I 63

Rotate data up

B Fororderm =35,

Minimum number of of entries

[[21] 78|\;

95
1ESIER T

Balancing by by borrow left algorithm

CSC 3102 13

..A
9

Deleting 91 in the right subtree causes an underflow

RN

= [m/2] -1=2
Maximum number of entries
—m-1=4 HIEIEIIE I
Underflowed node
1]78
HIE g /
Right shift of 85 JUER] 1 K21 U ESDy
g [251T631072]] [I7sITs5L Au/ A
Parent (78) down-rotation
HIEINIEREIE]

Left data (74) up-rotation

B.B. Karki, LSU

Combine

B Steps: Combines the underflowed node (right “l 21174 .
node, 78), the left subtree (with minimal entries, A ‘A
45 and 63) and their parent node 74.

Move root to the left subtree 45 [I 63 5

Move entries in the underflowed node to the left
subtree

Shift the root.

Deleting 85 in the right subtree causes an underflow

B Fororderm=35, | 74
Minimum number of of entries A‘ »* Yo, A
= [m/Z] -1=2

Maximum number of entries
as]Te3]] [I7sL
=m-1=4
Underflowed node
NEZH 1 D ES
. L
A“ / '.A
21 95
a5[Je3]]74 A“'L‘/" a
211195
Move parent 74 to left EIE I EE [A‘“EI:,] e
Move right entry 78 /
631741178
Balancing by by burrow left algorithm Shift i
ITT rO0

CSC 3102 14 B.B. Karki, LSU

