
Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 07

Arrays

Loading…

Chapter Objectives:

1. Declare and use arrays for storing collections of values of the same type.

2. Use a subscript to reference the individual values in an array.

3. Process the elements of an array in sequential order using loops

4. Search and sort an array

5. Multidimensional arrays

6. Declare and use your own data types

And more….

● To solve many programming problems, it is more efficient to group data items
together in main memory than to allocate an individual memory cell for each
variable. (1)

● C allows a programmer to group such related data items together into a single

composite data structure .

● We look at one such data structure: the array

ARRAY
S

Loading…

➢ An array is a collection of two or more adjacent memory cells, called array
elements , that are associated with a particular symbolic name.

➢ To set up an array in memory, we must declare both the name of the array and the

number of cells associated with it.

➢ The declaration: double x[8];

o Instructs the compiler to associate eight memory cells with the name x.(1)
o Each element of array x may contain a single type double value (2)

7.1 DECLARING AND REFERENCING
ARRAYS

● The Subscript Variable

o Reference each individual element by specifying the array name and identifying the
element desired.

o The subscripted variable x[0] (1) may be used to reference the initial or 0th element of

the array x.

o x[1] the next element, and x[7] the last element.

o The integer enclosed in brackets is the array subscript , and its value must be in the
range from 0 to one less than the number of memory cells in the array.

7.1 DECLARING AND REFERENCING
ARRAYS

Before executing the statements in Table 7.1 After executing the statements in Table 7.1

=>

7.1 DECLARING AND REFERENCING
ARRAYS

➢ You can declare more than one array in a single type declaration.

double students[5], instructors, courses[6];

int factor[12], n, index;

7.1 DECLARING AND REFERENCING
ARRAYS

● We can initialize an array in its declaration. (1)

● We can omit the size of an array that is being fully initialized. (2)

● For example, we initialize a 25-element array with the prime numbers less
than 100.

● Array element prime_100[24] is 97.

ARRAY INITIALIZATION

int prime_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97};

o The general uninitialized array declaration allocates storage space for array aname
consisting of size memory cells.

o Each memory cell can store one data item whose data type is specified by element-type

(i.e., double , int , or char)

ARRAY
DECLARATION

SYNTAX: element-type aname [size]; /* uninitialized */

element-type aname [size] = { initialization list }; /* initialized */

EXAMPLE:

#define A_SIZE 5

. . .

double a[A_SIZE];

char vowels[] = {'A', 'E', 'I', 'O', 'U'};

Loading…

➢ The individual array elements are referenced by the subscripted variables aname [0] ,
aname [1] , . . . , aname [size −1].

➢ A constant expression of type int is used to specify an array’s size.

➢ The initialization list consists of constant expressions of the appropriate element-type

separated by commas.

➢ Element 0 of the array being initialized is set to the first entry in the initialization list ,

element 1 to the second, and so forth.

➢ In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list .

ARRAY
DECLARATION

➢ You can store individual characters in an array by writing each character in
the initialization list.

➢ If the list is long, you can do this more easily by using a string instead of an

initialization list.

➢ vowels[0] stores the character 'T'
➢ vowels[1] stores the character 'h' ,

and so on.

STORING A STRING IN AN ARRAY OF CHARACTERS

char vowels[] = "This is a long string";

➢ We can use any expression of type int as an array subscript.

➢ To create a valid reference, the value of this subscript must lie between 0 and one

less than the declared size of the array.

➢ Table 7.2 p.380 lists some sample statements involving the array x below.

➢ It is the programmer’s responsibility to verify that the subscript is within the

declared range. (1)

7.2 ARRAY SUBSCRIPTS

➢ In C, we can process elements of an array easily using an indexed for loop.

➢ A counting loop whose loop control variable runs from 0 to one less than the array

size.

➢ Using the loop counter as an array index (subscript) gives access to each array

element in turn.

➢ =>

7.3 USING FOR LOOPS FOR SEQUENTIAL ACCESS

#define SIZE 11;

int square[SIZE], i;

for (i = 0; i < SIZE; ++i)

 square[i] = i * i;

➢ Figure 7.2, p.382.
➢ TABLE 7.3 p.385: Partial Trace of Computing for Loop
➢ In this example, The variable i is used as the loop control variable and array

subscript in each loop.

➢ The variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition.

➢ The use of the loop control variable as an array subscript is common,

because it allows the programmer to specify easily the sequence in which the
elements of an array are to be manipulated. (1)

STATISTICAL COMPUTATIONS USING
ARRAYS

● The code below uses array element x[i] as an input argument to function printf. (1)

● The code below uses array element x[i] as an output argument of scanf (2)

● You can also pass array elements as arguments to functions that you write.

● Each array element must correspond to a formal parameter that is the same simple
type as the array element.

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',x[i] - mean);

scanf("%lf", &x[i]);

● EXAMPLE 7.6, p.386

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

void do_it (double arg_1, double *arg2_p, double *arg3_p){

*arg2_p = 5.0;

*arg3_p = 6.5;

do_it(x[0], &x[1], &x[2]);

do_it (n, &q, &r);

do_it() function
definition

do_it() function
call

Another do_it()
function call

● Figure 7.3

7.4 USING ARRAY ELEMENTS AS FUNCTION
ARGUMENTS

● We can write functions that have arrays as arguments. (1)

● Formal Array Parameters:

● When an array name with no subscript appears in the argument list of a
function call, what is actually stored in the function’s corresponding formal
parameter is the address of the initial array element.

● We can use subscripts with the formal parameter to access the array’s

elements. (2)

● The function manipulates the original array, not its own personal copy (3)

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7

7.5 ARRAY
ARGUMENTS

● EXAMPLE 7.7:

● In function fill_array , the array parameter is declared as

 int list[]

● Notice that the parameter declaration does not indicate how many elements
are in list .

● Because C does not allocate space in memory for a copy of the actual array,

the compiler does not need to know the size of the array parameter.

● In fact, since we do not provide the size, we have the flexibility to pass to
the function an array of any number of integers.

7.5 ARRAY
ARGUMENTS

➢ If y is an array with ten type int elements, the following function call stores the
value of num in the ten elements of array y

➢ If x is a five-element array of type int values,

 =

● However, the call on the right may lead the reader of the code to expect that
fill_array may be using only the array element x[0] as an output argument. (3)

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

fill_array(y, 10, num);

fill_array(x, 5, 1); (1) fill_array(&x[0], 5, 1);(2)

 fill_array(x, 5, 1);

Figure 7.5

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

● Use of *list Instead of list[] in a Formal Parameter List:

● In the declaration for function fill_array , we can use either parameter declaration:

(1)
• int list[]
• int *list

● Because C passes an array argument by passing the address of its initial element, the

second declaration would be equally valid for an integer array parameter.

● Remember that a formal parameter of the form type1 *param
is compatible with an actual argument that is an array of type1 values.

ARGUMENT CORRESPONDENCE FOR ARRAY
PARAMETERS

➢ We can use a qualifier that we can include in the declaration of the array formal
parameter in order to notify the C compiler that the array is only an input to the
function and that the function does not intend to modify the array. (1)

➢ In a formal parameter list, the reserved word const indicates that the array variable

declared is strictly an input parameter and will not be modified by the function. (2)

➢ EXAMPLE 7.8, p.391, [figure 7.6]:

o Formal parameter list actually contains the address of the type int variable x[0] . (3)

ARRAYS AS INPUT
ARGUMENTS

➢ In C, it is not legal for a function’s return type to be an array; therefore, defining
such a function requires use of an output parameter to send the result array back to
the calling module.

➢ A function returning an array result depends on its caller to provide an array variable

into which the result can be stored.

RETURNING AN ARRAY
RESULT

➢ If we assume this calling
function:

RETURNING AN ARRAY
RESULT

add_arrays(x, y, x_plus_y, 5); =>

Figure 7.9

Loading…

➢ Note that Address-of Operator is Not Used.

➢ The & (address-of) operator is not applied to the name of the output array

argument

➢ Since the output parameter arsum is declared with no const qualifier,

function add_arrays automatically has access and authority to change the
corresponding actual array argument

RETURNING AN ARRAY
RESULT

➢ Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length.

➢ In order to reuse an array for processing more than one data set, the programmer

often declares an array large enough to hold the largest data set anticipated. (1).

➢ EXAMPLE 7.10

PARTIALLY FILLED ARRAYS

➢ A stack is a data structure in which only the top element can be accessed. (1)

➢ A stack of three characters:

➢ The letter C, the character at the top of the stack, is the only one we can access. (2)

● popping the stack: Removing a value from a stack.

● pushing it onto the stack: storing an item in a stack

STACK
S

C
+
2

➢ Figure 7.13

STACK
S

➢ As an example of an array search, we might want to search an array of student exam
scores to determine which student, if any, got a particular score.

➢ An example of an array sort would be rearranging the array elements so that they

are in increasing order by score.

7.6 SEARCHING AND SORTING AN ARRAY

• In order to search an array, we need to know the array element value we are seeking,
or the search target.

• Then, we can perform the search by examining in turn each array element using a

loop and by testing whether the element matches the target.

• The search loop should be exited when the target value is found; this process is called

a linear search .

ARRAY
SEARCH

➢ The following algorithm for linear search sets a flag (for loop control) when the
element being tested matches the target:

1. Assume the target has not been found.

2. Start with the initial array element.

3. repeat while the target is not found and there are more array elements

4. if the current element matches the target

5. Set a flag to indicate that the target has been found.

else

6. Advance to the next array element.

7. if the target was found

8. Return the target index as the search result.

else

9. Return −1 as the search result.

ARRAY
SEARCH

● Figure 7.14

ARRAY
SEARCH
● Figure 7.14
➢ The type int variable found is used to represent the logical concept of whether the

target has been found yet and is tested in the loop repetition condition (1)

➢ After found becomes true or the entire array has been searched, the loop is exited,

and the decision statement following the loop defines the value returned.

➢ If array arr and target are declared in the calling function, the assignment

statement: index = search(arr, target, SIZE);

calls function search to search the first SIZE elements of array arr for the target (i.e.
target = 3):(2)

SEARCH

➢ Many programs execute more efficiently if the data they process are sorted before
processing begins.

➢ For example, your university might want students grade report sorted by student ID

number.

➢ ALGORITHM FOR SELECTION SORT:
1. for each value of index from 0 to n-2

2. Find index_of_min , the index of the smallest element in the unsorted subarray

list[index] through list[n-1] .

3. if index is not the position of the smallest element (index_of_min)

4. Exchange the smallest element with the one at position index .

SORTING AN
ARRAY

➢ Figure 7.15

➢ See Figure 7.16 p.405
for a program example

➢ at most, n-1 exchanges will be required to sort an array with n elements.

SORTING AN
ARRAY

➢ Parallel arrays: arrays that have the same number of elements:
1. If there are n -elements, these parallel arrays contain data for n -objects

of the same kind. [not type]
2. Further, all array elements at subscript i contain data for the i-th object in

this group of n -objects.

● EXAMPLE 7.11 , Figure 7.17 two parallel arrays for a student records program (1)

7.7 PARALLEL ARRAYS AND ENUMERATED
TYPES

#define NUM_STUDENTS 50

..

int id[NUM_STUDENTS];

double gpa[NUM_STUDENTS];

➢ Good solutions to many programming problems require new data types (1)
➢ C allows you to associate a numeric code with each category by creating an

enumerated type that has its own list of meaningful values.

 (3)

ENUMERATED
TYPES

typedef enum (2)

{entertainment, rent, utilities, food, clothing,

automobile, insurance, miscellaneous}

expense_t;

To declare:

expense_t expense_kind; (4)

Entertainment (0)
Rent (1)

Utilities (2)
…

➢ Figure 7.18

● The scope rules for identifiers apply to enumerated types and enumeration constants.

● Enumeration constants must be identifiers; they cannot be numeric, character, or
string literals (e.g., "entertainment" cannot be a value for an enumerated type).

● We recommend that you place type definitions immediately after any #define and

#include directives. (1)

● The reserved word typedef can be used to name many varieties of user-defined types.

ENUMERATED
TYPES

➢ An identifier cannot appear in more than one enumerated type definition, for
example, the weekday_t definition could not be used with the type day_t

ENUMERATED
TYPES

typedef enum

{monday, tuesday, wednesday, thursday,friday, saturday, sunday}

day_t;

typedef enum

{monday, tuesday, wednesday, thursday, friday}

weekday_t;

➢ Relational, assignment, and even arithmetic operators can be used with
enumerated types, just as with other integers.

➢ The following for type day_t are true:

➢ We can combine the use of arithmetic operators and casts to find enumeration
constants that follow and precede a current value.

ENUMERATED
TYPES

sunday < monday

wednesday != friday

tuesday >= sunday

➢ EXAMPLE 7.12: If today and tomorrow are type day_t variables, the following if statement assigns the
value of tomorrow based on the value of today : (1)

● C provides no range checking to verify that the value stored in an enumerated type variable is valid. (2)

For example, this assignment statement will not cause a run-time error even though it is clearly invalid.

ENUMERATED
TYPES

if (today == sunday)

 tomorrow = monday;

else

 tomorrow = (day_t)(today + 1);

today = saturday + 3;

➢ enumerated type variable can also be used as a loop counter:

➢ This loop will execute for each value of today from monday through friday

ENUMERATED
TYPES

for (today = monday; today <= friday; ++today) {

. . .

}

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

#define NUM_QUEST 10 /* number of questions on daily quiz */

#define NUM_CLASS_DAYS 5 /* number of days in a week of class */

typedef enum

{monday, tuesday, wednesday, thursday, friday}

week_day_t;

. . .

char answer[NUM_QUEST]; /* correct answers for one quiz */

int score[NUM_CLASS_DAYS]; /* one student's quiz scores for each day */

score[monday] = 9;

score[tuesday] = 7;

score[wednesday] = 5;

score[thursday] = 3;

score[friday] = 1;

 Countinue…

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

ascore = 9;

for (today = monday; today <= friday; ++today) {

score[today] = ascore;

ascore -= 2;

}

➢ Multidimensional arrays: arrays with two or more dimensions.

➢ The array declaration: char tictac[3][3];
allocates storage for a two-dimensional array (tictac) with three rows and three columns.

➢ Each array element contains a character value

➢ This array has nine elements, each of which must be referenced by specifying a row subscript
(0 , 1 , or 2) and a column subscript (0 , 1 , or 2).

7.8 MULTIDIMENSIONAL ARRAYS

➢ A function that takes a tic-tac-toe board as a parameter will have a declaration similar to this in
its prototype:

➢ In the declaration of a multidimensional array parameter, only the first dimension, the number
of rows, can be omitted.

➢ Including both dimensions is also permissible. (1)

➢ The following statement would declare a tic-tac-toe board and initialize its contents to blanks.
(2)

EXAMPLE 7.15, FIGURE 7.21 (3)

7.8 MULTIDIMENSIONAL ARRAYS

char tictac[3][3] = { {' ', ' ', ' '}, {' ', ' ', ' '}, {' ', ' ', ' '} };

char tictac[][3]

char tictac[3][3]

➢ EXAMPLE 7.14

➢ This array table consists of three dimensions:
 double table[7][5][6];

➢ The first subscript may take on values from 0 to 6 ; the second, from 0 to 4 ; and the third, from
0 to 5 .

➢ A total of 7 × 5 × 6 , or 210 , type double values may be stored in the array table.

➢ All three subscripts must be specified in each reference to array table in order to access a single

number (e.g., table[2][3][4]).

7.8 MULTIDIMENSIONAL ARRAYS

➢ (1)

➢ We will assume that the college offers 100 (MAXCRS) courses at five different campuses.

➢ Array enroll is composed of a total of 2000 (100 × 5 × 4) elements.

➢ we will number the freshman year 0 , the sophomore year 1, and so on.

➢ Thus, enroll[1][4][3] represents the number of seniors taking course 1 at campus 4 .

➢ Memory space can be used up rapidly if several multidimensional arrays are declared in the same program.
(2)

➢ The type of information desired determines the order in which we must reference the array elements. (3)

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Figure 7.22

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students in each course */

for (course = 0; course < MAXCRS; ++course) {

 crs_sum = 0;

 for (campus = 0; campus < 5; ++campus) {

 for (year = 0; year < 4; ++ year) {

 crs_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students in course %d is %d\n", course, crs_sum);

}

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students at each campus */

for (campus = 0; campus < 5; ++campus) {

 campus_sum = 0;

 for (course = 0; course < MAXCRS; ++course) {

 for (year = 0; year < 4; ++ year) {

 campus_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students at campus %d is %d\n", campus, campus_sum);

}

CASE STUDY (Homework)
P.419 - 427

Summary of Hospital Revenue

7.9 ARRAY PROCESSING ILLUSTRATED

● Subscript-range error: An out-of-range reference occurs when the subscript value used is
outside the range specified by the array declaration. (1)

● A subscript-range error occurs when celsius is used with a subscript that has a value less than
0 or greater than 99,

● i.e. If the value of i is 150 => error (2)

● They are most often caused by:
1. An incorrect subscript expression,
2. A loop counter error
3. A nonterminating loop.

7.11 COMMON PROGRAMMING
ERRORS

int celsius[100];

access violation at line no. 28

● Subscript-range error:
● If a subscript-range error occurs inside an indexed loop, verify that the subscript is in range

for both the initial and the final values of the loop control variable (1)

● If a subscript-range error occurs in a loop controlled by a variable other than the array
subscript, check that the loop control variable is being updated as required. (2)

7.11 COMMON PROGRAMMING
ERRORS

● When using arrays as arguments to functions, be careful not to apply the address-of operator to
the array name even if the array is an output argument.

● However, do remember to use the & on an array element that is being passed as an output

argument.

● Be sure to use the correct forms for declaring array input and output parameters in function
prototypes.

● A parameter declared a could represent a single integer output parameter or an

integer array parameter

● So, comment your own prototypes carefully and use the alternate declaration form
 for array parameters to assist readers of your code.

7.11 COMMON PROGRAMMING
ERRORS

int *z

int z[]

● Memory access violation: If you are working on a computer system with very limited memory,
you may find that some correct C programs generate run-time error messages indicating an
access violation. (1)

● When you define enumerated types, remember that only identifiers can appear in the list of

values (enumeration constants) for the type.

● Be careful not to reuse one of these identifiers in another type or as a variable name in a
function that needs your type definition. (2)

7.11 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Figure 7.14
➢ The type int variable found is used to represent the logical concept of whether the

target has been found yet and is tested in the loop repetition condition (1)

➢ After found becomes true or the entire array has been searched, the loop is exited,

and the decision statement following the loop defines the value returned.

➢ If array arr and target are declared in the calling function, the assignment

statement: index = search(arr, target, SIZE);

calls function search to search the first SIZE elements of array arr for the target (i.e.
target = 3):(2)

SEARCH

➢ Many programs execute more efficiently if the data they process are sorted before
processing begins.

➢ For example, your university might want students grade report sorted by student ID

number.

➢ ALGORITHM FOR SELECTION SORT:
1. for each value of index from 0 to n-2

2. Find index_of_min , the index of the smallest element in the unsorted subarray

list[index] through list[n-1] .

3. if index is not the position of the smallest element (index_of_min)

4. Exchange the smallest element with the one at position index .

SORTING AN
ARRAY

➢ Figure 7.15

➢ See Figure 7.16 p.405
for a program example

➢ at most, n-1 exchanges will be required to sort an array with n elements.

SORTING AN
ARRAY

➢ Parallel arrays: arrays that have the same number of elements:
1. If there are n -elements, these parallel arrays contain data for n -objects

of the same kind. [not type]
2. Further, all array elements at subscript i contain data for the i-th object in

this group of n -objects.

● EXAMPLE 7.11 , Figure 7.17 two parallel arrays for a student records program (1)

7.7 PARALLEL ARRAYS AND ENUMERATED
TYPES

#define NUM_STUDENTS 50

..

int id[NUM_STUDENTS];

double gpa[NUM_STUDENTS];

➢ Good solutions to many programming problems require new data types (1)
➢ C allows you to associate a numeric code with each category by creating an

enumerated type that has its own list of meaningful values.

 (3)

ENUMERATED
TYPES

typedef enum (2)

{entertainment, rent, utilities, food, clothing,

automobile, insurance, miscellaneous}

expense_t;

To declare:

expense_t expense_kind; (4)

Entertainment (0)
Rent (1)

Utilities (2)
…

➢ Figure 7.18

● The scope rules for identifiers apply to enumerated types and enumeration constants.

● Enumeration constants must be identifiers; they cannot be numeric, character, or
string literals (e.g., "entertainment" cannot be a value for an enumerated type).

● We recommend that you place type definitions immediately after any #define and

#include directives. (1)

● The reserved word typedef can be used to name many varieties of user-defined types.

ENUMERATED
TYPES

➢ An identifier cannot appear in more than one enumerated type definition, for
example, the weekday_t definition could not be used with the type day_t

ENUMERATED
TYPES

typedef enum

{monday, tuesday, wednesday, thursday,friday, saturday, sunday}

day_t;

typedef enum

{monday, tuesday, wednesday, thursday, friday}

weekday_t;

➢ Relational, assignment, and even arithmetic operators can be used with
enumerated types, just as with other integers.

➢ The following for type day_t are true:

➢ We can combine the use of arithmetic operators and casts to find enumeration
constants that follow and precede a current value.

ENUMERATED
TYPES

sunday < monday

wednesday != friday

tuesday >= sunday

➢ EXAMPLE 7.12: If today and tomorrow are type day_t variables, the following if statement assigns the
value of tomorrow based on the value of today : (1)

● C provides no range checking to verify that the value stored in an enumerated type variable is valid. (2)

For example, this assignment statement will not cause a run-time error even though it is clearly invalid.

ENUMERATED
TYPES

if (today == sunday)

 tomorrow = monday;

else

 tomorrow = (day_t)(today + 1);

today = saturday + 3;

➢ enumerated type variable can also be used as a loop counter:

➢ This loop will execute for each value of today from monday through friday

ENUMERATED
TYPES

for (today = monday; today <= friday; ++today) {

. . .

}

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

#define NUM_QUEST 10 /* number of questions on daily quiz */

#define NUM_CLASS_DAYS 5 /* number of days in a week of class */

typedef enum

{monday, tuesday, wednesday, thursday, friday}

week_day_t;

. . .

char answer[NUM_QUEST]; /* correct answers for one quiz */

int score[NUM_CLASS_DAYS]; /* one student's quiz scores for each day */

score[monday] = 9;

score[tuesday] = 7;

score[wednesday] = 5;

score[thursday] = 3;

score[friday] = 1;

 Countinue…

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

ascore = 9;

for (today = monday; today <= friday; ++today) {

score[today] = ascore;

ascore -= 2;

}

➢ Multidimensional arrays: arrays with two or more dimensions.

➢ The array declaration: char tictac[3][3];
allocates storage for a two-dimensional array (tictac) with three rows and three columns.

➢ Each array element contains a character value

➢ This array has nine elements, each of which must be referenced by specifying a row subscript
(0 , 1 , or 2) and a column subscript (0 , 1 , or 2).

7.8 MULTIDIMENSIONAL ARRAYS

➢ A function that takes a tic-tac-toe board as a parameter will have a declaration similar to this in
its prototype:

➢ In the declaration of a multidimensional array parameter, only the first dimension, the number
of rows, can be omitted.

➢ Including both dimensions is also permissible. (1)

➢ The following statement would declare a tic-tac-toe board and initialize its contents to blanks.
(2)

EXAMPLE 7.15, FIGURE 7.21 (3)

7.8 MULTIDIMENSIONAL ARRAYS

char tictac[3][3] = { {' ', ' ', ' '}, {' ', ' ', ' '}, {' ', ' ', ' '} };

char tictac[][3]

char tictac[3][3]

➢ EXAMPLE 7.14

➢ This array table consists of three dimensions:
 double table[7][5][6];

➢ The first subscript may take on values from 0 to 6 ; the second, from 0 to 4 ; and the third, from
0 to 5 .

➢ A total of 7 × 5 × 6 , or 210 , type double values may be stored in the array table.

➢ All three subscripts must be specified in each reference to array table in order to access a single

number (e.g., table[2][3][4]).

7.8 MULTIDIMENSIONAL ARRAYS

➢ (1)

➢ We will assume that the college offers 100 (MAXCRS) courses at five different campuses.

➢ Array enroll is composed of a total of 2000 (100 × 5 × 4) elements.

➢ we will number the freshman year 0 , the sophomore year 1, and so on.

➢ Thus, enroll[1][4][3] represents the number of seniors taking course 1 at campus 4 .

➢ Memory space can be used up rapidly if several multidimensional arrays are declared in the same program.
(2)

➢ The type of information desired determines the order in which we must reference the array elements. (3)

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Figure 7.22

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students in each course */

for (course = 0; course < MAXCRS; ++course) {

 crs_sum = 0;

 for (campus = 0; campus < 5; ++campus) {

 for (year = 0; year < 4; ++ year) {

 crs_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students in course %d is %d\n", course, crs_sum);

}

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students at each campus */

for (campus = 0; campus < 5; ++campus) {

 campus_sum = 0;

 for (course = 0; course < MAXCRS; ++course) {

 for (year = 0; year < 4; ++ year) {

 campus_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students at campus %d is %d\n", campus, campus_sum);

}

CASE STUDY (Homework)
P.419 - 427

Summary of Hospital Revenue

7.9 ARRAY PROCESSING ILLUSTRATED

● Subscript-range error: An out-of-range reference occurs when the subscript value used is
outside the range specified by the array declaration. (1)

● A subscript-range error occurs when celsius is used with a subscript that has a value less than
0 or greater than 99,

● i.e. If the value of i is 150 => error (2)

● They are most often caused by:
1. An incorrect subscript expression,
2. A loop counter error
3. A nonterminating loop.

7.11 COMMON PROGRAMMING
ERRORS

int celsius[100];

access violation at line no. 28

● Subscript-range error:
● If a subscript-range error occurs inside an indexed loop, verify that the subscript is in range

for both the initial and the final values of the loop control variable (1)

● If a subscript-range error occurs in a loop controlled by a variable other than the array
subscript, check that the loop control variable is being updated as required. (2)

7.11 COMMON PROGRAMMING
ERRORS

● When using arrays as arguments to functions, be careful not to apply the address-of operator to
the array name even if the array is an output argument.

● However, do remember to use the & on an array element that is being passed as an output

argument.

● Be sure to use the correct forms for declaring array input and output parameters in function
prototypes.

● A parameter declared a could represent a single integer output parameter or an

integer array parameter

● So, comment your own prototypes carefully and use the alternate declaration form
 for array parameters to assist readers of your code.

7.11 COMMON PROGRAMMING
ERRORS

int *z

int z[]

● Memory access violation: If you are working on a computer system with very limited memory,
you may find that some correct C programs generate run-time error messages indicating an
access violation. (1)

● When you define enumerated types, remember that only identifiers can appear in the list of

values (enumeration constants) for the type.

● Be careful not to reuse one of these identifiers in another type or as a variable name in a
function that needs your type definition. (2)

7.11 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Figure 7.14
➢ The type int variable found is used to represent the logical concept of whether the

target has been found yet and is tested in the loop repetition condition (1)

➢ After found becomes true or the entire array has been searched, the loop is exited,

and the decision statement following the loop defines the value returned.

➢ If array arr and target are declared in the calling function, the assignment

statement: index = search(arr, target, SIZE);

calls function search to search the first SIZE elements of array arr for the target (i.e.
target = 3):(2)

SEARCH

➢ Many programs execute more efficiently if the data they process are sorted before
processing begins.

➢ For example, your university might want students grade report sorted by student ID

number.

➢ ALGORITHM FOR SELECTION SORT:
1. for each value of index from 0 to n-2

2. Find index_of_min , the index of the smallest element in the unsorted subarray

list[index] through list[n-1] .

3. if index is not the position of the smallest element (index_of_min)

4. Exchange the smallest element with the one at position index .

SORTING AN
ARRAY

➢ Figure 7.15

➢ See Figure 7.16 p.405
for a program example

➢ at most, n-1 exchanges will be required to sort an array with n elements.

SORTING AN
ARRAY

➢ Parallel arrays: arrays that have the same number of elements:
1. If there are n -elements, these parallel arrays contain data for n -objects

of the same kind. [not type]
2. Further, all array elements at subscript i contain data for the i-th object in

this group of n -objects.

● EXAMPLE 7.11 , Figure 7.17 two parallel arrays for a student records program (1)

7.7 PARALLEL ARRAYS AND ENUMERATED
TYPES

#define NUM_STUDENTS 50

..

int id[NUM_STUDENTS];

double gpa[NUM_STUDENTS];

➢ Good solutions to many programming problems require new data types (1)
➢ C allows you to associate a numeric code with each category by creating an

enumerated type that has its own list of meaningful values.

 (3)

ENUMERATED
TYPES

typedef enum (2)

{entertainment, rent, utilities, food, clothing,

automobile, insurance, miscellaneous}

expense_t;

To declare:

expense_t expense_kind; (4)

Entertainment (0)
Rent (1)

Utilities (2)
…

➢ Figure 7.18

● The scope rules for identifiers apply to enumerated types and enumeration constants.

● Enumeration constants must be identifiers; they cannot be numeric, character, or
string literals (e.g., "entertainment" cannot be a value for an enumerated type).

● We recommend that you place type definitions immediately after any #define and

#include directives. (1)

● The reserved word typedef can be used to name many varieties of user-defined types.

ENUMERATED
TYPES

➢ An identifier cannot appear in more than one enumerated type definition, for
example, the weekday_t definition could not be used with the type day_t

ENUMERATED
TYPES

typedef enum

{monday, tuesday, wednesday, thursday,friday, saturday, sunday}

day_t;

typedef enum

{monday, tuesday, wednesday, thursday, friday}

weekday_t;

➢ Relational, assignment, and even arithmetic operators can be used with
enumerated types, just as with other integers.

➢ The following for type day_t are true:

➢ We can combine the use of arithmetic operators and casts to find enumeration
constants that follow and precede a current value.

ENUMERATED
TYPES

sunday < monday

wednesday != friday

tuesday >= sunday

➢ EXAMPLE 7.12: If today and tomorrow are type day_t variables, the following if statement assigns the
value of tomorrow based on the value of today : (1)

● C provides no range checking to verify that the value stored in an enumerated type variable is valid. (2)

For example, this assignment statement will not cause a run-time error even though it is clearly invalid.

ENUMERATED
TYPES

if (today == sunday)

 tomorrow = monday;

else

 tomorrow = (day_t)(today + 1);

today = saturday + 3;

➢ enumerated type variable can also be used as a loop counter:

➢ This loop will execute for each value of today from monday through friday

ENUMERATED
TYPES

for (today = monday; today <= friday; ++today) {

. . .

}

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

#define NUM_QUEST 10 /* number of questions on daily quiz */

#define NUM_CLASS_DAYS 5 /* number of days in a week of class */

typedef enum

{monday, tuesday, wednesday, thursday, friday}

week_day_t;

. . .

char answer[NUM_QUEST]; /* correct answers for one quiz */

int score[NUM_CLASS_DAYS]; /* one student's quiz scores for each day */

score[monday] = 9;

score[tuesday] = 7;

score[wednesday] = 5;

score[thursday] = 3;

score[friday] = 1;

 Countinue…

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

ascore = 9;

for (today = monday; today <= friday; ++today) {

score[today] = ascore;

ascore -= 2;

}

➢ Multidimensional arrays: arrays with two or more dimensions.

➢ The array declaration: char tictac[3][3];
allocates storage for a two-dimensional array (tictac) with three rows and three columns.

➢ Each array element contains a character value

➢ This array has nine elements, each of which must be referenced by specifying a row subscript
(0 , 1 , or 2) and a column subscript (0 , 1 , or 2).

7.8 MULTIDIMENSIONAL ARRAYS

➢ A function that takes a tic-tac-toe board as a parameter will have a declaration similar to this in
its prototype:

➢ In the declaration of a multidimensional array parameter, only the first dimension, the number
of rows, can be omitted.

➢ Including both dimensions is also permissible. (1)

➢ The following statement would declare a tic-tac-toe board and initialize its contents to blanks.
(2)

EXAMPLE 7.15, FIGURE 7.21 (3)

7.8 MULTIDIMENSIONAL ARRAYS

char tictac[3][3] = { {' ', ' ', ' '}, {' ', ' ', ' '}, {' ', ' ', ' '} };

char tictac[][3]

char tictac[3][3]

➢ EXAMPLE 7.14

➢ This array table consists of three dimensions:
 double table[7][5][6];

➢ The first subscript may take on values from 0 to 6 ; the second, from 0 to 4 ; and the third, from
0 to 5 .

➢ A total of 7 × 5 × 6 , or 210 , type double values may be stored in the array table.

➢ All three subscripts must be specified in each reference to array table in order to access a single

number (e.g., table[2][3][4]).

7.8 MULTIDIMENSIONAL ARRAYS

➢ (1)

➢ We will assume that the college offers 100 (MAXCRS) courses at five different campuses.

➢ Array enroll is composed of a total of 2000 (100 × 5 × 4) elements.

➢ we will number the freshman year 0 , the sophomore year 1, and so on.

➢ Thus, enroll[1][4][3] represents the number of seniors taking course 1 at campus 4 .

➢ Memory space can be used up rapidly if several multidimensional arrays are declared in the same program.
(2)

➢ The type of information desired determines the order in which we must reference the array elements. (3)

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Figure 7.22

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students in each course */

for (course = 0; course < MAXCRS; ++course) {

 crs_sum = 0;

 for (campus = 0; campus < 5; ++campus) {

 for (year = 0; year < 4; ++ year) {

 crs_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students in course %d is %d\n", course, crs_sum);

}

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students at each campus */

for (campus = 0; campus < 5; ++campus) {

 campus_sum = 0;

 for (course = 0; course < MAXCRS; ++course) {

 for (year = 0; year < 4; ++ year) {

 campus_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students at campus %d is %d\n", campus, campus_sum);

}

CASE STUDY (Homework)
P.419 - 427

Summary of Hospital Revenue

7.9 ARRAY PROCESSING ILLUSTRATED

● Subscript-range error: An out-of-range reference occurs when the subscript value used is
outside the range specified by the array declaration. (1)

● A subscript-range error occurs when celsius is used with a subscript that has a value less than
0 or greater than 99,

● i.e. If the value of i is 150 => error (2)

● They are most often caused by:
1. An incorrect subscript expression,
2. A loop counter error
3. A nonterminating loop.

7.11 COMMON PROGRAMMING
ERRORS

int celsius[100];

access violation at line no. 28

● Subscript-range error:
● If a subscript-range error occurs inside an indexed loop, verify that the subscript is in range

for both the initial and the final values of the loop control variable (1)

● If a subscript-range error occurs in a loop controlled by a variable other than the array
subscript, check that the loop control variable is being updated as required. (2)

7.11 COMMON PROGRAMMING
ERRORS

● When using arrays as arguments to functions, be careful not to apply the address-of operator to
the array name even if the array is an output argument.

● However, do remember to use the & on an array element that is being passed as an output

argument.

● Be sure to use the correct forms for declaring array input and output parameters in function
prototypes.

● A parameter declared a could represent a single integer output parameter or an

integer array parameter

● So, comment your own prototypes carefully and use the alternate declaration form
 for array parameters to assist readers of your code.

7.11 COMMON PROGRAMMING
ERRORS

int *z

int z[]

● Memory access violation: If you are working on a computer system with very limited memory,
you may find that some correct C programs generate run-time error messages indicating an
access violation. (1)

● When you define enumerated types, remember that only identifiers can appear in the list of

values (enumeration constants) for the type.

● Be careful not to reuse one of these identifiers in another type or as a variable name in a
function that needs your type definition. (2)

7.11 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Figure 7.14
➢ The type int variable found is used to represent the logical concept of whether the

target has been found yet and is tested in the loop repetition condition (1)

➢ After found becomes true or the entire array has been searched, the loop is exited,

and the decision statement following the loop defines the value returned.

➢ If array arr and target are declared in the calling function, the assignment

statement: index = search(arr, target, SIZE);

calls function search to search the first SIZE elements of array arr for the target (i.e.
target = 3):(2)

SEARCH

➢ Many programs execute more efficiently if the data they process are sorted before
processing begins.

➢ For example, your university might want students grade report sorted by student ID

number.

➢ ALGORITHM FOR SELECTION SORT:
1. for each value of index from 0 to n-2

2. Find index_of_min , the index of the smallest element in the unsorted subarray

list[index] through list[n-1] .

3. if index is not the position of the smallest element (index_of_min)

4. Exchange the smallest element with the one at position index .

SORTING AN
ARRAY

➢ Figure 7.15

➢ See Figure 7.16 p.405
for a program example

➢ at most, n-1 exchanges will be required to sort an array with n elements.

SORTING AN
ARRAY

➢ Parallel arrays: arrays that have the same number of elements:
1. If there are n -elements, these parallel arrays contain data for n -objects

of the same kind. [not type]
2. Further, all array elements at subscript i contain data for the i-th object in

this group of n -objects.

● EXAMPLE 7.11 , Figure 7.17 two parallel arrays for a student records program (1)

7.7 PARALLEL ARRAYS AND ENUMERATED
TYPES

#define NUM_STUDENTS 50

..

int id[NUM_STUDENTS];

double gpa[NUM_STUDENTS];

➢ Good solutions to many programming problems require new data types (1)
➢ C allows you to associate a numeric code with each category by creating an

enumerated type that has its own list of meaningful values.

 (3)

ENUMERATED
TYPES

typedef enum (2)

{entertainment, rent, utilities, food, clothing,

automobile, insurance, miscellaneous}

expense_t;

To declare:

expense_t expense_kind; (4)

Entertainment (0)
Rent (1)

Utilities (2)
…

➢ Figure 7.18

● The scope rules for identifiers apply to enumerated types and enumeration constants.

● Enumeration constants must be identifiers; they cannot be numeric, character, or
string literals (e.g., "entertainment" cannot be a value for an enumerated type).

● We recommend that you place type definitions immediately after any #define and

#include directives. (1)

● The reserved word typedef can be used to name many varieties of user-defined types.

ENUMERATED
TYPES

➢ An identifier cannot appear in more than one enumerated type definition, for
example, the weekday_t definition could not be used with the type day_t

ENUMERATED
TYPES

typedef enum

{monday, tuesday, wednesday, thursday,friday, saturday, sunday}

day_t;

typedef enum

{monday, tuesday, wednesday, thursday, friday}

weekday_t;

➢ Relational, assignment, and even arithmetic operators can be used with
enumerated types, just as with other integers.

➢ The following for type day_t are true:

➢ We can combine the use of arithmetic operators and casts to find enumeration
constants that follow and precede a current value.

ENUMERATED
TYPES

sunday < monday

wednesday != friday

tuesday >= sunday

➢ EXAMPLE 7.12: If today and tomorrow are type day_t variables, the following if statement assigns the
value of tomorrow based on the value of today : (1)

● C provides no range checking to verify that the value stored in an enumerated type variable is valid. (2)

For example, this assignment statement will not cause a run-time error even though it is clearly invalid.

ENUMERATED
TYPES

if (today == sunday)

 tomorrow = monday;

else

 tomorrow = (day_t)(today + 1);

today = saturday + 3;

➢ enumerated type variable can also be used as a loop counter:

➢ This loop will execute for each value of today from monday through friday

ENUMERATED
TYPES

for (today = monday; today <= friday; ++today) {

. . .

}

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

#define NUM_QUEST 10 /* number of questions on daily quiz */

#define NUM_CLASS_DAYS 5 /* number of days in a week of class */

typedef enum

{monday, tuesday, wednesday, thursday, friday}

week_day_t;

. . .

char answer[NUM_QUEST]; /* correct answers for one quiz */

int score[NUM_CLASS_DAYS]; /* one student's quiz scores for each day */

score[monday] = 9;

score[tuesday] = 7;

score[wednesday] = 5;

score[thursday] = 3;

score[friday] = 1;

 Countinue…

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

ascore = 9;

for (today = monday; today <= friday; ++today) {

score[today] = ascore;

ascore -= 2;

}

➢ Multidimensional arrays: arrays with two or more dimensions.

➢ The array declaration: char tictac[3][3];
allocates storage for a two-dimensional array (tictac) with three rows and three columns.

➢ Each array element contains a character value

➢ This array has nine elements, each of which must be referenced by specifying a row subscript
(0 , 1 , or 2) and a column subscript (0 , 1 , or 2).

7.8 MULTIDIMENSIONAL ARRAYS

➢ A function that takes a tic-tac-toe board as a parameter will have a declaration similar to this in
its prototype:

➢ In the declaration of a multidimensional array parameter, only the first dimension, the number
of rows, can be omitted.

➢ Including both dimensions is also permissible. (1)

➢ The following statement would declare a tic-tac-toe board and initialize its contents to blanks.
(2)

EXAMPLE 7.15, FIGURE 7.21 (3)

7.8 MULTIDIMENSIONAL ARRAYS

char tictac[3][3] = { {' ', ' ', ' '}, {' ', ' ', ' '}, {' ', ' ', ' '} };

char tictac[][3]

char tictac[3][3]

➢ EXAMPLE 7.14

➢ This array table consists of three dimensions:
 double table[7][5][6];

➢ The first subscript may take on values from 0 to 6 ; the second, from 0 to 4 ; and the third, from
0 to 5 .

➢ A total of 7 × 5 × 6 , or 210 , type double values may be stored in the array table.

➢ All three subscripts must be specified in each reference to array table in order to access a single

number (e.g., table[2][3][4]).

7.8 MULTIDIMENSIONAL ARRAYS

➢ (1)

➢ We will assume that the college offers 100 (MAXCRS) courses at five different campuses.

➢ Array enroll is composed of a total of 2000 (100 × 5 × 4) elements.

➢ we will number the freshman year 0 , the sophomore year 1, and so on.

➢ Thus, enroll[1][4][3] represents the number of seniors taking course 1 at campus 4 .

➢ Memory space can be used up rapidly if several multidimensional arrays are declared in the same program.
(2)

➢ The type of information desired determines the order in which we must reference the array elements. (3)

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Figure 7.22

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students in each course */

for (course = 0; course < MAXCRS; ++course) {

 crs_sum = 0;

 for (campus = 0; campus < 5; ++campus) {

 for (year = 0; year < 4; ++ year) {

 crs_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students in course %d is %d\n", course, crs_sum);

}

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students at each campus */

for (campus = 0; campus < 5; ++campus) {

 campus_sum = 0;

 for (course = 0; course < MAXCRS; ++course) {

 for (year = 0; year < 4; ++ year) {

 campus_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students at campus %d is %d\n", campus, campus_sum);

}

CASE STUDY (Homework)
P.419 - 427

Summary of Hospital Revenue

7.9 ARRAY PROCESSING ILLUSTRATED

● Subscript-range error: An out-of-range reference occurs when the subscript value used is
outside the range specified by the array declaration. (1)

● A subscript-range error occurs when celsius is used with a subscript that has a value less than
0 or greater than 99,

● i.e. If the value of i is 150 => error (2)

● They are most often caused by:
1. An incorrect subscript expression,
2. A loop counter error
3. A nonterminating loop.

7.11 COMMON PROGRAMMING
ERRORS

int celsius[100];

access violation at line no. 28

● Subscript-range error:
● If a subscript-range error occurs inside an indexed loop, verify that the subscript is in range

for both the initial and the final values of the loop control variable (1)

● If a subscript-range error occurs in a loop controlled by a variable other than the array
subscript, check that the loop control variable is being updated as required. (2)

7.11 COMMON PROGRAMMING
ERRORS

● When using arrays as arguments to functions, be careful not to apply the address-of operator to
the array name even if the array is an output argument.

● However, do remember to use the & on an array element that is being passed as an output

argument.

● Be sure to use the correct forms for declaring array input and output parameters in function
prototypes.

● A parameter declared a could represent a single integer output parameter or an

integer array parameter

● So, comment your own prototypes carefully and use the alternate declaration form
 for array parameters to assist readers of your code.

7.11 COMMON PROGRAMMING
ERRORS

int *z

int z[]

● Memory access violation: If you are working on a computer system with very limited memory,
you may find that some correct C programs generate run-time error messages indicating an
access violation. (1)

● When you define enumerated types, remember that only identifiers can appear in the list of

values (enumeration constants) for the type.

● Be careful not to reuse one of these identifiers in another type or as a variable name in a
function that needs your type definition. (2)

7.11 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Figure 7.14
➢ The type int variable found is used to represent the logical concept of whether the

target has been found yet and is tested in the loop repetition condition (1)

➢ After found becomes true or the entire array has been searched, the loop is exited,

and the decision statement following the loop defines the value returned.

➢ If array arr and target are declared in the calling function, the assignment

statement: index = search(arr, target, SIZE);

calls function search to search the first SIZE elements of array arr for the target (i.e.
target = 3):(2)

SEARCH

➢ Many programs execute more efficiently if the data they process are sorted before
processing begins.

➢ For example, your university might want students grade report sorted by student ID

number.

➢ ALGORITHM FOR SELECTION SORT:
1. for each value of index from 0 to n-2

2. Find index_of_min , the index of the smallest element in the unsorted subarray

list[index] through list[n-1] .

3. if index is not the position of the smallest element (index_of_min)

4. Exchange the smallest element with the one at position index .

SORTING AN
ARRAY

➢ Figure 7.15

➢ See Figure 7.16 p.405
for a program example

➢ at most, n-1 exchanges will be required to sort an array with n elements.

SORTING AN
ARRAY

➢ Parallel arrays: arrays that have the same number of elements:
1. If there are n -elements, these parallel arrays contain data for n -objects

of the same kind. [not type]
2. Further, all array elements at subscript i contain data for the i-th object in

this group of n -objects.

● EXAMPLE 7.11 , Figure 7.17 two parallel arrays for a student records program (1)

7.7 PARALLEL ARRAYS AND ENUMERATED
TYPES

#define NUM_STUDENTS 50

..

int id[NUM_STUDENTS];

double gpa[NUM_STUDENTS];

➢ Good solutions to many programming problems require new data types (1)
➢ C allows you to associate a numeric code with each category by creating an

enumerated type that has its own list of meaningful values.

 (3)

ENUMERATED
TYPES

typedef enum (2)

{entertainment, rent, utilities, food, clothing,

automobile, insurance, miscellaneous}

expense_t;

To declare:

expense_t expense_kind; (4)

Entertainment (0)
Rent (1)

Utilities (2)
…

➢ Figure 7.18

● The scope rules for identifiers apply to enumerated types and enumeration constants.

● Enumeration constants must be identifiers; they cannot be numeric, character, or
string literals (e.g., "entertainment" cannot be a value for an enumerated type).

● We recommend that you place type definitions immediately after any #define and

#include directives. (1)

● The reserved word typedef can be used to name many varieties of user-defined types.

ENUMERATED
TYPES

➢ An identifier cannot appear in more than one enumerated type definition, for
example, the weekday_t definition could not be used with the type day_t

ENUMERATED
TYPES

typedef enum

{monday, tuesday, wednesday, thursday,friday, saturday, sunday}

day_t;

typedef enum

{monday, tuesday, wednesday, thursday, friday}

weekday_t;

➢ Relational, assignment, and even arithmetic operators can be used with
enumerated types, just as with other integers.

➢ The following for type day_t are true:

➢ We can combine the use of arithmetic operators and casts to find enumeration
constants that follow and precede a current value.

ENUMERATED
TYPES

sunday < monday

wednesday != friday

tuesday >= sunday

➢ EXAMPLE 7.12: If today and tomorrow are type day_t variables, the following if statement assigns the
value of tomorrow based on the value of today : (1)

● C provides no range checking to verify that the value stored in an enumerated type variable is valid. (2)

For example, this assignment statement will not cause a run-time error even though it is clearly invalid.

ENUMERATED
TYPES

if (today == sunday)

 tomorrow = monday;

else

 tomorrow = (day_t)(today + 1);

today = saturday + 3;

➢ enumerated type variable can also be used as a loop counter:

➢ This loop will execute for each value of today from monday through friday

ENUMERATED
TYPES

for (today = monday; today <= friday; ++today) {

. . .

}

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

#define NUM_QUEST 10 /* number of questions on daily quiz */

#define NUM_CLASS_DAYS 5 /* number of days in a week of class */

typedef enum

{monday, tuesday, wednesday, thursday, friday}

week_day_t;

. . .

char answer[NUM_QUEST]; /* correct answers for one quiz */

int score[NUM_CLASS_DAYS]; /* one student's quiz scores for each day */

score[monday] = 9;

score[tuesday] = 7;

score[wednesday] = 5;

score[thursday] = 3;

score[friday] = 1;

 Countinue…

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

ascore = 9;

for (today = monday; today <= friday; ++today) {

score[today] = ascore;

ascore -= 2;

}

➢ Multidimensional arrays: arrays with two or more dimensions.

➢ The array declaration: char tictac[3][3];
allocates storage for a two-dimensional array (tictac) with three rows and three columns.

➢ Each array element contains a character value

➢ This array has nine elements, each of which must be referenced by specifying a row subscript
(0 , 1 , or 2) and a column subscript (0 , 1 , or 2).

7.8 MULTIDIMENSIONAL ARRAYS

➢ A function that takes a tic-tac-toe board as a parameter will have a declaration similar to this in
its prototype:

➢ In the declaration of a multidimensional array parameter, only the first dimension, the number
of rows, can be omitted.

➢ Including both dimensions is also permissible. (1)

➢ The following statement would declare a tic-tac-toe board and initialize its contents to blanks.
(2)

EXAMPLE 7.15, FIGURE 7.21 (3)

7.8 MULTIDIMENSIONAL ARRAYS

char tictac[3][3] = { {' ', ' ', ' '}, {' ', ' ', ' '}, {' ', ' ', ' '} };

char tictac[][3]

char tictac[3][3]

➢ EXAMPLE 7.14

➢ This array table consists of three dimensions:
 double table[7][5][6];

➢ The first subscript may take on values from 0 to 6 ; the second, from 0 to 4 ; and the third, from
0 to 5 .

➢ A total of 7 × 5 × 6 , or 210 , type double values may be stored in the array table.

➢ All three subscripts must be specified in each reference to array table in order to access a single

number (e.g., table[2][3][4]).

7.8 MULTIDIMENSIONAL ARRAYS

➢ (1)

➢ We will assume that the college offers 100 (MAXCRS) courses at five different campuses.

➢ Array enroll is composed of a total of 2000 (100 × 5 × 4) elements.

➢ we will number the freshman year 0 , the sophomore year 1, and so on.

➢ Thus, enroll[1][4][3] represents the number of seniors taking course 1 at campus 4 .

➢ Memory space can be used up rapidly if several multidimensional arrays are declared in the same program.
(2)

➢ The type of information desired determines the order in which we must reference the array elements. (3)

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Figure 7.22

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students in each course */

for (course = 0; course < MAXCRS; ++course) {

 crs_sum = 0;

 for (campus = 0; campus < 5; ++campus) {

 for (year = 0; year < 4; ++ year) {

 crs_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students in course %d is %d\n", course, crs_sum);

}

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students at each campus */

for (campus = 0; campus < 5; ++campus) {

 campus_sum = 0;

 for (course = 0; course < MAXCRS; ++course) {

 for (year = 0; year < 4; ++ year) {

 campus_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students at campus %d is %d\n", campus, campus_sum);

}

CASE STUDY (Homework)
P.419 - 427

Summary of Hospital Revenue

7.9 ARRAY PROCESSING ILLUSTRATED

● Subscript-range error: An out-of-range reference occurs when the subscript value used is
outside the range specified by the array declaration. (1)

● A subscript-range error occurs when celsius is used with a subscript that has a value less than
0 or greater than 99,

● i.e. If the value of i is 150 => error (2)

● They are most often caused by:
1. An incorrect subscript expression,
2. A loop counter error
3. A nonterminating loop.

7.11 COMMON PROGRAMMING
ERRORS

int celsius[100];

access violation at line no. 28

● Subscript-range error:
● If a subscript-range error occurs inside an indexed loop, verify that the subscript is in range

for both the initial and the final values of the loop control variable (1)

● If a subscript-range error occurs in a loop controlled by a variable other than the array
subscript, check that the loop control variable is being updated as required. (2)

7.11 COMMON PROGRAMMING
ERRORS

● When using arrays as arguments to functions, be careful not to apply the address-of operator to
the array name even if the array is an output argument.

● However, do remember to use the & on an array element that is being passed as an output

argument.

● Be sure to use the correct forms for declaring array input and output parameters in function
prototypes.

● A parameter declared a could represent a single integer output parameter or an

integer array parameter

● So, comment your own prototypes carefully and use the alternate declaration form
 for array parameters to assist readers of your code.

7.11 COMMON PROGRAMMING
ERRORS

int *z

int z[]

● Memory access violation: If you are working on a computer system with very limited memory,
you may find that some correct C programs generate run-time error messages indicating an
access violation. (1)

● When you define enumerated types, remember that only identifiers can appear in the list of

values (enumeration constants) for the type.

● Be careful not to reuse one of these identifiers in another type or as a variable name in a
function that needs your type definition. (2)

7.11 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Figure 7.14
➢ The type int variable found is used to represent the logical concept of whether the

target has been found yet and is tested in the loop repetition condition (1)

➢ After found becomes true or the entire array has been searched, the loop is exited,

and the decision statement following the loop defines the value returned.

➢ If array arr and target are declared in the calling function, the assignment

statement: index = search(arr, target, SIZE);

calls function search to search the first SIZE elements of array arr for the target (i.e.
target = 3):(2)

SEARCH

➢ Many programs execute more efficiently if the data they process are sorted before
processing begins.

➢ For example, your university might want students grade report sorted by student ID

number.

➢ ALGORITHM FOR SELECTION SORT:
1. for each value of index from 0 to n-2

2. Find index_of_min , the index of the smallest element in the unsorted subarray

list[index] through list[n-1] .

3. if index is not the position of the smallest element (index_of_min)

4. Exchange the smallest element with the one at position index .

SORTING AN
ARRAY

➢ Figure 7.15

➢ See Figure 7.16 p.405
for a program example

➢ at most, n-1 exchanges will be required to sort an array with n elements.

SORTING AN
ARRAY

➢ Parallel arrays: arrays that have the same number of elements:
1. If there are n -elements, these parallel arrays contain data for n -objects

of the same kind. [not type]
2. Further, all array elements at subscript i contain data for the i-th object in

this group of n -objects.

● EXAMPLE 7.11 , Figure 7.17 two parallel arrays for a student records program (1)

7.7 PARALLEL ARRAYS AND ENUMERATED
TYPES

#define NUM_STUDENTS 50

..

int id[NUM_STUDENTS];

double gpa[NUM_STUDENTS];

➢ Good solutions to many programming problems require new data types (1)
➢ C allows you to associate a numeric code with each category by creating an

enumerated type that has its own list of meaningful values.

 (3)

ENUMERATED
TYPES

typedef enum (2)

{entertainment, rent, utilities, food, clothing,

automobile, insurance, miscellaneous}

expense_t;

To declare:

expense_t expense_kind; (4)

Entertainment (0)
Rent (1)

Utilities (2)
…

➢ Figure 7.18

● The scope rules for identifiers apply to enumerated types and enumeration constants.

● Enumeration constants must be identifiers; they cannot be numeric, character, or
string literals (e.g., "entertainment" cannot be a value for an enumerated type).

● We recommend that you place type definitions immediately after any #define and

#include directives. (1)

● The reserved word typedef can be used to name many varieties of user-defined types.

ENUMERATED
TYPES

➢ An identifier cannot appear in more than one enumerated type definition, for
example, the weekday_t definition could not be used with the type day_t

ENUMERATED
TYPES

typedef enum

{monday, tuesday, wednesday, thursday,friday, saturday, sunday}

day_t;

typedef enum

{monday, tuesday, wednesday, thursday, friday}

weekday_t;

➢ Relational, assignment, and even arithmetic operators can be used with
enumerated types, just as with other integers.

➢ The following for type day_t are true:

➢ We can combine the use of arithmetic operators and casts to find enumeration
constants that follow and precede a current value.

ENUMERATED
TYPES

sunday < monday

wednesday != friday

tuesday >= sunday

➢ EXAMPLE 7.12: If today and tomorrow are type day_t variables, the following if statement assigns the
value of tomorrow based on the value of today : (1)

● C provides no range checking to verify that the value stored in an enumerated type variable is valid. (2)

For example, this assignment statement will not cause a run-time error even though it is clearly invalid.

ENUMERATED
TYPES

if (today == sunday)

 tomorrow = monday;

else

 tomorrow = (day_t)(today + 1);

today = saturday + 3;

➢ enumerated type variable can also be used as a loop counter:

➢ This loop will execute for each value of today from monday through friday

ENUMERATED
TYPES

for (today = monday; today <= friday; ++today) {

. . .

}

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

#define NUM_QUEST 10 /* number of questions on daily quiz */

#define NUM_CLASS_DAYS 5 /* number of days in a week of class */

typedef enum

{monday, tuesday, wednesday, thursday, friday}

week_day_t;

. . .

char answer[NUM_QUEST]; /* correct answers for one quiz */

int score[NUM_CLASS_DAYS]; /* one student's quiz scores for each day */

score[monday] = 9;

score[tuesday] = 7;

score[wednesday] = 5;

score[thursday] = 3;

score[friday] = 1;

 Countinue…

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

ascore = 9;

for (today = monday; today <= friday; ++today) {

score[today] = ascore;

ascore -= 2;

}

➢ Multidimensional arrays: arrays with two or more dimensions.

➢ The array declaration: char tictac[3][3];
allocates storage for a two-dimensional array (tictac) with three rows and three columns.

➢ Each array element contains a character value

➢ This array has nine elements, each of which must be referenced by specifying a row subscript
(0 , 1 , or 2) and a column subscript (0 , 1 , or 2).

7.8 MULTIDIMENSIONAL ARRAYS

➢ A function that takes a tic-tac-toe board as a parameter will have a declaration similar to this in
its prototype:

➢ In the declaration of a multidimensional array parameter, only the first dimension, the number
of rows, can be omitted.

➢ Including both dimensions is also permissible. (1)

➢ The following statement would declare a tic-tac-toe board and initialize its contents to blanks.
(2)

EXAMPLE 7.15, FIGURE 7.21 (3)

7.8 MULTIDIMENSIONAL ARRAYS

char tictac[3][3] = { {' ', ' ', ' '}, {' ', ' ', ' '}, {' ', ' ', ' '} };

char tictac[][3]

char tictac[3][3]

➢ EXAMPLE 7.14

➢ This array table consists of three dimensions:
 double table[7][5][6];

➢ The first subscript may take on values from 0 to 6 ; the second, from 0 to 4 ; and the third, from
0 to 5 .

➢ A total of 7 × 5 × 6 , or 210 , type double values may be stored in the array table.

➢ All three subscripts must be specified in each reference to array table in order to access a single

number (e.g., table[2][3][4]).

7.8 MULTIDIMENSIONAL ARRAYS

➢ (1)

➢ We will assume that the college offers 100 (MAXCRS) courses at five different campuses.

➢ Array enroll is composed of a total of 2000 (100 × 5 × 4) elements.

➢ we will number the freshman year 0 , the sophomore year 1, and so on.

➢ Thus, enroll[1][4][3] represents the number of seniors taking course 1 at campus 4 .

➢ Memory space can be used up rapidly if several multidimensional arrays are declared in the same program.
(2)

➢ The type of information desired determines the order in which we must reference the array elements. (3)

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Figure 7.22

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students in each course */

for (course = 0; course < MAXCRS; ++course) {

 crs_sum = 0;

 for (campus = 0; campus < 5; ++campus) {

 for (year = 0; year < 4; ++ year) {

 crs_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students in course %d is %d\n", course, crs_sum);

}

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students at each campus */

for (campus = 0; campus < 5; ++campus) {

 campus_sum = 0;

 for (course = 0; course < MAXCRS; ++course) {

 for (year = 0; year < 4; ++ year) {

 campus_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students at campus %d is %d\n", campus, campus_sum);

}

CASE STUDY (Homework)
P.419 - 427

Summary of Hospital Revenue

7.9 ARRAY PROCESSING ILLUSTRATED

● Subscript-range error: An out-of-range reference occurs when the subscript value used is
outside the range specified by the array declaration. (1)

● A subscript-range error occurs when celsius is used with a subscript that has a value less than
0 or greater than 99,

● i.e. If the value of i is 150 => error (2)

● They are most often caused by:
1. An incorrect subscript expression,
2. A loop counter error
3. A nonterminating loop.

7.11 COMMON PROGRAMMING
ERRORS

int celsius[100];

access violation at line no. 28

● Subscript-range error:
● If a subscript-range error occurs inside an indexed loop, verify that the subscript is in range

for both the initial and the final values of the loop control variable (1)

● If a subscript-range error occurs in a loop controlled by a variable other than the array
subscript, check that the loop control variable is being updated as required. (2)

7.11 COMMON PROGRAMMING
ERRORS

● When using arrays as arguments to functions, be careful not to apply the address-of operator to
the array name even if the array is an output argument.

● However, do remember to use the & on an array element that is being passed as an output

argument.

● Be sure to use the correct forms for declaring array input and output parameters in function
prototypes.

● A parameter declared a could represent a single integer output parameter or an

integer array parameter

● So, comment your own prototypes carefully and use the alternate declaration form
 for array parameters to assist readers of your code.

7.11 COMMON PROGRAMMING
ERRORS

int *z

int z[]

● Memory access violation: If you are working on a computer system with very limited memory,
you may find that some correct C programs generate run-time error messages indicating an
access violation. (1)

● When you define enumerated types, remember that only identifiers can appear in the list of

values (enumeration constants) for the type.

● Be careful not to reuse one of these identifiers in another type or as a variable name in a
function that needs your type definition. (2)

7.11 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Figure 7.14
➢ The type int variable found is used to represent the logical concept of whether the

target has been found yet and is tested in the loop repetition condition (1)

➢ After found becomes true or the entire array has been searched, the loop is exited,

and the decision statement following the loop defines the value returned.

➢ If array arr and target are declared in the calling function, the assignment

statement: index = search(arr, target, SIZE);

calls function search to search the first SIZE elements of array arr for the target (i.e.
target = 3):(2)

SEARCH

➢ Many programs execute more efficiently if the data they process are sorted before
processing begins.

➢ For example, your university might want students grade report sorted by student ID

number.

➢ ALGORITHM FOR SELECTION SORT:
1. for each value of index from 0 to n-2

2. Find index_of_min , the index of the smallest element in the unsorted subarray

list[index] through list[n-1] .

3. if index is not the position of the smallest element (index_of_min)

4. Exchange the smallest element with the one at position index .

SORTING AN
ARRAY

➢ Figure 7.15

➢ See Figure 7.16 p.405
for a program example

➢ at most, n-1 exchanges will be required to sort an array with n elements.

SORTING AN
ARRAY

➢ Parallel arrays: arrays that have the same number of elements:
1. If there are n -elements, these parallel arrays contain data for n -objects

of the same kind. [not type]
2. Further, all array elements at subscript i contain data for the i-th object in

this group of n -objects.

● EXAMPLE 7.11 , Figure 7.17 two parallel arrays for a student records program (1)

7.7 PARALLEL ARRAYS AND ENUMERATED
TYPES

#define NUM_STUDENTS 50

..

int id[NUM_STUDENTS];

double gpa[NUM_STUDENTS];

➢ Good solutions to many programming problems require new data types (1)
➢ C allows you to associate a numeric code with each category by creating an

enumerated type that has its own list of meaningful values.

 (3)

ENUMERATED
TYPES

typedef enum (2)

{entertainment, rent, utilities, food, clothing,

automobile, insurance, miscellaneous}

expense_t;

To declare:

expense_t expense_kind; (4)

Entertainment (0)
Rent (1)

Utilities (2)
…

➢ Figure 7.18

● The scope rules for identifiers apply to enumerated types and enumeration constants.

● Enumeration constants must be identifiers; they cannot be numeric, character, or
string literals (e.g., "entertainment" cannot be a value for an enumerated type).

● We recommend that you place type definitions immediately after any #define and

#include directives. (1)

● The reserved word typedef can be used to name many varieties of user-defined types.

ENUMERATED
TYPES

➢ An identifier cannot appear in more than one enumerated type definition, for
example, the weekday_t definition could not be used with the type day_t

ENUMERATED
TYPES

typedef enum

{monday, tuesday, wednesday, thursday,friday, saturday, sunday}

day_t;

typedef enum

{monday, tuesday, wednesday, thursday, friday}

weekday_t;

➢ Relational, assignment, and even arithmetic operators can be used with
enumerated types, just as with other integers.

➢ The following for type day_t are true:

➢ We can combine the use of arithmetic operators and casts to find enumeration
constants that follow and precede a current value.

ENUMERATED
TYPES

sunday < monday

wednesday != friday

tuesday >= sunday

➢ EXAMPLE 7.12: If today and tomorrow are type day_t variables, the following if statement assigns the
value of tomorrow based on the value of today : (1)

● C provides no range checking to verify that the value stored in an enumerated type variable is valid. (2)

For example, this assignment statement will not cause a run-time error even though it is clearly invalid.

ENUMERATED
TYPES

if (today == sunday)

 tomorrow = monday;

else

 tomorrow = (day_t)(today + 1);

today = saturday + 3;

➢ enumerated type variable can also be used as a loop counter:

➢ This loop will execute for each value of today from monday through friday

ENUMERATED
TYPES

for (today = monday; today <= friday; ++today) {

. . .

}

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

#define NUM_QUEST 10 /* number of questions on daily quiz */

#define NUM_CLASS_DAYS 5 /* number of days in a week of class */

typedef enum

{monday, tuesday, wednesday, thursday, friday}

week_day_t;

. . .

char answer[NUM_QUEST]; /* correct answers for one quiz */

int score[NUM_CLASS_DAYS]; /* one student's quiz scores for each day */

score[monday] = 9;

score[tuesday] = 7;

score[wednesday] = 5;

score[thursday] = 3;

score[friday] = 1;

 Countinue…

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

ascore = 9;

for (today = monday; today <= friday; ++today) {

score[today] = ascore;

ascore -= 2;

}

➢ Multidimensional arrays: arrays with two or more dimensions.

➢ The array declaration: char tictac[3][3];
allocates storage for a two-dimensional array (tictac) with three rows and three columns.

➢ Each array element contains a character value

➢ This array has nine elements, each of which must be referenced by specifying a row subscript
(0 , 1 , or 2) and a column subscript (0 , 1 , or 2).

7.8 MULTIDIMENSIONAL ARRAYS

➢ A function that takes a tic-tac-toe board as a parameter will have a declaration similar to this in
its prototype:

➢ In the declaration of a multidimensional array parameter, only the first dimension, the number
of rows, can be omitted.

➢ Including both dimensions is also permissible. (1)

➢ The following statement would declare a tic-tac-toe board and initialize its contents to blanks.
(2)

EXAMPLE 7.15, FIGURE 7.21 (3)

7.8 MULTIDIMENSIONAL ARRAYS

char tictac[3][3] = { {' ', ' ', ' '}, {' ', ' ', ' '}, {' ', ' ', ' '} };

char tictac[][3]

char tictac[3][3]

➢ EXAMPLE 7.14

➢ This array table consists of three dimensions:
 double table[7][5][6];

➢ The first subscript may take on values from 0 to 6 ; the second, from 0 to 4 ; and the third, from
0 to 5 .

➢ A total of 7 × 5 × 6 , or 210 , type double values may be stored in the array table.

➢ All three subscripts must be specified in each reference to array table in order to access a single

number (e.g., table[2][3][4]).

7.8 MULTIDIMENSIONAL ARRAYS

➢ (1)

➢ We will assume that the college offers 100 (MAXCRS) courses at five different campuses.

➢ Array enroll is composed of a total of 2000 (100 × 5 × 4) elements.

➢ we will number the freshman year 0 , the sophomore year 1, and so on.

➢ Thus, enroll[1][4][3] represents the number of seniors taking course 1 at campus 4 .

➢ Memory space can be used up rapidly if several multidimensional arrays are declared in the same program.
(2)

➢ The type of information desired determines the order in which we must reference the array elements. (3)

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Figure 7.22

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students in each course */

for (course = 0; course < MAXCRS; ++course) {

 crs_sum = 0;

 for (campus = 0; campus < 5; ++campus) {

 for (year = 0; year < 4; ++ year) {

 crs_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students in course %d is %d\n", course, crs_sum);

}

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students at each campus */

for (campus = 0; campus < 5; ++campus) {

 campus_sum = 0;

 for (course = 0; course < MAXCRS; ++course) {

 for (year = 0; year < 4; ++ year) {

 campus_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students at campus %d is %d\n", campus, campus_sum);

}

CASE STUDY (Homework)
P.419 - 427

Summary of Hospital Revenue

7.9 ARRAY PROCESSING ILLUSTRATED

● Subscript-range error: An out-of-range reference occurs when the subscript value used is
outside the range specified by the array declaration. (1)

● A subscript-range error occurs when celsius is used with a subscript that has a value less than
0 or greater than 99,

● i.e. If the value of i is 150 => error (2)

● They are most often caused by:
1. An incorrect subscript expression,
2. A loop counter error
3. A nonterminating loop.

7.11 COMMON PROGRAMMING
ERRORS

int celsius[100];

access violation at line no. 28

● Subscript-range error:
● If a subscript-range error occurs inside an indexed loop, verify that the subscript is in range

for both the initial and the final values of the loop control variable (1)

● If a subscript-range error occurs in a loop controlled by a variable other than the array
subscript, check that the loop control variable is being updated as required. (2)

7.11 COMMON PROGRAMMING
ERRORS

● When using arrays as arguments to functions, be careful not to apply the address-of operator to
the array name even if the array is an output argument.

● However, do remember to use the & on an array element that is being passed as an output

argument.

● Be sure to use the correct forms for declaring array input and output parameters in function
prototypes.

● A parameter declared a could represent a single integer output parameter or an

integer array parameter

● So, comment your own prototypes carefully and use the alternate declaration form
 for array parameters to assist readers of your code.

7.11 COMMON PROGRAMMING
ERRORS

int *z

int z[]

● Memory access violation: If you are working on a computer system with very limited memory,
you may find that some correct C programs generate run-time error messages indicating an
access violation. (1)

● When you define enumerated types, remember that only identifiers can appear in the list of

values (enumeration constants) for the type.

● Be careful not to reuse one of these identifiers in another type or as a variable name in a
function that needs your type definition. (2)

7.11 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Figure 7.14
➢ The type int variable found is used to represent the logical concept of whether the

target has been found yet and is tested in the loop repetition condition (1)

➢ After found becomes true or the entire array has been searched, the loop is exited,

and the decision statement following the loop defines the value returned.

➢ If array arr and target are declared in the calling function, the assignment

statement: index = search(arr, target, SIZE);

calls function search to search the first SIZE elements of array arr for the target (i.e.
target = 3):(2)

SEARCH

➢ Many programs execute more efficiently if the data they process are sorted before
processing begins.

➢ For example, your university might want students grade report sorted by student ID

number.

➢ ALGORITHM FOR SELECTION SORT:
1. for each value of index from 0 to n-2

2. Find index_of_min , the index of the smallest element in the unsorted subarray

list[index] through list[n-1] .

3. if index is not the position of the smallest element (index_of_min)

4. Exchange the smallest element with the one at position index .

SORTING AN
ARRAY

➢ Figure 7.15

➢ See Figure 7.16 p.405
for a program example

➢ at most, n-1 exchanges will be required to sort an array with n elements.

SORTING AN
ARRAY

➢ Parallel arrays: arrays that have the same number of elements:
1. If there are n -elements, these parallel arrays contain data for n -objects

of the same kind. [not type]
2. Further, all array elements at subscript i contain data for the i-th object in

this group of n -objects.

● EXAMPLE 7.11 , Figure 7.17 two parallel arrays for a student records program (1)

7.7 PARALLEL ARRAYS AND ENUMERATED
TYPES

#define NUM_STUDENTS 50

..

int id[NUM_STUDENTS];

double gpa[NUM_STUDENTS];

➢ Good solutions to many programming problems require new data types (1)
➢ C allows you to associate a numeric code with each category by creating an

enumerated type that has its own list of meaningful values.

 (3)

ENUMERATED
TYPES

typedef enum (2)

{entertainment, rent, utilities, food, clothing,

automobile, insurance, miscellaneous}

expense_t;

To declare:

expense_t expense_kind; (4)

Entertainment (0)
Rent (1)

Utilities (2)
…

➢ Figure 7.18

● The scope rules for identifiers apply to enumerated types and enumeration constants.

● Enumeration constants must be identifiers; they cannot be numeric, character, or
string literals (e.g., "entertainment" cannot be a value for an enumerated type).

● We recommend that you place type definitions immediately after any #define and

#include directives. (1)

● The reserved word typedef can be used to name many varieties of user-defined types.

ENUMERATED
TYPES

➢ An identifier cannot appear in more than one enumerated type definition, for
example, the weekday_t definition could not be used with the type day_t

ENUMERATED
TYPES

typedef enum

{monday, tuesday, wednesday, thursday,friday, saturday, sunday}

day_t;

typedef enum

{monday, tuesday, wednesday, thursday, friday}

weekday_t;

➢ Relational, assignment, and even arithmetic operators can be used with
enumerated types, just as with other integers.

➢ The following for type day_t are true:

➢ We can combine the use of arithmetic operators and casts to find enumeration
constants that follow and precede a current value.

ENUMERATED
TYPES

sunday < monday

wednesday != friday

tuesday >= sunday

➢ EXAMPLE 7.12: If today and tomorrow are type day_t variables, the following if statement assigns the
value of tomorrow based on the value of today : (1)

● C provides no range checking to verify that the value stored in an enumerated type variable is valid. (2)

For example, this assignment statement will not cause a run-time error even though it is clearly invalid.

ENUMERATED
TYPES

if (today == sunday)

 tomorrow = monday;

else

 tomorrow = (day_t)(today + 1);

today = saturday + 3;

➢ enumerated type variable can also be used as a loop counter:

➢ This loop will execute for each value of today from monday through friday

ENUMERATED
TYPES

for (today = monday; today <= friday; ++today) {

. . .

}

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

#define NUM_QUEST 10 /* number of questions on daily quiz */

#define NUM_CLASS_DAYS 5 /* number of days in a week of class */

typedef enum

{monday, tuesday, wednesday, thursday, friday}

week_day_t;

. . .

char answer[NUM_QUEST]; /* correct answers for one quiz */

int score[NUM_CLASS_DAYS]; /* one student's quiz scores for each day */

score[monday] = 9;

score[tuesday] = 7;

score[wednesday] = 5;

score[thursday] = 3;

score[friday] = 1;

 Countinue…

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

ascore = 9;

for (today = monday; today <= friday; ++today) {

score[today] = ascore;

ascore -= 2;

}

➢ Multidimensional arrays: arrays with two or more dimensions.

➢ The array declaration: char tictac[3][3];
allocates storage for a two-dimensional array (tictac) with three rows and three columns.

➢ Each array element contains a character value

➢ This array has nine elements, each of which must be referenced by specifying a row subscript
(0 , 1 , or 2) and a column subscript (0 , 1 , or 2).

7.8 MULTIDIMENSIONAL ARRAYS

➢ A function that takes a tic-tac-toe board as a parameter will have a declaration similar to this in
its prototype:

➢ In the declaration of a multidimensional array parameter, only the first dimension, the number
of rows, can be omitted.

➢ Including both dimensions is also permissible. (1)

➢ The following statement would declare a tic-tac-toe board and initialize its contents to blanks.
(2)

EXAMPLE 7.15, FIGURE 7.21 (3)

7.8 MULTIDIMENSIONAL ARRAYS

char tictac[3][3] = { {' ', ' ', ' '}, {' ', ' ', ' '}, {' ', ' ', ' '} };

char tictac[][3]

char tictac[3][3]

➢ EXAMPLE 7.14

➢ This array table consists of three dimensions:
 double table[7][5][6];

➢ The first subscript may take on values from 0 to 6 ; the second, from 0 to 4 ; and the third, from
0 to 5 .

➢ A total of 7 × 5 × 6 , or 210 , type double values may be stored in the array table.

➢ All three subscripts must be specified in each reference to array table in order to access a single

number (e.g., table[2][3][4]).

7.8 MULTIDIMENSIONAL ARRAYS

➢ (1)

➢ We will assume that the college offers 100 (MAXCRS) courses at five different campuses.

➢ Array enroll is composed of a total of 2000 (100 × 5 × 4) elements.

➢ we will number the freshman year 0 , the sophomore year 1, and so on.

➢ Thus, enroll[1][4][3] represents the number of seniors taking course 1 at campus 4 .

➢ Memory space can be used up rapidly if several multidimensional arrays are declared in the same program.
(2)

➢ The type of information desired determines the order in which we must reference the array elements. (3)

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Figure 7.22

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students in each course */

for (course = 0; course < MAXCRS; ++course) {

 crs_sum = 0;

 for (campus = 0; campus < 5; ++campus) {

 for (year = 0; year < 4; ++ year) {

 crs_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students in course %d is %d\n", course, crs_sum);

}

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students at each campus */

for (campus = 0; campus < 5; ++campus) {

 campus_sum = 0;

 for (course = 0; course < MAXCRS; ++course) {

 for (year = 0; year < 4; ++ year) {

 campus_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students at campus %d is %d\n", campus, campus_sum);

}

CASE STUDY (Homework)
P.419 - 427

Summary of Hospital Revenue

7.9 ARRAY PROCESSING ILLUSTRATED

● Subscript-range error: An out-of-range reference occurs when the subscript value used is
outside the range specified by the array declaration. (1)

● A subscript-range error occurs when celsius is used with a subscript that has a value less than
0 or greater than 99,

● i.e. If the value of i is 150 => error (2)

● They are most often caused by:
1. An incorrect subscript expression,
2. A loop counter error
3. A nonterminating loop.

7.11 COMMON PROGRAMMING
ERRORS

int celsius[100];

access violation at line no. 28

● Subscript-range error:
● If a subscript-range error occurs inside an indexed loop, verify that the subscript is in range

for both the initial and the final values of the loop control variable (1)

● If a subscript-range error occurs in a loop controlled by a variable other than the array
subscript, check that the loop control variable is being updated as required. (2)

7.11 COMMON PROGRAMMING
ERRORS

● When using arrays as arguments to functions, be careful not to apply the address-of operator to
the array name even if the array is an output argument.

● However, do remember to use the & on an array element that is being passed as an output

argument.

● Be sure to use the correct forms for declaring array input and output parameters in function
prototypes.

● A parameter declared a could represent a single integer output parameter or an

integer array parameter

● So, comment your own prototypes carefully and use the alternate declaration form
 for array parameters to assist readers of your code.

7.11 COMMON PROGRAMMING
ERRORS

int *z

int z[]

● Memory access violation: If you are working on a computer system with very limited memory,
you may find that some correct C programs generate run-time error messages indicating an
access violation. (1)

● When you define enumerated types, remember that only identifiers can appear in the list of

values (enumeration constants) for the type.

● Be careful not to reuse one of these identifiers in another type or as a variable name in a
function that needs your type definition. (2)

7.11 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Figure 7.14
➢ The type int variable found is used to represent the logical concept of whether the

target has been found yet and is tested in the loop repetition condition (1)

➢ After found becomes true or the entire array has been searched, the loop is exited,

and the decision statement following the loop defines the value returned.

➢ If array arr and target are declared in the calling function, the assignment

statement: index = search(arr, target, SIZE);

calls function search to search the first SIZE elements of array arr for the target (i.e.
target = 3):(2)

SEARCH

➢ Many programs execute more efficiently if the data they process are sorted before
processing begins.

➢ For example, your university might want students grade report sorted by student ID

number.

➢ ALGORITHM FOR SELECTION SORT:
1. for each value of index from 0 to n-2

2. Find index_of_min , the index of the smallest element in the unsorted subarray

list[index] through list[n-1] .

3. if index is not the position of the smallest element (index_of_min)

4. Exchange the smallest element with the one at position index .

SORTING AN
ARRAY

➢ Figure 7.15

➢ See Figure 7.16 p.405
for a program example

➢ at most, n-1 exchanges will be required to sort an array with n elements.

SORTING AN
ARRAY

➢ Parallel arrays: arrays that have the same number of elements:
1. If there are n -elements, these parallel arrays contain data for n -objects

of the same kind. [not type]
2. Further, all array elements at subscript i contain data for the i-th object in

this group of n -objects.

● EXAMPLE 7.11 , Figure 7.17 two parallel arrays for a student records program (1)

7.7 PARALLEL ARRAYS AND ENUMERATED
TYPES

#define NUM_STUDENTS 50

..

int id[NUM_STUDENTS];

double gpa[NUM_STUDENTS];

➢ Good solutions to many programming problems require new data types (1)
➢ C allows you to associate a numeric code with each category by creating an

enumerated type that has its own list of meaningful values.

 (3)

ENUMERATED
TYPES

typedef enum (2)

{entertainment, rent, utilities, food, clothing,

automobile, insurance, miscellaneous}

expense_t;

To declare:

expense_t expense_kind; (4)

Entertainment (0)
Rent (1)

Utilities (2)
…

➢ Figure 7.18

● The scope rules for identifiers apply to enumerated types and enumeration constants.

● Enumeration constants must be identifiers; they cannot be numeric, character, or
string literals (e.g., "entertainment" cannot be a value for an enumerated type).

● We recommend that you place type definitions immediately after any #define and

#include directives. (1)

● The reserved word typedef can be used to name many varieties of user-defined types.

ENUMERATED
TYPES

➢ An identifier cannot appear in more than one enumerated type definition, for
example, the weekday_t definition could not be used with the type day_t

ENUMERATED
TYPES

typedef enum

{monday, tuesday, wednesday, thursday,friday, saturday, sunday}

day_t;

typedef enum

{monday, tuesday, wednesday, thursday, friday}

weekday_t;

➢ Relational, assignment, and even arithmetic operators can be used with
enumerated types, just as with other integers.

➢ The following for type day_t are true:

➢ We can combine the use of arithmetic operators and casts to find enumeration
constants that follow and precede a current value.

ENUMERATED
TYPES

sunday < monday

wednesday != friday

tuesday >= sunday

➢ EXAMPLE 7.12: If today and tomorrow are type day_t variables, the following if statement assigns the
value of tomorrow based on the value of today : (1)

● C provides no range checking to verify that the value stored in an enumerated type variable is valid. (2)

For example, this assignment statement will not cause a run-time error even though it is clearly invalid.

ENUMERATED
TYPES

if (today == sunday)

 tomorrow = monday;

else

 tomorrow = (day_t)(today + 1);

today = saturday + 3;

➢ enumerated type variable can also be used as a loop counter:

➢ This loop will execute for each value of today from monday through friday

ENUMERATED
TYPES

for (today = monday; today <= friday; ++today) {

. . .

}

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

#define NUM_QUEST 10 /* number of questions on daily quiz */

#define NUM_CLASS_DAYS 5 /* number of days in a week of class */

typedef enum

{monday, tuesday, wednesday, thursday, friday}

week_day_t;

. . .

char answer[NUM_QUEST]; /* correct answers for one quiz */

int score[NUM_CLASS_DAYS]; /* one student's quiz scores for each day */

score[monday] = 9;

score[tuesday] = 7;

score[wednesday] = 5;

score[thursday] = 3;

score[friday] = 1;

 Countinue…

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

ascore = 9;

for (today = monday; today <= friday; ++today) {

score[today] = ascore;

ascore -= 2;

}

➢ Multidimensional arrays: arrays with two or more dimensions.

➢ The array declaration: char tictac[3][3];
allocates storage for a two-dimensional array (tictac) with three rows and three columns.

➢ Each array element contains a character value

➢ This array has nine elements, each of which must be referenced by specifying a row subscript
(0 , 1 , or 2) and a column subscript (0 , 1 , or 2).

7.8 MULTIDIMENSIONAL ARRAYS

➢ A function that takes a tic-tac-toe board as a parameter will have a declaration similar to this in
its prototype:

➢ In the declaration of a multidimensional array parameter, only the first dimension, the number
of rows, can be omitted.

➢ Including both dimensions is also permissible. (1)

➢ The following statement would declare a tic-tac-toe board and initialize its contents to blanks.
(2)

EXAMPLE 7.15, FIGURE 7.21 (3)

7.8 MULTIDIMENSIONAL ARRAYS

char tictac[3][3] = { {' ', ' ', ' '}, {' ', ' ', ' '}, {' ', ' ', ' '} };

char tictac[][3]

char tictac[3][3]

➢ EXAMPLE 7.14

➢ This array table consists of three dimensions:
 double table[7][5][6];

➢ The first subscript may take on values from 0 to 6 ; the second, from 0 to 4 ; and the third, from
0 to 5 .

➢ A total of 7 × 5 × 6 , or 210 , type double values may be stored in the array table.

➢ All three subscripts must be specified in each reference to array table in order to access a single

number (e.g., table[2][3][4]).

7.8 MULTIDIMENSIONAL ARRAYS

➢ (1)

➢ We will assume that the college offers 100 (MAXCRS) courses at five different campuses.

➢ Array enroll is composed of a total of 2000 (100 × 5 × 4) elements.

➢ we will number the freshman year 0 , the sophomore year 1, and so on.

➢ Thus, enroll[1][4][3] represents the number of seniors taking course 1 at campus 4 .

➢ Memory space can be used up rapidly if several multidimensional arrays are declared in the same program.
(2)

➢ The type of information desired determines the order in which we must reference the array elements. (3)

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Figure 7.22

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students in each course */

for (course = 0; course < MAXCRS; ++course) {

 crs_sum = 0;

 for (campus = 0; campus < 5; ++campus) {

 for (year = 0; year < 4; ++ year) {

 crs_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students in course %d is %d\n", course, crs_sum);

}

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students at each campus */

for (campus = 0; campus < 5; ++campus) {

 campus_sum = 0;

 for (course = 0; course < MAXCRS; ++course) {

 for (year = 0; year < 4; ++ year) {

 campus_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students at campus %d is %d\n", campus, campus_sum);

}

CASE STUDY (Homework)
P.419 - 427

Summary of Hospital Revenue

7.9 ARRAY PROCESSING ILLUSTRATED

● Subscript-range error: An out-of-range reference occurs when the subscript value used is
outside the range specified by the array declaration. (1)

● A subscript-range error occurs when celsius is used with a subscript that has a value less than
0 or greater than 99,

● i.e. If the value of i is 150 => error (2)

● They are most often caused by:
1. An incorrect subscript expression,
2. A loop counter error
3. A nonterminating loop.

7.11 COMMON PROGRAMMING
ERRORS

int celsius[100];

access violation at line no. 28

● Subscript-range error:
● If a subscript-range error occurs inside an indexed loop, verify that the subscript is in range

for both the initial and the final values of the loop control variable (1)

● If a subscript-range error occurs in a loop controlled by a variable other than the array
subscript, check that the loop control variable is being updated as required. (2)

7.11 COMMON PROGRAMMING
ERRORS

● When using arrays as arguments to functions, be careful not to apply the address-of operator to
the array name even if the array is an output argument.

● However, do remember to use the & on an array element that is being passed as an output

argument.

● Be sure to use the correct forms for declaring array input and output parameters in function
prototypes.

● A parameter declared a could represent a single integer output parameter or an

integer array parameter

● So, comment your own prototypes carefully and use the alternate declaration form
 for array parameters to assist readers of your code.

7.11 COMMON PROGRAMMING
ERRORS

int *z

int z[]

● Memory access violation: If you are working on a computer system with very limited memory,
you may find that some correct C programs generate run-time error messages indicating an
access violation. (1)

● When you define enumerated types, remember that only identifiers can appear in the list of

values (enumeration constants) for the type.

● Be careful not to reuse one of these identifiers in another type or as a variable name in a
function that needs your type definition. (2)

7.11 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Figure 7.14
➢ The type int variable found is used to represent the logical concept of whether the

target has been found yet and is tested in the loop repetition condition (1)

➢ After found becomes true or the entire array has been searched, the loop is exited,

and the decision statement following the loop defines the value returned.

➢ If array arr and target are declared in the calling function, the assignment

statement: index = search(arr, target, SIZE);

calls function search to search the first SIZE elements of array arr for the target (i.e.
target = 3):(2)

SEARCH

➢ Many programs execute more efficiently if the data they process are sorted before
processing begins.

➢ For example, your university might want students grade report sorted by student ID

number.

➢ ALGORITHM FOR SELECTION SORT:
1. for each value of index from 0 to n-2

2. Find index_of_min , the index of the smallest element in the unsorted subarray

list[index] through list[n-1] .

3. if index is not the position of the smallest element (index_of_min)

4. Exchange the smallest element with the one at position index .

SORTING AN
ARRAY

➢ Figure 7.15

➢ See Figure 7.16 p.405
for a program example

➢ at most, n-1 exchanges will be required to sort an array with n elements.

SORTING AN
ARRAY

➢ Parallel arrays: arrays that have the same number of elements:
1. If there are n -elements, these parallel arrays contain data for n -objects

of the same kind. [not type]
2. Further, all array elements at subscript i contain data for the i-th object in

this group of n -objects.

● EXAMPLE 7.11 , Figure 7.17 two parallel arrays for a student records program (1)

7.7 PARALLEL ARRAYS AND ENUMERATED
TYPES

#define NUM_STUDENTS 50

..

int id[NUM_STUDENTS];

double gpa[NUM_STUDENTS];

➢ Good solutions to many programming problems require new data types (1)
➢ C allows you to associate a numeric code with each category by creating an

enumerated type that has its own list of meaningful values.

 (3)

ENUMERATED
TYPES

typedef enum (2)

{entertainment, rent, utilities, food, clothing,

automobile, insurance, miscellaneous}

expense_t;

To declare:

expense_t expense_kind; (4)

Entertainment (0)
Rent (1)

Utilities (2)
…

➢ Figure 7.18

● The scope rules for identifiers apply to enumerated types and enumeration constants.

● Enumeration constants must be identifiers; they cannot be numeric, character, or
string literals (e.g., "entertainment" cannot be a value for an enumerated type).

● We recommend that you place type definitions immediately after any #define and

#include directives. (1)

● The reserved word typedef can be used to name many varieties of user-defined types.

ENUMERATED
TYPES

➢ An identifier cannot appear in more than one enumerated type definition, for
example, the weekday_t definition could not be used with the type day_t

ENUMERATED
TYPES

typedef enum

{monday, tuesday, wednesday, thursday,friday, saturday, sunday}

day_t;

typedef enum

{monday, tuesday, wednesday, thursday, friday}

weekday_t;

➢ Relational, assignment, and even arithmetic operators can be used with
enumerated types, just as with other integers.

➢ The following for type day_t are true:

➢ We can combine the use of arithmetic operators and casts to find enumeration
constants that follow and precede a current value.

ENUMERATED
TYPES

sunday < monday

wednesday != friday

tuesday >= sunday

➢ EXAMPLE 7.12: If today and tomorrow are type day_t variables, the following if statement assigns the
value of tomorrow based on the value of today : (1)

● C provides no range checking to verify that the value stored in an enumerated type variable is valid. (2)

For example, this assignment statement will not cause a run-time error even though it is clearly invalid.

ENUMERATED
TYPES

if (today == sunday)

 tomorrow = monday;

else

 tomorrow = (day_t)(today + 1);

today = saturday + 3;

➢ enumerated type variable can also be used as a loop counter:

➢ This loop will execute for each value of today from monday through friday

ENUMERATED
TYPES

for (today = monday; today <= friday; ++today) {

. . .

}

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

#define NUM_QUEST 10 /* number of questions on daily quiz */

#define NUM_CLASS_DAYS 5 /* number of days in a week of class */

typedef enum

{monday, tuesday, wednesday, thursday, friday}

week_day_t;

. . .

char answer[NUM_QUEST]; /* correct answers for one quiz */

int score[NUM_CLASS_DAYS]; /* one student's quiz scores for each day */

score[monday] = 9;

score[tuesday] = 7;

score[wednesday] = 5;

score[thursday] = 3;

score[friday] = 1;

 Countinue…

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

ascore = 9;

for (today = monday; today <= friday; ++today) {

score[today] = ascore;

ascore -= 2;

}

➢ Multidimensional arrays: arrays with two or more dimensions.

➢ The array declaration: char tictac[3][3];
allocates storage for a two-dimensional array (tictac) with three rows and three columns.

➢ Each array element contains a character value

➢ This array has nine elements, each of which must be referenced by specifying a row subscript
(0 , 1 , or 2) and a column subscript (0 , 1 , or 2).

7.8 MULTIDIMENSIONAL ARRAYS

➢ A function that takes a tic-tac-toe board as a parameter will have a declaration similar to this in
its prototype:

➢ In the declaration of a multidimensional array parameter, only the first dimension, the number
of rows, can be omitted.

➢ Including both dimensions is also permissible. (1)

➢ The following statement would declare a tic-tac-toe board and initialize its contents to blanks.
(2)

EXAMPLE 7.15, FIGURE 7.21 (3)

7.8 MULTIDIMENSIONAL ARRAYS

char tictac[3][3] = { {' ', ' ', ' '}, {' ', ' ', ' '}, {' ', ' ', ' '} };

char tictac[][3]

char tictac[3][3]

➢ EXAMPLE 7.14

➢ This array table consists of three dimensions:
 double table[7][5][6];

➢ The first subscript may take on values from 0 to 6 ; the second, from 0 to 4 ; and the third, from
0 to 5 .

➢ A total of 7 × 5 × 6 , or 210 , type double values may be stored in the array table.

➢ All three subscripts must be specified in each reference to array table in order to access a single

number (e.g., table[2][3][4]).

7.8 MULTIDIMENSIONAL ARRAYS

➢ (1)

➢ We will assume that the college offers 100 (MAXCRS) courses at five different campuses.

➢ Array enroll is composed of a total of 2000 (100 × 5 × 4) elements.

➢ we will number the freshman year 0 , the sophomore year 1, and so on.

➢ Thus, enroll[1][4][3] represents the number of seniors taking course 1 at campus 4 .

➢ Memory space can be used up rapidly if several multidimensional arrays are declared in the same program.
(2)

➢ The type of information desired determines the order in which we must reference the array elements. (3)

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Figure 7.22

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students in each course */

for (course = 0; course < MAXCRS; ++course) {

 crs_sum = 0;

 for (campus = 0; campus < 5; ++campus) {

 for (year = 0; year < 4; ++ year) {

 crs_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students in course %d is %d\n", course, crs_sum);

}

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students at each campus */

for (campus = 0; campus < 5; ++campus) {

 campus_sum = 0;

 for (course = 0; course < MAXCRS; ++course) {

 for (year = 0; year < 4; ++ year) {

 campus_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students at campus %d is %d\n", campus, campus_sum);

}

CASE STUDY (Homework)
P.419 - 427

Summary of Hospital Revenue

7.9 ARRAY PROCESSING ILLUSTRATED

● Subscript-range error: An out-of-range reference occurs when the subscript value used is
outside the range specified by the array declaration. (1)

● A subscript-range error occurs when celsius is used with a subscript that has a value less than
0 or greater than 99,

● i.e. If the value of i is 150 => error (2)

● They are most often caused by:
1. An incorrect subscript expression,
2. A loop counter error
3. A nonterminating loop.

7.11 COMMON PROGRAMMING
ERRORS

int celsius[100];

access violation at line no. 28

● Subscript-range error:
● If a subscript-range error occurs inside an indexed loop, verify that the subscript is in range

for both the initial and the final values of the loop control variable (1)

● If a subscript-range error occurs in a loop controlled by a variable other than the array
subscript, check that the loop control variable is being updated as required. (2)

7.11 COMMON PROGRAMMING
ERRORS

● When using arrays as arguments to functions, be careful not to apply the address-of operator to
the array name even if the array is an output argument.

● However, do remember to use the & on an array element that is being passed as an output

argument.

● Be sure to use the correct forms for declaring array input and output parameters in function
prototypes.

● A parameter declared a could represent a single integer output parameter or an

integer array parameter

● So, comment your own prototypes carefully and use the alternate declaration form
 for array parameters to assist readers of your code.

7.11 COMMON PROGRAMMING
ERRORS

int *z

int z[]

● Memory access violation: If you are working on a computer system with very limited memory,
you may find that some correct C programs generate run-time error messages indicating an
access violation. (1)

● When you define enumerated types, remember that only identifiers can appear in the list of

values (enumeration constants) for the type.

● Be careful not to reuse one of these identifiers in another type or as a variable name in a
function that needs your type definition. (2)

7.11 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Figure 7.14
➢ The type int variable found is used to represent the logical concept of whether the

target has been found yet and is tested in the loop repetition condition (1)

➢ After found becomes true or the entire array has been searched, the loop is exited,

and the decision statement following the loop defines the value returned.

➢ If array arr and target are declared in the calling function, the assignment

statement: index = search(arr, target, SIZE);

calls function search to search the first SIZE elements of array arr for the target (i.e.
target = 3):(2)

SEARCH

➢ Many programs execute more efficiently if the data they process are sorted before
processing begins.

➢ For example, your university might want students grade report sorted by student ID

number.

➢ ALGORITHM FOR SELECTION SORT:
1. for each value of index from 0 to n-2

2. Find index_of_min , the index of the smallest element in the unsorted subarray

list[index] through list[n-1] .

3. if index is not the position of the smallest element (index_of_min)

4. Exchange the smallest element with the one at position index .

SORTING AN
ARRAY

➢ Figure 7.15

➢ See Figure 7.16 p.405
for a program example

➢ at most, n-1 exchanges will be required to sort an array with n elements.

SORTING AN
ARRAY

➢ Parallel arrays: arrays that have the same number of elements:
1. If there are n -elements, these parallel arrays contain data for n -objects

of the same kind. [not type]
2. Further, all array elements at subscript i contain data for the i-th object in

this group of n -objects.

● EXAMPLE 7.11 , Figure 7.17 two parallel arrays for a student records program (1)

7.7 PARALLEL ARRAYS AND ENUMERATED
TYPES

#define NUM_STUDENTS 50

..

int id[NUM_STUDENTS];

double gpa[NUM_STUDENTS];

➢ Good solutions to many programming problems require new data types (1)
➢ C allows you to associate a numeric code with each category by creating an

enumerated type that has its own list of meaningful values.

 (3)

ENUMERATED
TYPES

typedef enum (2)

{entertainment, rent, utilities, food, clothing,

automobile, insurance, miscellaneous}

expense_t;

To declare:

expense_t expense_kind; (4)

Entertainment (0)
Rent (1)

Utilities (2)
…

➢ Figure 7.18

● The scope rules for identifiers apply to enumerated types and enumeration constants.

● Enumeration constants must be identifiers; they cannot be numeric, character, or
string literals (e.g., "entertainment" cannot be a value for an enumerated type).

● We recommend that you place type definitions immediately after any #define and

#include directives. (1)

● The reserved word typedef can be used to name many varieties of user-defined types.

ENUMERATED
TYPES

➢ An identifier cannot appear in more than one enumerated type definition, for
example, the weekday_t definition could not be used with the type day_t

ENUMERATED
TYPES

typedef enum

{monday, tuesday, wednesday, thursday,friday, saturday, sunday}

day_t;

typedef enum

{monday, tuesday, wednesday, thursday, friday}

weekday_t;

➢ Relational, assignment, and even arithmetic operators can be used with
enumerated types, just as with other integers.

➢ The following for type day_t are true:

➢ We can combine the use of arithmetic operators and casts to find enumeration
constants that follow and precede a current value.

ENUMERATED
TYPES

sunday < monday

wednesday != friday

tuesday >= sunday

➢ EXAMPLE 7.12: If today and tomorrow are type day_t variables, the following if statement assigns the
value of tomorrow based on the value of today : (1)

● C provides no range checking to verify that the value stored in an enumerated type variable is valid. (2)

For example, this assignment statement will not cause a run-time error even though it is clearly invalid.

ENUMERATED
TYPES

if (today == sunday)

 tomorrow = monday;

else

 tomorrow = (day_t)(today + 1);

today = saturday + 3;

➢ enumerated type variable can also be used as a loop counter:

➢ This loop will execute for each value of today from monday through friday

ENUMERATED
TYPES

for (today = monday; today <= friday; ++today) {

. . .

}

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

#define NUM_QUEST 10 /* number of questions on daily quiz */

#define NUM_CLASS_DAYS 5 /* number of days in a week of class */

typedef enum

{monday, tuesday, wednesday, thursday, friday}

week_day_t;

. . .

char answer[NUM_QUEST]; /* correct answers for one quiz */

int score[NUM_CLASS_DAYS]; /* one student's quiz scores for each day */

score[monday] = 9;

score[tuesday] = 7;

score[wednesday] = 5;

score[thursday] = 3;

score[friday] = 1;

 Countinue…

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

ascore = 9;

for (today = monday; today <= friday; ++today) {

score[today] = ascore;

ascore -= 2;

}

➢ Multidimensional arrays: arrays with two or more dimensions.

➢ The array declaration: char tictac[3][3];
allocates storage for a two-dimensional array (tictac) with three rows and three columns.

➢ Each array element contains a character value

➢ This array has nine elements, each of which must be referenced by specifying a row subscript
(0 , 1 , or 2) and a column subscript (0 , 1 , or 2).

7.8 MULTIDIMENSIONAL ARRAYS

➢ A function that takes a tic-tac-toe board as a parameter will have a declaration similar to this in
its prototype:

➢ In the declaration of a multidimensional array parameter, only the first dimension, the number
of rows, can be omitted.

➢ Including both dimensions is also permissible. (1)

➢ The following statement would declare a tic-tac-toe board and initialize its contents to blanks.
(2)

EXAMPLE 7.15, FIGURE 7.21 (3)

7.8 MULTIDIMENSIONAL ARRAYS

char tictac[3][3] = { {' ', ' ', ' '}, {' ', ' ', ' '}, {' ', ' ', ' '} };

char tictac[][3]

char tictac[3][3]

➢ EXAMPLE 7.14

➢ This array table consists of three dimensions:
 double table[7][5][6];

➢ The first subscript may take on values from 0 to 6 ; the second, from 0 to 4 ; and the third, from
0 to 5 .

➢ A total of 7 × 5 × 6 , or 210 , type double values may be stored in the array table.

➢ All three subscripts must be specified in each reference to array table in order to access a single

number (e.g., table[2][3][4]).

7.8 MULTIDIMENSIONAL ARRAYS

➢ (1)

➢ We will assume that the college offers 100 (MAXCRS) courses at five different campuses.

➢ Array enroll is composed of a total of 2000 (100 × 5 × 4) elements.

➢ we will number the freshman year 0 , the sophomore year 1, and so on.

➢ Thus, enroll[1][4][3] represents the number of seniors taking course 1 at campus 4 .

➢ Memory space can be used up rapidly if several multidimensional arrays are declared in the same program.
(2)

➢ The type of information desired determines the order in which we must reference the array elements. (3)

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Figure 7.22

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students in each course */

for (course = 0; course < MAXCRS; ++course) {

 crs_sum = 0;

 for (campus = 0; campus < 5; ++campus) {

 for (year = 0; year < 4; ++ year) {

 crs_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students in course %d is %d\n", course, crs_sum);

}

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students at each campus */

for (campus = 0; campus < 5; ++campus) {

 campus_sum = 0;

 for (course = 0; course < MAXCRS; ++course) {

 for (year = 0; year < 4; ++ year) {

 campus_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students at campus %d is %d\n", campus, campus_sum);

}

CASE STUDY (Homework)
P.419 - 427

Summary of Hospital Revenue

7.9 ARRAY PROCESSING ILLUSTRATED

● Subscript-range error: An out-of-range reference occurs when the subscript value used is
outside the range specified by the array declaration. (1)

● A subscript-range error occurs when celsius is used with a subscript that has a value less than
0 or greater than 99,

● i.e. If the value of i is 150 => error (2)

● They are most often caused by:
1. An incorrect subscript expression,
2. A loop counter error
3. A nonterminating loop.

7.11 COMMON PROGRAMMING
ERRORS

int celsius[100];

access violation at line no. 28

● Subscript-range error:
● If a subscript-range error occurs inside an indexed loop, verify that the subscript is in range

for both the initial and the final values of the loop control variable (1)

● If a subscript-range error occurs in a loop controlled by a variable other than the array
subscript, check that the loop control variable is being updated as required. (2)

7.11 COMMON PROGRAMMING
ERRORS

● When using arrays as arguments to functions, be careful not to apply the address-of operator to
the array name even if the array is an output argument.

● However, do remember to use the & on an array element that is being passed as an output

argument.

● Be sure to use the correct forms for declaring array input and output parameters in function
prototypes.

● A parameter declared a could represent a single integer output parameter or an

integer array parameter

● So, comment your own prototypes carefully and use the alternate declaration form
 for array parameters to assist readers of your code.

7.11 COMMON PROGRAMMING
ERRORS

int *z

int z[]

● Memory access violation: If you are working on a computer system with very limited memory,
you may find that some correct C programs generate run-time error messages indicating an
access violation. (1)

● When you define enumerated types, remember that only identifiers can appear in the list of

values (enumeration constants) for the type.

● Be careful not to reuse one of these identifiers in another type or as a variable name in a
function that needs your type definition. (2)

7.11 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Figure 7.14
➢ The type int variable found is used to represent the logical concept of whether the

target has been found yet and is tested in the loop repetition condition (1)

➢ After found becomes true or the entire array has been searched, the loop is exited,

and the decision statement following the loop defines the value returned.

➢ If array arr and target are declared in the calling function, the assignment

statement: index = search(arr, target, SIZE);

calls function search to search the first SIZE elements of array arr for the target (i.e.
target = 3):(2)

SEARCH

➢ Many programs execute more efficiently if the data they process are sorted before
processing begins.

➢ For example, your university might want students grade report sorted by student ID

number.

➢ ALGORITHM FOR SELECTION SORT:
1. for each value of index from 0 to n-2

2. Find index_of_min , the index of the smallest element in the unsorted subarray

list[index] through list[n-1] .

3. if index is not the position of the smallest element (index_of_min)

4. Exchange the smallest element with the one at position index .

SORTING AN
ARRAY

➢ Figure 7.15

➢ See Figure 7.16 p.405
for a program example

➢ at most, n-1 exchanges will be required to sort an array with n elements.

SORTING AN
ARRAY

➢ Parallel arrays: arrays that have the same number of elements:
1. If there are n -elements, these parallel arrays contain data for n -objects

of the same kind. [not type]
2. Further, all array elements at subscript i contain data for the i-th object in

this group of n -objects.

● EXAMPLE 7.11 , Figure 7.17 two parallel arrays for a student records program (1)

7.7 PARALLEL ARRAYS AND ENUMERATED
TYPES

#define NUM_STUDENTS 50

..

int id[NUM_STUDENTS];

double gpa[NUM_STUDENTS];

➢ Good solutions to many programming problems require new data types (1)
➢ C allows you to associate a numeric code with each category by creating an

enumerated type that has its own list of meaningful values.

 (3)

ENUMERATED
TYPES

typedef enum (2)

{entertainment, rent, utilities, food, clothing,

automobile, insurance, miscellaneous}

expense_t;

To declare:

expense_t expense_kind; (4)

Entertainment (0)
Rent (1)

Utilities (2)
…

➢ Figure 7.18

● The scope rules for identifiers apply to enumerated types and enumeration constants.

● Enumeration constants must be identifiers; they cannot be numeric, character, or
string literals (e.g., "entertainment" cannot be a value for an enumerated type).

● We recommend that you place type definitions immediately after any #define and

#include directives. (1)

● The reserved word typedef can be used to name many varieties of user-defined types.

ENUMERATED
TYPES

➢ An identifier cannot appear in more than one enumerated type definition, for
example, the weekday_t definition could not be used with the type day_t

ENUMERATED
TYPES

typedef enum

{monday, tuesday, wednesday, thursday,friday, saturday, sunday}

day_t;

typedef enum

{monday, tuesday, wednesday, thursday, friday}

weekday_t;

➢ Relational, assignment, and even arithmetic operators can be used with
enumerated types, just as with other integers.

➢ The following for type day_t are true:

➢ We can combine the use of arithmetic operators and casts to find enumeration
constants that follow and precede a current value.

ENUMERATED
TYPES

sunday < monday

wednesday != friday

tuesday >= sunday

➢ EXAMPLE 7.12: If today and tomorrow are type day_t variables, the following if statement assigns the
value of tomorrow based on the value of today : (1)

● C provides no range checking to verify that the value stored in an enumerated type variable is valid. (2)

For example, this assignment statement will not cause a run-time error even though it is clearly invalid.

ENUMERATED
TYPES

if (today == sunday)

 tomorrow = monday;

else

 tomorrow = (day_t)(today + 1);

today = saturday + 3;

➢ enumerated type variable can also be used as a loop counter:

➢ This loop will execute for each value of today from monday through friday

ENUMERATED
TYPES

for (today = monday; today <= friday; ++today) {

. . .

}

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

#define NUM_QUEST 10 /* number of questions on daily quiz */

#define NUM_CLASS_DAYS 5 /* number of days in a week of class */

typedef enum

{monday, tuesday, wednesday, thursday, friday}

week_day_t;

. . .

char answer[NUM_QUEST]; /* correct answers for one quiz */

int score[NUM_CLASS_DAYS]; /* one student's quiz scores for each day */

score[monday] = 9;

score[tuesday] = 7;

score[wednesday] = 5;

score[thursday] = 3;

score[friday] = 1;

 Countinue…

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

ascore = 9;

for (today = monday; today <= friday; ++today) {

score[today] = ascore;

ascore -= 2;

}

➢ Multidimensional arrays: arrays with two or more dimensions.

➢ The array declaration: char tictac[3][3];
allocates storage for a two-dimensional array (tictac) with three rows and three columns.

➢ Each array element contains a character value

➢ This array has nine elements, each of which must be referenced by specifying a row subscript
(0 , 1 , or 2) and a column subscript (0 , 1 , or 2).

7.8 MULTIDIMENSIONAL ARRAYS

➢ A function that takes a tic-tac-toe board as a parameter will have a declaration similar to this in
its prototype:

➢ In the declaration of a multidimensional array parameter, only the first dimension, the number
of rows, can be omitted.

➢ Including both dimensions is also permissible. (1)

➢ The following statement would declare a tic-tac-toe board and initialize its contents to blanks.
(2)

EXAMPLE 7.15, FIGURE 7.21 (3)

7.8 MULTIDIMENSIONAL ARRAYS

char tictac[3][3] = { {' ', ' ', ' '}, {' ', ' ', ' '}, {' ', ' ', ' '} };

char tictac[][3]

char tictac[3][3]

➢ EXAMPLE 7.14

➢ This array table consists of three dimensions:
 double table[7][5][6];

➢ The first subscript may take on values from 0 to 6 ; the second, from 0 to 4 ; and the third, from
0 to 5 .

➢ A total of 7 × 5 × 6 , or 210 , type double values may be stored in the array table.

➢ All three subscripts must be specified in each reference to array table in order to access a single

number (e.g., table[2][3][4]).

7.8 MULTIDIMENSIONAL ARRAYS

➢ (1)

➢ We will assume that the college offers 100 (MAXCRS) courses at five different campuses.

➢ Array enroll is composed of a total of 2000 (100 × 5 × 4) elements.

➢ we will number the freshman year 0 , the sophomore year 1, and so on.

➢ Thus, enroll[1][4][3] represents the number of seniors taking course 1 at campus 4 .

➢ Memory space can be used up rapidly if several multidimensional arrays are declared in the same program.
(2)

➢ The type of information desired determines the order in which we must reference the array elements. (3)

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Figure 7.22

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students in each course */

for (course = 0; course < MAXCRS; ++course) {

 crs_sum = 0;

 for (campus = 0; campus < 5; ++campus) {

 for (year = 0; year < 4; ++ year) {

 crs_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students in course %d is %d\n", course, crs_sum);

}

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students at each campus */

for (campus = 0; campus < 5; ++campus) {

 campus_sum = 0;

 for (course = 0; course < MAXCRS; ++course) {

 for (year = 0; year < 4; ++ year) {

 campus_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students at campus %d is %d\n", campus, campus_sum);

}

CASE STUDY (Homework)
P.419 - 427

Summary of Hospital Revenue

7.9 ARRAY PROCESSING ILLUSTRATED

● Subscript-range error: An out-of-range reference occurs when the subscript value used is
outside the range specified by the array declaration. (1)

● A subscript-range error occurs when celsius is used with a subscript that has a value less than
0 or greater than 99,

● i.e. If the value of i is 150 => error (2)

● They are most often caused by:
1. An incorrect subscript expression,
2. A loop counter error
3. A nonterminating loop.

7.11 COMMON PROGRAMMING
ERRORS

int celsius[100];

access violation at line no. 28

● Subscript-range error:
● If a subscript-range error occurs inside an indexed loop, verify that the subscript is in range

for both the initial and the final values of the loop control variable (1)

● If a subscript-range error occurs in a loop controlled by a variable other than the array
subscript, check that the loop control variable is being updated as required. (2)

7.11 COMMON PROGRAMMING
ERRORS

● When using arrays as arguments to functions, be careful not to apply the address-of operator to
the array name even if the array is an output argument.

● However, do remember to use the & on an array element that is being passed as an output

argument.

● Be sure to use the correct forms for declaring array input and output parameters in function
prototypes.

● A parameter declared a could represent a single integer output parameter or an

integer array parameter

● So, comment your own prototypes carefully and use the alternate declaration form
 for array parameters to assist readers of your code.

7.11 COMMON PROGRAMMING
ERRORS

int *z

int z[]

● Memory access violation: If you are working on a computer system with very limited memory,
you may find that some correct C programs generate run-time error messages indicating an
access violation. (1)

● When you define enumerated types, remember that only identifiers can appear in the list of

values (enumeration constants) for the type.

● Be careful not to reuse one of these identifiers in another type or as a variable name in a
function that needs your type definition. (2)

7.11 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Figure 7.14
➢ The type int variable found is used to represent the logical concept of whether the

target has been found yet and is tested in the loop repetition condition (1)

➢ After found becomes true or the entire array has been searched, the loop is exited,

and the decision statement following the loop defines the value returned.

➢ If array arr and target are declared in the calling function, the assignment

statement: index = search(arr, target, SIZE);

calls function search to search the first SIZE elements of array arr for the target (i.e.
target = 3):(2)

SEARCH

➢ Many programs execute more efficiently if the data they process are sorted before
processing begins.

➢ For example, your university might want students grade report sorted by student ID

number.

➢ ALGORITHM FOR SELECTION SORT:
1. for each value of index from 0 to n-2

2. Find index_of_min , the index of the smallest element in the unsorted subarray

list[index] through list[n-1] .

3. if index is not the position of the smallest element (index_of_min)

4. Exchange the smallest element with the one at position index .

SORTING AN
ARRAY

➢ Figure 7.15

➢ See Figure 7.16 p.405
for a program example

➢ at most, n-1 exchanges will be required to sort an array with n elements.

SORTING AN
ARRAY

➢ Parallel arrays: arrays that have the same number of elements:
1. If there are n -elements, these parallel arrays contain data for n -objects

of the same kind. [not type]
2. Further, all array elements at subscript i contain data for the i-th object in

this group of n -objects.

● EXAMPLE 7.11 , Figure 7.17 two parallel arrays for a student records program (1)

7.7 PARALLEL ARRAYS AND ENUMERATED
TYPES

#define NUM_STUDENTS 50

..

int id[NUM_STUDENTS];

double gpa[NUM_STUDENTS];

➢ Good solutions to many programming problems require new data types (1)
➢ C allows you to associate a numeric code with each category by creating an

enumerated type that has its own list of meaningful values.

 (3)

ENUMERATED
TYPES

typedef enum (2)

{entertainment, rent, utilities, food, clothing,

automobile, insurance, miscellaneous}

expense_t;

To declare:

expense_t expense_kind; (4)

Entertainment (0)
Rent (1)

Utilities (2)
…

➢ Figure 7.18

● The scope rules for identifiers apply to enumerated types and enumeration constants.

● Enumeration constants must be identifiers; they cannot be numeric, character, or
string literals (e.g., "entertainment" cannot be a value for an enumerated type).

● We recommend that you place type definitions immediately after any #define and

#include directives. (1)

● The reserved word typedef can be used to name many varieties of user-defined types.

ENUMERATED
TYPES

➢ An identifier cannot appear in more than one enumerated type definition, for
example, the weekday_t definition could not be used with the type day_t

ENUMERATED
TYPES

typedef enum

{monday, tuesday, wednesday, thursday,friday, saturday, sunday}

day_t;

typedef enum

{monday, tuesday, wednesday, thursday, friday}

weekday_t;

➢ Relational, assignment, and even arithmetic operators can be used with
enumerated types, just as with other integers.

➢ The following for type day_t are true:

➢ We can combine the use of arithmetic operators and casts to find enumeration
constants that follow and precede a current value.

ENUMERATED
TYPES

sunday < monday

wednesday != friday

tuesday >= sunday

➢ EXAMPLE 7.12: If today and tomorrow are type day_t variables, the following if statement assigns the
value of tomorrow based on the value of today : (1)

● C provides no range checking to verify that the value stored in an enumerated type variable is valid. (2)

For example, this assignment statement will not cause a run-time error even though it is clearly invalid.

ENUMERATED
TYPES

if (today == sunday)

 tomorrow = monday;

else

 tomorrow = (day_t)(today + 1);

today = saturday + 3;

➢ enumerated type variable can also be used as a loop counter:

➢ This loop will execute for each value of today from monday through friday

ENUMERATED
TYPES

for (today = monday; today <= friday; ++today) {

. . .

}

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

#define NUM_QUEST 10 /* number of questions on daily quiz */

#define NUM_CLASS_DAYS 5 /* number of days in a week of class */

typedef enum

{monday, tuesday, wednesday, thursday, friday}

week_day_t;

. . .

char answer[NUM_QUEST]; /* correct answers for one quiz */

int score[NUM_CLASS_DAYS]; /* one student's quiz scores for each day */

score[monday] = 9;

score[tuesday] = 7;

score[wednesday] = 5;

score[thursday] = 3;

score[friday] = 1;

 Countinue…

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

ascore = 9;

for (today = monday; today <= friday; ++today) {

score[today] = ascore;

ascore -= 2;

}

➢ Multidimensional arrays: arrays with two or more dimensions.

➢ The array declaration: char tictac[3][3];
allocates storage for a two-dimensional array (tictac) with three rows and three columns.

➢ Each array element contains a character value

➢ This array has nine elements, each of which must be referenced by specifying a row subscript
(0 , 1 , or 2) and a column subscript (0 , 1 , or 2).

7.8 MULTIDIMENSIONAL ARRAYS

➢ A function that takes a tic-tac-toe board as a parameter will have a declaration similar to this in
its prototype:

➢ In the declaration of a multidimensional array parameter, only the first dimension, the number
of rows, can be omitted.

➢ Including both dimensions is also permissible. (1)

➢ The following statement would declare a tic-tac-toe board and initialize its contents to blanks.
(2)

EXAMPLE 7.15, FIGURE 7.21 (3)

7.8 MULTIDIMENSIONAL ARRAYS

char tictac[3][3] = { {' ', ' ', ' '}, {' ', ' ', ' '}, {' ', ' ', ' '} };

char tictac[][3]

char tictac[3][3]

➢ EXAMPLE 7.14

➢ This array table consists of three dimensions:
 double table[7][5][6];

➢ The first subscript may take on values from 0 to 6 ; the second, from 0 to 4 ; and the third, from
0 to 5 .

➢ A total of 7 × 5 × 6 , or 210 , type double values may be stored in the array table.

➢ All three subscripts must be specified in each reference to array table in order to access a single

number (e.g., table[2][3][4]).

7.8 MULTIDIMENSIONAL ARRAYS

➢ (1)

➢ We will assume that the college offers 100 (MAXCRS) courses at five different campuses.

➢ Array enroll is composed of a total of 2000 (100 × 5 × 4) elements.

➢ we will number the freshman year 0 , the sophomore year 1, and so on.

➢ Thus, enroll[1][4][3] represents the number of seniors taking course 1 at campus 4 .

➢ Memory space can be used up rapidly if several multidimensional arrays are declared in the same program.
(2)

➢ The type of information desired determines the order in which we must reference the array elements. (3)

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Figure 7.22

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students in each course */

for (course = 0; course < MAXCRS; ++course) {

 crs_sum = 0;

 for (campus = 0; campus < 5; ++campus) {

 for (year = 0; year < 4; ++ year) {

 crs_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students in course %d is %d\n", course, crs_sum);

}

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students at each campus */

for (campus = 0; campus < 5; ++campus) {

 campus_sum = 0;

 for (course = 0; course < MAXCRS; ++course) {

 for (year = 0; year < 4; ++ year) {

 campus_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students at campus %d is %d\n", campus, campus_sum);

}

CASE STUDY (Homework)
P.419 - 427

Summary of Hospital Revenue

7.9 ARRAY PROCESSING ILLUSTRATED

● Subscript-range error: An out-of-range reference occurs when the subscript value used is
outside the range specified by the array declaration. (1)

● A subscript-range error occurs when celsius is used with a subscript that has a value less than
0 or greater than 99,

● i.e. If the value of i is 150 => error (2)

● They are most often caused by:
1. An incorrect subscript expression,
2. A loop counter error
3. A nonterminating loop.

7.11 COMMON PROGRAMMING
ERRORS

int celsius[100];

access violation at line no. 28

● Subscript-range error:
● If a subscript-range error occurs inside an indexed loop, verify that the subscript is in range

for both the initial and the final values of the loop control variable (1)

● If a subscript-range error occurs in a loop controlled by a variable other than the array
subscript, check that the loop control variable is being updated as required. (2)

7.11 COMMON PROGRAMMING
ERRORS

● When using arrays as arguments to functions, be careful not to apply the address-of operator to
the array name even if the array is an output argument.

● However, do remember to use the & on an array element that is being passed as an output

argument.

● Be sure to use the correct forms for declaring array input and output parameters in function
prototypes.

● A parameter declared a could represent a single integer output parameter or an

integer array parameter

● So, comment your own prototypes carefully and use the alternate declaration form
 for array parameters to assist readers of your code.

7.11 COMMON PROGRAMMING
ERRORS

int *z

int z[]

● Memory access violation: If you are working on a computer system with very limited memory,
you may find that some correct C programs generate run-time error messages indicating an
access violation. (1)

● When you define enumerated types, remember that only identifiers can appear in the list of

values (enumeration constants) for the type.

● Be careful not to reuse one of these identifiers in another type or as a variable name in a
function that needs your type definition. (2)

7.11 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Figure 7.14
➢ The type int variable found is used to represent the logical concept of whether the

target has been found yet and is tested in the loop repetition condition (1)

➢ After found becomes true or the entire array has been searched, the loop is exited,

and the decision statement following the loop defines the value returned.

➢ If array arr and target are declared in the calling function, the assignment

statement: index = search(arr, target, SIZE);

calls function search to search the first SIZE elements of array arr for the target (i.e.
target = 3):(2)

SEARCH

➢ Many programs execute more efficiently if the data they process are sorted before
processing begins.

➢ For example, your university might want students grade report sorted by student ID

number.

➢ ALGORITHM FOR SELECTION SORT:
1. for each value of index from 0 to n-2

2. Find index_of_min , the index of the smallest element in the unsorted subarray

list[index] through list[n-1] .

3. if index is not the position of the smallest element (index_of_min)

4. Exchange the smallest element with the one at position index .

SORTING AN
ARRAY

➢ Figure 7.15

➢ See Figure 7.16 p.405
for a program example

➢ at most, n-1 exchanges will be required to sort an array with n elements.

SORTING AN
ARRAY

➢ Parallel arrays: arrays that have the same number of elements:
1. If there are n -elements, these parallel arrays contain data for n -objects

of the same kind. [not type]
2. Further, all array elements at subscript i contain data for the i-th object in

this group of n -objects.

● EXAMPLE 7.11 , Figure 7.17 two parallel arrays for a student records program (1)

7.7 PARALLEL ARRAYS AND ENUMERATED
TYPES

#define NUM_STUDENTS 50

..

int id[NUM_STUDENTS];

double gpa[NUM_STUDENTS];

➢ Good solutions to many programming problems require new data types (1)
➢ C allows you to associate a numeric code with each category by creating an

enumerated type that has its own list of meaningful values.

 (3)

ENUMERATED
TYPES

typedef enum (2)

{entertainment, rent, utilities, food, clothing,

automobile, insurance, miscellaneous}

expense_t;

To declare:

expense_t expense_kind; (4)

Entertainment (0)
Rent (1)

Utilities (2)
…

➢ Figure 7.18

● The scope rules for identifiers apply to enumerated types and enumeration constants.

● Enumeration constants must be identifiers; they cannot be numeric, character, or
string literals (e.g., "entertainment" cannot be a value for an enumerated type).

● We recommend that you place type definitions immediately after any #define and

#include directives. (1)

● The reserved word typedef can be used to name many varieties of user-defined types.

ENUMERATED
TYPES

➢ An identifier cannot appear in more than one enumerated type definition, for
example, the weekday_t definition could not be used with the type day_t

ENUMERATED
TYPES

typedef enum

{monday, tuesday, wednesday, thursday,friday, saturday, sunday}

day_t;

typedef enum

{monday, tuesday, wednesday, thursday, friday}

weekday_t;

➢ Relational, assignment, and even arithmetic operators can be used with
enumerated types, just as with other integers.

➢ The following for type day_t are true:

➢ We can combine the use of arithmetic operators and casts to find enumeration
constants that follow and precede a current value.

ENUMERATED
TYPES

sunday < monday

wednesday != friday

tuesday >= sunday

➢ EXAMPLE 7.12: If today and tomorrow are type day_t variables, the following if statement assigns the
value of tomorrow based on the value of today : (1)

● C provides no range checking to verify that the value stored in an enumerated type variable is valid. (2)

For example, this assignment statement will not cause a run-time error even though it is clearly invalid.

ENUMERATED
TYPES

if (today == sunday)

 tomorrow = monday;

else

 tomorrow = (day_t)(today + 1);

today = saturday + 3;

➢ enumerated type variable can also be used as a loop counter:

➢ This loop will execute for each value of today from monday through friday

ENUMERATED
TYPES

for (today = monday; today <= friday; ++today) {

. . .

}

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

#define NUM_QUEST 10 /* number of questions on daily quiz */

#define NUM_CLASS_DAYS 5 /* number of days in a week of class */

typedef enum

{monday, tuesday, wednesday, thursday, friday}

week_day_t;

. . .

char answer[NUM_QUEST]; /* correct answers for one quiz */

int score[NUM_CLASS_DAYS]; /* one student's quiz scores for each day */

score[monday] = 9;

score[tuesday] = 7;

score[wednesday] = 5;

score[thursday] = 3;

score[friday] = 1;

 Countinue…

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

ascore = 9;

for (today = monday; today <= friday; ++today) {

score[today] = ascore;

ascore -= 2;

}

➢ Multidimensional arrays: arrays with two or more dimensions.

➢ The array declaration: char tictac[3][3];
allocates storage for a two-dimensional array (tictac) with three rows and three columns.

➢ Each array element contains a character value

➢ This array has nine elements, each of which must be referenced by specifying a row subscript
(0 , 1 , or 2) and a column subscript (0 , 1 , or 2).

7.8 MULTIDIMENSIONAL ARRAYS

➢ A function that takes a tic-tac-toe board as a parameter will have a declaration similar to this in
its prototype:

➢ In the declaration of a multidimensional array parameter, only the first dimension, the number
of rows, can be omitted.

➢ Including both dimensions is also permissible. (1)

➢ The following statement would declare a tic-tac-toe board and initialize its contents to blanks.
(2)

EXAMPLE 7.15, FIGURE 7.21 (3)

7.8 MULTIDIMENSIONAL ARRAYS

char tictac[3][3] = { {' ', ' ', ' '}, {' ', ' ', ' '}, {' ', ' ', ' '} };

char tictac[][3]

char tictac[3][3]

➢ EXAMPLE 7.14

➢ This array table consists of three dimensions:
 double table[7][5][6];

➢ The first subscript may take on values from 0 to 6 ; the second, from 0 to 4 ; and the third, from
0 to 5 .

➢ A total of 7 × 5 × 6 , or 210 , type double values may be stored in the array table.

➢ All three subscripts must be specified in each reference to array table in order to access a single

number (e.g., table[2][3][4]).

7.8 MULTIDIMENSIONAL ARRAYS

➢ (1)

➢ We will assume that the college offers 100 (MAXCRS) courses at five different campuses.

➢ Array enroll is composed of a total of 2000 (100 × 5 × 4) elements.

➢ we will number the freshman year 0 , the sophomore year 1, and so on.

➢ Thus, enroll[1][4][3] represents the number of seniors taking course 1 at campus 4 .

➢ Memory space can be used up rapidly if several multidimensional arrays are declared in the same program.
(2)

➢ The type of information desired determines the order in which we must reference the array elements. (3)

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Figure 7.22

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students in each course */

for (course = 0; course < MAXCRS; ++course) {

 crs_sum = 0;

 for (campus = 0; campus < 5; ++campus) {

 for (year = 0; year < 4; ++ year) {

 crs_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students in course %d is %d\n", course, crs_sum);

}

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students at each campus */

for (campus = 0; campus < 5; ++campus) {

 campus_sum = 0;

 for (course = 0; course < MAXCRS; ++course) {

 for (year = 0; year < 4; ++ year) {

 campus_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students at campus %d is %d\n", campus, campus_sum);

}

CASE STUDY (Homework)
P.419 - 427

Summary of Hospital Revenue

7.9 ARRAY PROCESSING ILLUSTRATED

● Subscript-range error: An out-of-range reference occurs when the subscript value used is
outside the range specified by the array declaration. (1)

● A subscript-range error occurs when celsius is used with a subscript that has a value less than
0 or greater than 99,

● i.e. If the value of i is 150 => error (2)

● They are most often caused by:
1. An incorrect subscript expression,
2. A loop counter error
3. A nonterminating loop.

7.11 COMMON PROGRAMMING
ERRORS

int celsius[100];

access violation at line no. 28

● Subscript-range error:
● If a subscript-range error occurs inside an indexed loop, verify that the subscript is in range

for both the initial and the final values of the loop control variable (1)

● If a subscript-range error occurs in a loop controlled by a variable other than the array
subscript, check that the loop control variable is being updated as required. (2)

7.11 COMMON PROGRAMMING
ERRORS

● When using arrays as arguments to functions, be careful not to apply the address-of operator to
the array name even if the array is an output argument.

● However, do remember to use the & on an array element that is being passed as an output

argument.

● Be sure to use the correct forms for declaring array input and output parameters in function
prototypes.

● A parameter declared a could represent a single integer output parameter or an

integer array parameter

● So, comment your own prototypes carefully and use the alternate declaration form
 for array parameters to assist readers of your code.

7.11 COMMON PROGRAMMING
ERRORS

int *z

int z[]

● Memory access violation: If you are working on a computer system with very limited memory,
you may find that some correct C programs generate run-time error messages indicating an
access violation. (1)

● When you define enumerated types, remember that only identifiers can appear in the list of

values (enumeration constants) for the type.

● Be careful not to reuse one of these identifiers in another type or as a variable name in a
function that needs your type definition. (2)

7.11 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Figure 7.14
➢ The type int variable found is used to represent the logical concept of whether the

target has been found yet and is tested in the loop repetition condition (1)

➢ After found becomes true or the entire array has been searched, the loop is exited,

and the decision statement following the loop defines the value returned.

➢ If array arr and target are declared in the calling function, the assignment

statement: index = search(arr, target, SIZE);

calls function search to search the first SIZE elements of array arr for the target (i.e.
target = 3):(2)

SEARCH

➢ Many programs execute more efficiently if the data they process are sorted before
processing begins.

➢ For example, your university might want students grade report sorted by student ID

number.

➢ ALGORITHM FOR SELECTION SORT:
1. for each value of index from 0 to n-2

2. Find index_of_min , the index of the smallest element in the unsorted subarray

list[index] through list[n-1] .

3. if index is not the position of the smallest element (index_of_min)

4. Exchange the smallest element with the one at position index .

SORTING AN
ARRAY

➢ Figure 7.15

➢ See Figure 7.16 p.405
for a program example

➢ at most, n-1 exchanges will be required to sort an array with n elements.

SORTING AN
ARRAY

➢ Parallel arrays: arrays that have the same number of elements:
1. If there are n -elements, these parallel arrays contain data for n -objects

of the same kind. [not type]
2. Further, all array elements at subscript i contain data for the i-th object in

this group of n -objects.

● EXAMPLE 7.11 , Figure 7.17 two parallel arrays for a student records program (1)

7.7 PARALLEL ARRAYS AND ENUMERATED
TYPES

#define NUM_STUDENTS 50

..

int id[NUM_STUDENTS];

double gpa[NUM_STUDENTS];

➢ Good solutions to many programming problems require new data types (1)
➢ C allows you to associate a numeric code with each category by creating an

enumerated type that has its own list of meaningful values.

 (3)

ENUMERATED
TYPES

typedef enum (2)

{entertainment, rent, utilities, food, clothing,

automobile, insurance, miscellaneous}

expense_t;

To declare:

expense_t expense_kind; (4)

Entertainment (0)
Rent (1)

Utilities (2)
…

➢ Figure 7.18

● The scope rules for identifiers apply to enumerated types and enumeration constants.

● Enumeration constants must be identifiers; they cannot be numeric, character, or
string literals (e.g., "entertainment" cannot be a value for an enumerated type).

● We recommend that you place type definitions immediately after any #define and

#include directives. (1)

● The reserved word typedef can be used to name many varieties of user-defined types.

ENUMERATED
TYPES

➢ An identifier cannot appear in more than one enumerated type definition, for
example, the weekday_t definition could not be used with the type day_t

ENUMERATED
TYPES

typedef enum

{monday, tuesday, wednesday, thursday,friday, saturday, sunday}

day_t;

typedef enum

{monday, tuesday, wednesday, thursday, friday}

weekday_t;

➢ Relational, assignment, and even arithmetic operators can be used with
enumerated types, just as with other integers.

➢ The following for type day_t are true:

➢ We can combine the use of arithmetic operators and casts to find enumeration
constants that follow and precede a current value.

ENUMERATED
TYPES

sunday < monday

wednesday != friday

tuesday >= sunday

➢ EXAMPLE 7.12: If today and tomorrow are type day_t variables, the following if statement assigns the
value of tomorrow based on the value of today : (1)

● C provides no range checking to verify that the value stored in an enumerated type variable is valid. (2)

For example, this assignment statement will not cause a run-time error even though it is clearly invalid.

ENUMERATED
TYPES

if (today == sunday)

 tomorrow = monday;

else

 tomorrow = (day_t)(today + 1);

today = saturday + 3;

➢ enumerated type variable can also be used as a loop counter:

➢ This loop will execute for each value of today from monday through friday

ENUMERATED
TYPES

for (today = monday; today <= friday; ++today) {

. . .

}

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

#define NUM_QUEST 10 /* number of questions on daily quiz */

#define NUM_CLASS_DAYS 5 /* number of days in a week of class */

typedef enum

{monday, tuesday, wednesday, thursday, friday}

week_day_t;

. . .

char answer[NUM_QUEST]; /* correct answers for one quiz */

int score[NUM_CLASS_DAYS]; /* one student's quiz scores for each day */

score[monday] = 9;

score[tuesday] = 7;

score[wednesday] = 5;

score[thursday] = 3;

score[friday] = 1;

 Countinue…

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

ascore = 9;

for (today = monday; today <= friday; ++today) {

score[today] = ascore;

ascore -= 2;

}

➢ Multidimensional arrays: arrays with two or more dimensions.

➢ The array declaration: char tictac[3][3];
allocates storage for a two-dimensional array (tictac) with three rows and three columns.

➢ Each array element contains a character value

➢ This array has nine elements, each of which must be referenced by specifying a row subscript
(0 , 1 , or 2) and a column subscript (0 , 1 , or 2).

7.8 MULTIDIMENSIONAL ARRAYS

➢ A function that takes a tic-tac-toe board as a parameter will have a declaration similar to this in
its prototype:

➢ In the declaration of a multidimensional array parameter, only the first dimension, the number
of rows, can be omitted.

➢ Including both dimensions is also permissible. (1)

➢ The following statement would declare a tic-tac-toe board and initialize its contents to blanks.
(2)

EXAMPLE 7.15, FIGURE 7.21 (3)

7.8 MULTIDIMENSIONAL ARRAYS

char tictac[3][3] = { {' ', ' ', ' '}, {' ', ' ', ' '}, {' ', ' ', ' '} };

char tictac[][3]

char tictac[3][3]

➢ EXAMPLE 7.14

➢ This array table consists of three dimensions:
 double table[7][5][6];

➢ The first subscript may take on values from 0 to 6 ; the second, from 0 to 4 ; and the third, from
0 to 5 .

➢ A total of 7 × 5 × 6 , or 210 , type double values may be stored in the array table.

➢ All three subscripts must be specified in each reference to array table in order to access a single

number (e.g., table[2][3][4]).

7.8 MULTIDIMENSIONAL ARRAYS

➢ (1)

➢ We will assume that the college offers 100 (MAXCRS) courses at five different campuses.

➢ Array enroll is composed of a total of 2000 (100 × 5 × 4) elements.

➢ we will number the freshman year 0 , the sophomore year 1, and so on.

➢ Thus, enroll[1][4][3] represents the number of seniors taking course 1 at campus 4 .

➢ Memory space can be used up rapidly if several multidimensional arrays are declared in the same program.
(2)

➢ The type of information desired determines the order in which we must reference the array elements. (3)

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Figure 7.22

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students in each course */

for (course = 0; course < MAXCRS; ++course) {

 crs_sum = 0;

 for (campus = 0; campus < 5; ++campus) {

 for (year = 0; year < 4; ++ year) {

 crs_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students in course %d is %d\n", course, crs_sum);

}

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students at each campus */

for (campus = 0; campus < 5; ++campus) {

 campus_sum = 0;

 for (course = 0; course < MAXCRS; ++course) {

 for (year = 0; year < 4; ++ year) {

 campus_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students at campus %d is %d\n", campus, campus_sum);

}

CASE STUDY (Homework)
P.419 - 427

Summary of Hospital Revenue

7.9 ARRAY PROCESSING ILLUSTRATED

● Subscript-range error: An out-of-range reference occurs when the subscript value used is
outside the range specified by the array declaration. (1)

● A subscript-range error occurs when celsius is used with a subscript that has a value less than
0 or greater than 99,

● i.e. If the value of i is 150 => error (2)

● They are most often caused by:
1. An incorrect subscript expression,
2. A loop counter error
3. A nonterminating loop.

7.11 COMMON PROGRAMMING
ERRORS

int celsius[100];

access violation at line no. 28

● Subscript-range error:
● If a subscript-range error occurs inside an indexed loop, verify that the subscript is in range

for both the initial and the final values of the loop control variable (1)

● If a subscript-range error occurs in a loop controlled by a variable other than the array
subscript, check that the loop control variable is being updated as required. (2)

7.11 COMMON PROGRAMMING
ERRORS

● When using arrays as arguments to functions, be careful not to apply the address-of operator to
the array name even if the array is an output argument.

● However, do remember to use the & on an array element that is being passed as an output

argument.

● Be sure to use the correct forms for declaring array input and output parameters in function
prototypes.

● A parameter declared a could represent a single integer output parameter or an

integer array parameter

● So, comment your own prototypes carefully and use the alternate declaration form
 for array parameters to assist readers of your code.

7.11 COMMON PROGRAMMING
ERRORS

int *z

int z[]

● Memory access violation: If you are working on a computer system with very limited memory,
you may find that some correct C programs generate run-time error messages indicating an
access violation. (1)

● When you define enumerated types, remember that only identifiers can appear in the list of

values (enumeration constants) for the type.

● Be careful not to reuse one of these identifiers in another type or as a variable name in a
function that needs your type definition. (2)

7.11 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Figure 7.14
➢ The type int variable found is used to represent the logical concept of whether the

target has been found yet and is tested in the loop repetition condition (1)

➢ After found becomes true or the entire array has been searched, the loop is exited,

and the decision statement following the loop defines the value returned.

➢ If array arr and target are declared in the calling function, the assignment

statement: index = search(arr, target, SIZE);

calls function search to search the first SIZE elements of array arr for the target (i.e.
target = 3):(2)

SEARCH

➢ Many programs execute more efficiently if the data they process are sorted before
processing begins.

➢ For example, your university might want students grade report sorted by student ID

number.

➢ ALGORITHM FOR SELECTION SORT:
1. for each value of index from 0 to n-2

2. Find index_of_min , the index of the smallest element in the unsorted subarray

list[index] through list[n-1] .

3. if index is not the position of the smallest element (index_of_min)

4. Exchange the smallest element with the one at position index .

SORTING AN
ARRAY

➢ Figure 7.15

➢ See Figure 7.16 p.405
for a program example

➢ at most, n-1 exchanges will be required to sort an array with n elements.

SORTING AN
ARRAY

➢ Parallel arrays: arrays that have the same number of elements:
1. If there are n -elements, these parallel arrays contain data for n -objects

of the same kind. [not type]
2. Further, all array elements at subscript i contain data for the i-th object in

this group of n -objects.

● EXAMPLE 7.11 , Figure 7.17 two parallel arrays for a student records program (1)

7.7 PARALLEL ARRAYS AND ENUMERATED
TYPES

#define NUM_STUDENTS 50

..

int id[NUM_STUDENTS];

double gpa[NUM_STUDENTS];

➢ Good solutions to many programming problems require new data types (1)
➢ C allows you to associate a numeric code with each category by creating an

enumerated type that has its own list of meaningful values.

 (3)

ENUMERATED
TYPES

typedef enum (2)

{entertainment, rent, utilities, food, clothing,

automobile, insurance, miscellaneous}

expense_t;

To declare:

expense_t expense_kind; (4)

Entertainment (0)
Rent (1)

Utilities (2)
…

➢ Figure 7.18

● The scope rules for identifiers apply to enumerated types and enumeration constants.

● Enumeration constants must be identifiers; they cannot be numeric, character, or
string literals (e.g., "entertainment" cannot be a value for an enumerated type).

● We recommend that you place type definitions immediately after any #define and

#include directives. (1)

● The reserved word typedef can be used to name many varieties of user-defined types.

ENUMERATED
TYPES

➢ An identifier cannot appear in more than one enumerated type definition, for
example, the weekday_t definition could not be used with the type day_t

ENUMERATED
TYPES

typedef enum

{monday, tuesday, wednesday, thursday,friday, saturday, sunday}

day_t;

typedef enum

{monday, tuesday, wednesday, thursday, friday}

weekday_t;

➢ Relational, assignment, and even arithmetic operators can be used with
enumerated types, just as with other integers.

➢ The following for type day_t are true:

➢ We can combine the use of arithmetic operators and casts to find enumeration
constants that follow and precede a current value.

ENUMERATED
TYPES

sunday < monday

wednesday != friday

tuesday >= sunday

➢ EXAMPLE 7.12: If today and tomorrow are type day_t variables, the following if statement assigns the
value of tomorrow based on the value of today : (1)

● C provides no range checking to verify that the value stored in an enumerated type variable is valid. (2)

For example, this assignment statement will not cause a run-time error even though it is clearly invalid.

ENUMERATED
TYPES

if (today == sunday)

 tomorrow = monday;

else

 tomorrow = (day_t)(today + 1);

today = saturday + 3;

➢ enumerated type variable can also be used as a loop counter:

➢ This loop will execute for each value of today from monday through friday

ENUMERATED
TYPES

for (today = monday; today <= friday; ++today) {

. . .

}

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

#define NUM_QUEST 10 /* number of questions on daily quiz */

#define NUM_CLASS_DAYS 5 /* number of days in a week of class */

typedef enum

{monday, tuesday, wednesday, thursday, friday}

week_day_t;

. . .

char answer[NUM_QUEST]; /* correct answers for one quiz */

int score[NUM_CLASS_DAYS]; /* one student's quiz scores for each day */

score[monday] = 9;

score[tuesday] = 7;

score[wednesday] = 5;

score[thursday] = 3;

score[friday] = 1;

 Countinue…

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

ascore = 9;

for (today = monday; today <= friday; ++today) {

score[today] = ascore;

ascore -= 2;

}

➢ Multidimensional arrays: arrays with two or more dimensions.

➢ The array declaration: char tictac[3][3];
allocates storage for a two-dimensional array (tictac) with three rows and three columns.

➢ Each array element contains a character value

➢ This array has nine elements, each of which must be referenced by specifying a row subscript
(0 , 1 , or 2) and a column subscript (0 , 1 , or 2).

7.8 MULTIDIMENSIONAL ARRAYS

➢ A function that takes a tic-tac-toe board as a parameter will have a declaration similar to this in
its prototype:

➢ In the declaration of a multidimensional array parameter, only the first dimension, the number
of rows, can be omitted.

➢ Including both dimensions is also permissible. (1)

➢ The following statement would declare a tic-tac-toe board and initialize its contents to blanks.
(2)

EXAMPLE 7.15, FIGURE 7.21 (3)

7.8 MULTIDIMENSIONAL ARRAYS

char tictac[3][3] = { {' ', ' ', ' '}, {' ', ' ', ' '}, {' ', ' ', ' '} };

char tictac[][3]

char tictac[3][3]

➢ EXAMPLE 7.14

➢ This array table consists of three dimensions:
 double table[7][5][6];

➢ The first subscript may take on values from 0 to 6 ; the second, from 0 to 4 ; and the third, from
0 to 5 .

➢ A total of 7 × 5 × 6 , or 210 , type double values may be stored in the array table.

➢ All three subscripts must be specified in each reference to array table in order to access a single

number (e.g., table[2][3][4]).

7.8 MULTIDIMENSIONAL ARRAYS

➢ (1)

➢ We will assume that the college offers 100 (MAXCRS) courses at five different campuses.

➢ Array enroll is composed of a total of 2000 (100 × 5 × 4) elements.

➢ we will number the freshman year 0 , the sophomore year 1, and so on.

➢ Thus, enroll[1][4][3] represents the number of seniors taking course 1 at campus 4 .

➢ Memory space can be used up rapidly if several multidimensional arrays are declared in the same program.
(2)

➢ The type of information desired determines the order in which we must reference the array elements. (3)

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Figure 7.22

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students in each course */

for (course = 0; course < MAXCRS; ++course) {

 crs_sum = 0;

 for (campus = 0; campus < 5; ++campus) {

 for (year = 0; year < 4; ++ year) {

 crs_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students in course %d is %d\n", course, crs_sum);

}

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students at each campus */

for (campus = 0; campus < 5; ++campus) {

 campus_sum = 0;

 for (course = 0; course < MAXCRS; ++course) {

 for (year = 0; year < 4; ++ year) {

 campus_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students at campus %d is %d\n", campus, campus_sum);

}

CASE STUDY (Homework)
P.419 - 427

Summary of Hospital Revenue

7.9 ARRAY PROCESSING ILLUSTRATED

● Subscript-range error: An out-of-range reference occurs when the subscript value used is
outside the range specified by the array declaration. (1)

● A subscript-range error occurs when celsius is used with a subscript that has a value less than
0 or greater than 99,

● i.e. If the value of i is 150 => error (2)

● They are most often caused by:
1. An incorrect subscript expression,
2. A loop counter error
3. A nonterminating loop.

7.11 COMMON PROGRAMMING
ERRORS

int celsius[100];

access violation at line no. 28

● Subscript-range error:
● If a subscript-range error occurs inside an indexed loop, verify that the subscript is in range

for both the initial and the final values of the loop control variable (1)

● If a subscript-range error occurs in a loop controlled by a variable other than the array
subscript, check that the loop control variable is being updated as required. (2)

7.11 COMMON PROGRAMMING
ERRORS

● When using arrays as arguments to functions, be careful not to apply the address-of operator to
the array name even if the array is an output argument.

● However, do remember to use the & on an array element that is being passed as an output

argument.

● Be sure to use the correct forms for declaring array input and output parameters in function
prototypes.

● A parameter declared a could represent a single integer output parameter or an

integer array parameter

● So, comment your own prototypes carefully and use the alternate declaration form
 for array parameters to assist readers of your code.

7.11 COMMON PROGRAMMING
ERRORS

int *z

int z[]

● Memory access violation: If you are working on a computer system with very limited memory,
you may find that some correct C programs generate run-time error messages indicating an
access violation. (1)

● When you define enumerated types, remember that only identifiers can appear in the list of

values (enumeration constants) for the type.

● Be careful not to reuse one of these identifiers in another type or as a variable name in a
function that needs your type definition. (2)

7.11 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Figure 7.14
➢ The type int variable found is used to represent the logical concept of whether the

target has been found yet and is tested in the loop repetition condition (1)

➢ After found becomes true or the entire array has been searched, the loop is exited,

and the decision statement following the loop defines the value returned.

➢ If array arr and target are declared in the calling function, the assignment

statement: index = search(arr, target, SIZE);

calls function search to search the first SIZE elements of array arr for the target (i.e.
target = 3):(2)

SEARCH

➢ Many programs execute more efficiently if the data they process are sorted before
processing begins.

➢ For example, your university might want students grade report sorted by student ID

number.

➢ ALGORITHM FOR SELECTION SORT:
1. for each value of index from 0 to n-2

2. Find index_of_min , the index of the smallest element in the unsorted subarray

list[index] through list[n-1] .

3. if index is not the position of the smallest element (index_of_min)

4. Exchange the smallest element with the one at position index .

SORTING AN
ARRAY

➢ Figure 7.15

➢ See Figure 7.16 p.405
for a program example

➢ at most, n-1 exchanges will be required to sort an array with n elements.

SORTING AN
ARRAY

➢ Parallel arrays: arrays that have the same number of elements:
1. If there are n -elements, these parallel arrays contain data for n -objects

of the same kind. [not type]
2. Further, all array elements at subscript i contain data for the i-th object in

this group of n -objects.

● EXAMPLE 7.11 , Figure 7.17 two parallel arrays for a student records program (1)

7.7 PARALLEL ARRAYS AND ENUMERATED
TYPES

#define NUM_STUDENTS 50

..

int id[NUM_STUDENTS];

double gpa[NUM_STUDENTS];

➢ Good solutions to many programming problems require new data types (1)
➢ C allows you to associate a numeric code with each category by creating an

enumerated type that has its own list of meaningful values.

 (3)

ENUMERATED
TYPES

typedef enum (2)

{entertainment, rent, utilities, food, clothing,

automobile, insurance, miscellaneous}

expense_t;

To declare:

expense_t expense_kind; (4)

Entertainment (0)
Rent (1)

Utilities (2)
…

➢ Figure 7.18

● The scope rules for identifiers apply to enumerated types and enumeration constants.

● Enumeration constants must be identifiers; they cannot be numeric, character, or
string literals (e.g., "entertainment" cannot be a value for an enumerated type).

● We recommend that you place type definitions immediately after any #define and

#include directives. (1)

● The reserved word typedef can be used to name many varieties of user-defined types.

ENUMERATED
TYPES

➢ An identifier cannot appear in more than one enumerated type definition, for
example, the weekday_t definition could not be used with the type day_t

ENUMERATED
TYPES

typedef enum

{monday, tuesday, wednesday, thursday,friday, saturday, sunday}

day_t;

typedef enum

{monday, tuesday, wednesday, thursday, friday}

weekday_t;

➢ Relational, assignment, and even arithmetic operators can be used with
enumerated types, just as with other integers.

➢ The following for type day_t are true:

➢ We can combine the use of arithmetic operators and casts to find enumeration
constants that follow and precede a current value.

ENUMERATED
TYPES

sunday < monday

wednesday != friday

tuesday >= sunday

➢ EXAMPLE 7.12: If today and tomorrow are type day_t variables, the following if statement assigns the
value of tomorrow based on the value of today : (1)

● C provides no range checking to verify that the value stored in an enumerated type variable is valid. (2)

For example, this assignment statement will not cause a run-time error even though it is clearly invalid.

ENUMERATED
TYPES

if (today == sunday)

 tomorrow = monday;

else

 tomorrow = (day_t)(today + 1);

today = saturday + 3;

➢ enumerated type variable can also be used as a loop counter:

➢ This loop will execute for each value of today from monday through friday

ENUMERATED
TYPES

for (today = monday; today <= friday; ++today) {

. . .

}

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

#define NUM_QUEST 10 /* number of questions on daily quiz */

#define NUM_CLASS_DAYS 5 /* number of days in a week of class */

typedef enum

{monday, tuesday, wednesday, thursday, friday}

week_day_t;

. . .

char answer[NUM_QUEST]; /* correct answers for one quiz */

int score[NUM_CLASS_DAYS]; /* one student's quiz scores for each day */

score[monday] = 9;

score[tuesday] = 7;

score[wednesday] = 5;

score[thursday] = 3;

score[friday] = 1;

 Countinue…

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

ascore = 9;

for (today = monday; today <= friday; ++today) {

score[today] = ascore;

ascore -= 2;

}

➢ Multidimensional arrays: arrays with two or more dimensions.

➢ The array declaration: char tictac[3][3];
allocates storage for a two-dimensional array (tictac) with three rows and three columns.

➢ Each array element contains a character value

➢ This array has nine elements, each of which must be referenced by specifying a row subscript
(0 , 1 , or 2) and a column subscript (0 , 1 , or 2).

7.8 MULTIDIMENSIONAL ARRAYS

➢ A function that takes a tic-tac-toe board as a parameter will have a declaration similar to this in
its prototype:

➢ In the declaration of a multidimensional array parameter, only the first dimension, the number
of rows, can be omitted.

➢ Including both dimensions is also permissible. (1)

➢ The following statement would declare a tic-tac-toe board and initialize its contents to blanks.
(2)

EXAMPLE 7.15, FIGURE 7.21 (3)

7.8 MULTIDIMENSIONAL ARRAYS

char tictac[3][3] = { {' ', ' ', ' '}, {' ', ' ', ' '}, {' ', ' ', ' '} };

char tictac[][3]

char tictac[3][3]

➢ EXAMPLE 7.14

➢ This array table consists of three dimensions:
 double table[7][5][6];

➢ The first subscript may take on values from 0 to 6 ; the second, from 0 to 4 ; and the third, from
0 to 5 .

➢ A total of 7 × 5 × 6 , or 210 , type double values may be stored in the array table.

➢ All three subscripts must be specified in each reference to array table in order to access a single

number (e.g., table[2][3][4]).

7.8 MULTIDIMENSIONAL ARRAYS

➢ (1)

➢ We will assume that the college offers 100 (MAXCRS) courses at five different campuses.

➢ Array enroll is composed of a total of 2000 (100 × 5 × 4) elements.

➢ we will number the freshman year 0 , the sophomore year 1, and so on.

➢ Thus, enroll[1][4][3] represents the number of seniors taking course 1 at campus 4 .

➢ Memory space can be used up rapidly if several multidimensional arrays are declared in the same program.
(2)

➢ The type of information desired determines the order in which we must reference the array elements. (3)

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Figure 7.22

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students in each course */

for (course = 0; course < MAXCRS; ++course) {

 crs_sum = 0;

 for (campus = 0; campus < 5; ++campus) {

 for (year = 0; year < 4; ++ year) {

 crs_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students in course %d is %d\n", course, crs_sum);

}

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students at each campus */

for (campus = 0; campus < 5; ++campus) {

 campus_sum = 0;

 for (course = 0; course < MAXCRS; ++course) {

 for (year = 0; year < 4; ++ year) {

 campus_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students at campus %d is %d\n", campus, campus_sum);

}

CASE STUDY (Homework)
P.419 - 427

Summary of Hospital Revenue

7.9 ARRAY PROCESSING ILLUSTRATED

● Subscript-range error: An out-of-range reference occurs when the subscript value used is
outside the range specified by the array declaration. (1)

● A subscript-range error occurs when celsius is used with a subscript that has a value less than
0 or greater than 99,

● i.e. If the value of i is 150 => error (2)

● They are most often caused by:
1. An incorrect subscript expression,
2. A loop counter error
3. A nonterminating loop.

7.11 COMMON PROGRAMMING
ERRORS

int celsius[100];

access violation at line no. 28

● Subscript-range error:
● If a subscript-range error occurs inside an indexed loop, verify that the subscript is in range

for both the initial and the final values of the loop control variable (1)

● If a subscript-range error occurs in a loop controlled by a variable other than the array
subscript, check that the loop control variable is being updated as required. (2)

7.11 COMMON PROGRAMMING
ERRORS

● When using arrays as arguments to functions, be careful not to apply the address-of operator to
the array name even if the array is an output argument.

● However, do remember to use the & on an array element that is being passed as an output

argument.

● Be sure to use the correct forms for declaring array input and output parameters in function
prototypes.

● A parameter declared a could represent a single integer output parameter or an

integer array parameter

● So, comment your own prototypes carefully and use the alternate declaration form
 for array parameters to assist readers of your code.

7.11 COMMON PROGRAMMING
ERRORS

int *z

int z[]

● Memory access violation: If you are working on a computer system with very limited memory,
you may find that some correct C programs generate run-time error messages indicating an
access violation. (1)

● When you define enumerated types, remember that only identifiers can appear in the list of

values (enumeration constants) for the type.

● Be careful not to reuse one of these identifiers in another type or as a variable name in a
function that needs your type definition. (2)

7.11 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Figure 7.14
➢ The type int variable found is used to represent the logical concept of whether the

target has been found yet and is tested in the loop repetition condition (1)

➢ After found becomes true or the entire array has been searched, the loop is exited,

and the decision statement following the loop defines the value returned.

➢ If array arr and target are declared in the calling function, the assignment

statement: index = search(arr, target, SIZE);

calls function search to search the first SIZE elements of array arr for the target (i.e.
target = 3):(2)

SEARCH

➢ Many programs execute more efficiently if the data they process are sorted before
processing begins.

➢ For example, your university might want students grade report sorted by student ID

number.

➢ ALGORITHM FOR SELECTION SORT:
1. for each value of index from 0 to n-2

2. Find index_of_min , the index of the smallest element in the unsorted subarray

list[index] through list[n-1] .

3. if index is not the position of the smallest element (index_of_min)

4. Exchange the smallest element with the one at position index .

SORTING AN
ARRAY

➢ Figure 7.15

➢ See Figure 7.16 p.405
for a program example

➢ at most, n-1 exchanges will be required to sort an array with n elements.

SORTING AN
ARRAY

➢ Parallel arrays: arrays that have the same number of elements:
1. If there are n -elements, these parallel arrays contain data for n -objects

of the same kind. [not type]
2. Further, all array elements at subscript i contain data for the i-th object in

this group of n -objects.

● EXAMPLE 7.11 , Figure 7.17 two parallel arrays for a student records program (1)

7.7 PARALLEL ARRAYS AND ENUMERATED
TYPES

#define NUM_STUDENTS 50

..

int id[NUM_STUDENTS];

double gpa[NUM_STUDENTS];

➢ Good solutions to many programming problems require new data types (1)
➢ C allows you to associate a numeric code with each category by creating an

enumerated type that has its own list of meaningful values.

 (3)

ENUMERATED
TYPES

typedef enum (2)

{entertainment, rent, utilities, food, clothing,

automobile, insurance, miscellaneous}

expense_t;

To declare:

expense_t expense_kind; (4)

Entertainment (0)
Rent (1)

Utilities (2)
…

➢ Figure 7.18

● The scope rules for identifiers apply to enumerated types and enumeration constants.

● Enumeration constants must be identifiers; they cannot be numeric, character, or
string literals (e.g., "entertainment" cannot be a value for an enumerated type).

● We recommend that you place type definitions immediately after any #define and

#include directives. (1)

● The reserved word typedef can be used to name many varieties of user-defined types.

ENUMERATED
TYPES

➢ An identifier cannot appear in more than one enumerated type definition, for
example, the weekday_t definition could not be used with the type day_t

ENUMERATED
TYPES

typedef enum

{monday, tuesday, wednesday, thursday,friday, saturday, sunday}

day_t;

typedef enum

{monday, tuesday, wednesday, thursday, friday}

weekday_t;

➢ Relational, assignment, and even arithmetic operators can be used with
enumerated types, just as with other integers.

➢ The following for type day_t are true:

➢ We can combine the use of arithmetic operators and casts to find enumeration
constants that follow and precede a current value.

ENUMERATED
TYPES

sunday < monday

wednesday != friday

tuesday >= sunday

➢ EXAMPLE 7.12: If today and tomorrow are type day_t variables, the following if statement assigns the
value of tomorrow based on the value of today : (1)

● C provides no range checking to verify that the value stored in an enumerated type variable is valid. (2)

For example, this assignment statement will not cause a run-time error even though it is clearly invalid.

ENUMERATED
TYPES

if (today == sunday)

 tomorrow = monday;

else

 tomorrow = (day_t)(today + 1);

today = saturday + 3;

➢ enumerated type variable can also be used as a loop counter:

➢ This loop will execute for each value of today from monday through friday

ENUMERATED
TYPES

for (today = monday; today <= friday; ++today) {

. . .

}

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

#define NUM_QUEST 10 /* number of questions on daily quiz */

#define NUM_CLASS_DAYS 5 /* number of days in a week of class */

typedef enum

{monday, tuesday, wednesday, thursday, friday}

week_day_t;

. . .

char answer[NUM_QUEST]; /* correct answers for one quiz */

int score[NUM_CLASS_DAYS]; /* one student's quiz scores for each day */

score[monday] = 9;

score[tuesday] = 7;

score[wednesday] = 5;

score[thursday] = 3;

score[friday] = 1;

 Countinue…

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

ascore = 9;

for (today = monday; today <= friday; ++today) {

score[today] = ascore;

ascore -= 2;

}

➢ Multidimensional arrays: arrays with two or more dimensions.

➢ The array declaration: char tictac[3][3];
allocates storage for a two-dimensional array (tictac) with three rows and three columns.

➢ Each array element contains a character value

➢ This array has nine elements, each of which must be referenced by specifying a row subscript
(0 , 1 , or 2) and a column subscript (0 , 1 , or 2).

7.8 MULTIDIMENSIONAL ARRAYS

➢ A function that takes a tic-tac-toe board as a parameter will have a declaration similar to this in
its prototype:

➢ In the declaration of a multidimensional array parameter, only the first dimension, the number
of rows, can be omitted.

➢ Including both dimensions is also permissible. (1)

➢ The following statement would declare a tic-tac-toe board and initialize its contents to blanks.
(2)

EXAMPLE 7.15, FIGURE 7.21 (3)

7.8 MULTIDIMENSIONAL ARRAYS

char tictac[3][3] = { {' ', ' ', ' '}, {' ', ' ', ' '}, {' ', ' ', ' '} };

char tictac[][3]

char tictac[3][3]

➢ EXAMPLE 7.14

➢ This array table consists of three dimensions:
 double table[7][5][6];

➢ The first subscript may take on values from 0 to 6 ; the second, from 0 to 4 ; and the third, from
0 to 5 .

➢ A total of 7 × 5 × 6 , or 210 , type double values may be stored in the array table.

➢ All three subscripts must be specified in each reference to array table in order to access a single

number (e.g., table[2][3][4]).

7.8 MULTIDIMENSIONAL ARRAYS

➢ (1)

➢ We will assume that the college offers 100 (MAXCRS) courses at five different campuses.

➢ Array enroll is composed of a total of 2000 (100 × 5 × 4) elements.

➢ we will number the freshman year 0 , the sophomore year 1, and so on.

➢ Thus, enroll[1][4][3] represents the number of seniors taking course 1 at campus 4 .

➢ Memory space can be used up rapidly if several multidimensional arrays are declared in the same program.
(2)

➢ The type of information desired determines the order in which we must reference the array elements. (3)

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Figure 7.22

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students in each course */

for (course = 0; course < MAXCRS; ++course) {

 crs_sum = 0;

 for (campus = 0; campus < 5; ++campus) {

 for (year = 0; year < 4; ++ year) {

 crs_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students in course %d is %d\n", course, crs_sum);

}

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students at each campus */

for (campus = 0; campus < 5; ++campus) {

 campus_sum = 0;

 for (course = 0; course < MAXCRS; ++course) {

 for (year = 0; year < 4; ++ year) {

 campus_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students at campus %d is %d\n", campus, campus_sum);

}

CASE STUDY (Homework)
P.419 - 427

Summary of Hospital Revenue

7.9 ARRAY PROCESSING ILLUSTRATED

● Subscript-range error: An out-of-range reference occurs when the subscript value used is
outside the range specified by the array declaration. (1)

● A subscript-range error occurs when celsius is used with a subscript that has a value less than
0 or greater than 99,

● i.e. If the value of i is 150 => error (2)

● They are most often caused by:
1. An incorrect subscript expression,
2. A loop counter error
3. A nonterminating loop.

7.11 COMMON PROGRAMMING
ERRORS

int celsius[100];

access violation at line no. 28

● Subscript-range error:
● If a subscript-range error occurs inside an indexed loop, verify that the subscript is in range

for both the initial and the final values of the loop control variable (1)

● If a subscript-range error occurs in a loop controlled by a variable other than the array
subscript, check that the loop control variable is being updated as required. (2)

7.11 COMMON PROGRAMMING
ERRORS

● When using arrays as arguments to functions, be careful not to apply the address-of operator to
the array name even if the array is an output argument.

● However, do remember to use the & on an array element that is being passed as an output

argument.

● Be sure to use the correct forms for declaring array input and output parameters in function
prototypes.

● A parameter declared a could represent a single integer output parameter or an

integer array parameter

● So, comment your own prototypes carefully and use the alternate declaration form
 for array parameters to assist readers of your code.

7.11 COMMON PROGRAMMING
ERRORS

int *z

int z[]

● Memory access violation: If you are working on a computer system with very limited memory,
you may find that some correct C programs generate run-time error messages indicating an
access violation. (1)

● When you define enumerated types, remember that only identifiers can appear in the list of

values (enumeration constants) for the type.

● Be careful not to reuse one of these identifiers in another type or as a variable name in a
function that needs your type definition. (2)

7.11 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Figure 7.14
➢ The type int variable found is used to represent the logical concept of whether the

target has been found yet and is tested in the loop repetition condition (1)

➢ After found becomes true or the entire array has been searched, the loop is exited,

and the decision statement following the loop defines the value returned.

➢ If array arr and target are declared in the calling function, the assignment

statement: index = search(arr, target, SIZE);

calls function search to search the first SIZE elements of array arr for the target (i.e.
target = 3):(2)

SEARCH

➢ Many programs execute more efficiently if the data they process are sorted before
processing begins.

➢ For example, your university might want students grade report sorted by student ID

number.

➢ ALGORITHM FOR SELECTION SORT:
1. for each value of index from 0 to n-2

2. Find index_of_min , the index of the smallest element in the unsorted subarray

list[index] through list[n-1] .

3. if index is not the position of the smallest element (index_of_min)

4. Exchange the smallest element with the one at position index .

SORTING AN
ARRAY

➢ Figure 7.15

➢ See Figure 7.16 p.405
for a program example

➢ at most, n-1 exchanges will be required to sort an array with n elements.

SORTING AN
ARRAY

➢ Parallel arrays: arrays that have the same number of elements:
1. If there are n -elements, these parallel arrays contain data for n -objects

of the same kind. [not type]
2. Further, all array elements at subscript i contain data for the i-th object in

this group of n -objects.

● EXAMPLE 7.11 , Figure 7.17 two parallel arrays for a student records program (1)

7.7 PARALLEL ARRAYS AND ENUMERATED
TYPES

#define NUM_STUDENTS 50

..

int id[NUM_STUDENTS];

double gpa[NUM_STUDENTS];

➢ Good solutions to many programming problems require new data types (1)
➢ C allows you to associate a numeric code with each category by creating an

enumerated type that has its own list of meaningful values.

 (3)

ENUMERATED
TYPES

typedef enum (2)

{entertainment, rent, utilities, food, clothing,

automobile, insurance, miscellaneous}

expense_t;

To declare:

expense_t expense_kind; (4)

Entertainment (0)
Rent (1)

Utilities (2)
…

➢ Figure 7.18

● The scope rules for identifiers apply to enumerated types and enumeration constants.

● Enumeration constants must be identifiers; they cannot be numeric, character, or
string literals (e.g., "entertainment" cannot be a value for an enumerated type).

● We recommend that you place type definitions immediately after any #define and

#include directives. (1)

● The reserved word typedef can be used to name many varieties of user-defined types.

ENUMERATED
TYPES

➢ An identifier cannot appear in more than one enumerated type definition, for
example, the weekday_t definition could not be used with the type day_t

ENUMERATED
TYPES

typedef enum

{monday, tuesday, wednesday, thursday,friday, saturday, sunday}

day_t;

typedef enum

{monday, tuesday, wednesday, thursday, friday}

weekday_t;

➢ Relational, assignment, and even arithmetic operators can be used with
enumerated types, just as with other integers.

➢ The following for type day_t are true:

➢ We can combine the use of arithmetic operators and casts to find enumeration
constants that follow and precede a current value.

ENUMERATED
TYPES

sunday < monday

wednesday != friday

tuesday >= sunday

➢ EXAMPLE 7.12: If today and tomorrow are type day_t variables, the following if statement assigns the
value of tomorrow based on the value of today : (1)

● C provides no range checking to verify that the value stored in an enumerated type variable is valid. (2)

For example, this assignment statement will not cause a run-time error even though it is clearly invalid.

ENUMERATED
TYPES

if (today == sunday)

 tomorrow = monday;

else

 tomorrow = (day_t)(today + 1);

today = saturday + 3;

➢ enumerated type variable can also be used as a loop counter:

➢ This loop will execute for each value of today from monday through friday

ENUMERATED
TYPES

for (today = monday; today <= friday; ++today) {

. . .

}

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

#define NUM_QUEST 10 /* number of questions on daily quiz */

#define NUM_CLASS_DAYS 5 /* number of days in a week of class */

typedef enum

{monday, tuesday, wednesday, thursday, friday}

week_day_t;

. . .

char answer[NUM_QUEST]; /* correct answers for one quiz */

int score[NUM_CLASS_DAYS]; /* one student's quiz scores for each day */

score[monday] = 9;

score[tuesday] = 7;

score[wednesday] = 5;

score[thursday] = 3;

score[friday] = 1;

 Countinue…

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

ascore = 9;

for (today = monday; today <= friday; ++today) {

score[today] = ascore;

ascore -= 2;

}

➢ Multidimensional arrays: arrays with two or more dimensions.

➢ The array declaration: char tictac[3][3];
allocates storage for a two-dimensional array (tictac) with three rows and three columns.

➢ Each array element contains a character value

➢ This array has nine elements, each of which must be referenced by specifying a row subscript
(0 , 1 , or 2) and a column subscript (0 , 1 , or 2).

7.8 MULTIDIMENSIONAL ARRAYS

➢ A function that takes a tic-tac-toe board as a parameter will have a declaration similar to this in
its prototype:

➢ In the declaration of a multidimensional array parameter, only the first dimension, the number
of rows, can be omitted.

➢ Including both dimensions is also permissible. (1)

➢ The following statement would declare a tic-tac-toe board and initialize its contents to blanks.
(2)

EXAMPLE 7.15, FIGURE 7.21 (3)

7.8 MULTIDIMENSIONAL ARRAYS

char tictac[3][3] = { {' ', ' ', ' '}, {' ', ' ', ' '}, {' ', ' ', ' '} };

char tictac[][3]

char tictac[3][3]

➢ EXAMPLE 7.14

➢ This array table consists of three dimensions:
 double table[7][5][6];

➢ The first subscript may take on values from 0 to 6 ; the second, from 0 to 4 ; and the third, from
0 to 5 .

➢ A total of 7 × 5 × 6 , or 210 , type double values may be stored in the array table.

➢ All three subscripts must be specified in each reference to array table in order to access a single

number (e.g., table[2][3][4]).

7.8 MULTIDIMENSIONAL ARRAYS

➢ (1)

➢ We will assume that the college offers 100 (MAXCRS) courses at five different campuses.

➢ Array enroll is composed of a total of 2000 (100 × 5 × 4) elements.

➢ we will number the freshman year 0 , the sophomore year 1, and so on.

➢ Thus, enroll[1][4][3] represents the number of seniors taking course 1 at campus 4 .

➢ Memory space can be used up rapidly if several multidimensional arrays are declared in the same program.
(2)

➢ The type of information desired determines the order in which we must reference the array elements. (3)

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Figure 7.22

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students in each course */

for (course = 0; course < MAXCRS; ++course) {

 crs_sum = 0;

 for (campus = 0; campus < 5; ++campus) {

 for (year = 0; year < 4; ++ year) {

 crs_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students in course %d is %d\n", course, crs_sum);

}

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students at each campus */

for (campus = 0; campus < 5; ++campus) {

 campus_sum = 0;

 for (course = 0; course < MAXCRS; ++course) {

 for (year = 0; year < 4; ++ year) {

 campus_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students at campus %d is %d\n", campus, campus_sum);

}

CASE STUDY (Homework)
P.419 - 427

Summary of Hospital Revenue

7.9 ARRAY PROCESSING ILLUSTRATED

● Subscript-range error: An out-of-range reference occurs when the subscript value used is
outside the range specified by the array declaration. (1)

● A subscript-range error occurs when celsius is used with a subscript that has a value less than
0 or greater than 99,

● i.e. If the value of i is 150 => error (2)

● They are most often caused by:
1. An incorrect subscript expression,
2. A loop counter error
3. A nonterminating loop.

7.11 COMMON PROGRAMMING
ERRORS

int celsius[100];

access violation at line no. 28

● Subscript-range error:
● If a subscript-range error occurs inside an indexed loop, verify that the subscript is in range

for both the initial and the final values of the loop control variable (1)

● If a subscript-range error occurs in a loop controlled by a variable other than the array
subscript, check that the loop control variable is being updated as required. (2)

7.11 COMMON PROGRAMMING
ERRORS

● When using arrays as arguments to functions, be careful not to apply the address-of operator to
the array name even if the array is an output argument.

● However, do remember to use the & on an array element that is being passed as an output

argument.

● Be sure to use the correct forms for declaring array input and output parameters in function
prototypes.

● A parameter declared a could represent a single integer output parameter or an

integer array parameter

● So, comment your own prototypes carefully and use the alternate declaration form
 for array parameters to assist readers of your code.

7.11 COMMON PROGRAMMING
ERRORS

int *z

int z[]

● Memory access violation: If you are working on a computer system with very limited memory,
you may find that some correct C programs generate run-time error messages indicating an
access violation. (1)

● When you define enumerated types, remember that only identifiers can appear in the list of

values (enumeration constants) for the type.

● Be careful not to reuse one of these identifiers in another type or as a variable name in a
function that needs your type definition. (2)

7.11 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Figure 7.14
➢ The type int variable found is used to represent the logical concept of whether the

target has been found yet and is tested in the loop repetition condition (1)

➢ After found becomes true or the entire array has been searched, the loop is exited,

and the decision statement following the loop defines the value returned.

➢ If array arr and target are declared in the calling function, the assignment

statement: index = search(arr, target, SIZE);

calls function search to search the first SIZE elements of array arr for the target (i.e.
target = 3):(2)

SEARCH

➢ Many programs execute more efficiently if the data they process are sorted before
processing begins.

➢ For example, your university might want students grade report sorted by student ID

number.

➢ ALGORITHM FOR SELECTION SORT:
1. for each value of index from 0 to n-2

2. Find index_of_min , the index of the smallest element in the unsorted subarray

list[index] through list[n-1] .

3. if index is not the position of the smallest element (index_of_min)

4. Exchange the smallest element with the one at position index .

SORTING AN
ARRAY

➢ Figure 7.15

➢ See Figure 7.16 p.405
for a program example

➢ at most, n-1 exchanges will be required to sort an array with n elements.

SORTING AN
ARRAY

➢ Parallel arrays: arrays that have the same number of elements:
1. If there are n -elements, these parallel arrays contain data for n -objects

of the same kind. [not type]
2. Further, all array elements at subscript i contain data for the i-th object in

this group of n -objects.

● EXAMPLE 7.11 , Figure 7.17 two parallel arrays for a student records program (1)

7.7 PARALLEL ARRAYS AND ENUMERATED
TYPES

#define NUM_STUDENTS 50

..

int id[NUM_STUDENTS];

double gpa[NUM_STUDENTS];

➢ Good solutions to many programming problems require new data types (1)
➢ C allows you to associate a numeric code with each category by creating an

enumerated type that has its own list of meaningful values.

 (3)

ENUMERATED
TYPES

typedef enum (2)

{entertainment, rent, utilities, food, clothing,

automobile, insurance, miscellaneous}

expense_t;

To declare:

expense_t expense_kind; (4)

Entertainment (0)
Rent (1)

Utilities (2)
…

➢ Figure 7.18

● The scope rules for identifiers apply to enumerated types and enumeration constants.

● Enumeration constants must be identifiers; they cannot be numeric, character, or
string literals (e.g., "entertainment" cannot be a value for an enumerated type).

● We recommend that you place type definitions immediately after any #define and

#include directives. (1)

● The reserved word typedef can be used to name many varieties of user-defined types.

ENUMERATED
TYPES

➢ An identifier cannot appear in more than one enumerated type definition, for
example, the weekday_t definition could not be used with the type day_t

ENUMERATED
TYPES

typedef enum

{monday, tuesday, wednesday, thursday,friday, saturday, sunday}

day_t;

typedef enum

{monday, tuesday, wednesday, thursday, friday}

weekday_t;

➢ Relational, assignment, and even arithmetic operators can be used with
enumerated types, just as with other integers.

➢ The following for type day_t are true:

➢ We can combine the use of arithmetic operators and casts to find enumeration
constants that follow and precede a current value.

ENUMERATED
TYPES

sunday < monday

wednesday != friday

tuesday >= sunday

➢ EXAMPLE 7.12: If today and tomorrow are type day_t variables, the following if statement assigns the
value of tomorrow based on the value of today : (1)

● C provides no range checking to verify that the value stored in an enumerated type variable is valid. (2)

For example, this assignment statement will not cause a run-time error even though it is clearly invalid.

ENUMERATED
TYPES

if (today == sunday)

 tomorrow = monday;

else

 tomorrow = (day_t)(today + 1);

today = saturday + 3;

➢ enumerated type variable can also be used as a loop counter:

➢ This loop will execute for each value of today from monday through friday

ENUMERATED
TYPES

for (today = monday; today <= friday; ++today) {

. . .

}

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

#define NUM_QUEST 10 /* number of questions on daily quiz */

#define NUM_CLASS_DAYS 5 /* number of days in a week of class */

typedef enum

{monday, tuesday, wednesday, thursday, friday}

week_day_t;

. . .

char answer[NUM_QUEST]; /* correct answers for one quiz */

int score[NUM_CLASS_DAYS]; /* one student's quiz scores for each day */

score[monday] = 9;

score[tuesday] = 7;

score[wednesday] = 5;

score[thursday] = 3;

score[friday] = 1;

 Countinue…

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

ascore = 9;

for (today = monday; today <= friday; ++today) {

score[today] = ascore;

ascore -= 2;

}

➢ Multidimensional arrays: arrays with two or more dimensions.

➢ The array declaration: char tictac[3][3];
allocates storage for a two-dimensional array (tictac) with three rows and three columns.

➢ Each array element contains a character value

➢ This array has nine elements, each of which must be referenced by specifying a row subscript
(0 , 1 , or 2) and a column subscript (0 , 1 , or 2).

7.8 MULTIDIMENSIONAL ARRAYS

➢ A function that takes a tic-tac-toe board as a parameter will have a declaration similar to this in
its prototype:

➢ In the declaration of a multidimensional array parameter, only the first dimension, the number
of rows, can be omitted.

➢ Including both dimensions is also permissible. (1)

➢ The following statement would declare a tic-tac-toe board and initialize its contents to blanks.
(2)

EXAMPLE 7.15, FIGURE 7.21 (3)

7.8 MULTIDIMENSIONAL ARRAYS

char tictac[3][3] = { {' ', ' ', ' '}, {' ', ' ', ' '}, {' ', ' ', ' '} };

char tictac[][3]

char tictac[3][3]

➢ EXAMPLE 7.14

➢ This array table consists of three dimensions:
 double table[7][5][6];

➢ The first subscript may take on values from 0 to 6 ; the second, from 0 to 4 ; and the third, from
0 to 5 .

➢ A total of 7 × 5 × 6 , or 210 , type double values may be stored in the array table.

➢ All three subscripts must be specified in each reference to array table in order to access a single

number (e.g., table[2][3][4]).

7.8 MULTIDIMENSIONAL ARRAYS

➢ (1)

➢ We will assume that the college offers 100 (MAXCRS) courses at five different campuses.

➢ Array enroll is composed of a total of 2000 (100 × 5 × 4) elements.

➢ we will number the freshman year 0 , the sophomore year 1, and so on.

➢ Thus, enroll[1][4][3] represents the number of seniors taking course 1 at campus 4 .

➢ Memory space can be used up rapidly if several multidimensional arrays are declared in the same program.
(2)

➢ The type of information desired determines the order in which we must reference the array elements. (3)

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Figure 7.22

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students in each course */

for (course = 0; course < MAXCRS; ++course) {

 crs_sum = 0;

 for (campus = 0; campus < 5; ++campus) {

 for (year = 0; year < 4; ++ year) {

 crs_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students in course %d is %d\n", course, crs_sum);

}

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students at each campus */

for (campus = 0; campus < 5; ++campus) {

 campus_sum = 0;

 for (course = 0; course < MAXCRS; ++course) {

 for (year = 0; year < 4; ++ year) {

 campus_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students at campus %d is %d\n", campus, campus_sum);

}

CASE STUDY (Homework)
P.419 - 427

Summary of Hospital Revenue

7.9 ARRAY PROCESSING ILLUSTRATED

● Subscript-range error: An out-of-range reference occurs when the subscript value used is
outside the range specified by the array declaration. (1)

● A subscript-range error occurs when celsius is used with a subscript that has a value less than
0 or greater than 99,

● i.e. If the value of i is 150 => error (2)

● They are most often caused by:
1. An incorrect subscript expression,
2. A loop counter error
3. A nonterminating loop.

7.11 COMMON PROGRAMMING
ERRORS

int celsius[100];

access violation at line no. 28

● Subscript-range error:
● If a subscript-range error occurs inside an indexed loop, verify that the subscript is in range

for both the initial and the final values of the loop control variable (1)

● If a subscript-range error occurs in a loop controlled by a variable other than the array
subscript, check that the loop control variable is being updated as required. (2)

7.11 COMMON PROGRAMMING
ERRORS

● When using arrays as arguments to functions, be careful not to apply the address-of operator to
the array name even if the array is an output argument.

● However, do remember to use the & on an array element that is being passed as an output

argument.

● Be sure to use the correct forms for declaring array input and output parameters in function
prototypes.

● A parameter declared a could represent a single integer output parameter or an

integer array parameter

● So, comment your own prototypes carefully and use the alternate declaration form
 for array parameters to assist readers of your code.

7.11 COMMON PROGRAMMING
ERRORS

int *z

int z[]

● Memory access violation: If you are working on a computer system with very limited memory,
you may find that some correct C programs generate run-time error messages indicating an
access violation. (1)

● When you define enumerated types, remember that only identifiers can appear in the list of

values (enumeration constants) for the type.

● Be careful not to reuse one of these identifiers in another type or as a variable name in a
function that needs your type definition. (2)

7.11 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Figure 7.14
➢ The type int variable found is used to represent the logical concept of whether the

target has been found yet and is tested in the loop repetition condition (1)

➢ After found becomes true or the entire array has been searched, the loop is exited,

and the decision statement following the loop defines the value returned.

➢ If array arr and target are declared in the calling function, the assignment

statement: index = search(arr, target, SIZE);

calls function search to search the first SIZE elements of array arr for the target (i.e.
target = 3):(2)

SEARCH

➢ Many programs execute more efficiently if the data they process are sorted before
processing begins.

➢ For example, your university might want students grade report sorted by student ID

number.

➢ ALGORITHM FOR SELECTION SORT:
1. for each value of index from 0 to n-2

2. Find index_of_min , the index of the smallest element in the unsorted subarray

list[index] through list[n-1] .

3. if index is not the position of the smallest element (index_of_min)

4. Exchange the smallest element with the one at position index .

SORTING AN
ARRAY

➢ Figure 7.15

➢ See Figure 7.16 p.405
for a program example

➢ at most, n-1 exchanges will be required to sort an array with n elements.

SORTING AN
ARRAY

➢ Parallel arrays: arrays that have the same number of elements:
1. If there are n -elements, these parallel arrays contain data for n -objects

of the same kind. [not type]
2. Further, all array elements at subscript i contain data for the i-th object in

this group of n -objects.

● EXAMPLE 7.11 , Figure 7.17 two parallel arrays for a student records program (1)

7.7 PARALLEL ARRAYS AND ENUMERATED
TYPES

#define NUM_STUDENTS 50

..

int id[NUM_STUDENTS];

double gpa[NUM_STUDENTS];

➢ Good solutions to many programming problems require new data types (1)
➢ C allows you to associate a numeric code with each category by creating an

enumerated type that has its own list of meaningful values.

 (3)

ENUMERATED
TYPES

typedef enum (2)

{entertainment, rent, utilities, food, clothing,

automobile, insurance, miscellaneous}

expense_t;

To declare:

expense_t expense_kind; (4)

Entertainment (0)
Rent (1)

Utilities (2)
…

➢ Figure 7.18

● The scope rules for identifiers apply to enumerated types and enumeration constants.

● Enumeration constants must be identifiers; they cannot be numeric, character, or
string literals (e.g., "entertainment" cannot be a value for an enumerated type).

● We recommend that you place type definitions immediately after any #define and

#include directives. (1)

● The reserved word typedef can be used to name many varieties of user-defined types.

ENUMERATED
TYPES

➢ An identifier cannot appear in more than one enumerated type definition, for
example, the weekday_t definition could not be used with the type day_t

ENUMERATED
TYPES

typedef enum

{monday, tuesday, wednesday, thursday,friday, saturday, sunday}

day_t;

typedef enum

{monday, tuesday, wednesday, thursday, friday}

weekday_t;

➢ Relational, assignment, and even arithmetic operators can be used with
enumerated types, just as with other integers.

➢ The following for type day_t are true:

➢ We can combine the use of arithmetic operators and casts to find enumeration
constants that follow and precede a current value.

ENUMERATED
TYPES

sunday < monday

wednesday != friday

tuesday >= sunday

➢ EXAMPLE 7.12: If today and tomorrow are type day_t variables, the following if statement assigns the
value of tomorrow based on the value of today : (1)

● C provides no range checking to verify that the value stored in an enumerated type variable is valid. (2)

For example, this assignment statement will not cause a run-time error even though it is clearly invalid.

ENUMERATED
TYPES

if (today == sunday)

 tomorrow = monday;

else

 tomorrow = (day_t)(today + 1);

today = saturday + 3;

➢ enumerated type variable can also be used as a loop counter:

➢ This loop will execute for each value of today from monday through friday

ENUMERATED
TYPES

for (today = monday; today <= friday; ++today) {

. . .

}

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

#define NUM_QUEST 10 /* number of questions on daily quiz */

#define NUM_CLASS_DAYS 5 /* number of days in a week of class */

typedef enum

{monday, tuesday, wednesday, thursday, friday}

week_day_t;

. . .

char answer[NUM_QUEST]; /* correct answers for one quiz */

int score[NUM_CLASS_DAYS]; /* one student's quiz scores for each day */

score[monday] = 9;

score[tuesday] = 7;

score[wednesday] = 5;

score[thursday] = 3;

score[friday] = 1;

 Countinue…

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

ascore = 9;

for (today = monday; today <= friday; ++today) {

score[today] = ascore;

ascore -= 2;

}

➢ Multidimensional arrays: arrays with two or more dimensions.

➢ The array declaration: char tictac[3][3];
allocates storage for a two-dimensional array (tictac) with three rows and three columns.

➢ Each array element contains a character value

➢ This array has nine elements, each of which must be referenced by specifying a row subscript
(0 , 1 , or 2) and a column subscript (0 , 1 , or 2).

7.8 MULTIDIMENSIONAL ARRAYS

➢ A function that takes a tic-tac-toe board as a parameter will have a declaration similar to this in
its prototype:

➢ In the declaration of a multidimensional array parameter, only the first dimension, the number
of rows, can be omitted.

➢ Including both dimensions is also permissible. (1)

➢ The following statement would declare a tic-tac-toe board and initialize its contents to blanks.
(2)

EXAMPLE 7.15, FIGURE 7.21 (3)

7.8 MULTIDIMENSIONAL ARRAYS

char tictac[3][3] = { {' ', ' ', ' '}, {' ', ' ', ' '}, {' ', ' ', ' '} };

char tictac[][3]

char tictac[3][3]

➢ EXAMPLE 7.14

➢ This array table consists of three dimensions:
 double table[7][5][6];

➢ The first subscript may take on values from 0 to 6 ; the second, from 0 to 4 ; and the third, from
0 to 5 .

➢ A total of 7 × 5 × 6 , or 210 , type double values may be stored in the array table.

➢ All three subscripts must be specified in each reference to array table in order to access a single

number (e.g., table[2][3][4]).

7.8 MULTIDIMENSIONAL ARRAYS

➢ (1)

➢ We will assume that the college offers 100 (MAXCRS) courses at five different campuses.

➢ Array enroll is composed of a total of 2000 (100 × 5 × 4) elements.

➢ we will number the freshman year 0 , the sophomore year 1, and so on.

➢ Thus, enroll[1][4][3] represents the number of seniors taking course 1 at campus 4 .

➢ Memory space can be used up rapidly if several multidimensional arrays are declared in the same program.
(2)

➢ The type of information desired determines the order in which we must reference the array elements. (3)

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Figure 7.22

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students in each course */

for (course = 0; course < MAXCRS; ++course) {

 crs_sum = 0;

 for (campus = 0; campus < 5; ++campus) {

 for (year = 0; year < 4; ++ year) {

 crs_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students in course %d is %d\n", course, crs_sum);

}

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students at each campus */

for (campus = 0; campus < 5; ++campus) {

 campus_sum = 0;

 for (course = 0; course < MAXCRS; ++course) {

 for (year = 0; year < 4; ++ year) {

 campus_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students at campus %d is %d\n", campus, campus_sum);

}

CASE STUDY (Homework)
P.419 - 427

Summary of Hospital Revenue

7.9 ARRAY PROCESSING ILLUSTRATED

● Subscript-range error: An out-of-range reference occurs when the subscript value used is
outside the range specified by the array declaration. (1)

● A subscript-range error occurs when celsius is used with a subscript that has a value less than
0 or greater than 99,

● i.e. If the value of i is 150 => error (2)

● They are most often caused by:
1. An incorrect subscript expression,
2. A loop counter error
3. A nonterminating loop.

7.11 COMMON PROGRAMMING
ERRORS

int celsius[100];

access violation at line no. 28

● Subscript-range error:
● If a subscript-range error occurs inside an indexed loop, verify that the subscript is in range

for both the initial and the final values of the loop control variable (1)

● If a subscript-range error occurs in a loop controlled by a variable other than the array
subscript, check that the loop control variable is being updated as required. (2)

7.11 COMMON PROGRAMMING
ERRORS

● When using arrays as arguments to functions, be careful not to apply the address-of operator to
the array name even if the array is an output argument.

● However, do remember to use the & on an array element that is being passed as an output

argument.

● Be sure to use the correct forms for declaring array input and output parameters in function
prototypes.

● A parameter declared a could represent a single integer output parameter or an

integer array parameter

● So, comment your own prototypes carefully and use the alternate declaration form
 for array parameters to assist readers of your code.

7.11 COMMON PROGRAMMING
ERRORS

int *z

int z[]

● Memory access violation: If you are working on a computer system with very limited memory,
you may find that some correct C programs generate run-time error messages indicating an
access violation. (1)

● When you define enumerated types, remember that only identifiers can appear in the list of

values (enumeration constants) for the type.

● Be careful not to reuse one of these identifiers in another type or as a variable name in a
function that needs your type definition. (2)

7.11 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Figure 7.14
➢ The type int variable found is used to represent the logical concept of whether the

target has been found yet and is tested in the loop repetition condition (1)

➢ After found becomes true or the entire array has been searched, the loop is exited,

and the decision statement following the loop defines the value returned.

➢ If array arr and target are declared in the calling function, the assignment

statement: index = search(arr, target, SIZE);

calls function search to search the first SIZE elements of array arr for the target (i.e.
target = 3):(2)

SEARCH

➢ Many programs execute more efficiently if the data they process are sorted before
processing begins.

➢ For example, your university might want students grade report sorted by student ID

number.

➢ ALGORITHM FOR SELECTION SORT:
1. for each value of index from 0 to n-2

2. Find index_of_min , the index of the smallest element in the unsorted subarray

list[index] through list[n-1] .

3. if index is not the position of the smallest element (index_of_min)

4. Exchange the smallest element with the one at position index .

SORTING AN
ARRAY

➢ Figure 7.15

➢ See Figure 7.16 p.405
for a program example

➢ at most, n-1 exchanges will be required to sort an array with n elements.

SORTING AN
ARRAY

➢ Parallel arrays: arrays that have the same number of elements:
1. If there are n -elements, these parallel arrays contain data for n -objects

of the same kind. [not type]
2. Further, all array elements at subscript i contain data for the i-th object in

this group of n -objects.

● EXAMPLE 7.11 , Figure 7.17 two parallel arrays for a student records program (1)

7.7 PARALLEL ARRAYS AND ENUMERATED
TYPES

#define NUM_STUDENTS 50

..

int id[NUM_STUDENTS];

double gpa[NUM_STUDENTS];

➢ Good solutions to many programming problems require new data types (1)
➢ C allows you to associate a numeric code with each category by creating an

enumerated type that has its own list of meaningful values.

 (3)

ENUMERATED
TYPES

typedef enum (2)

{entertainment, rent, utilities, food, clothing,

automobile, insurance, miscellaneous}

expense_t;

To declare:

expense_t expense_kind; (4)

Entertainment (0)
Rent (1)

Utilities (2)
…

➢ Figure 7.18

● The scope rules for identifiers apply to enumerated types and enumeration constants.

● Enumeration constants must be identifiers; they cannot be numeric, character, or
string literals (e.g., "entertainment" cannot be a value for an enumerated type).

● We recommend that you place type definitions immediately after any #define and

#include directives. (1)

● The reserved word typedef can be used to name many varieties of user-defined types.

ENUMERATED
TYPES

➢ An identifier cannot appear in more than one enumerated type definition, for
example, the weekday_t definition could not be used with the type day_t

ENUMERATED
TYPES

typedef enum

{monday, tuesday, wednesday, thursday,friday, saturday, sunday}

day_t;

typedef enum

{monday, tuesday, wednesday, thursday, friday}

weekday_t;

➢ Relational, assignment, and even arithmetic operators can be used with
enumerated types, just as with other integers.

➢ The following for type day_t are true:

➢ We can combine the use of arithmetic operators and casts to find enumeration
constants that follow and precede a current value.

ENUMERATED
TYPES

sunday < monday

wednesday != friday

tuesday >= sunday

➢ EXAMPLE 7.12: If today and tomorrow are type day_t variables, the following if statement assigns the
value of tomorrow based on the value of today : (1)

● C provides no range checking to verify that the value stored in an enumerated type variable is valid. (2)

For example, this assignment statement will not cause a run-time error even though it is clearly invalid.

ENUMERATED
TYPES

if (today == sunday)

 tomorrow = monday;

else

 tomorrow = (day_t)(today + 1);

today = saturday + 3;

➢ enumerated type variable can also be used as a loop counter:

➢ This loop will execute for each value of today from monday through friday

ENUMERATED
TYPES

for (today = monday; today <= friday; ++today) {

. . .

}

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

#define NUM_QUEST 10 /* number of questions on daily quiz */

#define NUM_CLASS_DAYS 5 /* number of days in a week of class */

typedef enum

{monday, tuesday, wednesday, thursday, friday}

week_day_t;

. . .

char answer[NUM_QUEST]; /* correct answers for one quiz */

int score[NUM_CLASS_DAYS]; /* one student's quiz scores for each day */

score[monday] = 9;

score[tuesday] = 7;

score[wednesday] = 5;

score[thursday] = 3;

score[friday] = 1;

 Countinue…

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

ascore = 9;

for (today = monday; today <= friday; ++today) {

score[today] = ascore;

ascore -= 2;

}

➢ Multidimensional arrays: arrays with two or more dimensions.

➢ The array declaration: char tictac[3][3];
allocates storage for a two-dimensional array (tictac) with three rows and three columns.

➢ Each array element contains a character value

➢ This array has nine elements, each of which must be referenced by specifying a row subscript
(0 , 1 , or 2) and a column subscript (0 , 1 , or 2).

7.8 MULTIDIMENSIONAL ARRAYS

➢ A function that takes a tic-tac-toe board as a parameter will have a declaration similar to this in
its prototype:

➢ In the declaration of a multidimensional array parameter, only the first dimension, the number
of rows, can be omitted.

➢ Including both dimensions is also permissible. (1)

➢ The following statement would declare a tic-tac-toe board and initialize its contents to blanks.
(2)

EXAMPLE 7.15, FIGURE 7.21 (3)

7.8 MULTIDIMENSIONAL ARRAYS

char tictac[3][3] = { {' ', ' ', ' '}, {' ', ' ', ' '}, {' ', ' ', ' '} };

char tictac[][3]

char tictac[3][3]

➢ EXAMPLE 7.14

➢ This array table consists of three dimensions:
 double table[7][5][6];

➢ The first subscript may take on values from 0 to 6 ; the second, from 0 to 4 ; and the third, from
0 to 5 .

➢ A total of 7 × 5 × 6 , or 210 , type double values may be stored in the array table.

➢ All three subscripts must be specified in each reference to array table in order to access a single

number (e.g., table[2][3][4]).

7.8 MULTIDIMENSIONAL ARRAYS

➢ (1)

➢ We will assume that the college offers 100 (MAXCRS) courses at five different campuses.

➢ Array enroll is composed of a total of 2000 (100 × 5 × 4) elements.

➢ we will number the freshman year 0 , the sophomore year 1, and so on.

➢ Thus, enroll[1][4][3] represents the number of seniors taking course 1 at campus 4 .

➢ Memory space can be used up rapidly if several multidimensional arrays are declared in the same program.
(2)

➢ The type of information desired determines the order in which we must reference the array elements. (3)

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Figure 7.22

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students in each course */

for (course = 0; course < MAXCRS; ++course) {

 crs_sum = 0;

 for (campus = 0; campus < 5; ++campus) {

 for (year = 0; year < 4; ++ year) {

 crs_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students in course %d is %d\n", course, crs_sum);

}

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students at each campus */

for (campus = 0; campus < 5; ++campus) {

 campus_sum = 0;

 for (course = 0; course < MAXCRS; ++course) {

 for (year = 0; year < 4; ++ year) {

 campus_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students at campus %d is %d\n", campus, campus_sum);

}

CASE STUDY (Homework)
P.419 - 427

Summary of Hospital Revenue

7.9 ARRAY PROCESSING ILLUSTRATED

● Subscript-range error: An out-of-range reference occurs when the subscript value used is
outside the range specified by the array declaration. (1)

● A subscript-range error occurs when celsius is used with a subscript that has a value less than
0 or greater than 99,

● i.e. If the value of i is 150 => error (2)

● They are most often caused by:
1. An incorrect subscript expression,
2. A loop counter error
3. A nonterminating loop.

7.11 COMMON PROGRAMMING
ERRORS

int celsius[100];

access violation at line no. 28

● Subscript-range error:
● If a subscript-range error occurs inside an indexed loop, verify that the subscript is in range

for both the initial and the final values of the loop control variable (1)

● If a subscript-range error occurs in a loop controlled by a variable other than the array
subscript, check that the loop control variable is being updated as required. (2)

7.11 COMMON PROGRAMMING
ERRORS

● When using arrays as arguments to functions, be careful not to apply the address-of operator to
the array name even if the array is an output argument.

● However, do remember to use the & on an array element that is being passed as an output

argument.

● Be sure to use the correct forms for declaring array input and output parameters in function
prototypes.

● A parameter declared a could represent a single integer output parameter or an

integer array parameter

● So, comment your own prototypes carefully and use the alternate declaration form
 for array parameters to assist readers of your code.

7.11 COMMON PROGRAMMING
ERRORS

int *z

int z[]

● Memory access violation: If you are working on a computer system with very limited memory,
you may find that some correct C programs generate run-time error messages indicating an
access violation. (1)

● When you define enumerated types, remember that only identifiers can appear in the list of

values (enumeration constants) for the type.

● Be careful not to reuse one of these identifiers in another type or as a variable name in a
function that needs your type definition. (2)

7.11 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Figure 7.14
➢ The type int variable found is used to represent the logical concept of whether the

target has been found yet and is tested in the loop repetition condition (1)

➢ After found becomes true or the entire array has been searched, the loop is exited,

and the decision statement following the loop defines the value returned.

➢ If array arr and target are declared in the calling function, the assignment

statement: index = search(arr, target, SIZE);

calls function search to search the first SIZE elements of array arr for the target (i.e.
target = 3):(2)

SEARCH

➢ Many programs execute more efficiently if the data they process are sorted before
processing begins.

➢ For example, your university might want students grade report sorted by student ID

number.

➢ ALGORITHM FOR SELECTION SORT:
1. for each value of index from 0 to n-2

2. Find index_of_min , the index of the smallest element in the unsorted subarray

list[index] through list[n-1] .

3. if index is not the position of the smallest element (index_of_min)

4. Exchange the smallest element with the one at position index .

SORTING AN
ARRAY

➢ Figure 7.15

➢ See Figure 7.16 p.405
for a program example

➢ at most, n-1 exchanges will be required to sort an array with n elements.

SORTING AN
ARRAY

➢ Parallel arrays: arrays that have the same number of elements:
1. If there are n -elements, these parallel arrays contain data for n -objects

of the same kind. [not type]
2. Further, all array elements at subscript i contain data for the i-th object in

this group of n -objects.

● EXAMPLE 7.11 , Figure 7.17 two parallel arrays for a student records program (1)

7.7 PARALLEL ARRAYS AND ENUMERATED
TYPES

#define NUM_STUDENTS 50

..

int id[NUM_STUDENTS];

double gpa[NUM_STUDENTS];

➢ Good solutions to many programming problems require new data types (1)
➢ C allows you to associate a numeric code with each category by creating an

enumerated type that has its own list of meaningful values.

 (3)

ENUMERATED
TYPES

typedef enum (2)

{entertainment, rent, utilities, food, clothing,

automobile, insurance, miscellaneous}

expense_t;

To declare:

expense_t expense_kind; (4)

Entertainment (0)
Rent (1)

Utilities (2)
…

➢ Figure 7.18

● The scope rules for identifiers apply to enumerated types and enumeration constants.

● Enumeration constants must be identifiers; they cannot be numeric, character, or
string literals (e.g., "entertainment" cannot be a value for an enumerated type).

● We recommend that you place type definitions immediately after any #define and

#include directives. (1)

● The reserved word typedef can be used to name many varieties of user-defined types.

ENUMERATED
TYPES

➢ An identifier cannot appear in more than one enumerated type definition, for
example, the weekday_t definition could not be used with the type day_t

ENUMERATED
TYPES

typedef enum

{monday, tuesday, wednesday, thursday,friday, saturday, sunday}

day_t;

typedef enum

{monday, tuesday, wednesday, thursday, friday}

weekday_t;

➢ Relational, assignment, and even arithmetic operators can be used with
enumerated types, just as with other integers.

➢ The following for type day_t are true:

➢ We can combine the use of arithmetic operators and casts to find enumeration
constants that follow and precede a current value.

ENUMERATED
TYPES

sunday < monday

wednesday != friday

tuesday >= sunday

➢ EXAMPLE 7.12: If today and tomorrow are type day_t variables, the following if statement assigns the
value of tomorrow based on the value of today : (1)

● C provides no range checking to verify that the value stored in an enumerated type variable is valid. (2)

For example, this assignment statement will not cause a run-time error even though it is clearly invalid.

ENUMERATED
TYPES

if (today == sunday)

 tomorrow = monday;

else

 tomorrow = (day_t)(today + 1);

today = saturday + 3;

➢ enumerated type variable can also be used as a loop counter:

➢ This loop will execute for each value of today from monday through friday

ENUMERATED
TYPES

for (today = monday; today <= friday; ++today) {

. . .

}

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

#define NUM_QUEST 10 /* number of questions on daily quiz */

#define NUM_CLASS_DAYS 5 /* number of days in a week of class */

typedef enum

{monday, tuesday, wednesday, thursday, friday}

week_day_t;

. . .

char answer[NUM_QUEST]; /* correct answers for one quiz */

int score[NUM_CLASS_DAYS]; /* one student's quiz scores for each day */

score[monday] = 9;

score[tuesday] = 7;

score[wednesday] = 5;

score[thursday] = 3;

score[friday] = 1;

 Countinue…

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

ascore = 9;

for (today = monday; today <= friday; ++today) {

score[today] = ascore;

ascore -= 2;

}

➢ Multidimensional arrays: arrays with two or more dimensions.

➢ The array declaration: char tictac[3][3];
allocates storage for a two-dimensional array (tictac) with three rows and three columns.

➢ Each array element contains a character value

➢ This array has nine elements, each of which must be referenced by specifying a row subscript
(0 , 1 , or 2) and a column subscript (0 , 1 , or 2).

7.8 MULTIDIMENSIONAL ARRAYS

➢ A function that takes a tic-tac-toe board as a parameter will have a declaration similar to this in
its prototype:

➢ In the declaration of a multidimensional array parameter, only the first dimension, the number
of rows, can be omitted.

➢ Including both dimensions is also permissible. (1)

➢ The following statement would declare a tic-tac-toe board and initialize its contents to blanks.
(2)

EXAMPLE 7.15, FIGURE 7.21 (3)

7.8 MULTIDIMENSIONAL ARRAYS

char tictac[3][3] = { {' ', ' ', ' '}, {' ', ' ', ' '}, {' ', ' ', ' '} };

char tictac[][3]

char tictac[3][3]

➢ EXAMPLE 7.14

➢ This array table consists of three dimensions:
 double table[7][5][6];

➢ The first subscript may take on values from 0 to 6 ; the second, from 0 to 4 ; and the third, from
0 to 5 .

➢ A total of 7 × 5 × 6 , or 210 , type double values may be stored in the array table.

➢ All three subscripts must be specified in each reference to array table in order to access a single

number (e.g., table[2][3][4]).

7.8 MULTIDIMENSIONAL ARRAYS

➢ (1)

➢ We will assume that the college offers 100 (MAXCRS) courses at five different campuses.

➢ Array enroll is composed of a total of 2000 (100 × 5 × 4) elements.

➢ we will number the freshman year 0 , the sophomore year 1, and so on.

➢ Thus, enroll[1][4][3] represents the number of seniors taking course 1 at campus 4 .

➢ Memory space can be used up rapidly if several multidimensional arrays are declared in the same program.
(2)

➢ The type of information desired determines the order in which we must reference the array elements. (3)

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Figure 7.22

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students in each course */

for (course = 0; course < MAXCRS; ++course) {

 crs_sum = 0;

 for (campus = 0; campus < 5; ++campus) {

 for (year = 0; year < 4; ++ year) {

 crs_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students in course %d is %d\n", course, crs_sum);

}

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students at each campus */

for (campus = 0; campus < 5; ++campus) {

 campus_sum = 0;

 for (course = 0; course < MAXCRS; ++course) {

 for (year = 0; year < 4; ++ year) {

 campus_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students at campus %d is %d\n", campus, campus_sum);

}

CASE STUDY (Homework)
P.419 - 427

Summary of Hospital Revenue

7.9 ARRAY PROCESSING ILLUSTRATED

● Subscript-range error: An out-of-range reference occurs when the subscript value used is
outside the range specified by the array declaration. (1)

● A subscript-range error occurs when celsius is used with a subscript that has a value less than
0 or greater than 99,

● i.e. If the value of i is 150 => error (2)

● They are most often caused by:
1. An incorrect subscript expression,
2. A loop counter error
3. A nonterminating loop.

7.11 COMMON PROGRAMMING
ERRORS

int celsius[100];

access violation at line no. 28

● Subscript-range error:
● If a subscript-range error occurs inside an indexed loop, verify that the subscript is in range

for both the initial and the final values of the loop control variable (1)

● If a subscript-range error occurs in a loop controlled by a variable other than the array
subscript, check that the loop control variable is being updated as required. (2)

7.11 COMMON PROGRAMMING
ERRORS

● When using arrays as arguments to functions, be careful not to apply the address-of operator to
the array name even if the array is an output argument.

● However, do remember to use the & on an array element that is being passed as an output

argument.

● Be sure to use the correct forms for declaring array input and output parameters in function
prototypes.

● A parameter declared a could represent a single integer output parameter or an

integer array parameter

● So, comment your own prototypes carefully and use the alternate declaration form
 for array parameters to assist readers of your code.

7.11 COMMON PROGRAMMING
ERRORS

int *z

int z[]

● Memory access violation: If you are working on a computer system with very limited memory,
you may find that some correct C programs generate run-time error messages indicating an
access violation. (1)

● When you define enumerated types, remember that only identifiers can appear in the list of

values (enumeration constants) for the type.

● Be careful not to reuse one of these identifiers in another type or as a variable name in a
function that needs your type definition. (2)

7.11 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Figure 7.14
➢ The type int variable found is used to represent the logical concept of whether the

target has been found yet and is tested in the loop repetition condition (1)

➢ After found becomes true or the entire array has been searched, the loop is exited,

and the decision statement following the loop defines the value returned.

➢ If array arr and target are declared in the calling function, the assignment

statement: index = search(arr, target, SIZE);

calls function search to search the first SIZE elements of array arr for the target (i.e.
target = 3):(2)

SEARCH

➢ Many programs execute more efficiently if the data they process are sorted before
processing begins.

➢ For example, your university might want students grade report sorted by student ID

number.

➢ ALGORITHM FOR SELECTION SORT:
1. for each value of index from 0 to n-2

2. Find index_of_min , the index of the smallest element in the unsorted subarray

list[index] through list[n-1] .

3. if index is not the position of the smallest element (index_of_min)

4. Exchange the smallest element with the one at position index .

SORTING AN
ARRAY

➢ Figure 7.15

➢ See Figure 7.16 p.405
for a program example

➢ at most, n-1 exchanges will be required to sort an array with n elements.

SORTING AN
ARRAY

➢ Parallel arrays: arrays that have the same number of elements:
1. If there are n -elements, these parallel arrays contain data for n -objects

of the same kind. [not type]
2. Further, all array elements at subscript i contain data for the i-th object in

this group of n -objects.

● EXAMPLE 7.11 , Figure 7.17 two parallel arrays for a student records program (1)

7.7 PARALLEL ARRAYS AND ENUMERATED
TYPES

#define NUM_STUDENTS 50

..

int id[NUM_STUDENTS];

double gpa[NUM_STUDENTS];

➢ Good solutions to many programming problems require new data types (1)
➢ C allows you to associate a numeric code with each category by creating an

enumerated type that has its own list of meaningful values.

 (3)

ENUMERATED
TYPES

typedef enum (2)

{entertainment, rent, utilities, food, clothing,

automobile, insurance, miscellaneous}

expense_t;

To declare:

expense_t expense_kind; (4)

Entertainment (0)
Rent (1)

Utilities (2)
…

➢ Figure 7.18

● The scope rules for identifiers apply to enumerated types and enumeration constants.

● Enumeration constants must be identifiers; they cannot be numeric, character, or
string literals (e.g., "entertainment" cannot be a value for an enumerated type).

● We recommend that you place type definitions immediately after any #define and

#include directives. (1)

● The reserved word typedef can be used to name many varieties of user-defined types.

ENUMERATED
TYPES

➢ An identifier cannot appear in more than one enumerated type definition, for
example, the weekday_t definition could not be used with the type day_t

ENUMERATED
TYPES

typedef enum

{monday, tuesday, wednesday, thursday,friday, saturday, sunday}

day_t;

typedef enum

{monday, tuesday, wednesday, thursday, friday}

weekday_t;

➢ Relational, assignment, and even arithmetic operators can be used with
enumerated types, just as with other integers.

➢ The following for type day_t are true:

➢ We can combine the use of arithmetic operators and casts to find enumeration
constants that follow and precede a current value.

ENUMERATED
TYPES

sunday < monday

wednesday != friday

tuesday >= sunday

➢ EXAMPLE 7.12: If today and tomorrow are type day_t variables, the following if statement assigns the
value of tomorrow based on the value of today : (1)

● C provides no range checking to verify that the value stored in an enumerated type variable is valid. (2)

For example, this assignment statement will not cause a run-time error even though it is clearly invalid.

ENUMERATED
TYPES

if (today == sunday)

 tomorrow = monday;

else

 tomorrow = (day_t)(today + 1);

today = saturday + 3;

➢ enumerated type variable can also be used as a loop counter:

➢ This loop will execute for each value of today from monday through friday

ENUMERATED
TYPES

for (today = monday; today <= friday; ++today) {

. . .

}

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

#define NUM_QUEST 10 /* number of questions on daily quiz */

#define NUM_CLASS_DAYS 5 /* number of days in a week of class */

typedef enum

{monday, tuesday, wednesday, thursday, friday}

week_day_t;

. . .

char answer[NUM_QUEST]; /* correct answers for one quiz */

int score[NUM_CLASS_DAYS]; /* one student's quiz scores for each day */

score[monday] = 9;

score[tuesday] = 7;

score[wednesday] = 5;

score[thursday] = 3;

score[friday] = 1;

 Countinue…

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

ascore = 9;

for (today = monday; today <= friday; ++today) {

score[today] = ascore;

ascore -= 2;

}

➢ Multidimensional arrays: arrays with two or more dimensions.

➢ The array declaration: char tictac[3][3];
allocates storage for a two-dimensional array (tictac) with three rows and three columns.

➢ Each array element contains a character value

➢ This array has nine elements, each of which must be referenced by specifying a row subscript
(0 , 1 , or 2) and a column subscript (0 , 1 , or 2).

7.8 MULTIDIMENSIONAL ARRAYS

➢ A function that takes a tic-tac-toe board as a parameter will have a declaration similar to this in
its prototype:

➢ In the declaration of a multidimensional array parameter, only the first dimension, the number
of rows, can be omitted.

➢ Including both dimensions is also permissible. (1)

➢ The following statement would declare a tic-tac-toe board and initialize its contents to blanks.
(2)

EXAMPLE 7.15, FIGURE 7.21 (3)

7.8 MULTIDIMENSIONAL ARRAYS

char tictac[3][3] = { {' ', ' ', ' '}, {' ', ' ', ' '}, {' ', ' ', ' '} };

char tictac[][3]

char tictac[3][3]

➢ EXAMPLE 7.14

➢ This array table consists of three dimensions:
 double table[7][5][6];

➢ The first subscript may take on values from 0 to 6 ; the second, from 0 to 4 ; and the third, from
0 to 5 .

➢ A total of 7 × 5 × 6 , or 210 , type double values may be stored in the array table.

➢ All three subscripts must be specified in each reference to array table in order to access a single

number (e.g., table[2][3][4]).

7.8 MULTIDIMENSIONAL ARRAYS

➢ (1)

➢ We will assume that the college offers 100 (MAXCRS) courses at five different campuses.

➢ Array enroll is composed of a total of 2000 (100 × 5 × 4) elements.

➢ we will number the freshman year 0 , the sophomore year 1, and so on.

➢ Thus, enroll[1][4][3] represents the number of seniors taking course 1 at campus 4 .

➢ Memory space can be used up rapidly if several multidimensional arrays are declared in the same program.
(2)

➢ The type of information desired determines the order in which we must reference the array elements. (3)

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Figure 7.22

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students in each course */

for (course = 0; course < MAXCRS; ++course) {

 crs_sum = 0;

 for (campus = 0; campus < 5; ++campus) {

 for (year = 0; year < 4; ++ year) {

 crs_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students in course %d is %d\n", course, crs_sum);

}

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students at each campus */

for (campus = 0; campus < 5; ++campus) {

 campus_sum = 0;

 for (course = 0; course < MAXCRS; ++course) {

 for (year = 0; year < 4; ++ year) {

 campus_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students at campus %d is %d\n", campus, campus_sum);

}

CASE STUDY (Homework)
P.419 - 427

Summary of Hospital Revenue

7.9 ARRAY PROCESSING ILLUSTRATED

● Subscript-range error: An out-of-range reference occurs when the subscript value used is
outside the range specified by the array declaration. (1)

● A subscript-range error occurs when celsius is used with a subscript that has a value less than
0 or greater than 99,

● i.e. If the value of i is 150 => error (2)

● They are most often caused by:
1. An incorrect subscript expression,
2. A loop counter error
3. A nonterminating loop.

7.11 COMMON PROGRAMMING
ERRORS

int celsius[100];

access violation at line no. 28

● Subscript-range error:
● If a subscript-range error occurs inside an indexed loop, verify that the subscript is in range

for both the initial and the final values of the loop control variable (1)

● If a subscript-range error occurs in a loop controlled by a variable other than the array
subscript, check that the loop control variable is being updated as required. (2)

7.11 COMMON PROGRAMMING
ERRORS

● When using arrays as arguments to functions, be careful not to apply the address-of operator to
the array name even if the array is an output argument.

● However, do remember to use the & on an array element that is being passed as an output

argument.

● Be sure to use the correct forms for declaring array input and output parameters in function
prototypes.

● A parameter declared a could represent a single integer output parameter or an

integer array parameter

● So, comment your own prototypes carefully and use the alternate declaration form
 for array parameters to assist readers of your code.

7.11 COMMON PROGRAMMING
ERRORS

int *z

int z[]

● Memory access violation: If you are working on a computer system with very limited memory,
you may find that some correct C programs generate run-time error messages indicating an
access violation. (1)

● When you define enumerated types, remember that only identifiers can appear in the list of

values (enumeration constants) for the type.

● Be careful not to reuse one of these identifiers in another type or as a variable name in a
function that needs your type definition. (2)

7.11 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Figure 7.14
➢ The type int variable found is used to represent the logical concept of whether the

target has been found yet and is tested in the loop repetition condition (1)

➢ After found becomes true or the entire array has been searched, the loop is exited,

and the decision statement following the loop defines the value returned.

➢ If array arr and target are declared in the calling function, the assignment

statement: index = search(arr, target, SIZE);

calls function search to search the first SIZE elements of array arr for the target (i.e.
target = 3):(2)

SEARCH

➢ Many programs execute more efficiently if the data they process are sorted before
processing begins.

➢ For example, your university might want students grade report sorted by student ID

number.

➢ ALGORITHM FOR SELECTION SORT:
1. for each value of index from 0 to n-2

2. Find index_of_min , the index of the smallest element in the unsorted subarray

list[index] through list[n-1] .

3. if index is not the position of the smallest element (index_of_min)

4. Exchange the smallest element with the one at position index .

SORTING AN
ARRAY

➢ Figure 7.15

➢ See Figure 7.16 p.405
for a program example

➢ at most, n-1 exchanges will be required to sort an array with n elements.

SORTING AN
ARRAY

➢ Parallel arrays: arrays that have the same number of elements:
1. If there are n -elements, these parallel arrays contain data for n -objects

of the same kind. [not type]
2. Further, all array elements at subscript i contain data for the i-th object in

this group of n -objects.

● EXAMPLE 7.11 , Figure 7.17 two parallel arrays for a student records program (1)

7.7 PARALLEL ARRAYS AND ENUMERATED
TYPES

#define NUM_STUDENTS 50

..

int id[NUM_STUDENTS];

double gpa[NUM_STUDENTS];

➢ Good solutions to many programming problems require new data types (1)
➢ C allows you to associate a numeric code with each category by creating an

enumerated type that has its own list of meaningful values.

 (3)

ENUMERATED
TYPES

typedef enum (2)

{entertainment, rent, utilities, food, clothing,

automobile, insurance, miscellaneous}

expense_t;

To declare:

expense_t expense_kind; (4)

Entertainment (0)
Rent (1)

Utilities (2)
…

➢ Figure 7.18

● The scope rules for identifiers apply to enumerated types and enumeration constants.

● Enumeration constants must be identifiers; they cannot be numeric, character, or
string literals (e.g., "entertainment" cannot be a value for an enumerated type).

● We recommend that you place type definitions immediately after any #define and

#include directives. (1)

● The reserved word typedef can be used to name many varieties of user-defined types.

ENUMERATED
TYPES

➢ An identifier cannot appear in more than one enumerated type definition, for
example, the weekday_t definition could not be used with the type day_t

ENUMERATED
TYPES

typedef enum

{monday, tuesday, wednesday, thursday,friday, saturday, sunday}

day_t;

typedef enum

{monday, tuesday, wednesday, thursday, friday}

weekday_t;

➢ Relational, assignment, and even arithmetic operators can be used with
enumerated types, just as with other integers.

➢ The following for type day_t are true:

➢ We can combine the use of arithmetic operators and casts to find enumeration
constants that follow and precede a current value.

ENUMERATED
TYPES

sunday < monday

wednesday != friday

tuesday >= sunday

➢ EXAMPLE 7.12: If today and tomorrow are type day_t variables, the following if statement assigns the
value of tomorrow based on the value of today : (1)

● C provides no range checking to verify that the value stored in an enumerated type variable is valid. (2)

For example, this assignment statement will not cause a run-time error even though it is clearly invalid.

ENUMERATED
TYPES

if (today == sunday)

 tomorrow = monday;

else

 tomorrow = (day_t)(today + 1);

today = saturday + 3;

➢ enumerated type variable can also be used as a loop counter:

➢ This loop will execute for each value of today from monday through friday

ENUMERATED
TYPES

for (today = monday; today <= friday; ++today) {

. . .

}

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

#define NUM_QUEST 10 /* number of questions on daily quiz */

#define NUM_CLASS_DAYS 5 /* number of days in a week of class */

typedef enum

{monday, tuesday, wednesday, thursday, friday}

week_day_t;

. . .

char answer[NUM_QUEST]; /* correct answers for one quiz */

int score[NUM_CLASS_DAYS]; /* one student's quiz scores for each day */

score[monday] = 9;

score[tuesday] = 7;

score[wednesday] = 5;

score[thursday] = 3;

score[friday] = 1;

 Countinue…

➢ EXAMPLE 7.13

ARRAY WITH ENUMERATED TYPE
SUBSCRIPT

ascore = 9;

for (today = monday; today <= friday; ++today) {

score[today] = ascore;

ascore -= 2;

}

➢ Multidimensional arrays: arrays with two or more dimensions.

➢ The array declaration: char tictac[3][3];
allocates storage for a two-dimensional array (tictac) with three rows and three columns.

➢ Each array element contains a character value

➢ This array has nine elements, each of which must be referenced by specifying a row subscript
(0 , 1 , or 2) and a column subscript (0 , 1 , or 2).

7.8 MULTIDIMENSIONAL ARRAYS

➢ A function that takes a tic-tac-toe board as a parameter will have a declaration similar to this in
its prototype:

➢ In the declaration of a multidimensional array parameter, only the first dimension, the number
of rows, can be omitted.

➢ Including both dimensions is also permissible. (1)

➢ The following statement would declare a tic-tac-toe board and initialize its contents to blanks.
(2)

EXAMPLE 7.15, FIGURE 7.21 (3)

7.8 MULTIDIMENSIONAL ARRAYS

char tictac[3][3] = { {' ', ' ', ' '}, {' ', ' ', ' '}, {' ', ' ', ' '} };

char tictac[][3]

char tictac[3][3]

➢ EXAMPLE 7.14

➢ This array table consists of three dimensions:
 double table[7][5][6];

➢ The first subscript may take on values from 0 to 6 ; the second, from 0 to 4 ; and the third, from
0 to 5 .

➢ A total of 7 × 5 × 6 , or 210 , type double values may be stored in the array table.

➢ All three subscripts must be specified in each reference to array table in order to access a single

number (e.g., table[2][3][4]).

7.8 MULTIDIMENSIONAL ARRAYS

➢ (1)

➢ We will assume that the college offers 100 (MAXCRS) courses at five different campuses.

➢ Array enroll is composed of a total of 2000 (100 × 5 × 4) elements.

➢ we will number the freshman year 0 , the sophomore year 1, and so on.

➢ Thus, enroll[1][4][3] represents the number of seniors taking course 1 at campus 4 .

➢ Memory space can be used up rapidly if several multidimensional arrays are declared in the same program.
(2)

➢ The type of information desired determines the order in which we must reference the array elements. (3)

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Figure 7.22

ARRAYS WITH SEVERAL DIMENSIONS:

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students in each course */

for (course = 0; course < MAXCRS; ++course) {

 crs_sum = 0;

 for (campus = 0; campus < 5; ++campus) {

 for (year = 0; year < 4; ++ year) {

 crs_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students in course %d is %d\n", course, crs_sum);

}

➢ Example 7.16

ARRAYS WITH SEVERAL DIMENSIONS:

/* Finds and displays number of students at each campus */

for (campus = 0; campus < 5; ++campus) {

 campus_sum = 0;

 for (course = 0; course < MAXCRS; ++course) {

 for (year = 0; year < 4; ++ year) {

 campus_sum += enroll[course][campus][year];

 }

 }

 printf("Number of students at campus %d is %d\n", campus, campus_sum);

}

CASE STUDY (Homework)
P.419 - 427

Summary of Hospital Revenue

7.9 ARRAY PROCESSING ILLUSTRATED

● Subscript-range error: An out-of-range reference occurs when the subscript value used is
outside the range specified by the array declaration. (1)

● A subscript-range error occurs when celsius is used with a subscript that has a value less than
0 or greater than 99,

● i.e. If the value of i is 150 => error (2)

● They are most often caused by:
1. An incorrect subscript expression,
2. A loop counter error
3. A nonterminating loop.

7.11 COMMON PROGRAMMING
ERRORS

int celsius[100];

access violation at line no. 28

● Subscript-range error:
● If a subscript-range error occurs inside an indexed loop, verify that the subscript is in range

for both the initial and the final values of the loop control variable (1)

● If a subscript-range error occurs in a loop controlled by a variable other than the array
subscript, check that the loop control variable is being updated as required. (2)

7.11 COMMON PROGRAMMING
ERRORS

● When using arrays as arguments to functions, be careful not to apply the address-of operator to
the array name even if the array is an output argument.

● However, do remember to use the & on an array element that is being passed as an output

argument.

● Be sure to use the correct forms for declaring array input and output parameters in function
prototypes.

● A parameter declared a could represent a single integer output parameter or an

integer array parameter

● So, comment your own prototypes carefully and use the alternate declaration form
 for array parameters to assist readers of your code.

7.11 COMMON PROGRAMMING
ERRORS

int *z

int z[]

● Memory access violation: If you are working on a computer system with very limited memory,
you may find that some correct C programs generate run-time error messages indicating an
access violation. (1)

● When you define enumerated types, remember that only identifiers can appear in the list of

values (enumeration constants) for the type.

● Be careful not to reuse one of these identifiers in another type or as a variable name in a
function that needs your type definition. (2)

7.11 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

