/C*j/tpm\c-

Birzeit University
Faculty of Engineering and Technology

Electrical and Computer Engineering

Department

Manual for
Digital Electronics and Computer

Organization Lab

ENCS 2110

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Table of Experiments

LABORATORY REGULATIONS AND SAFETY RULES........cccocieieeeeere, Il
Experiment No. 1 - Combinational LogiC CirCUItS..........cccvuvveiivieeeiiiiie e 1
Experiment No. 2 - Comparators, Adders, and Subtractors...........ccccceeeevvivvveeeennne, 21
Experiment No. 3 - Encoders, Decoders, Multiplexers, and Demultiplexers 44
Experiment No. 4 - Digital Circuits Implementation using Breadboard.................. 63
Experiment No. 5 - Sequential LogiC CIrCUILS............cccceeiiiieeeiiiiee e 73
Experiment No. 6 - Sequential Logic Circuits using Breadboard and IC’s 94
Experiment No. 7 - Constructing Memory Circuits Using Flip—Flops.................. 101
Experiment No. 8 - Introduction to QUARTUSII Software...........cccccooevvvveeeennne, 111
Experiment No. 9 - A Simple Security System Using FPGA..............ccccoveeeene, 137
Experiment No. 10 - Simple Computer Simulation.............ccccccoviieiiiinc e, 147
Experiment No. 11 - Arithmetic Elements..........ccccccooiiiiiii e, 159

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

LABORATORY REGULATIONS AND SAFETY RULES

The following Regulations and Safety Rules must be observed in the laboratory:

1) Itis the duty of all concerned who use any electrical laboratory to take all reasonable steps to
safeguard the HEALTH and SAFETY of themselves and all other users and visitors.

2) Be sure that all equipment is properly working before using them for laboratory exercises.
Any defective equipment must be reported immediately to the Lab. Instructors or Lab.
Technical Staff.

3) Students are allowed to use only the equipment provided in the experiment manual or
equipment used for senior project laboratory.

4) Power supply terminals connected to any circuit are only energized with the presence of the
Instructor or Lab. Staff.

5) Students should keep a safe distance from the circuit breakers, electric circuits or any moving
parts during the experiment.

6) Awvoid any part of your body to be connected to the energized circuit and ground.

7) Switch off the equipment and disconnect the power supplies from the circuit before leaving
the laboratory.

8) Observe cleanliness and proper laboratory housekeeping of the equipment and other related
accessories.

9) Double check your circuit connections before switching “ON” the power supply.

10) Make sure that the last connection to be made in your circuit is the power supply and first
thing to be disconnected is also the power supply.

11) Equipment should not be removed, transferred to any location without permission from the
laboratory staff.

12) Software installation in any computer laboratory is not allowed without the permission from
the Laboratory Staff.

13) Computer games are strictly prohibited in the computer laboratory.

14) Students are not allowed to use any equipment without proper orientation and actual hands-on
equipment operation.

15) Smoking and drinking in the laboratory are not permitted.

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

BIRZEIT UNIVERSITY

Faculty of Engineering and Technology

Department of Electrical and Computer Engineering

ENCS 2110

Digital Electronics and Computer Organization Lab
Experiment No. 1 - Combinational Logic Circuits

1.1 Objectives
e To become familiar with AND, OR, NOT, NAND, NOR, and OR operations and
implementation.
e To construct NOT, AND, OR, and XOR gates using NAND gates.
e To become familiar with the concept of theTruth table.
e To implement the different Boolean functions using NAND gate only.
e To learn techniques for solving logic design problems.
e To become familiar with minimization techniques and using Karnaugh maps.

e To construct an AOI gate with basic gates.

1.2 Equipment Required
e KL-31001 Basic Electricity Circuit Lab.
e KL-33002 Combinational Logic Circuit Experiment Model (1)

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

1.3 Introduction

Logic gates are digital circuits capable of performing a particular logic function by

operating on several binary inputs. Logic gates can be broadly classified as Basic, Universal,

and other logic gates.

1.3.1 Basic logic gates:

Basic Logic Gates are the fundamental logic gates using which universal logic gates

and other logic gates are constructed. These gates are associative and commutative in nature.

AND, OR, and NOT in the famous examples of basic logic gates.

1.3.1.1 AND GATE:

The AND gate performs a logical multiplication commonly known as AND
function. The output is high when both inputs are high. The output is low level when any

one of the inputs is low. Figure 1.1 shows all the information for the AND gate.

Logic Logic Truth Boolean
function symbol table expression

2-input A —
AND gate B — Y

Figure 1.1: The AND gate function, symbol, truth table, and Boolean expression.

Y = AeB

“200|>»
-0=0|m

2000/«

1.3.1.2 ORGATE:
An OR gate is a logic gate that performs logical OR operation. The output is high
when any one of the inputs is high. The output is low level when both the inputs are low.

Figure 1.2 shows all the information for the OR gate.

l Logic Logic Truth Booleap
function symbol table expression
A B|Y
0O 0|O
2-input A 0 1|1 Y=A+B
ORgate | o Y 101
1 1 1

Figure 1.2: The function, symbol, truth table, and Boolean expression for OR gate.

STUDENTS-HUB.com

Uploaded By: Ahmad K Hamdan

1.3.1.3 NOT GATE:

The NOT gate is called an inverter. The output is high when the input is low. The
output is low when the input is high. Figure 1.3 shows all the information for the NOT

gate.

Logic Logic Truth Boolean
function symbol table expression

Inverter A Y ALY
(NOT gate) ‘1) (1) Y

Figure 1.3: The function, symbol, truth table, and Boolean expression for NOT gate.

"
>

1.3.2 Universal logic gates

Universal logic gates are those capable of implementing any Boolean function without
requiring any other type of gate. We called these gates Universal gates because Universal
gates are not associative in nature, but they are commutative in nature. There are two

universal logic gates NAND gate and NOR gates.

1321 NAND GATE:

The NAND gate is a contraction of AND-NOT. The output is high when both
inputs are low and any one of the inputs is low. The output is low level when both inputs

are high. Figure 1.4 shows all the information for the NAND gate.

| Logic Logic Truth Boolean
function symbol table expression
A B|Y
2-input A — 0O 0|1
NAND Y 0 1 1 Y = AeB
gate B 1 011
11]0

Figure 1.4: The function, symbol, truth table, and Boolean expression for NAND gate.

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

1.3.2.2 NOR GATE:

The NOR gate is a contraction of OR-NOT. The output is high when both inputs

are low. The output is low when one or both inputs are high. Figure 1.5 shows all the

information for the NOR gate.

Logic Logic Truth Boolean
function symbol table expression
A B|lY
i 0 01
2-input A
0 1 0 Y=A+B
NORgate | :DO— Y 1 0le
1 1 0

Figure 1.5: The function, symbol, truth table, and Boolean expression for NOR gate.

1.3.3 Derived Logic Gates
There are two remaining gates of the primary electronics logic gates: XOR, which
stands for Exclusive OR, and XNOR, which stands for Exclusive NOR.

1.3.3.1 EX-OR GATE:

The output is high when any one of the inputs is high. The output is low when both

the inputs are low, and both the inputs are high. Figure 1.6 shows all the information for

the EX-OR gate.

| Logic Logic Truth Boolean
function symbol table expression
A B|Y
2:nput | A o 19
-inpu Y=A®B
EX-OR | g :)D' Y 10| 1 -
gate 11 0

Figure 1.6: The function, symbol, truth table, and Boolean expression for X-OR gate.

1.3.3.2 EX-NOR GATE:

The X-NOR gate is a contraction of X-OR and NOT. The output is high when the

number of ones is even. The output is low when the number of one is odd. Figure 1.7

shows all the information for the X-NOR gate.

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Logic Logic Truth Boolean
function symbol table expression
A B|Y
2-input FY 0 0|1 ==
EX-NOR Y 0 1|0 Y=A®B
gate B 1 0|0
1 111

Figure 1.7: The function, symbol, truth table, and Boolean expression for the X-NOR gate.

STUDENTS-HUB.com

Uploaded By: Ahmad K Hamdan

1.4 Procedure

In section 1.4 we will learn how to build different gates using NAND and NOR gates.

1.4.1 The characteristics of NOR gate.

a) Set module KL-33002 and locate (block a) as shown in Figure 1.8. Connect the
+5V of module KL-33002 to the +5V output of the fixed power supply KL-31001
And do the same for ground (GND).

Figure 1.8: KL-33002 NOR Gate Block.

b) Then select the first gate OR gate in Figure 1.8. Connect inputs A and B with Data
switch TTL level in power supply SWO0 and SW1. connect output F1 with Logic

Indicator (LED) LO in the power supply. write the result in Table 1.1.
Table 1.1: Data for part 1.4.1 (b).

0

| | O O
[EEN

c) Use the same connection in part b. Set SWO0 to “0” and change SW1 to “0”, see
the result of the output F1 then change SW1 to “1”, and see the output to make it
clear go to Table 1.2 and write the result in the table.

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Table 1.2: Data for part 1.4.1 (c).

e Does the circuit above act as a NOT gate? ------- -

e Find another way to build a NOT gate using the NOR gate and draw the circuit
in the box below. (Hint: return to Figure 1.5 and see the truth table of NOR gate
look when the inputs are the same the output will be the opposite of inputs).

d) Use two OR gates to construct a buffer as shown in Figure 1.9. Insert connection clips
between A and B, connect F1 with Al then connect A1 with B1. Connect input A to
SWO and output F3 to L1. write the result in Table 1.3.

Figure 1.9: build buffer using NOR gate

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Table 1.3: Data for part 1.4.1 (d).

0
1

e Does the circuit above act as a buffer gate? ----- -
e Build OR gate using NOR gate only gate and draw the circuit in the box below.

(Hint: we can build OR gate using NOR and NOT gates. we learn how to build
a NOT gate using NOR gate).

Aj > ‘>
F
B

e) Use two OR gates to construct an OR gate. Insert connection clips between F1-Al and
Al1-B1. Connect inputs A to SWO0, B to SW1; and output F3 to L1. Follow the input

sequences shown below and record the output states in Table 1.4.

SaD DS

Figure 1.10: build OR using NOR gate.

Table 1.4: Data for part 1.4.1 (e).

0

| = O O
[EEN

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

f) Know we need to build AND gate using NOR gate only. to learn how to construct
it, let's solve the following equation. We know that AND gate equation is F=A.B
if we take the inverse for this equation and then use De morgan low the equation

becomes

g) From the above equation (F) we can see that we can build AND gate using one
NOR gate and two NOT gates. Insert connection clips according to Figure 1.11
below. Connect A to SWO; D to SW1, F1 to Al; F2 to B1; F3 to L1. Follow the

input sequences given below, and record the output states in Table 1.5.

Figure 1.11: build AND gate using NOR gate using kits.

Table 1.5: Data for part 1.4.1 ().

| = O O
[EEN

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

1.4.2 The characteristics of NAND gate.

a) Set module KL-33002 and locate (block b) gate as shown in Figure 1.12. Connect the
+5V of module KL-33002 to the +5V output of the fixed power supply KL-31001 and
do the same for the ground (GND).

Figure 1.12: KL-33002 NAND Gate Block.

b) Then select the first gate in Figure 1.12. Connect A and Al in block a with Data switch
SWO0 and SW1 TTL level in the power supply sequentially and connect output F2
with Logic Indicator LO in the power supply. write the result in Table 1.6.

Table 1.6: Data for part 1.4.2 (b).

0 0
0 1
1 0
1 1

c) Use the same connection in part b. Set SWO to “1” and change SW1 to “0”, see the
result of the output F2 then change SW1 to “1”, and see the output to make it clear go

to Table 1.7 and write the result in the table.

10
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Table 1.7: Data for part 1.4.2 (c).

1 0

1 1

e Does the circuit above act as a NOT gate? ------- -

e Find another way to build a NOT gate using a NAND gate and draw the circuit
in the box below. (Hint: return to Figure 1.4 and see the truth table of the NAND
gate look when the inputs are the same the output will be the opposite of the
inputs).

d) Use two of NAND gates to construct a buffer as shown in Figure 1.13. Insert
connection clips between A and Al, connect F2 with A2 then connect A2 with B2.

Connect input A to SWO0 and output F4 to L1. write the result in Table 1.8.
A

0,0

R

F1
u4

F2

A2
A1 =
B1
& F3 B2
O Tup-0
D I

Figure 1.13: build buffer using NAND gate

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Table 1.8: Data for part 1.4.2 (d).

e Does the circuit above act as a buffer gate? ------ --
e Build AND gate using NAND gate only gate and draw the circuit in the box

below. (Hint: we can build AND gate using NAND and NOT gates. we learn
how to build NOT gate using NAND gate).

A_
5 | P—i >o— F

e) Use two NAND gates to construct an AND gate. Insert connection clips between F2-
A2 and A2-B2. Connect inputs A to SWO0, Al to SW1; and output F4 to L1. Follow the

input sequences shown below and record the output states in Table 1.9.

A

oo

o 3

F4

uP—O

F3 B2

O

D G

o

0,0,

Figure 1.14: build AND using NAND gate.

12
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Table 1.9: Data for part 1.4.2 (e).

| | O O
[EEN

f) Know we need to build OR gate using NAND gate only to learn how to construct it,
let's solve the following equation. We know that OR gate equation is F=A+B if we take
the inverse for this equation and then use De Morgan low the equation becomes

g) From the above equation (F*) we can see that we can build OR gate using one NAND
and two NOT gates. Insert connection clips according to Figure 1.15 below. Connect A
to SWO; D to SW1; connect A with Al; and D with B1 and F2 to A2; F3 to B2 then
connect the output F4 with L1. Follow the input sequences given below, and record the

output states in Table 1.10.
A

0,0,

F1
B ? & = F2
A2
Al F4
B1

- ,)_E)’—O
C F3 B2
u4
D

Figure 1.15: build OR gate using NAND gate using kits.

13
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Table 1.10: Data for part 1.4.2 (g).

| k| O O
[EEN

1.4.3 XOR Gate Circuit.

there are two ways to build an XOR gate. first using basic gates as shown in Figure
1.16(a) the second way is by using NAND gates only as shown in Figure 1.16(b).

Note: Remember XOR and the equation is F=AB’+A'B

’ T~ L
BYE

B P

Figure 1.16 (a): Constructed with basic gates. Figure 1.16 (b): Constructed with NAND gates.

14
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

1.4.3.1 Constructing XOR gate with NAND gate (Module KL-33002
block NAND gates)
Insert connection clips according to Figure 1.17. a) to construct the circuit of Figure
1.17. Connect inputs A to SW1, D to SW2; outputs F1 to L1, F2to L2; F3 to L3 and
F4 to L4. record the output in Table 1.11.

L

i u4
B Q_
F2 A2
Al -
B1
C F3 B2
U4

D I
Figure 1.17: Constructed with NAND gates.

Table 1.11: Data for part 1.4.3.1.

| swiw [swe@) | LFY | LAF) | L3 [LAY |

0
0
1
1

0
1
0
1

e Now determine the Boolean expression for F1, F2, F3 and F4.

Fl= . .
F2=
Fl=
Fd=. .

e Since F =A'B+AB', when B=0, then F=.................................. and the
circuitactas.......... WhenB=1,F=.......cccccoii , the circuit
act as an In other words, the input state of an XOR gate
determines whether it will actasa (o) SR

15
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

1.4.3.2 Constructing XOR gate with Basic Gate (Module KL-33002
block c)

Insert connection clips according to Figure 1.18(a). a) to construct the circuit of
Figure 1.18(b). Connect inputs A, B to SW1, SW2; outputs F1, F2, F3to L1, L2, L3
as shown in Figure 1.18 (a). write the result in Table 1.12.

A
A1 U1
F6 u2 F1 F3 Uz F4
& u p-O—1>-0
F2
u2
O B1 U1
B
F5
u3

Figure 1.18(a): Constructed with basic gates using Kits.

Figure 1.18 (b): equivalent circuit.

Table 1.12: Data for part 1.4.3.2.

=k O O
| Ol k| O

16
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

144 AOI Gate Circuits.

AND-OR-INVERTER (AOI) gates consist of two AND gates, one OR gate, and
one INVERTER (NOT) gate. The symbol of an AOI gate is shown in Figure 1.19. The
Boolean expression for the output F is F = (AB+CD)' (D)

A

B

C

D

Figure 1.19: AOI gate.

By De Morgan's theorem, Eq. (1) can be converted to:
F=(A+B") (C'+D)))
Eq. (1) is also referred to as the "Sum of Products".

Eq. (2) is also referred to as the "Product of Sums".

The A-Q-I gate is a "Sum of Products” logic combination

a) Use gates on block ¢ of module KL-33002, shown in Figure 1.20 (a), to construct the
A-O-I gate of Figure 1.20 (b). Figurel1.20 (c) is the equivalent A-O-I circuit.

0
u1
A1
C F6 U2 z:%_ F3 U2 F4
F7 ()-0<|—0 = u1 b—()—|>°-()
u2] |
B1 u1
O
B
F5
u3

Figure 1.20(a): AOI circuit Wiring diagram

17
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

A F1

A1

F4
B1 F3

B F2

Figure 1.20(b): AOI circuit Actual circuit

A1
F4
B1 F3

Figure 1.20(c): AOI circuit Equivalent circuit

b) Connect inputs A, Al, B, B1 to Date Switches SW0, SW1, SW2 and SWa3 respectively.
Connect outputs F3, and F4 to Logic Indicators L1 and L2 respectively.
c) Set BxBlto “0”, follow the input sequences for A, Al in Table 1.13, and record the outputs

Table 1.13: Data for part 1.4.4 (C).

|oswoy [swian | LIFy) LAFY) |

0
0
1
1

0
1
0
1

e Does F3 act as an AND gate between A and A1?
e When BxBI is “0”, does F3 act as an AND gate between A and A1? (F3=AxAl).

d) WhenAlxA is “0”, follow the input sequences for B, B1 in Table 1.14 and record the
Outputs.

18
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Table 1.14: Data for part 1.4.4 (d).

0
0
1
1

| Ol | O

e Does F3 act as an AND gate between B and B1?
e When AxAl is “0”, does F3 act as an AND gate between B and B1? Does F3 equal

toAxAl1+BxB1?

- Selected Tasks by the instructor.

STUDENTS-HUB.com

19

Uploaded By: Ahmad K Hamdan

1.5 Post Lab

o Draw the logic diagram showing the implementation of the following Boolean
equation using “NAND” gates
a) F = AB (CA).
b) F=(D.A) + (C.B)
o Draw the logic diagram of the following Boolean equations using NOR gates.

a) F=(A+B) (CD+A)

b) F= (ABC+D) C

o Implement the OR operation using AND, NOT gate. Draw the logic diagram
and write the Boolean equation.

e Implement the AND gate using OR, NOT gate. Draw the logic diagram and
write the Boolean equation.

e Prove that the equality operation F1=AB+A’B’ is the inverse of exclusive OR
operation F2=AB’+A’B (use Demerger’s theorem).

e Show how is it possible to reduce Boolean expressions using the Karnaugh

map:
a) F1=A’B’C + ABC’ + A’BC’ + AB’C

b) F2=A’D+A’C+BD+AB’D’

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan
20

7252 ‘*v/ x
BIRZEIT UNIVERSITY

Faculty of Engineering and Technology

Department of Electrical and Computer Engineering

ENCS 2110

Digital Electronics and Computer Organization Lab
Experiment No. 2 - Comparators, Adders, and Subtractors

2.1 Objectives

e To understand the construction and operating principle of digital comparators
e To construct comparators with basic gates and ICs

e To implement half- and full-adders using basic logic gates and ICs

e To implement a 4-bit adder unit(s)/ICs to add 4-bit numbers

e To understand the theory of complements

e To construct half- and full-subtractor circuits

2.2 Equipment Required
e KL-31001 Basic Electricity Circuit Lab

e KL-33002 Combinational Logic Circuit Experiment Model (1)
e KL-33003 Combinational Logic Circuit Experiment Model (2)

e KL-33004 Combinational Logic Circuit Experiment Model (3)

21

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

2.3 Pre-Lab

1) Prepare all sections and work out all the required designs.
2) Build half adder using basic gates.

3) Build the above circuit using universal gates.

4) Build a full adder using basic gates.

5) Build a full adder using a half adder and another gate.

6) Build a 4-bit adder using a full adder.

7) Build a 4-bit subtractor using basic gates.

22

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

2.4 Theory

2.4.1 Half- and Full-Adder Circuits:

2.4.1.1 Half Adder:

The half adder accepts two binary digits on its inputs and produces two binary digits
outputs, a sum bit, and a carry bit. The half-adder is an example of a simple, functional
digital circuit built from two logic gates. The half-adder adds to one-bit binary numbers
(AB). The output is the sum of the two bits (S) and the carry (C)as shown in Figure 2.1.

A Sum
; Half 5
B Adder
— —
Carry

Figure 2.1: Half-Adder Functional Diagram.

Note how the same two inputs are directed to two different gates. The inputs to the
XOR gate are also the inputs to the AND gate. The input "wires" to the XOR gate are tied
to the input wires of the AND gate; thus, when voltage is applied to the A input of the XOR

gate, the A input to the AND gate receives the same voltage. As shown in Figure 2.2.

A Inputs Outputs
T)XOR S A B Sum Carry
B 0 0 0 0
0 1 1 0
1 0 1 0
AND C 1 1 0 1

Figure 2.2: Half-Adder circuit and truth table.

23

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

2.4.1.2 Full Adder:

The full adder accepts two input bits and an input carry and generates a sum output
and an output carry. The full-adder circuit adds three one-bit binary numbers (Cin, A, B)
and outputs two one-bit binary numbers, a sum (S) and a carry (Cout) as shown in Figure
2.3. The full adder is usually a component in a cascade of adders, which add 8, 16, 32, etc.

binary numbers.

A
—1 FuLL [Cou
B| ADDER
S
CIN .

Figure 2.3: Full-Adder Functional Diagram.

In Figure 2.4 (a), if you look closely, you'll see the full adder is simply two half
adders joined by an OR. We can implement a full adder circuit with the help of half-adder
circuits. The first half adder will be used to add A and B to produce a partial Sum. The
second half adder logic can be used to add CIN to the Sum produced by the first half adder
to get the final S output. If any of the half-adder logic produces a carry, there will be an
output carry. Thus, COUT will be an OR function of the half-adder Carry outputs. We can
see the truth table of the full adder in Figure 2.4 (b).

Half Adder
Half Adder

Figure 2.4 (b): Full-Adder Circuit.

24

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Input Output

C_out

w

w
=
B

Flr|lr|lkr|lojlo|lo|o|w
m|lm|lo|lo|lrkr|r|o|lo
HOHOD—'OHO{’

5
= OO |O|l=|=|O
Rlim|kr|lo|lm|lolo|lol!

Figure 2.4 (b): Full-Adder Truth table.

To perform additions of numbers greater than 2 bits in length, the connection shown
in Figure 2.5, or "Parallel Input” should be used to generate sums simultaneously.
However, the sum of the next adder will be stable only after the previous adder’s carry has
stabilized. For example, in Figure 2.5, the sum of FA2 will not be stable unless the carry
of FAL is stable.

A S A S A S |

FA, S FA, G FA, S FA, |e——cC,
r ! | | '
Ge S, S, S, S,

Figure 2.5: 4-bit adder.

When FA1 adds Al and B1, a sum S1 and a carry C1 is generated. C1 will be added
to A2 and B2 by FA2, generating another sum S2 and another carry C2. In the case of
Figure 2.5, the sum of the four adders does not stabilize at the same time, delaying the

adding process. This delay can be eliminated by using the "Look-Ahead" adder.

Look-ahead adders is it is the faster circuit in performing binary addition by using
the concepts of Carry Generate and Carry Propagate. A CLA is termed as the successor of
a ripple carry adder. A CLA circuit minimizes the propagation delay time through the

implementation of complex circuitry.

The operation of the carry lookahead is based on two scenarios:
e Calculate every digit position to know whether that position is propagating a carry

bit that comes from its right position.

25

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

e Then combine the calculated values to produce the output for every set of digits
where the group generates a propagation bit that comes from the right position.

Carry lookahead adders operate by generating two bits called Carry Propagate and

Carry Generate which are represented by Cp and Cg. The Cp bit gets propagated to the

next stage and the Cg bit is used for generating the output carry bit and this is independent

of the input carry bit. The below picture shows the 4-bit carry lookahead adder architecture.

X3 Y3 X2 Y2 X1 Y1 X0 Y0
1-bit Full 1-bit Full 1-bit Full 1-bitFul |,
Adder Adder Adder Adder " co
S3 S2 51 S0
Y Y
ca Cp3 Cg3 C3 Ccp? Cg2 C2 Cp1 Cgl 1 Cp0 Cg0
4-bit carry lookahead generator <
CP CG

b

Figure 2.6: 4-bit Carry Lookahead Adder Architecture.

The total number of gate levels in the circuit for carry propagation can be known
from the full adder circuit. From input Cin to output Cout, two gates are required which
are AND and OR gates. As we are considering a 4-bit circuit, the total number of gate
levels will be 8. In the same way, for an n-bit parallel adder circuit, there is a 2n number
of gate levels.

For the construction of the carry-lookahead adder, we need two Boolean expressions
which are for carry-lookahead adder formula for carry propagate Cp and carry generate
Cog.

Cpi=Xi@® Yi

Cgi = Xi. Yi

With the above expressions, the sum and carry at the output can be given as:

Sumi = Cpi @ Ci

Ci+1 = Cgi + (Cpi . Ci)

With the above fundamental equations, the boolean expression for carry output at every

stage can be known. So

26

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

C1=Cg0 + (Cp0 . CO)

C2=Cgl + (Cpl.C1)=Cgl + (Cpl.[Cg0 + (Cp0.CO)])
Cgl+Cpl.Cg0+Cpl.Cp0.CO

C3=Cg2 + (Cp2.C2)

Cg2 + (Cp2.[Cgl+Cpl.Cg0+ Cpl.Cp0.C0])

C4 =Cg3 +(Cp3.C3)

Cg3 + (Cp3.Cg2 + (Cp2.[Cgl+Cpl.Cg0+Cpl.Cp0.CO0]

Binary adders can be converted into BCD adders. Since BCD has 4 bits with the
largest number being 9, and the largest 4-bit binary number is equivalent to 15, there is a
difference of 6 between the binary and the BCD adder: Under the following conditions 6
must be added when binary adders are used to add BCD codes:

1. When there is any carry.

2. When the sum is larger than 9.

If the order of priority is S8, S4, S2, S1 and the sum is larger than 9 then S8 x S4 +
S8u x S2. If any carry is involved, assuming the carry is CY, under this term, 6 must be

added: CY + S8 XS4+ S8 X S2.
B3A3 B2A2 B1A1 BOAD

YV VY VY VY

c_3 4-bit full adder
Carry.u

Cin 4_ Cn-1

S_3 lS_Z 1 |80
0’ ;

'YV YY l

4-bit full adder

[111

-

Cn

Cin
52 S1 80
Figure 2.7: BCD adder.

27

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

2.4.2 Half- and Full-Subtractor Circuits:

2.4.2.1 Half Subtractor:

Binary subtraction is usually performed by using 2’s complement. Two steps are
required to obtain 2’s complement. First, the subtrahend is inverted to 1’s complement, i.e.,
a“l”toa“0”and a“0”toa“l”. Secondly, a “1” is added to the least significant bit of the
subtrahend in 1’s complement.

A half-subtractor performs the task if subtraction 1-bit at a time regardless of
whether the minuend is greater or less than the subtrahend. “Borrow” from previous

subtraction is not taken into consideration

Minuend | Subtrahend | Difference | Borrow | AD
A | B | DF _ BW 5 DF
0 0 0 0
0 I 1 | I
1 o0 10 BW
| 1 0 0
(a) Truth table. (b): Half-Subtractor circuit.

Figure 2.8: Half-Subtractor.

2.4.2.2 Full Subtractor:
full subtractor is a combinational circuit that performs subtraction of two bits, one
is minuend and the other is subtrahend, taking into account borrow of the previous adjacent
lower minuend bit. This circuit has three inputs and two outputs. The three inputs A, B,
and Bin, denote the minuend, subtrahend, and previous borrow, respectively. The two
outputs, D and Bout represent the difference and output borrow, respectively. Although
subtraction is usually achieved by adding the complement of subtrahend to the minuend, it
is of academic interest to work out the Truth Table and logical realization of a full
subtractor; x is the minuend; y is the subtrahend; z is the input borrow; D is the difference;
and B denotes the output borrow. The corresponding maps for logic functions for outputs

of the full subtractor namely difference and borrow.

28

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

A B C DF BW —\

0 0 0 0 0 -),

0 0 1 1 1 A

0 1 0 1 1 BW
0 1 1 0 1 o :D_ —{o—

1 0 0 1 0 B —

1 0 1 0 0 .

1 1 0 0 0 c))7”
1 1 1 1 1 0 .

(a) Truth table. (b): Full-Subtractor circuit.
Figure 2.9: Full-Subtractor.

From a 4-bit adder circuit, we can assemble subtractor circuits of 4-bit or longer.
Figure 10 shows a dual-purpose adder/ subtractor circuit. When Bn-1= “0” additions are
performed and all XOR gates act as buffers. When Bn — 1 = “1” subtractions will be
performed and all XOR gates act as NOT gates. Y inputs use 1’s complemented and adds
a “1” from Cin. The outputs are Cn (carry) and Bn (borrow), Cn and Bn are dependent on
Bn-1.

(MSB) (LSB)
X3 X2 X1 X0

LLLL

A4 A3 A2 A1 B4 B3 B2 B1
F1 Y4

O—Ycout U9 cin F24-O

Figure 2.10: Dual-purpose adder/subtractor circuit.

29

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

2.4.3 Comparator Circuit:
At least two numbers are required to perform any comparison. The simplest form of the
comparator has two inputs. If the two inputs are called A and B, then there are three possible
outputs: A>B, A=B, and A<B. Figure 2.11 shows the schematic and symbol diagrams of a simple

1-bit comparator circuit.

e e | T
T s

(a) Logic diagram. (b): Circuit symbol.

Figure 2.11: Comparator circuit.

In actual applications, 4-bit comparators are used most often. In a 4-bit comparator, each
bit represents 2°, 21, 22, and 23. Comparison will start from the most significant bit (2%), if input
A is greater than input B at the 2° bits, the “A>B” output will be in the high state. If A and B are
equal at the 22 bits, the comparison will be carried out at the next highest bit (22). If there is still
no result at this bit, the process is repeated at the next bit. At the lowest bit (2°), if the inputs are
still equal then the “A=B” output will be in the high state. Figure 2.12 shows the schematic and

symbol of a 4-bit comparator.

B3 A3 B2 Az B1 at BO Al
AZ=B3 A3I=B3 AI<B3 AZ>B2 AI=BZ A2<B2 A1=B1 A1=B1 Al1<Bi AD>BD A0=BO AD<BO
—D I T A<B
1 1t
| A=B
._)_.

(a): A 4-bit comparator constructed with four 1-bit comparators.

30

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

A3 AZ A1 AD

—A>B
4-bit ——A=B
p—A<B

B3 B2 B1 BO

(b): Symbol of a 4-bit comparator

Figure 2.12: Expansion of 1-bit comparators to construct 4-bit comparator.

31

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

2.5 Procedure

2.5.1 Comparator Circuits

2.5.1.1 Constructing Comparator with Basic Logic Gates

a) Set module KL-33002 block c. Insert connection clips according to Figure 2.13 (a)
(connect A1 with F7 and F6 with B1). NAND and XOR gates will be used to construct
the 1-bit comparator shown in Figure 2.13 (b).

o, E}»—o F1 (A>B)
Al >°-
F6
i - ut:7400 | | Y2
" u27416 | _u3>—o F5 (A=B)
B1 .
? U3:7486 U2
Lo¥: L [) SN
B b
(a) Wiring diagram (KL-33002 block c) (b) Logic diagram

Figure 2.13: 1-bit comparator.

b) The inputs are triggered by high-state voltage. Connect inputs A and B to Data
Switches SW1 and SW2. The outputs are triggered by low-state voltage. Connect
outputs F1, F2, F5 to Logic Indicators L1, L2, and L3 respectively.

c) Follow the input sequences and the result in Table 2.1.
Table 2.1: Data for part 2.5.1.1 (c).

0 0 A=B
0 1 A>B
1 0 A<B
1 1 A=B

2.5.1.2 Constructing Comparator with TTL IC

a) Block d of module KL-33002 will be used in this section. U6 is a 74LS85 4-hit

Comparator IC shown in Figure 2.14.
32

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

o o

15T 13] 12

o

10

A~ [A3 A2 a1 a0 | AB
o— _o
A=B 3 6 A=B
o— _o
A<B 2 7 A<B
o—2 LA
B3
1 1

i

Figure 2.14: 4-bit Comparator IC (KL-33002 block Comparator 2).

b) Connect input on the left side of the block A<B to SW1 and set it to ‘0’, A=B to SW2
and set it to ‘1, A>B to SW3 and set it to ‘0°. The inputs AO~A3 connected to DIP
Switch 1.0~1.3 and BO~B3 connected to DIP Switch 2.0~2.3 also connect output on
the right side of the block A<B, A=B, and A>B to L1, L2, L3. follow cascading input

sequences in Table 2.2 and record the outputs.

Table 2.2: Data for part 2.5.1.2 (c).

=== |O0O|0O|O|O0O|O |O|O
o|olo|»r |k |OO|O|O |O|OC

= | Ol0O|0O|0O|» |O|O|O |O|O

O |FR |O|0O|0C | (kR (= | = |O|0
|~ |O|R|=|O|R (0|0 |=|O
O |O ||~ |O|= |0 | O |=|Oo

(O |R|R|Oo|r| 0ok |kLR |k o

O | |=|=|0O|00 (0| |=|Oo

Compare the results with the function table of 74L.S85 (page 2 of the datasheet)! as shown in

Table 2.3.

! https://www.futurlec.com/74LS/74LS85.shtml

33

STUDENTS-HUB.com

Uploaded By: Ahmad K Hamdan

https://www.futurlec.com/74LS/74LS85.shtml

Table 2.3: function table of 74L.S85.

Comparing Cascading Outputs
Inputs Inputs
A3, B3 A2, B2 A1, B1 A0, BO | A>B A<B A=B | A>B A<B A=B
A3 > B3 X X X X X X H L L
A3 <B3 X X X X X X L H L
A3=B3 | AZ2>B2 X X X X X H L L
A3=B3 | A2<B2 X X X X X L H L
A3=B3 | AZ=B2 [A1>B1 X X X X H L L
A3=B3 | AZ=B2 [A1<B1 X X X X L H L
A3=B3 | A2=B2 [A1=B1 | A0O>B0 X X X H L L
A3=B3 | AZ=B2 [A1=B1 | AO<BO X X X L H L
A3=B3 | A2=B2 | A1=B1 | A0O=B0 H L L H L L
A3=B3 | A2=B2 [A1=B1 | AO=B0 L H L L H L
A3=B3 | A2=B2 | A1=B1 | AO=B0 L L H L L H
A3=B3 | A2=B2 | A1=B1 | AO=B0 X X H L L H
A3=B3 | A2=B2 | A1=B1 | AD=B0 H H L L L L
A3=B3 | A2=B2 | A1=B1 | A0O=B0 L L L H H L

H = HIGH Level, L = LOW Level, X = Don't Care

Design a three-bit comparator (using the basic comparator) and hand it out to your
TA. (Pre-Lab).

2.5.2 Half- and Full-Adder Circuits

Hand out the design, Boolean function, and truth table of half- and full-adder to your
TA. (Pre-Lab).

a) Set module KL-33004 and locate block a. Insert connection clips according to Figure
2.15 (a), using XOR and AND gate to assemble the half-adder circuit of Figure 2.15 (b).
Connect the +5V of module KL-33004 to the +5V output of the fixed power supply.

u4 FO

w)-or

oO—
T A0——1=
C
o . F5 + | U5 F2
15 so—1
O A3
é J us 2]
o
E
(a) Wiring diagram (KL-33004 Half-Adder block) (b) Half-Adder circuit

Figure 2.15: Half -Adder.

34

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

b) Connect inputs A, B to Date Switches SWO0, SW1 and connect outputs F1, F2 to logic
indicators L1 and L2. Follow the input sequences for A and B in Table 2.4 and record
the output states.

Table 2.4: Data for part 2.5.2 (b).

0
0
1
1

0
1
0
1

c) Reassemble the circuit according to Figure 2.16 (a) to construct the full-adder circuit shown
in Figure 2.16 (b).

d) Connect A, B, C to SW1. SW2 and SW3. A and B are augends while C is the previous carry.
Connect F3 to L1, F5 to L2. Follow the input sequences in Table 2.5 and record the output
states.

U4 FO

o—:@__D*O
B F2 A2
< ~ Fa AG \
L)——0 i
EQ |/ uz F3
c
2 F5
< —)_@——O “ us ¥ T
O A3 O
D F6
us
“ N e —" L
O co 7
O
E
(a) Wiring diagram (KL-33004 Full-Adder block) . (b) Full-Adder circuit.

Figure 2.16 Full adder

35

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Table 2.5: Data for part 2.5.2 (d)

===, O0O0|0C|OC

Rr|lkr|lo|lo|r|r|lo|e
Rrlo|lr|lo|r|o|r|o

2.5.3 Half- and Full Subtractor Circuits
Hand out, Design, Boolean function, and truth table of half- and full-subtractor to
your TA. (Pre Lab).

a) Set module KL-33004 and locate block a. Insert connection clips according to
Figure 2.17.

b) Connect inputs A~C to Data Switches SW0~SW?2; Outputs F2 to Logic Indicator
L1; F1to L2; F3to L3; and F5 to L4. When C=0 the circuit is a half-subtractor. F1
is the borrow output; F2 is the difference. F5=F2; F4=0; F3=F1. When C=1 the
circuit is a full-subtractor. F3 is the borrow output and F5 is the difference output.

u4 FO
> 9, F3
ueé
u7
A mr‘_: -
S
B F2 A2 -
° S0
C
" 10
a) Us F6
O
E

Figure 2.17: Wiring diagram (Half-subtractor).

36

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

c) Follow the input sequences in Table 2.6 and record output states.

Table 2.6: Data for part 2.5.3 (c)

0 0 1
Half- o 0 0
subtractor o 1 1
Half-adder 0 1 0
1 0 0

Full-
1 0 1
subtractor 1 1 o
Full-adder 1 1 1

2.5.4 Constructing 4-Bit Full-Adder with IC

a) U5 on block b of module KL-33004 is used as a 4-bit adder. Connect input Y5 to
SWO, so the XOR gates, which are connected to YO~Y3, will act as buffers.
Connect input X0~X3 (addends), and YO~Y3 (augends) to DIP switches
DIP2.0~2.3 and DIP1.0~1.3 respectively as shown in Figure 2.21. Connect F1,
F8,F9,F10 and F11 to L1~L5. Follow input sequences in Table 2.7 and set SWO to

“0”; record F1 and X in binary numbers.

X = X3X2X1X0
Y =Y3Y2Y1YO0
2 =23%22%120
e S se)
U11:74LS08 Y3 Y2 Y1 YO
U10:74LS32 Y5
O
(MSB) (LSB) AR e P e P
X3 X2 X1 X0 us| us) (us) (us
i ?3 i ?10 16 |4 |7 |11
A4 A3 A2 A1 B4 B3 B2 B1
5 (- 13| ¥4
Cout us Cin O
34 33 32 31

15 |2 |6 |9

Figure 2.18: Wiring Diagram (KL-33004 4-bit block b).

37

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Table 2.7: Data for part 2.5.4 (a)

38

Uploaded By: Ahmad K Hamdan

STUDENTS-HUB.com

2.5.5 Constructing 4-Bit Full-Subtractor with IC

a) Use Module KL-33004 block b (Figure 2.22). Connect inputs X3~X0 (minuend)
to DIP Switch 1.3~1.0; Y3~YO0 (subtrahend) to DIP 2.3~2.0; Y5 to SWO.
Connect outputs F1 to L4; F11~F8 to L3~L0. To execute the subtract operation,
set SWO to “1” (or Cin of U5=1). Follow the input sequences below and record
the output states in Table 2.8.

U9,U12:74LS83 (MSB) (LSB)
UL 74LB08 Y3 Y2 Y1 YO
U10:74LS32 O O ? O Y5
&
(MSB) (LSB) 3 g _
X3 X2 X1 oe) (os @
? ?m 16 |4 11
A4 A3 A2 A1 B4 B3 82 B1
B, s | Y
Cout us Cin —.-O
34 33 32 31

|15 |2 |6 I9

Figure 2.19: Wiring Diagram for full subtractor (KL-33004 4-bit block b)

Table 2.8: Data for part 2.5.5 (a)

0 1 0 0 0 1 0 0
0 1 0 0 0 0 1 1
1 0 0 0 0 0 1 1
1 0 0 0 0 0 0 1
1 0 0 1 1 0 0 0
1 0 0 1 0 1 1 1
1 0 1 0 0 1 1 0
1 0 1 0 0 1 0 1
1 0 1 1 1 0 1 0
1 1 1 1 1 0 1 0
39

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

2.5.6 Constructing BCD Adder

a) The circuit shown in Figure 2.20 will act as a BCD adder.
b s \LsB}
U11:74LS08 Y3 Y2 Y1 YO
U10:74LS32

(MSB) (LSB)
X3 X2 X1 X0

Ay

A4 A3 A2 A1 B4 B3 B2 B1
< - 13| X4
C Cout us Cin O
34 33 32 31
15 |2 |6
4
2 (ur
O—(1of | Y TFo| Ors
ut1 F11 '®)
N

L oz ls Lo lsls |7 |
A4 A3 A2 A1 B4 B3 B2 B1

O—cout U9 Cin -1—31

24 33 32 31
15 |2 |6 |9

F7 F6 F5 F4
(MSB) (LSB)

Figure 2.20: Wiring Diagram (KL-33004 BCD Adder).

b) Connect inputs X0~X3 to DIP 1.0~1.3; YO~Y3 to DIP 2.0~2.3; Y5 to “0”.
U5 and U9 are 74L.S83 look-ahead 4-bit BCD adders, connect outputs F8~F11
to the inputs of the 7-Segment display SEG-1. Connect F1, F2 to Logic
Indicators L4 and L5. Connect outputs F4~F7 of U9 to another 7-Segment
display SEG-3 and F3 to L10.

¢) F8~F11 are the sum of X0~X3 added to YO~Y3 while F1 is the carry. Follow
the input sequences for X0~X3 and YO~Y3 in Table 2.9 and record the output
states.

40
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Table 2.9: Data for part 2.5.6 (c)

41

Uploaded By: Ahmad K Hamdan

STUDENTS-HUB.com

2.5.7 High-Speed Adder Carry Generator Circuit
a) 74182 on block a KL-33003 is used to construct a carry generator circuit shown in

Figure 2.21.

E u1 24 6o

O—q— 1 Cn+x;12_o
e u1 G1

B1 2 P1 cn_,_“ﬂ O

U3
g ud 1 G2 Cn+z;5_0
sl e o
chbil

O 5

e u1 G3 pb—0O
= : P3

UM TALS00
U2: TeL 5266
U3: 7eL51682

Figure 2.21: Carry generator circuit.

b) Connect inputs A0O~A3 (addends) to DIP Switches 1.0~1.3; BO~B3 (augends) to
DIP2.0~2.3, connect Cn to SWO0, and set SWO to “0”. Follow the input sequences in
Table 2.10 and record output states.

Table 2.10: Data for part 2.5.7 (b)

R |O|R |k (kR O0|O O
olr|kr|r|lo|jlo|o|o|o
OlR |k (kR |k (LR |Oo(k|o

== o0~ |0|0|~
olo|r |k |r|lo|o|o|e
Rk~ |kr|lo|lo|jo|lo]|o

O |r|Oo|kR|O|kR |k |m|o
ok |~k io|r|o|0|k

- Compare the results with the truth table of 74L.S182 (datasheet).
- Selected Tasks by the instructor.

42
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

2.6 PostLab
1. Design an 8-bit BCD adder.

2. Design an 8-bit comparator using 2 of the 4-bit comparator.

3. A 4-input, 3-output circuit that compares 2-bit unsigned numbers and outputs a ‘1’ on one of
three output lines according to whether the first number is greater than, equal to, or less than
the other number. You can only use two 4x1 multiplexers.

43
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

D ‘*v/ g
BIRZEIT UNIVERSITY

Faculty of Engineering and Technology

Department of Electrical and Computer Engineering

ENCS 2110

Digital Electronics and Computer Organization Lab
Experiment No. 3 - Encoders, Decoders, Multiplexers, and Demultiplexers

3.1 Objectives

To understand the operating principles of Encoders/Decoders

To understand the operating principles of Multiplexers/Demultiplexers

To construct Encoders and Decoders using basic gates and ICs

To construct Multiplexers and Demultiplexers using basic gates and 1Cs

3.2 Equipment Required

KL-31001 Basic Electricity Circuit Lab

KL-33004 Combinational Logic Circuit Experiment Model (3)

KL-33005 Combinational Logic Circuit Experiment Model (4)

KL-33006 Combinational Logic Circuit Experiment Model (5)

44
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

3.3 Pre-Lab

1) Design a circuit which uses an SN74151 to implement a sum-of-products expression, as
follows:

a) Convert the following expression into summation form (i.e., F (A, B, C) =) (...)):

Y = f(4,B,C) = AB + BC

b) Sketch on Figure 3.1 the input connections necessary to implement the function in part (a).
Observe that the inputs are connected to 0 or 1 depending on the value of the function for

that min term.

Important: Please note that this way we can implement a 3-input function (A, B, C) using
an 8-to-1 MUX. Later we will see how to implement a 4-input function (A, B, C, D) using
an 8-to-1 MUX. For that we will need to inspect the additional input (say D) with the

corresponding function value. The possible inputs to the MUX are 0, 1, D, D".

=ODD

Figure 3.1: Half-Adder Functional Diagram.
2) Design a circuit which uses an SN74138 Demultiplexer to implement a sum- of-products

expression, as follows:

a) Convert the following expression into summation (Sum of Products —~SOP-) form (i.e.
F(A,B,0)=>(...)):
Y = f(4,B,C) = ABC + BC

45
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

3.4 Theory

3.4.1 Decoder

The combinational circuit that changes the binary information into 2N output lines is
known as Decoders. The binary information is passed in the form of N input lines. The output
lines define the 2N-bit code for the binary information. In simple words, the Decoder performs
the reverse operation of the Encoder. At a time, only one input line is activated for simplicity.
The produced 2N-bit output code is equivalent to the binary information. The outputs of the

decoder are nothing, but the min terms of ‘N’ input variables lines as shown in Figure 3.2.

— ———»
— >
N 5 Nto2" —>
nputs 3 Decoder ¢ 2
: e outputs
— >

Figure 3.2: General Decoder block diagram.

Example show 2 to 4 Decoder. Let 2 to 4 Decoder has two inputs A1 & A0 and four
outputs Y3, Y2, Y1 & YO. The block diagram of 2 to 4 decoder is shown in the following figure.

A Y3
1 ———>
2to4 Y,
Ag »| Decoder
—> Yy
E —>» > Yo

Figure 3.3: 2 to 4 Decoder with enable.

One of these four outputs will be ‘1’ for each combination of inputs when enable, E is ‘1°.

The Truth table of 2 to 4 decoder is shown below.

46
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Table 3.1: Truth table of 2 to 4 decoder with enable

N = =N S =)
R R O O] X
=1 E=1
R ol o o o
o | ol o ©
ol ol | o ©
ol ol ol »| ©

Each output is having one product term. So, there are four product terms in total. We can
implement these four product terms by using four AND gates having three inputs each & two
inverters. The circuit diagram of 2 to 4 decoder is shown in the following figure.

Ay

I T

Y3

Y2

Y1

Yo

JUUU

Figure 3.4: 2 to 4 Decoder circuit.

3.4.2 Encoder

An Encoder is a combinational circuit that performs the reverse operation of a Decoder.
It has a maximum of 2N input lines and “N” output lines. It will produce a binary code equivalent
to the input, which is active High. Therefore, the encoder encodes 2N input lines with ‘n’ bits. It

is optional to represent the enable signal in encoders.

47
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Example show 4 to 2 Encoder. Let 4 to 2 Encoder has four inputs Y3, Y2, Y1 & YO and
two outputs Al & AO. The block diagram of 4 to 2 Encoder is shown in the following figure.

At any time, only one of these 4 inputs can be ‘1’ to get the respective binary code at the

1(0)

I
27n inputs

I

l

I(n)

A general
2°nton

ENCODER

0(0)

n Outputs
|

Figure 3.5: General encoder block diagram.

4to2
Encoder

Figure 3.6: 4 to 2 Encoder.

output. The Truth table of 4 to 2 encoder is shown below.

Table 3.2: Truth table of 4 to 2 encoder

O(n)

> Ag

= Ol OO

Ol k| OO

o O | O

o O Ok

= O O

= Ol O

STUDENTS-HUB.com

48

Uploaded By: Ahmad K Hamdan

lowest priority

Do
D
D-:
Ds
Ds
Ds
Ds

D
highest

priority

STUDENTS-HUB.com

inputs

We can implement the above two Boolean functions by using two input OR gates. The
circuit diagram of 4 to 2 encoder is shown in the following figure.

Y3
Yo

Ap
Y1

Figure 3.7: 2 to 4 Decoder circuit.

The Priority Encoder solves the problems mentioned above by allocating a priority level
to each input. The priority encoders output corresponds to the currently active input which has
the highest priority. So, when an input with a higher priority is present, all other inputs with a
lower priority will be ignored.

The priority encoder comes in many different forms with an example of an 8-input

priority encoder along with its truth table shown below.

Digital Inputs Binary Outputs
Di|Ds| Ds | Ds| Ds | D | Dy | Do | Q2| Q1| Qo
X-Don'tcare 0Oj0}| 0] O 0 0 0 | 010 0
0 0 0 0 0 0 1 X 0 0 1
Qo 0 0 0 0 0 1 X X 0 1 0
8 x 3
Qu 0 0 0 0 1 X X X 0 1 1
Priority Encoder [Q, 0ol o0 01 X X | X |1 X110 0
010 1 | X X X X | X |1 0 1
outputs
0 1 X | X X X X X 1 1 0
1 X[X | X X X X X 1 1 1

(a) 8 to 3 priority Encoder block diagram. (b): 8 to 3 priority Encoder truth table.

Figure 3.8: 8 to 3 priority Encoder.

49

Uploaded By: Ahmad K Hamdan

3.4.3 Multiplexer

A multiplexer is a combinational circuit that has maximum of 2" data inputs, ‘n’ selection
lines and single output line. One of these data inputs will be connected to the output based on
the values of the selection lines. Since there are ‘n’ selection lines, there will be 2" possible
combinations of zeros and ones. So, each combination will select only one data input.
Multiplexer is also called as Mux.

Example show 4 to 1 Mux. 4x1 Multiplexer has four data inputs 13, 12, I11 & 10, two
selection lines s1 & sO and one output Y. The block diagram of 4x1 Multiplexer is shown in the

following figure.

Ipb, —» 4x1

I; ——> Multiplexer

I

51 SO

Figure 3.9: 4 to 1 Mux block diagram.

One of these 4 inputs will be connected to the output based on the combination of inputs

present at these two selection lines. Truth table of 4x1 Multiplexer is shown below.

Table 3.3: Truth table of 4 to 1 Multiplexer

I =

= Ol O O
| Ol | O

We can implement this Boolean function using Inverters, AND gates & OR gate. The

circuit diagram of 4x1 multiplexer is shown in the following figure.

50
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

S1

S0 1

1) m—

=Dy

Figure 3.10: 4 to 1 multiplexer circuit.

3.4.4 De-Multiplexer

De-Multiplexer is a combinational circuit that performs the reverse operation of
Multiplexer. It has single input, ‘n’ selection lines and maximum of 2" outputs. The input will
be connected to one of these outputs based on the values of selection lines. Since there are ‘n’
selection lines, there will be 2" possible combinations of zeros and ones. So, each combination
can select only one output. De-Multiplexer is also called as De-Mux.

Example show 1x4 De-Multiplexer. 1x4 De-Multiplexer has one input I, two selection
lines, s1 & sO and four outputs Y3, Y2, Y1 &YO0. The block diagram of 1x4 De-Multiplexer is

shown in the following figure.

—
> Y3
1x4 Ys

I » De-Multiplexer
—> Y4
—> Yy

(I

S1 So

Figure 3.9: 1 to 4 De-Mux block diagram.

51
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

The single input ‘I’ will be connected to one of the four outputs, Y3 to YO based on the

values of selection lines s1 & sO. The Truth table of 1x4 De-Multiplexer is shown below.

Table 3.4: Truth table of 1 to 4 De-Multiplexer

= O O ©
| O k| O

- O] O| O

ol - O O

oo — O
oo o —

We can implement these Boolean functions using Inverters & 3-input AND gates. The

circuit diagram of 1x4 De-Multiplexer is shown in the following figure.

I
S1

So

STUDENTS-HUB.com

\

Y

Y3

Y2

Y1

Yo

TTTT

Figure 3.10:1 to 4 De-multiplexer circuit.

52

Uploaded By: Ahmad K Hamdan

3.5 Procedure

3.5.1 Constructing a 4-to-2 Encoder with Basic Gates

Constructing a 4-to-2 Encoder with Basic Gates (Module KL-33005 block a).
a) Insert connection clips according to Figure 3.11.

u1
Figure 3.11: wiring diagram of 4-to-2-line Encoder.

b) Connect the +5V of module KL-33005 to the +5V output of the fixed power
supply section of KL-31001.

c) Connect inputs A~D to Data Switches SWO0~SW3 respectively; outputs F8 and
F9 to Logic Indicator LO and L1.

d) Follow the input sequences for D, C, B, and A; in Table 5, record the output

states.
Table 3.5: Data for part 3.5.1 (d)

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
53

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

PR Rk R~
SN E=1=
R oo k|-
| o|lr|lolr|lo

3.5.2 Constructing 9-to-4-Line Encoder with TTL IC

a) The 74147 (U1) on block a of module KL-33006 is used in this experiment section.
Connect the +5V of module KL-33006 to the +5V output of the fixed power supply.
Note that the IC uses only 9 inputs.

Al F1
oO—Y: o F—Quss
A2 - F2
Oo—: c —O
A3 Ul F3
o—1fs s f—0
Ad 1 g Fd
O—- apP—ss
AS s
o—s
T4147
Ab 3 10 AD
o—4e Ny e
AT AR

Figure 3.12: 74147 BCD Priority Encoder.

b) As you know, the main Kit has 2 sets of DIP switches, with 8 switches each: 1.1-1.8
and 2.1-2.8. Connect inputs A1~A8 to DIP Switches 1.1~1.8 and A9 to 2.1 (or one of
the unused main switches S1-S4). Connect outputs F1~F4 to Logic indicators L1~L4.
Follow the input sequences given in Table 6 and record output states. Be aware of the
active LOW and active HIGH polarity for the inputs/outputs when interpreting the

results.

54
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Table 3.6: Data for part 3.5.2 (b)

(=N T T N P PN P TN T F= N T

SN IR E E R

SN EIEEEIR IR
Rk |lolo|k |k |o|lr|lo|lo|k |k

[l el Ll Ll i Ll Ll L Ll Ll =R (=]
o|lo|o|r|(F|FP|FP|IFR|FR[FR|F|F
o|o|r|O(FR|FP|FR|IFR|FR[FR|F|F
o|o|r|r|Oo|lo|rR|FR|FR[FR|F|F
Rk olr|lo|lRr|OFR|F|FR|F]|F

3.5.3 Constructing 2-to-4 Line Decoder with Basic Gates

a) Block ¢ of module KL-33005 will be used in this section of the experiment. Connect

+5V of module KL-33005 to the +5V output of fixed power supply.
B A

us

c
]

m
-

s
w

1999

m
Iy

Figure 3.13: 2-to-4 Decoder.

b) Connect inputs A, and B to Data Switches SW0 and SW1. Connect outputs F1~F4 to Logic

Indicators LO~L3 respectively.

c) Follow the input sequences for A and B in Table 3.7 and record output states.

55
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Table 3.7: Data for part 3.5.3 ()

| k| O] O
| O | O

3.5.4 Constructing 4-to-10 Line Decoder with TTL IC

a) U10 (7442) on block ¢ of module KL-33004 will be used in this section of the
experiment. 7442 is a BCD-to-Decimal decoder IC. BCD: Binary Coded Decimal.

LsB 15

" T

14

T Y

12

!

MSB

s pi-O

Figure 3.14: 4-to-10-line Decoder.
b) Connect inputs A, B, C, and D to the Data Switches SW0, SW1, SW2 and SW3,
respectively. Connect 10 outputs to corresponding Indicators LO~L9.
c) Adjust the switches according to Table 3.8. Observe the output states at LO~L9.
Record input and output logic states in Table 8. (Note input is the binary number for

the number in the first column and the outputs active low).

56
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Table 3.8: Data for part 3.5.4 (c)

Ol NI PlW|IDN|IFL| O
Rl ~|lo|lo|lo|lolo|lololo
o|lo|r|r|r|lr|lololo|lo
o|lo|r|r|lolo|r|r|lolo
R|lo|lr|o|lr|olr|lolrlo

3.5.5 Constructing 2-to-1-Line Multiplexer with basic Gates

a) Block e of module KL-33006 will be used as a 2-to-1 MUX. Connect +5V of module
KL-33006 to the +5V output of fixed power supply.

A
F1

[usP—O

C
F3
us
FO
e S

= F2
Figure 3.15: 2-to-1 Multiplexer.
b) Connect inputs A, B to Data Switches SWO0, SW1; Selector C to SW2. Connect
output F3 to Logic Indicator LO.
c) Follow the input sequences in Table 3.9 and record states of F3. Which input (A or
B) determines the output for each value of C? Does this correspond to a 2-to-1

Multiplexer as you know it?

57
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Table 3.9: Data for part 3.5.5 (c)

PR, O|lO|lO| O
PR, O|O|RFrR|FL,|IO| O
P|IO| P O|FrR,|O|Fr| O

3.5.6 Constructing 8-to-1 Line Multiplexer with IC
a) Chip (74LS151) on block f of module KL-33006 will be used in this section of the

experiment.

O—12 D7
O—=4{os sTrOBE y O
O—ps EDG—O
O—2{os aP—0O
O3l u3
O—3p2 AF—Qvsse
O—3o1 s O
O—3oo cP—QOwss

_ u4

D O_°4_O D

7404

Figure (16): 8-to-1 MUX.

b) Refer to the datasheet for specifications of the 74LS151. A, B, C are the control
(selection) inputs: CBA is the value of C then B then A. So, CBA=011 means that
C=0, B=1, A=1. Q is the output of the MUX.

When CBA = “000”, data at DO is sent to output Q.
When CBA =“010”, data at D2 is sent to output Q.

When CBA =“111”, data at D7 is sent to output Q.
The IC will function properly only when STROBE = “0”.

58
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

When STROBE = “1” IC do not change output according to inputs, Q will remain
661’9.

¢) Connect inputs DO~D7 to DIP Switch 1.0~1.7; inputs C, B, A to Data Switches SW2,
SW1, SWO0. Follow the input sequences in Table 6, adjust DO~D7 and CBA, and
record output states. Determine which input among DO~D7 does Q depends on.

Table 3.10: Data for part 3.5.6 (c)

PP | PP, O O|lO| ©
|| O|lO| F| |l O|] O
| Ol k| O k| O|lF]| O

3.5.7 Using Multiplexer to implement a Logic Function

Given the following function:

F (A, B, C,D) =) (0,2,4,5,7,8,10,11,15)

a) Implement the function using the 8-to-1 multiplexer using Block f of module KL-
33006. Note that we have 4 inputs for this function. Three of them will be
represented by the controls C B A.

b) Connect inputs D, C, B, A to Data Switches SW3, SW2, SW1 and SWO
respectively. Connect output Y (Q) to Logic Indicator LO.

c) Connect the Inputs DO~D7 to the proper input from: {0,1,D,D’} based on
comparing the value of Y and input D for a fixed C B A value: 0 if Y=0 for D=0
and D=1, 1 if Y=1 for D=0 and Y=1 for D=1, D if Y=0 for Y=0 for D=0 and
Y=1 for D=1 and D’ if Y=1 for D=0 and Y=0 for D=1.

d) Record output states in Table 3.11.

59
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Table 3.11: Data for part 3.5.7 (d)

Rl R R R R k|~ o oo o o] o ©

Rl O Ol | OO | POl O| kP, Ol O
| O| k| Ol O PO Pl O O] k| O| | O

|| P PO O OO P PPk P O Ol O O

3.5.8 Constructing 1-to-2 Line Demultiplexer with Basic Logic Gates

a) Block e of module KL-33006 will be used in this section. Make the connections
according to Figure 3.17. Connect A to Data Switch SWO0; C to SW3; F1 and F2 to

Logic Indicators L1 and L2 respectively.

Figure 3.17: 1-to-2 Demultiplexer.

b) Set C to “0” and change data at input A. Observe how F1 and F2 changes. Set C to

“1”, change A and observe how F1 and F2 react to changes of A.

60
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Table 3.12: Data for part 3.5.8 (b)

1 0 \
1 1 \ O
3.5.9 Constructing 1-to-8-Line Demultiplexer with CMOS IC

-

a) U2 (4051) on block b of module KL-33006 is used in this section of the experiment.
Connect +5V, -5V of module KL-33006 to the +5V and -5V output of fixed power
supply respectively.

eEQ—Hcom v 2—O
=0

00— =0

w |,

wh—0

wss ¢ Q—= ¢ vs P—O
sO—s ve F—0O
tss AQ—Ha v F—O

Figure 3.18: 1-to-8 Demultiplexer

b) Connect E to DIP1.0; D to DIP1.1; A to SWO; B to SW1,; C to SW2; outputs YO~Y7
to Logic Indicators LO~L7 respectively.

c) At D=0, apply the input sequence 1->0->1->0 to the common input E and observe
outputs YO~Y7. Did the outputs change as the input sequence is applied? Why?

d) At D=1, apply the input sequence 1->0->1->0 to the common input E and observe
outputs YO~Y7. Did the outputs change as the input sequence is applied?

e) Using the same sequence for E (1->0->1->0) with D=0, follow the sequence for A,
B, and C given in Table 3.13. Record output states.

61
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Table 3.13: Data for part 3.5.9 (e)

PPk (RPO|OC|O|O
R |k, OO(Fkr|k,|O|O
POk, |[OFkr|O|—|O

- Selected Tasks by the instructor.

3.6 PostLab

1. Implement 8x1 Multiplexer using lower order Multiplexers Show how to solve it.

2. Design a Majority Circuit; a circuit that takes 4 inputs A, B, C, D and 1 output Y. Its output equals 1
when 3 or 4 of the inputs are 1. You can only use two 4x1 multiplexers.

62
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

BIRZEIT UNIVERSITY
Faculty of Engineering and Technology

Department of Electrical and Computer Engineering

ENCS 2110

Digital Electronics and Computer Organization Lab
Experiment No. 4 - Digital Circuits Implementation using Breadboard

4.1 Objectives

e Understanding the NAND and NOR gate characteristics and how to implement circuit

e To continue the previous experiment with simple digital devices and their operations using a
breadboard.

4.2 Equipment Required
e KL-31001 Basic Electricity Circuit Lab
e Breadboard

e Integrated circuits (Chips):
> 1C 7404 (inverter)
> IC 7408 (2-input AND)
> IC 7432(2-input OR)
> IC 7400(2- input NAND)
> IC 7486 (2-input XOR)

63
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

4.3 PrelLab

1) Watch the video in the link below to understand what the breadboard is and how it works and the
way components, including chips are connected to the breadboard as was done in experiment 1.

https://www.youtube.com/watch?v=gwcVr5VXwA

2) Recall how to identify the pins of a chip. You may find the following presentation useful:
https://www.youtube.com/watch?v=Y9vsZTpnDDI

3) Design and implement the following circuit using the gates on the chips as shown in Figure 4.1(.

Your final circuit must include the ICs, their pin numbers, and the connections between the

pins.).

a) Build Full Adder using basic gates.

b) Build the bellow circuit using universal gates.

c) Build a 3x8 Decoder (active low) using basic gates.

d) Build an 8x1 Multiplexer using basic gates.

e) Use the just constructed 4x1 multiplexer to design a three-input network that gives
1 if the majority of its inputs are 1 and outputs a zero otherwise.

f) Use the 2x4 decoder to implement a 2-input function that acts like an equivalence

gate (XNOR): gives 1 on the output if both inputs are equal.

STUDENTS-HUB.com

64

Uploaded By: Ahmad K Hamdan

https://www.youtube.com/watch?v=gwcVr5VfXwA
https://www.youtube.com/watch?v=Y9vsZTpnDDI

4.4 Theory

4.4.1 T74xx I1Cs Family

The first family of logic chips to really catch on was Texas Instruments 74 series TTL.
These contain bipolar transistors, run on 5V, are fast and use rather a lot of power. However, the
74xx numbering scheme has persisted. For example, a 7400 (seven-four-zero-zero) is a quad
NAND gate. Today you can buy 74C00, 74HCO00, 74HTCO00, 74LS00, and 74S00. Those are 5V
families. Then there is low (3.3V or lower) voltage families like 74LVVC, 74AUP and so on.
Some of these use bipolar transistors, others (these days most) use CMOS transistor technology.
Note: There are several logic ICs numbered from 74xx onwards with letters (xx) in the middle of the

number to indicate the type of gate as shown in Figure 4.1. Figure 4.1 shows some digital gates with

identification numbers and pin assignments.

Cuuacl HAND gate Quiad NOR gate
[5] [ee] [u] [w] [s] [s] @mmmmmm

D @)E
O[O]
N E N E R I ER N E N E R I ER

oi’ﬁ‘iﬁ%‘ﬁm Quad OR gate
?|—| [1] [wo] [s] [s] ;+|?||F|II|EIFIFI
IR [
O D1, [D
L] T BT I [[s] [2] L] T BT I [[s] [2]
;mm%mﬁga%mm FW%MT;TEIFIFI
FIET B [S b
D11 [P
LT T BT BT & & & LT BT BT &] &

Figure 4.1: DIGITAL GATES IN IC PACKAGES.

65
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

4.4.2 Breadboard

The breadboard consists of two terminal strips and two bus strips (often broken in the
center). Each bus strip has two rows of contacts. Each of the two rows of contacts are a node.
That is, each contact along a row on a bus strip is connected (inside the breadboard).

Bus strips are used primarily for power supply connections but are also used for any node
requiring a large number of connections. Each terminal strip has 60 rows and 5 columns of
contacts on each side of the center gap. Each row of 5 contacts is a node as shown in Figure 4.2.

You will build your circuits on the terminal strips by inserting the leads of circuit
components into the contact receptacles and making connections with 22—26-gauge wire. There
are wire cutter/strippers and a spool of wire in the lab. It is a good practice to wire +5V and 0V

power supply connections to separate bus strips.

Often gap here

I

um“‘" Strip A RIELE Liseses 41

Figure 4.2: The breadboard. Lines indicate connected holes.

The 5V supply MUST NOT BE EXCEEDED since this will damage the ICs (Integrated
circuits) used during the experiments. Incorrect connection of power to the 1Cs could result in
them exploding or becoming very hot - with the possible serious injury occurring to the people
working on the experiment! Ensure that the power supply polarity and all components and
connections are correct before switching on power. You can learn more about the breadboard by
click in this link https://youtu.be/gwcVISVIXwA

66
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

https://youtu.be/gwcVr5VfXwA

45 Procedure

In this experiment, we will use a breadboard to implement different circuits using basic
gates and NAND and NOR gates to build other gates. Before that, there were some instructions
to build a circuit and the common problems.

Building the Circuit:

Throughout these experiments, we will use TTL chips to build circuits. The steps for wiring a
circuit should be completed in the order described below:

1. Turn the power (Trainer Kit) off before you build anything!

2. Make sure the power is off before you build anything!

3. Connect the +5V and ground (GND) leads of the power supply to the power and
ground bus strips on your breadboard.

4. Plug the chips you will be using into the breadboard. Point all the chips in the same
direction, with pin 1 at the upper-left corner. (Pin 1 is often identified by a dot or a
notch next to it on the chip package)

5. Connect +5V and GND pins of each chip to the power and ground bus strips on the
breadboard.

6. Select a connection on your schematic and place a piece of hook-up wire between the
corresponding pins of the chips on your breadboard. It is better to make the short
connections before the longer ones. Mark each connection on your schematic as you
go, so as not to try to make the same connection again at a later stage.

7. Get one of your group members to check the connections before you turn the power
on.

8. If an error is made and is not spotted before you turn the power on, Turn the power
off immediately before you begin to rewire the circuit.

9. At the end of the laboratory session, collect your hook-up wires, chips and all
equipment and return them to the demonstrator.

10. Tidy the area that you were working in and leave it in the same condition as it was

before you started.

67
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Common Causes of Problems:

Not connecting the ground and/or power pins for all chips.
Not turning on the power supply before checking the operation of the circuit.
Leaving out wires.

wires into the wrong holes.

o > w0 b oE

Driving a single gate input with the outputs of two or more gates
Modifying the circuit with the power on.

4.5.1 Verification of basic logic gates

In this task you are to verify the operations of some of the ICs.

1. Test each chip using the IC tester and make sure that it is functioning properly.

2. Place each chip shown in Figure 4.1 on the breadboard in such a way that its pins are
not short-circuited. Make sure power is off while you place IC’s and connect wires.

3. Connect GND and +5V for each chip you want to check. Connect the gate inputs to
the dip switches and the gate output to any LED. Determine the output for each
possible input combination and compare your results with the expected Truth Tables.

4. Verify the function of the 7400 (2-input NAND) chips by observing how the output
of the Gates changes in response to input changes.
a) how does the gate act if one of its two input is held at “1”?

b) how does the gate act if its two inputs are connected together?
4.5.2 Build circuits using Gates
a) Implement the following circuit in Figure 4.3 using basic gates and fill the truth

table (Table 4.1).

A
B

F1

Figure 4.3: Circuit 1 using basic gates.

68
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Table 4.1: Data for part 4.5.2 (a)

| = O] O
| Ol | O

b) Implement the following circuit in Figure 4.4 using basic gates and fill the truth table
(Table 4.2).

} J

Figure 4.4: Circuit 2 using basic gates.

Table 4.2: Data for part 4.5.2 (b)

H

Pl PP, Ol O|lO| O
Pl Ol O| k| FL|O| O
| O| P O| k| Ol FL,| O

69
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

c) Implement the following circuit in Figure 4.5 using basic gates and fill the truth table
(Table 4.3).

Fi

F2

Figure 4.5: build circuit 3 using basic gates.

Table 4.3: Data for part 4.5.2 (C)

| k| O O
| O | O

d) (Adder) Use any needed gates shown in Figure 1 and the designs you prepared
as a pre-lab to implement the full adder, test your design by verifying the truth table
of the Full Adder.

=) T D .

A 4

Co

Figure 4.6: Full Adder.

70
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

e) (Decoder) Use any needed gates shown in Figure 1 and the designs you prepared
as a pre-lab to implement the 2x4 decoder. Test your design by verifying the truth
table of the DECODER.

il—T >GI .
i{)—T >C

Figure 4.7: 2x4 decoder.

f) (Multiplexer) Use any needed gates shown in Figure 1 and the design you prepared
as a pre-lab to implement the 4x1 multiplexer. Test your design by verifying the truth
table of the MUX.

S1=A 30=B

v |y

;o il
;2"

i
;_

V% F
bt

i
ot

F=ABW+ ARX+ ABY+ ABZ

Figure 4.8: 4X1 Multiplexer.

- Selected Tasks by the instructor.

71
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

4.6 Post Lab

1. How do you go about adding an Enable (E) signal to the decoder in Figure 4.7? Modify the
implementation to show that. (Design Only using chips in Figure 1).

2. How to use that to implement a 3x8 decoder using chips in Figure 1.

3. Use the just constructed 4x1 multiplexer to design a three-input network that gives 1 if the
majority of its inputs are 1 and outputs a zero otherwise (Design Only using chips in Figure
1).

4. Implement f(x, y, z) = m(0, 1, 4, 6, 7), using 4x1 MUX using chips in Figure 1.

72
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

D ‘*v/ g
BIRZEIT UNIVERSITY

Faculty of Engineering and Technology

Department of Electrical and Computer Engineering

ENCS 2110

Digital Electronics and Computer Organization Lab
Experiment No. 5 - Sequential Logic Circuits

5.1 Objectives

« To understand the differences between combinational and sequential Logic circuits; and

the applications of various memory units.
» To study the operating principles and applications of various flip-flops.

« To understand the operating principles of counters and how to construct counters with JK

flip-flops.

 To study the synchronous and asynchronous counters.

5.2 Equipment required

« KL-31001 Basic Electricity Circuit Lab.
« KL-33008 Sequence Logic Circuit Experiment Model (1)
« KL-33009 Sequence Logic Circuit Experiment Model (2)

+ KL-33010 Memory Circuit Experiment Model (1)

73
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

5.3 Laboratory Regulations and Safety Rules

The following Regulations and Safety Rules must be observed in the laboratory:

1. Itis the duty of all concerned who use any electrical laboratory to take all reasonable steps
to safeguard the HEALTH and SAFETY of themselves and all other users and visitors.

2. Besure that all equipment is properly working before using them for laboratory exercises.
Any defective equipment must be reported immediately to the Lab. Instructors or Lab.
Technical Staff.

3. Students can use only the equipment provided in the experiment manual or used for the
senior project laboratory.

4. Power supply terminals connected to any circuit are only energized in the presence of the
Instructor or Lab. Staff.

5. Students should keep a safe distance from the circuit breakers, electric circuits, or any
moving parts during the experiment.

6. Awvoid any part of your body being connected to the energized circuit and ground.

7. Switch off the equipment and disconnect the power supplies from the circuit before leaving
the laboratory.

8. Observe cleanliness and proper laboratory housekeeping of the equipment and other related
accessories.

9. Double-check your circuit connections before switching “ON” the power supply.

10. Make sure that the last connection to be made in your circuit is the power supply and first
thing to be disconnected is also the power supply.

11. Equipment should not be removed, or transferred to any location without permission from
the laboratory staff.

12. Software installation in any computer laboratory is not allowed without permission from
the Laboratory Staff.

13. Computer games are prohibited in the computer laboratory.

14. Students are not allowed to use any equipment without proper orientation and actual hands-
on equipment operation.

15. Smoking and drinking in the laboratory are not permitted.

74
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

5.4Pre Lab

1. Read all experiments to find the prelab questions
2. For each used IC (Integrated Circuits), search for its datasheet that explains exactly what a
component does and how to use it.

5.5 Introduction

5.5.1 Sequential Circuits
Any digital circuit could be classified as either a combinational or a sequential circuit.
Combinational logic circuits implement Boolean functions. Boolean functions are mappings

of inputs to outputs. These circuits are functions of input only.

Sequential circuits are two-valued networks in which the outputs at any instant are
dependent not only upon the inputs present at that instant but also upon the history (sequence)
of inputs. The block diagram of a sequential circuit is shown in Figure 5.1. The basic logic

element that provides memory in many sequential circuits is the flip-flop.

Input Output
Combinational
Logic Circuit Bositive
Feedback
Previous
State

Memory < J_L Clock

Figure 5.1: Sequential Circuit Block Diagram

5.5.2 Latches

Latches form one class of flip-flops. This class is characterized by the fact that the output
changes' timing is not controlled. Although latches are useful for storing binary information
and for the design of asynchronous sequential circuits, they are not practical for use in

synchronous sequential circuits.

75
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

5.5.2.1 The SR (Set-Reset) Latch
It is a circuit with two cross-coupled NOR or NAND gates.
a. SR latch with NAND gates:

The one with NAND gates is shown in Figure 5.2. Note that this circuit is active
low set/reset latch; that means the output Q goes to 1 when S (set) input is 0 and goes
to 0 when R (Reset) input is 0 as shown in Table 5.1. The undefined condition is
when both inputs are equal to 0 at the same time.

3]

Figure 5.2: SR latch with NAND gate

Table 5.1: SR latch with NAND gate Truth table.

INPUT OUTPUT s

S = Q) tate

1 0 0 1 SET

1 1 0 1 No Change/ Memory
0 1 1 0 RESET

1 1 1 0 No Change/ Memory
0 0 1 1 Invalid

b. SR latch with NOR gates:

Design the Logic Diagram, and function table of the SR latch using NOR gates,
and explain how it works. (Pre-lab)

c. RS latch with control input:

The RS latch with control input C is shown in Figure 5.3. If C=0 the output Q does
not change regarding less the R and S values. If C= 1the circuit will work normally as
shown in Table 5.2.

76
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

i *—_D 3—»——— 0
1 =

Figure 5.3: RS latch with control input.

Table 5.2: RS latch with control truth table.

INPUT OUTPUT State
C S R Qn+1 Q’
0 X X Qn Q | No Change/ Memory
1 0 0 Qn Q | No Change/ Memory
1 0 1 0 1 RESET
1 1 0 1 0 SET
1 1 1 0 0 Indeterminate

5.5.2.2 The D Latch

The D latch was developed to eliminate the undefined condition of the indeterminate state
in the RS latch. The D latch and its state table is shown in Figure 5.4 and Table 5.3.

D) 3]

¢ % ><
— Bae
—D-
Figure 5.4: D-Latch.
Table 5.3: D latch truth table.
INPUT OUTPUT
State
C D Qn+1 Q
0 X Qn Q No Change/ Memory
1 0 0 1 RESET
1 0 1 0 SET
77

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

5.5.3 Flip-Flops

Like latches, flip-flops are also used for storing binary information, but the difference is:
The output change in the flip-flop occurs only at the clock edge while in the latch it occurs at
the clock level.

A flip-flop can be implemented using two separate latches. Figure 5.5 shows the D flip-
flop implemented with two D latches.

D ——————D D ——Q
D latch D latch
(master) . (slave)

CLK {>c

Figure 5.5: D flip flop implemented with two D latches.

There are several types of flip-flops, the common ones are D, T, and JK flip flops. Figure

5.6 shows these flip flops and their function tables.

INPUT OUTPUT
- D Q — _ State
D Quat Q
0 0 1 RESET
=) CLK (O 1 1 0 SET
INPUT OUTPUT
J Q ; < o al
—) CLK 0 0 Q No Change
: 0 1 0 RESET
- k Q= 1 0 1 SET
1 1 Q Complement
— T Q b= INPUT OUTPUT
State
T Qua
0 Q No Change
1 -
=~ CLK Q = 1 Q& Complement

Figure 5.6: D, JK, and T flip flops.

78
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

5.5.4 Registers
Digital systems use registers to hold binary entities. The register is a collection of flip flops;

N-bit register consists of N flip-flops. Figure 5.7 shows simple 4-bit register implemented

with D- flip flops. All the flip-flops are driven by a common clock, and all are reset

simultaneously.

= — - b
< < < <
¢ L o t o p— U = o
o et - s PR &
QA S A 0 2 8 A 5
T T T K
. ' - - 4 . [}
=
- - + =
o
= — = o
- - - -

Figure 5.7: 4-bit Register.

Shift register is a group of flip-flops connected in a chain so that the output from one flip-

flop becomes the input of the next flip-flop. Figure 5.8 shows 4-bit shift- right register.

D | SO Serial

D
outpul

Serial S/ D D

inpul
—1>C —>C [iC F> C

Figure 5.8: 4-bit shift- right register.

CLK

5.5.5 Counters
The counter is a special-purpose register; it is a register that goes through a prescribed

sequence of states.
The counters are classified into two categories: Ripple and Synchronous counters. In ripple

counters, there is no common clock; the flip-flop output transition serves as a source for

triggering other flip-flops. In synchronous counters, all flip flops receive a common clock.

Figure 5.9 shows 3-bit ripple and synchronous counters.

79
Uploaded By: Ahmad K Hamdan

STUDENTS-HUB.com

T
T
°

i

CLK
o T © T o Tp)—1

o 4 ‘ | (LK

1
Lo/«
A 4
1
Q0
il
Ll
Ql
A

ol
it

Cl
.

Q2 Q1 Qo

Q2 Q1 Qv

(@ (b)

Figure 5.9: (a) 3-bit ripple counters, (b) 3-bit synchronous counter.

80
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

5.6 PROCEDURE
5.6.1 Latches and Flip Flops:
a) Constructing RS latch with Basic Logic Gates

1. Use the KL-33008 module to construct the circuit shown in Figure 5.10.

2. Connect +5V of module KL-33008 to the +5V output of the fixed power supply and
GND of module KL-33008 to the GND output of the fixed power supply

3. Connect inputs A3, A4 to Switches SW1, SW2.

4. Connect outputs F6 and F7 to Logic Indicators L1, L2. Follow the sequences in

Table 5.4.
+5V

A3
us F6

us F7

Ad

1.2K

+5V
Figure 5.10: RS latch.

Table 5.4: Data for part 5.6.1 (A).

INPUT OUTPUT
A3 A4 F6 F7

ROk |O

PR [O|O

81
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

b) Constructing RS latch with control input

1. Use the KL-33008 module to connect the circuit shown in Figure 5.11.

2. Connect inputs Al, A5 to Switches SW1, SW2 and follow the input sequence in

Table 5.5.

A1

CK2
+5V

ASO—t

o—&

U6

ué

+5V

12K
us Fé
us F7
R3
12K
+5V

Figure 5.11: RS Latch with control input.

Table 5.5: Data for part 5.6.1 (B).

INPUT OUTPUT
Al A5 F6 F7
0 0
0 1
1 0
1 1

c) Constructing D latch with RS latch

1. Use the KL-33008 module to construct the circuit shown in Figure 5.12.
2. Connect Al to SW1; CK2to SWA A and F6 to L1. Follow the sequences in Table

5.6.

STUDENTS-HUB.com

82

Uploaded By: Ahmad K Hamdan

R2
1.2K

Al He us Fé
CK2
U6 go &
U4 -
1.2K
+5V
Figure 5.12: D Latch.
Table 5.6: Data for part 5.6.1 (C).
INPUT OUTPUT
CK2 Al F6
0 0
0 1
Il (puLsk) 0
ILpuLsk) 1

d) Constructing JK latch with RS latch

1. Use the KL-33008 module to construct the circuit shown in Figure 5.13.
2. Connect CK2 to SWB B output; Al to SWO0; A5to SW1,; F6to L1.

3. Connect the feedback as shown in Figure 5.13.
4

. Apply the following sequences and write the status of the led at each sequence value

in Table 5.7.

STUDENTS-HUB.com

83

Uploaded By: Ahmad K Hamdan

+6V
R2
1.2K
A1 O——vi U6
- us =0 F&
CK2 O
us =0 F7
A5 O— UG
R3
1.2K
+5V

Figure 5.13: JK Latch.

Table 5.7: Data for part 5.6.1 (D).

INPUT OuTPUT | Status

Al A5 F6

@)
A
%)

1 0

0 0

e o o o o

e Does the led sequence follow the expected result according to the FF state

table, explain?

e) Constructing JK Flip-flop with master-slave RS latches

The master-slave flip-flop cancels all timing problems by using two SR flip-flops
connected. The first flip-flop acts as the “Master” circuit, which triggers on the leading edge
of the clock pulse while the other acts as the “Slave” circuit, which triggers on the falling edge

of the clock pulse. This results in the two sections; the master section and the slave section

84
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

being enabled during opposite half-cycles of the clock signal. Let us do this part by following

these steps:

1. Use the KL-33008 module to construct the circuit shown in Figure 5.14.

2. Connect CK1 to SWA A output; J to SW1; K to SWO0; F1, F2, F6, F7 to L3, L2, L1 and

LO, respectively.

3. Follow the sequences in Table 5.8.

Master Latch

Slave Latch

\

J Qe Ud»
-

H—
K©o U4

us

us

’—.-—OFG

b F7

Figure 5.14: JK Flip-Flop.

Table 5.8: Data for part 5.6.1 (E).

STUDENTS-HUB.com

INPUT OUTPUT

CK2 K J F1 F2 F6 F7
Il 0 0

Il 0 1

Il 1 0

Il 1 1

in 1 1

85

Uploaded By: Ahmad K Hamdan

5.6.2 Registers
a) Constructing Shift Register with D Flip-Flops

1. Block ¢ of module KL-33008 will be used to construct the circuit shown in Figure

5.15.

Figure 5.15: Shift Right Register.

2. Connect B (clear) to SWO; A (I/P) to SW1; CK to SWA A output; F1, F2, F3, F4 to
L1, L2, L3, L4, respectively.

3. Set SWO to “0” to clear B and then set SWO to “1”.

4. Follow the input sequence for A(l/P) below, observe output display at F1, F2, F3 and
F4, and fill Table 5.9:
a) at A=“1”, send in a CK signal from SWA

b) at A=“0”, send in a CK signal from SWA
c) at A=0”, send in a CK signal from SWA
d) at A=“1”, send in a CK signal from SWA

Table 5.9: Data for part 5.6.2 (A).

INPUT OUTPUT
A CK F1 F2 F3 F4

1 Il

86
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

0 Il
0 Il
1 Il

b) 4-Bit Shift Register with serial and parallel load

Use block b module in KL-33008 which is 4-Bit Shift Register with serial and parallel
synchronous operating modes, it has serial input (B1) and four parallel (A-D) Data inputs,

and four Parallel Data outputs (QA—QD) as shown in Figure 5.16.

a1 O—{mopE ckE—Oci

U3

B1 (Q—={SERIAL INPUT LoapE—Q o1

QA QB _QC_QD A B C D
2;3 y & J;o g g (l; J)s
Fi F2 F3 F4

Figure 5.16: shift register with serial and parallel load.

1. Complete the following connections:

- Connect Inputs A, B, C, D to SWO0, SW1, SW2, SW3 Outputs F1, F2, F3, F4
to LO, L1, L2, L3, respectively.
- B1(l/P) to DIP2.0

- Al (MODE) to DIP2.1 as in Table 5.10.

Table 5.10: A1 modes.

Input
MODE CK
Control (Al) C1 Dl
L I X
H X Il

2. Connect CK (C1) to the clock generator TTL level output at 1Hz and change data at B1 with
DIP2.0. Follow the input sequences for Al in Table 5.11. Observe and record the outputs.

87
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Table 5.11: Data for part 5.6.2 (B-2).

INPUT OUTPUT
Al C1 L3 L2 L1 LO

1 Il
1]!
3. Connect LOAD (D1) to the clock generator TTL level output at 1Hz. Set A1 to “1”

and follow the input sequences for A, B, C and D in Table 5.12. Observe and record

0
0

the outputs.

Table 5.12: Data for part 5.6.2 (B-3).

Input Output
D C B L3 L2 L1 LO

A
0 0 1 0
0
0

1 0 1

A AR

88
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

5.6.3 Counters
a) 2-bit Synchronous Counter

1. Use the KL-33009 module to implement the 2-bit synchronous counter shown in
Figure 5.17.

2. Connect +5V of module KL-33009 to the +5V output of the fixed power supply and
GND of module KL-33009 to the GND output of the fixed power supply.

3. Connect CLK input to pulser switch SWA.

4. Connect counter outputs Q1 and QO to indication lamps L1, L2, respectively.

5. Apply clock pulses to CLK input. Observe and record the outputs (in binary) in
Table 5.13(a).

6. Apply counter outputs Q1 and QO to seven segment displays. Observe and record
the outputs (in decimal) in Table 11.13(b).

+5V

Q J Q F
Z <] CLEK

—1Q' K —Q" K-

Q1 Qo

Figure 5.17: 2-bit Synchronous Counter.

89
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Table 5.13: Data for part 5.6.3 (A).

ax ot | e x| v
n n
Il n
n n
Il n
n n
Il n
n n
Il n
(a) (b)

b) 3-bit (divide-by-eight) Ripple Counter

Divide-by-8 counter is a 3-bit counter that counts from 0-to-7:

1.

o kM 0N

Use the KL-33009 module to implement the 3-bit (divide by eight) Ripple counter
shown in Figure 5.18.

Connect CLK input to the pulser switch.

Connect counter outputs Q2, Q1 and QO to indication lamps.

Apply clock pulses to CLK input. Observe and record the outputs in Table 5.14(a).
Apply counter outputs Q2, Q1 and QO to seven segment displays. Observe and
record the outputs in Table 5.14(b).

90

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

+5V +8V +5V
Q J= Q J |- Q J
& <] <P+ CLK
Q" KH | Q' K[—/ Q" KH
Q2 Q1 Qo
Figure 5.18: 3-bit Ripple Counter.
Table 5.14: Data for part 5.6.3 (B).

Input OUTPUT Input OUTPUT
CLK Q2 Q1 Qo CLK D
Il Il

Il Il

Il Il

Il Il

Il Il

Il Il

Il Il

Il Il

Il Il

I Il

(a)

=

b)

Task 2: Modify the circuit in Figure 5.17 to be a 3-bit Synchronous Counter. Attach

the design with this experiment report.

STUDENTS-HUB.com

91

Uploaded By: Ahmad K Hamdan

¢) BCD Counter

Locate the BCD counter (IC 7490) on the KL-33010 module, which is shown in Figure
5.19. The functional block diagram of the BCD counter chip is shown in Figure 5.20.

1. Connect +5V of module KL-33010 to the +5V output of the fixed power supply and
GND of module KL-33010 to the GND output of the fixed power supply.

2. Connect C3, C4 to SW0 and SW1; D1, D2 to SW2 and SW3; F1~F4 to L1~L4, A2
to SWA A output.

3. Connect F1 to B2, set C3, C4, D1 and D2 to ground and A2 to SWA A pulse.
Measure and record the outputs F1, F2, F3, F4.

4. Set SW2 and SW3to 0.

LsH MsH
F3

F4
8 ?1

QB Qc ap

u1

0{1) RO(2) RO(1) R9(2)

lJ;JJJ;J;J;

Figure 5.19: IC 7490 BCD Counter.

na a8 ac Qo
o o o
Q —J Q 3 Q
cKA O—=g> - > CK P> CK
R o
L*] Q Q |_ o
—5 |
Q
CKB
R9{1) R9(2) RO(1) RO(Z}

Figure 5.20: IC 7490 BCD Counter.

92
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

d) Divide-by-8 counter using BCD chip counter:
On the same circuit, do these modifications/changes then observe the result:

1. Change RO(2) (pin3) to +5V, and connect RO(1) (pin2) to QD (pinll) output. This
will make a counter reset after 111 (or 7). WHY?

2. Connect clock A2 (pinl4) to pulser switch.

3. Connect the outputs A, B, C, and D to indication lamps.

4. Apply clock pulses to A2 and observe the count sequence (0000-0111).

Task3: change the connection of the counter in Figure 5.19 to count from:

1. 0—-to-5
2. 0-to-4

5.7 DISCUSSION

Answer the following questions:

1. Although latches are useful for storing binary information, they are rarely used in
sequential circuit design, why?
2. What is the disadvantage of the RS flip flop?

3. What is the difference between “synchronous” and “ripple” counters?

93
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

BIRZEIT UNIVERSITY

Faculty of Engineering and Technology

Department of Electrical and Computer Engineering

ENCS 2110

Digital Electronics and Computer Organization Lab
Experiment No. 6 - Sequential Logic Circuits using Breadboard and IC’s

6.1 Objectives

e To learn how to use some Integrated Circuits (ICs) such as seven-segment display
driver/decoder (IC7447) and counters (IC7490).

e To understand the function of the seven-segment display and how to find its pin assignment.

e To build one or more-decade counters with seven-segment displays.

6.2 Equipment Required
e KL-31001 Basic Electricity Circuit Lab.
e 7447 BCD to Seven-Segment Decoders/Drivers.
e 7490 Decade and Binary Counters.

6.3 PrelLab

1) What is the appropriate display type (common anode/common cathode) that must be used with

7447 display decoders? Explain your answer.

2) Assuming that the turn-on voltage for the LEDs is 1.7v, what is the proper value of the resistors
to be connected between the 7447 decoder and the seven-segment display, to limit the current
in the LED segments to 10mA?

94
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

3) Assume that the resistors provided in the lab are 220€Q. What would the current flowing into the
LEDs be?

4) Design a decade counter circuit using the 7490 counters, the 7447 decoder and a seven-segment
display. Show the pin numbers on the ICs in your design.

6.4 Theory

6.4.1 Seven-Segment Display

The seven-segment LED display is a common device in consumer electronics, from
calculators to clocks to microwave ovens. In this lab, you will learn the basic principles of
operation of the seven-segment display as well as the process of converting BCD values to the
proper signals to derive this display.

The display has seven separate bar-shaped LEDs, arranged as shown below. In addition,

many seven-segment displays have one (or two) circular LEDs used as a decimal point.

a

f b

e g c
d

Figure 6.1: Seven-segment Display.

Inside the seven-segment display, one end of each LED is connected to a common point,
which is tied either to the ground or to the positive supply, depending on the device. If the seven-
segment display is designed to have the common connection tied to the positive supply (+5V),
as shown in Figure 6.2 (left-hand side), it is called a common anode configuration. To turn on
these LED segments, the inputs logic must be set to low.

If the seven-segment display is designed to have a common connection tied to the ground
(0V), as shown in Figure 6.2 (right-hand side), it is called a common cathode configuration. To

turn on these LED segments, the inputs logic must be set high.

95
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Common Anode Common Cathode

g f VYec a b g f Gnd a b
A_f_8-__f[_H oo o _nrn_n
.||;:| _J:]
a a
f b f b
g

— =
e [
d
[E}-QD
—
|8 L R O 1
e d Gnd ¢ dp

Figure 6.2: common anode/cathode displays.

In both configurations, current-limiting resistors are used to lower the amount of current
that the driver sends into the LEDs. This achieves two goals:
1- Control the brightness of the LEDs.

2- Prevent over-current (that may burn the LEDSs).

6.4.2 BCD-to-seven-segment Decoder

A BCD-to-seven-segment decoder is a logic circuit used to convert the input BCD into a
form suitable for the seven-segment display.
In this lab the IC type 7447 decoder will be used. The 7447-pin assignment is shown in

Figure 3. Its pin description is shown in Table 6.1.

Outputs
A
- ™
16 15 14 13 12 11 10 9
N S Y) Y Y Y I I A
Vee f g a b c d e

7447
) 7-Segment Display

Decoder

BI/
B C LT RBO RBI p A GND
L OO O OO OO 0O O [
1 2 3 4 5 6 7]
Inputs Inputs

Figure 6.3: 7447 pin assignments.

96
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Table 6.1: 7447 pin descriptions.

A, B,C,D BCD inputs: D is the most significant input (DCBA)

a, b,c d e f, g | Decoder output (Active Low)

RBI Ripple Blanking Input (Active Low)
Blanking Input (Active Low)
BI/RBO Ripple Blanking Output (Active Low)
LT Lamp Test input (Active Low)

- LT should be high for normal operation and when pulled low, all seven segments will
be turned on.

- RBI must be high if blanking of a decimal zero is not desired.

- BI/RBO can be used as input or output. If Bl is high, and LT is low, all 7 segments
are on. This function can be used to see if all the LED segments are working. Bl is
used to turn off all these segments when pulled low. If A, B, C, D, and RBI are all
low, and LT is high, then all 7 segments are off. In this situation, -the RBO goes low
(response condition).

- For normal operation without blanking, the three inputs: LT, RBI, and BI/RBO should

be connected to +5V (given that they are active low).

97
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

6.4.3 Counter

In this lab the 1C type 7490 counter will be used. The 7490-pin assignment is shown in
Figure 6.4 and reset/count function table is shown in Table 6.2.

INPUT
A NC Qa Qp GND Og Qc
14 I13 12 11 |10 9 B
Qa ap Qg
—C> A ac
—op> B Rg(2)
Ro(1) Rogz2) Ro(1)
1 2 3 I 4 ' s 6 7

lrn;ur Rog1) Rogzy NC Voo Rgg1) Rog2)

Figure 6.4: 7490 counter pin assignments.

Table 2: Reset/count function table.

Reset Inputs Outputs
RO(1) RO(2) R9(1) R9(2) |Qp Qc Qg Qp
H H L X L L L
H H X L L L L
X X H H H L L
X L X L COUNT
L X L X COUNT
L X X L COUNT
X L L X COUNT
98

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

6.5 Procedure

6.5.1 BCD counter

A) Testing lamps in the display
1. Place the display and the 7447 chips on the breadboard.
2. Implement the circuit shown in Figure 6. 5.
3. Connect pin 4 and pin 5 of the 7447 decoders to the +5V.
4. Connect pin 3 (LT) of the 7447 decoders to the ground. All 7 segments must be
turned on. (This is to verify that all segments in the display are working properly).

+5V +5Y
Decimal output
V. a b2
— A b ':’—""J"'-.-'“vii"
Decoder c
] ¢ p—\\A—
B d Common
dp—vW— 4P | anode
C ; E , ’
f
— D 7447 F p—\WA—
A
BCD GMD g PN~

input

Figure 6.5: display-decoder connection.

B) Blanking all segments
Connect pin 4 (BI) of the decoder to the ground. All 7 segments must be turned off.

You may leave the circuit connected (to be used next).

C) Implementing a decade counter
In this part, you will build a counter that counts from 0 to 9.
1. Connect the circuit that you designed in part 4 of the pre-lab. Show the
design and the connected circuit to your instructor/assistant before turning
on the power.

2. Apply clock pulses to pin 14 of the 7490 counter using Pulser Switch

99
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

(SWA).
3. Observe the counting sequence on the display D1 and complete Table 6.3
4. Apply clock pulses to pin 14 using the “pulse generator” of the KL-31001

Basic Electricity Circuit Lab. Observe the count sequence.

Table 6.3: Data for part 6.5.1 (C-4).

- Selected Tasks by the instructor.

6.6 PostLab

1. Design a two-decade counter that counts from 00 to 99.
2. Add additional input to your design that can be used to reset the counter.
3. Modify the counter to count to 59 (without Reset).

100
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

BIRZEIT UNIVERSITY

Faculty of Engineering and Technology

Department of Electrical and Computer Engineering

ENCS 2110

Digital Electronics and Computer Organization Lab
Experiment No. 7 - Constructing Memory Circuits Using Flip—Flops

7.1 Objectives

e Understand the basic structure of Random-Access Memory (RAM).

e Understand and test the circuit of 64-bit Random Access Memory (RAM).

7.2 Equipment Required
e KL-31001 Basic Electricity Circuit Lab
e KL-33010 Memory Circuit Experiment Model (1)
e KL-33011 Memory Circuit Experiment Model (2)

7.3 Theory

7.3.1 CONSTRUCTING RANDOM ACCESS MEMORY (RAM) WITH
D FLIP-FLOP

Two different types of basic structures for RAM are given below:
1) Inthe RAM circuit of Figure 7.1 (a), the input and output are not separated. There

are two control terminals: one is the R/W terminal (R for READ or OUTPUT, W
for WRITE or INPUT) and the other one is the ENABLE terminal.

101
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

1101

N

o1

102

J WIR1
110 o—:— D Q

1 bit
RAM1

WIR1

Ccs1

1/02

1 bit
RAM2

WIR2

WIR cs

(a)

1 bit
RAM1

WIR2

Cs1

1 bit
RAM2

cs2

I 0

p—— 1

(b)

Figure 7.1: (a) One bit memory using a flip flop. (b) Two-bit memory with 1x2 decoder.

- When CS=0, tri-state gates U1 and U2 do not operate, so data input is not

possible, the flip- flop output Q is not sent to the 1/0 terminal.

- When CS=1, WIR controls the D flip-flop. When W/R' =1, U1 opens but U2
does not, 1/0 will accept data input. If W/R'=0, the exact opposite will happen

and 1/0 act as the data output.

- Figure 7.1 (b) shows another connection that will increase the RAM capacity.
When CS1=1, RAML1 I/O1 and 1/02 are selected. Address line A is used to select
between RAM1 and RAM2. Since there is only one address line, we can only
select from 2 RAMs. In Figure 7.1 (b), each CS can only select a 2-bit RAM, so

the total capacity is 2x2.

1) In Figure 7.2, a 2-address (2-bit) RAM circuit has independent input and
output. When Address=0, input D1 is enabled and the content of D1 will be

made available at the output.

When Address=1, input D2 is enabled and the content of D2 will be made

available at the output. The ENABLE terminal must be activated in order to

allow the output to correspond with the constantly changing inputs.

102
STUDENTS-HUB.com

Uploaded By: Ahmad K Hamdan

D—o Output

D2

D1
D1 a1 —LD_

Address Enable
Figure 7.2: Implementation of the two-bit memory presented in Figure 1 (a).

Commercial random-access memories may have a capacity of thousands of words
and each word may range from. The logical construction of a large capacity
memory would be a direct extension of the configuration as shown in Figure 7.3.
The two address inputs go through a 2x4 decoder to select one of the four words.

Input data

Word 0O
. 1 ¥ v
il B | =l B ! B | B |
3 i 3 }
Address : _ _ _
inputs Word 1 ; { ; 3
2 % 4 = BC |= = BC = = B | = RO
decoder
L 3 i i i 13 +
Word 2
o i 1 ¥ v
s BC - wa=| BC - = BC |»= e BC [-=
Memaory EN . i i i *
enahle Word 3
or E
) ¥ ¥ T
= BC - = BC - = BC - —=| BC .
Read/Write - i i i)

Ourput data

Figure 7.3: Logical construction of a 4x4 RAMS.

103
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

7.3.2 64-BIT RANDOM ACCESS MEMORY (RAM) CIRCUIT

Like ROM, RAM is also a memory element. The data selection process is controlled
by the address selectors. The length of data is related to the number of data variations. For
example, if there are 4 data then 24 or 16 data variations exist.

The number of address lines determines the number of locations. If there are 4 address
lines, then 2*4or 16 locations exist. A 4-bit data can be stored in each location, since the total
capacity is 16x4, where the 4 is the number of data while 16 is the number of address lines.

Figure 7.4 shows the 7489 IC, which is a 16x4 memory with 64 memory capacities.
Also, its function table.

[o
DH O=—q Vece L S ar— =
- = ME | WE
o oo 0 0 | Write
D1
7% oz 0 | | Read
A0 O— o
a10— oos l 0 | Inhibit storage
420 l | | Do nothing
A3 O ;

o—q 3|
o—q g

Figure 7.4: Block diagram of 16x4 RAM chip.

- When ME' = 0 and WE' = 0, the memory is enabled, and the input process starts. The
input and output terminals are separated. The output terminals are open-collector type so
resistors “RX*4” must be added to the supply voltage. Since the output terminal of 7489
is open-collector type, the outputs can be connected in parallel, as shown in Figure 7.4.

The operating sequence will be controlled by ME' and WE'.

- When A4A5=00, A is selected, ME' and WE' of B, C and D all equal to “1”. Similarly,
when A4A5=01, B is selected, ME' and WE' of C and D all equal to “1”. E is 2-4

decoders with “0” as its output. The unselected outputs are in high or “1” state.

- Since the outputs will have high impedance when ME' and WE' are both “1”, each
R/W' control of 7489 are connected to an OR gate to ensure that when ME' = “1”, WE'

will be equal to “1” too.

104
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

- When ME' =“0”, WE' is controlled by external R/W' control so that the “READ”
operation is performed if R/W'= “1”. The “WRITE” operation is performed when
IUW': “0”.

- The 7488 is a 256-bit open-collector ROM which has a similar structure as the 7489.

Their methods of expansion are similar as well.

. . > ey
oM e Vee
Dz O é é é R4
oEx O
O O Le =Tl
Taps
ADCH O o1
F Rl 'y ooz
A2 0 -
AT ME1 WE1
il {
RAN O .L'I_"‘__,
—
TaBS
AS Al B
a WEz WE2
e ! i |
2 =
3 — W
7483
o
ME3 WE3
A |
| A=
— weo
Ta83
D
ME4 WE4
L T T

Figure 7.5: Block diagram of 16x4 RAM chip.

105
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

7.4 Procedure

7.4.1 Latches and Flip Flops

A) Block g of module KL-33010 which is shown in Figure 7.6 will be used in this part.

D1(y— 2 16 uz
:@_ D a
1 u1 Q2

] 3 15 Q1
uz D a O F2
o1 o 8w

13

QE1
Figure 7.6: RAM block with D Flip-Flop of module KL-33010.

s1Q

B) Connect E1, S1, D2, D1 to Data Switch SW0~SWa3 respectively. Connect outputs F1,
F2, F3 to Logic Indicators L1~L3. Refer to the input sequence in Table 7.1 and record all
outputs. Discuss and explain the results to your TA.

Table 7.1. Extracted data observations and storing process of a 1x2 RAM

- mpu
D2 Db R R

PRk klkkk |k |lolojo|ojojojo|o
PRk loloolokrkrkrikFolooo

PR OO RF OO FP OO kOO
RO, ORFr OO OoOPRr O oo

C) Then, set module KL-33011 and locate the block b. Insert connection clip according to

106
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Figure 7.7, connect +5V, +15V of module KL-33011 to the +5V, 15V output of fixed

power supply respectively.

+12v

D4 12
D3 10
3 CR1
0z Qo o E1AZ R1 2208
2 Do 4
4 4
D10—o| U g 9 F2 7 CcR2 R2
1 b
220R
a3 O+ a0 31, B3 AZc S0
D Do 4
2 O 2|, FaxZx 2R
c DO
Al 15 AD 1 CR4 R4 220R
B
1]AD
MO—u—:E _:i:
2 3
$1 82

Figure 7.7: Open Collector 4x4 RAM.

D) Connect inputs D4~D1 to DIP Switch 1.0~1.3; A3~A0 to DIP 2.0~2.3; S1 (ME) to Pulser
Switch SWAA,; S2 to Data Switch SWO0. Outputs are indicated by CR1~CR4.

E) Set SW0 (WE') to “0” for the “WRITE” task. Start from address 0000, and input data to
A0~AZ3 by setting the DIP switch. Activate SWA once to write the data into its assigned
address. Repeat this process for all the addresses, ending with 1111. Record what was

written into each address in Table 7.2 under the “WRITE” column.

107
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Table 7.2: Data for part 7.4.1 (E).

STUDENTS-HUB.com

Address Write
AJ|AZ AL AD \E IWE D4 |D3|D2| D1
L T I I O Y —l 0
o |00 i —L 0
0|0 1 0] 0
0|0 1 1 _' 0
0 1 00 —[0
0 1 0 1 —|_ 0
0 1 1 0[] 0
0 1 1 1 __ 0
1 o000 —l 0
1 00 1 —|_ 0
1 0 1 0 —|_ 0
1 0 1 1 __ 0
1 1 0|0 __ 0
1 1 0 1 —l 0
1 1 1 0 —|_ 0
i 1 1 i —|_ 0

108

Uploaded By: Ahmad K Hamdan

F) Now set SW0 (WE’) to “1” for the “READ” task and connect S1 (ME') to Pulser Switch
SWA. Observe the states of CR1~CR4 and record them under the “READ” column in

Table 7.3.

Table 7.3: Data for part 7.4.1 (F).

Address

Read

=
Lad

A2

Al

.
=

—_—
_—

F4 | F3

0

0

—_—] =] =] =] =] =] =] o o o o o o &

—] -] =] O] O] O O] =] =] -] -] O] o &

0
1
I
0
0
I
1
0
0
1
1
0
0
1
1

—_—] =] O = D = D =] D = S = D =D

(S | | =

[I I T e e e e = == S S s s .

G) Disconnect SWA and “A” clip, then turn off the main power switch of IT- 3000 for about

10 seconds and turn it on again. Change the address and press SWA then attempt to read
the data. Are they still stored in the RAM?
H) Disconnect the “B” clip, and VCC disappears. Repeat Step 5 to see if the data are still

stored in the RAM.

- Selected Tasks by the instructor.

STUDENTS-HUB.com

109

Uploaded By: Ahmad K Hamdan

7.5 PostLab
1. Design a 4x16 RAM using four 4x4 RAMS.

2. Although D latches are useful for storing binary information, they are not used in RAM circuit design,

why?

110
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

D ‘*v/ g
BIRZEIT UNIVERSITY

Faculty of Engineering and Technology

Department of Electrical and Computer Engineering

ENCS 2110

Digital Electronics and Computer Organization Lab
Experiment No. 8 - Introduction to QUARTUSII Software

8.1 Objectives
e To learn how to use QUARTUS Il and write code using Verilog HDL language.
e To learn how to test code and make symbols from code.

e To learn about FPGA and how to download code from QUARTUS Il to FPGA

8.2 Equipment Required
e QUARTUS Il program.
e FPGA Board

8.3 PrelLab

1) Here is a link to an HDL tutorial:
https://www.youtube.com/playlist?list=PLnyw11VVZpaTukmt80aNs7gT74U3vboDYr

2) Quartus Il Introduction:
https://www.youtube.com/watch?v=uG1GTRelG3lI

https://www.youtube.com/watch?v=TdLgbhgrVREQ

3) Download Quartus from this link below:

http://www.mediafire.com/file/eqd7xidoan3exqv/90 quartus free.exe

4) Using Quartus to build the following circuit:

111
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

https://www.youtube.com/playlist?list=PLnyw1IVZpaTukmt80aNs7gT74U3vboDYr
https://www.youtube.com/watch?v=uG1GTRelG3I
https://www.youtube.com/watch?v=TdLqbgrVREQ
http://www.mediafire.com/file/eqd7xidoan3exqv/90_quartus_free.exe

a) Build half adder on data flow.

b) Build the Ful adder using half adder structural.

c) Build a 2-bit counter on behavioral.

d) Build an 8x1 Multiplexer on behavioral.

e) Build a 2x4 decoder using basic gates (structural).
f) Show the waveform for the above parts.

112
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

8.4 Theory

8.4.1 QUARTUS Il Program

Quartus enables analysis and synthesis of HDL designs, which enables the developer to
compile their designs, perform timing analysis, examine RTL diagrams, simulate a design's
reaction to different stimuli, and configure the target device with the programmer. Quartus
includes an implementation of VHDL and Verilog for hardware description, visual editing of

logic circuits, and vector waveform simulation.

QUARTUSII

Figure 8.1: QUARTUS Il logo.

8.4.2 FPGA Board

FPGA stands for field-programmable gate array. That’s quite a mouthful, so let’s start
with a basic definition. Essentially, an FPGA is a hardware circuit that a user can program to
carry out one or more logical operations. Taken a step further, FPGAs are integrated circuits,
or ICs, which are sets of circuits on a chip—that’s the “array” part. Those circuits, or arrays,
are groups of programmable logic gates, memory, or other elements.

With a standard chip, such as the Intel Curie module in an Arduino board or a CPU in
your laptop, the chip is fully baked. It can’t be programmed; you get what you get. With these
chips, a user can write software that loads onto a chip and executes functions. That software
can later be replaced or deleted, but the hardware chip remains unchanged.

For FPGA, the programming can be a single, simple logic gate (an AND or OR function),
or it can involve one or more complex functions, including functions that, together, act as a

comprehensive multi-core processor.
113
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

USB VGA
Blaster Mic Line Line Video
Port in In Out Port

7.5V DC Power Supply
Connector I t 1 1 1 t
» 5 ' i (™

i
24-bit Audio CODEC

Power ON/OFF —
Switch

27Mhz Oscillator
50Mhz Oscillator
24Mhz Oscillator

Altera USB Blaster
Controller chipset

Altera EPCS4
Configuration Device

RUN/PROG Swnlch_.h
for JTAG/AS Modes o

7-SEG Display Module

10 Red LEDs

10 Toggle Switches

Figure 8.2: FPGA Board.

114
STUDENTS-HUB.com

=P PS/2 Port

Expansion Header 2 (JP2)
(with Resister Protection)

Expansion Header 1 (JP1)
(with Resister Protection)

Altera90nm Cyclone Il
FPGA with 20K LEs

Uploaded By: Ahmad K Hamdan

8.5 Procedure

8.5.1 How to create project in QUARTUS II
e Stepl: Run the QUARTUSII software: double click on the QUARTUS Il item in

the desktop.

e Step2: When you open QUARTUS 11 the windows in Figure 8.3 will appear,
then select option Create New Project Wizard or you can start new project by
select option File then select New Project Wizard as shown in Figure 8.4.

Getting Started With Quartus® Il Software %

Start Designing Click hereStart Learning

Designing with Quartus Il software u eractive tutorial teaches
requires a project you the basic features of Quartus N software

- (Ncwe :o"gﬂwwtﬂm! Open Interactive Tutorial

Open Existing Project |

Web links:

Uterature | [Training I“Onlline Demos Support | Alm A

[~ Don't show this screen again

Figure 8.3: How to create new project (first way).

115
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

@ Quartus 1l
File Edit View Project Assignments Processing Tools Window Help

0 . ah o X s098[8]> %~ 00x[0[8]e[0]
& Open... Ctlv0 x
Close Ctrl+F4
lﬁ Open Project... Ctrl+)
Convert MAX+PLUS Il Project...
Save Project
Close Project
i seve CirleS
Save As...
Save Current Report Section As...
File Properties...

Create / Update 4
Export...

Convert Programming Files... —;|
I Page Setup...
[&, Print Preview
& print.. Ctrl+P

Recent Files famming files)

Recent Projects

B AsFg e

System 4 Piocessing A Esbialnfo) Info A Warning)i CilicalWaming }, Enor), St d) Flag /
: |Mexsaue: ﬂ ﬂ |Locationr

Figure 8.4: How to create new project (second way).

e Step3: Then the window in Figure 8.5 will be shown, press next for First

window.

116
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Mew Project Wizard: Introduction X

The New Project Wizard helps you create a new project and preliminary project settings, including the
following:

* Project name and directory

* Mame of the top-level design entity
* Project files and libranes

* T arget device family and device
* EDA tool settings

‘Y'ou can change the settings for an existing project and specify additional project-wide settings with
the Settings command [Assignments menu). You can use the vanous pages of the Settings dialog bax
to add functionality to the project.

™ Don't show me this introduction again

Next > Cancel

Figure 8.5: First Windows.

e Step4: Then Later, a window will appear asking you to enter the project storage
location and the name of the project. After filling out the information, you will be
clicked on the next option at the bottom of the screen. As shown in Figure 8.6. Then
another window will appear asking to enter previously existing files. If there are no

files, click on the Next option.as shown in Figure 8.7.

117
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

New Project Wizard: Directory, Name, Top-Level Entity [page 1 of 5] X

What is the working directory for this project?
|c:\altera\9l]\maﬂm J

Wwhat is the name of this project?

ITesl _,

What is the name of the top-level design entity for this project? This name is case sensitive and must
exactly match the entity name in the design file.

|Test _I

Use Eisting Project Settings ..

< Back Next > Finish Cancel

Figure 8.6: Project Folder, Project Name, Top-Level-Entity.

118
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

MNew Project Wizard: Add Files [page 2 of 5] X

Select the design files you want to include in the project. Click Add All to add all design files in the
project directory to the project. Mote: you can always add design files to the project later.

Fie name: | _l Ad |

File name [Type |Library | Design entry/sy... | HDL version Add All |

Up I

< >

Specify the path names of any non-default libraries. User Libraries. .

< Back Next > Finish Cancel

Figure 8.7: Add existing files.

e Stepb: In Figure 8.8, show the windows where we can choose the family of FPGA

we went to use and the number of FPGA, then select Finish.

119
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Mew Project Wizard: Family & Device Settings [page 3 of 5]
Select the family and device you want to target for compilation.
— Device family Show in ‘Available dewvice' ist
Family: ICyclone I j Package: Ay -
Devices Cyclone NNl ~ Fin count: Any v
Lo |FLEX10K
~ Target devi FLEX10KA || Speed grade: | Any -
" Autod &E;g%g ¥ Show advanced devices
(* Specifi Max Il [~ HardCopy compatible onls
_ M A 30008, ||
A 7000AE
Available dey MaX7000B
Mame MAX70005 [O ¥... | LLS T :o rli... | Memor... | Embed... I PLL ~
EP2C204F 48418 1.2v 18752 315 239616 52 4
EP2C20F256CE 1.2 18752 152 239616 B2 4
EP2C20F256C7 1.2 168752 152 239616 B2 4
EP2C20F256CS 1.2 18752 152 239616 B2 4
EP2C20F 25618 1.2 168762 152 239616 B2 4
EP2C20F484CE 1.2 18752 5 239616 52 4
EP2C20F484C7 1.2v 18752 35 239616 52 4
EP2C20F484C8 1.2 18752 35 239616 52 4 =
COW ™ WICADAID 1 A 107FET E AOCAC E7 A
< >
Companion device
H [:I: ap: ;I
¥ Limit DSP & R&M to HardCopy device resources
4 < Back Next > Finish Cancel

8.5.2

Figure 8.8: choose family and number for FPGA.

How to write code using Verilog HDL

1. To make new File, press File > New, the window in Figure 8.9 will appear.

STUDENTS-HUB.com

120

Uploaded By: Ahmad K Hamdan

STUDENTS-HUB.com

MNew

o MNew Quartus || Project
- SOPC Builder System
=) Design Files
] AHDL File
Block Diagram/S chematic File
- EDIF File
- State Machine File
System¥erilog HOL File
Tel Script File
Verilog HOL File
i WHDL File
(=) Memaory Files
. Hexadecimal [Intel-Format] File
- Memory Initialization File
=1 Verification/D ebugging Files
- In-Systemn Sources and Probes File
- Logic Analyzer Interface File
- SignalT ap Il Logic Analyzer File
-~ Wector Waveform File
[=1- Other Files
-~ AHDL Include File
- Block Symbal File
- Chain Description File
- Synopsys Design Constraints File

Figure 8.9: to create new files.

There are three choice in this window:
A) Verilog HDL File: use to write the code Verilog HDL.
B) Vector Waveform File: use to test code.

C) Block Diagram /Schematic File: to make symbol from code.

2. For this lap we choose Verilog HDL File from Figure 8.9. Then a white screen will

appear on which we will write the code. the Figure 8.10 show simple code for half

121

Uploaded By: Ahmad K Hamdan

& =)

= 1 Emodule half adder(a,b,cout,s); // Implement a half-adder
= 2 input a, b: // Inputs to be added together
e 3 output cout, s; // Output, carry (cout) and sum (s)

— 4
i S assign {cout,s} = a+b; // add a and b,

i = € // ...result in cout and s.
R 7

A % 8 endmodule|

%%

([
'ﬁaf

| =

=2

< >

Figure 8.10: simple code for half adder.

Important note: This file is used to enter your Verilog code; you must save the file as the name of the
module. Look to Figure 8.11.

juartus/Test - Test

Assignments Processing Tools Window Help

BB o o [rest B I IR I Ty
= Save As
* & Verilogl.v* | @ save *
Savein: quartus v = @ ¥ -
ﬁ‘ Verilog1.v* I — N :I c* 8
N Date modified
1 Emodule a,b,cout,s); // Implement i’ ame ate modifi T.ypa
2 input e 7/ Inputs to be add Quckscoess 1 B" 3/27/2022 5:16 PM File fc
s 3 output cout, // Output, carry (cout _ common 3/27/2022 5:04 PM File fc
— 4 || L cusp 3/27/2022 5:14 PM File fc
i 5 assign {cout,s} = a+b; / add a and b, - db 3/27/2022 6:30 PM File fc
iEE : IANEEuE 2n eeE - | drivers 3/27/2022 5:06 PM File fo
%% . [— .3 | dsp_builder 3/27/2022 5:06 PM File fc
%% Libraries leda 3/27/2022 5:13 PM File f¢
= ! libraries 3/27/2022 5:07 PM File fc
) . [imf 3/27/2022 5:03 PM File fc
= sopc_builder 3/27/2022 5:08 PM File f¢
=s'EnUnis| E
= [z55
ol Nk .
Time & E% 1
File name: I | | - save |
Synthesis Saveastpe: |Verlog HDL File (".v:" vig:" veriog) =] Cancel
= & Route) .
ing fies) v #dd file to current project
ing Analysis
t Writer
» {Open P
Cra s Vol Voo TV e, _ Ve __ Vo~ T FER N

Figure 8.11: how to save file.

122
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

3. To run code Right click on the file name and select option Set as Top-Level Entity
then click (start compilation) select this icon' ™ in top of the screen or clicking on
processing> start compilation. If there is any error, you can see in white area in
bottom of screen.

Q Quartus Il - c:/altera/90/quartus/Test - Test — *
File Edit View Project Assignments Processing Tools Window Help
D@ ma o oo Sl rese m|]_|> e oD |2 |88 [w| e |
= = S
Project Navigator “X § hafadderv | € Compilation Report - Flow Summary
3 Fies |
gt — ". half_adder.v
Open
Remove File from Project
& Compilation Report - Flow Si
Set as Top-Level Entity
| |&3 Compilation Report
Create Symbol Files for Current File &8 B Legal Notice h
Create AHDL Include Files for Current File &3 Flow Summary ot s e L EAT 20
SR Flow Settings Quartus I Version 9.0 Build 132 02/25/2009 SJ Web Edition
Properties &SHER Flow Non-Default Global Se Revision Name Test
o . Flow Elapsed Time Topdevel Entty Name hatf_adder
o/ Main Wind a=
pen in l|7| indow ZHER Flow 05 Summary Family Cyclone Il
+ Enable Docking &8 FlowLog Device EP2C20F484C8
Close &0 Analysis & Synthesis Timing Models Final
l o & Fitter Met timing requirements N/A
26| Total logic elements 2
Hierarchy | B Fies | ¢ Design Urits | | Total combinational functions 2
Tasks - x = . Dedicated ogic regaters g
Flow: | Compilation hd = Lot
| = J Total pins 4
[Tme & Total vitual pins 0
00:00:11 L
100:00:02 0
00:00:09

® View Quartus Il
Information

White screen

< >
x Type |Message ~
ERY] Info: Finished register packing
CIS V] Info: Statistics of I/0 pins that need to be placed that use the same VCCIO and VREF, before I/0 pin placement
&3] j) Info: I/0 bank details before I/0 pin placement
b Info: Fitter preparation operations ending: elapsed time is 00:00:00
v
< >
E" System (4))\ F ing (25) { Exstralnfo }\ Info(23) J Waming(2) }, Citical Waming } Ewor J, Suppressed (8] A Flag [
' b - ocate
E[Message: 0 e 4| ®| [Tocstion =] | Locate
Set the selected file as the top-level entity LoNon [25% & 000012 NUM

, < : - e 7:08 PM
£ Type here to search i C ~ C ¥, ® cc ~ma T ;) [EE NG i

Figure 8.12: how to run code.

3/27/2022

8.5.3 How to test code

1. To test code, we choose Vector Waveform File from Figure 8.9. This File is used to check the
functionality of the design works as expected or not. Figure 8.13 shows a Vector waveform File.

123
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

|-:‘l‘
]

=N BoR ™
Master Time Bar. | 19,025 ns 4| +| Painter: | 115ns Interval | 17.88ns Start:| End |
| [N A None Value at ps 100ns - Dz:ﬂ_pm 300ns |
L ns
% @ 15.03ns __|
=]
N % »‘B
o
o 1
= L
EAE
KL e
%

Figure 8.13: Vector waveform File.

2. Then right-click on the left most side of the window (under Name), then click insert
node or bus, as shown below

SBCS T U OO % @ B %0

exampll /examplel bdf | e Compilation Report - Flow Summary l 'a Waveform1. ywi
B MoserTmeBa| 97nm «[s|Pointec| 150ps Imevat| 9%ns Stat]

lm! x

End:
| R A Name | Vohed! = 917‘:l fsm S
— o6 Q L ns '_ ;
g = e
1 "
- M 5 g o
- % Paste »

Figure 8.14: insert node or bus.

124

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

3. Click on Node Finder and then on List (using the Filter pins: all) and note that file name in
look in option as shown in Figure below. Select all inputs and the output by clicking on (>>)
(you can select one by one).

ion

@ ilation - Flow Summary =N T EL
@ ﬁ of o | 8|8
@ Master Time Bar: 19025 ne 250 ps Interval 1878 ne End:
kA o | vaveat | PP 100ns ngﬂ.pm 300ns |
19.03 Ueans
% & ™ o
g N
@ & 2 Name: | OK
=
& Type: [INPUT ~] Qcm
& Valueype: | ILevel El Node Finder... I Step]
— Radic [asc -
B b I1
Node Finder ol
5 Step 5
< | Mamed [~] Fid |Fins | | Customie.. I List |I_k I oK I
I]
B Lo-okl] Step 2 v] | ¥ Include subenttie: Step B Cancel |
Nodes Found: Selected Nodes:
Name | Assignments | - Name | Assignments | -
a2 Unassigned | I |hall_adderla Unassigned |
b Unassigned | I |hall_adderb Unassigned | >
o cout Unassigned [&P hhalf_addercout Unassigned (
& Unassigned (4P |half_adderds Unassigned [
Step 4
[»]]
)_CiticalWaming)\ Enor J, Suppre .
<« -]

Figure 8.15: Select inputs and outputs.

4. You can select the intervals when you want the inputs to be one or zero, either by
shadowing the interval, then press the one level in the tool bar, or by write clicking the
name, then select value > count value, the change the start value, the end value, and the
radix as shown in the following figure:

STUDENTS-HUB.com

125

Uploaded By: Ahmad K Hamdan

@ Master Time Bar: 19.025 ns 1| »| Pointer: 550 ps Interval: 18.48ns Start: Ops Et
Count Value x
Count Value X
kA Name Step 3 Courting Timing |
% & Courtng [Timing | ———
o - A0 B Start timne: [E [ps LI
Radie . Endine: [10 :
ar ﬁdtep i: select‘mput ~ - me: | o =]
b g; cout AX g Start value: |U Transitions occur
AX
U : End value: 1 C ' | -]
0 1 O
';r e Increment by: |1 = o
ﬁ)@ Count type Step 4
-~ (¢ Binary .
i " Gray code |‘|D.IJ |ns vl
& Ptep 2 Mulipied by: [1
8% 4|
% 4 stepS [~ or]| cooe |

Figure 8.16: put value for inputs.

5. Now save the file with the same name as your project and in the same folder.

6. Then, from Processing > Simulator Tool, the window in Figure 8.14 will appear:

@ Quartus Il - cfaltera/90/quartus/Test - T - a %
File Edit View Project nssugnmmnolstepwluup

DEHd & IR | | % 3top Process CCG T ror vd k&8 4 e
Project Navigator P Start Compilation Ctri+L | @ Compdation Riegort - Flow Summany | 0 Testwwt | & Simulator Tool
‘3 Fes B2 Analyre Current Fle -
7 half_addecw Start » = |[@[®
Texond Update Memory Initializatien File & smusatep 3:Functinal o
Qcompimionﬁmﬂ Ctri+R L_ n = Il =]
| |
Start Compilation and Simulation Ctrl+ Shift«K o ||@| '
Generate Functional Simulation Netlist T Sidaion gt [Testviel o f| L] = ot = Endt T
5‘ Start Simulation Cdel L] Simedation period = - —r -
Simulation Debug v un simwlalion untl all vecloe s e usad = el = =
& Simulation Report Ctrl-Shift+R End 2@ [o
Simalation option:
TG o
[T Check outputs
I Hierchy | B Files [Design Uitz £ PowerPlay Power Analyzer Tool
Y S5N Analyzer Tool r
Tasks o -1 -— AT 1 -
r 1 i
Fow: [Complaton =l A E
™ Overeribe smulstion input fle with simulation results
Task 3 [Time & | & et ~
v E W Compie Design 00:00-21 e & enersle Signal Ackiely Fle: | _J
:f/’ Al < @@ I Gensste VED Fie [J
v B 8
« - B Classc Timing Ana 000
£ > EDA Nethst Witer ep 000000 ep
&) Program Deviee (Open Programmes) [
Csw | o | | @] :
< » v
*[" Type [Message -
b
b
N) Inf as 1. 0 errcrs, 0 warnings
< »
BISystem 81), Procassing (3) {_Extialnio }\ Ino[3) J, Waming J,_Coical Warrin_}\ Ence }\ Suppressed J, Fiag

126
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Figure 8.17: to show result.

7. The generated waveform is inserted as simulation input, then press on
Generate Functional simulation Netlist. Then Start after the simulation
finish press on Report to see the output.

8.5.4 How to make symbol from code, make diagram and Schematic File

1. To start new File, press File > New, the window in Figure 8.9 will appear press
Block Diagram /Schematic File.

2. The window in Figure 8.18 will appear, to enter components of our design double

click anywhere on the schematic window or select the symbol tool (The little and
gate).

-
%2 Block1.bdf o[- [

... =
| [TS

DD ...
i T SR TR R R EE TRt TR SRt TR RS TR SRS R SR EE SRR SRR

'jl.‘_i ...
SB[

Figure 8.18: diagram window.
3. This opens the symbol window in which available libraries, including the standard
QUARTUSII library, open this library by clicking on the little plus sign next to it,

then select primitives, and then select logic, then select the gate you want in your
implementation.as shown in Figure 8.19.

127
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Symbol

Libraries:

=& c/altera/30/quartus/lbraries A
#E3 megafunctions
#E others
FE primitives
FE buffer
& logic
i onEl and12

£ and3
Al andd
£ andb
iR andd
¢ +EF band12
i hand?
< >

MName:
[and2

[” Repeatinsert mode
-

r

Mega\wizard Plugln Manaager... ‘

Cancel |

Figure 8.19: choose components.

4. You have to define the inputs and outputs of your implementation, and you do so

by opening the symbol window> primitive> pin, the following figure shows all

the design components that must now be connected, we will build half adder using

gates:
25 Block1.bdf* =0 o 5
= S ———
B A |

el il S

an | : D—‘**'I—:?

iET

T &l B -
a & | SRR BEEEE BEEEE

N2
4 REES REES: SRS REES REES REES: REES
@) Sl Sl SRR BEEEE
N~ [P
% R R R R R R R ::):V

Figure 8.20: build half adder using gates.

5. To connect the components of the previous figure, select the 90° thin line with the

dots on its ends on the tool bar, this makes your cursor wiring tool that can be

STUDENTS-HUB.com

128
Uploaded By: Ahmad K Hamdan

used to connect you circuit. When done, disable the wiring tool by clicking the
arrow on the tool bar.

6. Rename input and output ports to the variable names of our design, to name a pin,
either double click it to open its pin properties window, or right —click it, and

select properties from the pull-down menu that shows up.

7. Save your design, and make sure it is named the same as your project, the

following figure shows the completed block diagram of our design.

f%2] Block1.bdf*

A
o0

1|

Figure 8.21: connect components.

8. To run first Right, click on the file name and select option Set as Top-Level
Entity then click (start compilation) select this icon ' ™ in top of the screen or
clicking on processing> start compilation. If there is any error, you can see in

white area in bottom of screen.

9. To test diagram, we repeat the same steps in previous section.

129
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

10. We can make symbol from code first Right click on the file name and select
option Set as Top-Level Entity then right click in name of cade file and choose

Create Symbol File for Current File. as shown in Figure 8.22.

Q Quartus Il - c/altera/90/quartus/Test - Test
File Edit View Project Assignments Processing Tools Window Help

DEUE &) e | A s@0e > w00 @ B ale
ject Navigator . x o~ o) =
ik £ hall_addery | € Compilation Report - Flow .. | {1 Testunt | & Simulator Tool | & Simuation Rieport - Simulat
=
5]
Open . ==
Remove File from Project | T S T U S S SRR S VU R U EE TR S U URRURS RS SRS S SERRURRE,
Set as Top-Level Entity Funpm Report = Fow Summary
=¥ Compilation Report IFIWS“I’II"\IW
Create Symbol Files for Current File &B Legal Notice
Create AHDL Include Files for Current File &3] Flow Summary Flow Status Successful - Sun Mar 27 21:38:36 2022
3 - &JF Flow Settings Quartus |l Version 9.0 Build 132 02/25/2009 SJ Web Ediion
GRS i &3EH Flow Non-Default Global Se Revision Name Test
Open in Main Window g: Flow Elapsed Time :w::vd Entty Name: ;‘; ,
= Flow OS Summary -ami ne
v Enable Dock i
C'I'a s - @B FlowLog Device EP2C20F484C8
o5& &H1 Analysis & Synthesis Timing Models Final
| [& Fitter Met timing requirements Yes
- ’ p— M |5 & Assembler Total logic elements 2/18752(<1%)
@ Hiesarchy | B Files | & Design Unis og &1 Timing Analyzer Total combinationalfunctions 2/ 18.752(< 1%)
= | > Dedicated logic registers 0/18752(0%)
- " Total registers]
Flow: |Compilation v
! = Total pins 4/315(1%)
Task B [Time & Total vitual pins 0
+ El P Compie Design 00:00:09 ey 0/239616(0%)
' E-W Anaysis & Synthesis [00-00:02 s Embedded Mutipier 9bit ements 0/52(0%)
v £l-- > _Fiter (Place & Route) 00:00:03 = = e
BB Assembler (Generate programming fies)| 00:00:03 5 8} ‘ w = g AT T
v - Classic Timing Analysis 00:00:01 i
- EDA Netlist Witer =
A Program Device (Open Programmer) ‘g.g(

S

Figure 8.22: create symbol.
11. we want to use this symbol in diagram we search name of symbol (code name).as

shown in Figure 8.23.

Symbol X

Libraries:
= & Project

#E libraries
B ¢ /altera/90/quartus/libraries/

. . {'naif_adder

< >
Name:

[half_sdder]

¥ Repeatinsert mode
I Insert symbol as block
[T Launch Megawizard Plugin

MegawWizard Plug-In Manager... |

ok | Cancel |

Figure 8.23: use symbol in diagram.

130
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

8.5.5 How to Download code in FPGA and choose inputs and outputs in board

1. After verifying that the design works as expected we can install the code on the
hardware (FPGA).

2. To check that the correct device is selected, this can be done using Assignments
> Device.

3. We need 2 switches for A and B (Inputs). 2 LEDs to see the output are needed.
We have to use the user manual of DE1 to figure out the location of the switches
and the LEDs. The Tables below show the location of the switches.

))_>° DE1 Pin Assignments

swo |sw7 | sws | swa| sw1| |KEY3| KEY2| KEY1 || KEYO
L2 || M2 || u12 || viz2 || L21 T21 || T22 || R21 || R22
sws || swe | | swa || swz || swo
M1 || Ut || wi2 || M22 || L22

LED
R9
R17

LED
R7
u1s

LED
R5
V19
LED
R6
Y18

LED
R3
Y19
LED
R4
T18

LED
R1
R19

LED
R2
ui9

LED
G7
Y21

LED
G5
wa1

LED
G3
va1
LED
G4
wa2

LED
G1
u21

LED
G2
Va2

LED
RO
R20

LED
GO

Y22 u22

DD o e ww D2 DI D o o aw [DI D o 22w [DD D e
©Seattle Pacific University EE 1210 - Logic System Design AlteraBoard-3

Figure 8.24: pin assignment.

Table 2-11. Toggle Switch FPGA Fin Connections Y v e
Swilch FRGA in Descriplion e LA o =
LEDR[Z) PIN_U1E LED Red2)
W) PIN_L22 Toggle Switch() e | LeDrea
t) 1 - | LEDRHM4] PIN_T18 LED Red4]
Swl 1| . Pib_L2 . T'J‘ilﬂ'? S 'I"U] | LEDR[5) PIN_V18 LED Red[5]
SHZ) PIN M2 Togela Sitch(y] woRe | P vis LED Redt]
! ! ; LEDR[7) PIN_U18 LED Red(7]
Ewl:]l | PIN V12 . T':"JEIE Eﬂ,h:h.ﬂ.] | LEDR[g] PIN_R18 LED Red[g]
S4] PIN Wig Togede Swlch4] LEDRR) PINRT7 LED Red(d]
: ' . LEDGI0] PIN_U22 LED Green[0)]

S5] Bl L1 Togele Swtch(s)

[| | . LEDGI1] PIN_U21 LED Green[1]
G| PIk_U11 Togale Switchl) LEDGI] PIN_V22 LED Greenp)
ST PN M2 Toge SWteh{T] B M ——

| | - | LEDG[4) PIN_W22 LED Green|4]
SE) BIM A1 Togele Swtch(g) oo | Pnwa: L£D GreenP]
| 1 1 . LE PIN_Y22 LED Green|
S| FIN_L2 Toqe SwiteH{B] il u
I l LEDG(T) PIN_Y21 LED GreenT]
131

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Figure 8.25: Pin Assignment for Switches. Figure 8.26: Pin Assignment for LEDs.

4. To select which inputs and outputs we use we select Assignments >

Assignments Editor then the window in below will appear.

% Category: | [a ~lfga &
= | | The Assignment Editor is the interface for creating, editing, and viewing individual assignments, induding pin assignments, in the Quartus II software. To create project-wide assignments, use the Set

(Assignments menu). Select the category in which you want to create, edit, or view assignments in the Category Bar. The default category, All, displays all assignments created for the target device
assignment categories display only the assignments that are legal for the target device, Use the Node Filter Bar to display and edit assignments for specific nodes and entities, Refer to the Quartus I

detailed information on assignments and the Assignment Editor.

="1

I

1LOQE WUl

ﬂ Edit: x|
From To | Assignment Name Value Enabled
1 0 Partition Hierarchy root_partition Yes
2 <<new>> <<new>> <<new>>
Figure 8.27: Pin Assignment Editor.

5. Assign PINs for the Inputs and Outputs. You can assign them by selecting all
the schematic file then right click Locate > Locate in assignment editor, the
following Figure appears:

iﬁ + Category: | Locations j ﬁ Al é‘l’mng _
T = | ¥ Show assignments for spedfic nodes:
z v > a A
& b
- M € count
a ﬁ' s v

This cell specifies the entity or node you want to assign to the location spedified in the Location column.

UOIRULIOJU] i

Yes

b Yes
€ count Yes

s
b
|4 s Yes
Figure 8.28: choose inputs and outputs.
6. Select Pin in the category and select a switch for input. After that save the pin

assignment. Then the pins will appear in diagram.as shown in Figure 8.29.

132

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

1

[l & category: |[Pn =] © a1| & Timing | ® Logic Optons |
= = | ¥ show assignments for spedfic nodes:
z o a ~ Check Al
& b
= ¥ count Unchedk All
g D s . _ Deeal |
J — A
=1 | | This cell specifies the pin name to which you want to make an assignment.
£
5
o e %|+/| [count
7 [|tocation 1/0 Bank 1/0 Standard General Function | Special Function Reserved Enabled
1 15a PIN 122 5 3.3V LVTTL Dedicated Clock CLK4, LVDSCLK2p, In... Yes
2 b PIN_L21 5 3.3-VLVITL Dedicated Clock CLKS, LVDSCLK2n, In... Yes
3 PIN_R20 6 3.3-VLVTTL Row 1jO VREFBENO Yes
4 s PIN_R21 3 3.3VLVTTL [Row1/0 LVDSB1n Yes
Figure 8.29: choose inputs and outputs in board.
£ hall_adder.v | € simulation Report - Simula... | 1A Test vl | & Simulator Tool | € compilation Repor

Figure 8.30: show the pins in diagram.

7. Re-compile the Project so that the new changes in the PINs take place. If the
project name differs from you block diagram file, then you have to set the file
as top-level entity as mentioned before. Download the Program on the FPGA

Tools >Programmer.

133
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

ul Quartus Il - C:iworkspace/example1 - example1 - [example1.cdf]

Eile Edk Processing JIools Window

. Hardware Setup...l USB-Blaster [USE-0]

Mode: |JTAG | Progress 0%
[~ Enable real-time ISP to allow background progralging (for MAX || devices)
P Start | File IDNK lEhecksun IUsemode l Eroor?;:: I Verity l g:::k I E xamine I S'E":“I Erase l u'.i';p
o examplel. sof EP2C20F. 00BOS1B FFFFFFFF] [O]
g Auto Detect |

Make sure that the currently selected hardware is USB-Blaster, and then click Start. (Show the results to the instructd

r)
& Add File

JFor Help, press F1

Figure 8.31: download code in FPGA.

134

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

8.6 Taskinthelab

1. Use Verilog HDL to implement a 2-to-1 MUX. Use Verilog HDL to implement a Full Adder. Create
schematic symbols for both the MUX and the Full adder, then connect them as shown in the figure. Run

a meaningful simulation for this circuit.

A~
B -«

Operation Select '

0: Addition
1: Subtraction

Cin . Full Adder * Cout

Sum

2. Use Verilog HDL to implement a 2-bit counter with direct reset input (RESET). Use Verilog HDL to
implement a 2-to-4 Decoder. Create schematic symbols for both the counter and the decoder, then

connect them as shown in figure below. Run a meaningful simulation for this circuit.

RESET

o

CLK 2-bat Counter

—

" v

2 X 4 DECODER

Tul Tll T:l le

135
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

8.7 PostLab

N R A N N s
:__ il
.. o
“u_”””””””ﬂ”””””””ﬂ”ﬂ””””””ﬂﬂﬂ””””ﬂ
................ =
[0ely [0l [e—p— [orel [0 Elunsad =
LA Y [0-Elw e D
D DO D
] CEw PR
AELK Pl pganoy T
T o Do R SRS R Y RESRES
T | b
DI | X7 XN ypEnD
H BRSO P =11 | - e T
AP [N (DU SR SR INDEM (DM
Frcocb b ——— loeh [0 glynsas
N B DO Y [0l
| B3 H EESEEEEEEN NS L F RN :
. TBppE T Re g
[e = [e" ofwinz
....... el wao
ura
= mivli 710
s Tt
S I
e R A
Q
[L R R
e
M -
o ool D
o LTIl Lol
P |] -
) ool D
A
4= LR R e e e e
< LTIl A
[2 A S
R R R R R RS B
<4 Ll Lol
D L

136

Uploaded By: Ahmad K Hamdan

STUDENTS-HUB.com

BIRZEIT UNIVERSITY

Faculty of Engineering and Technology

Department of Electrical and Computer Engineering

ENCS 2110

Digital Electronics and Computer Organization Lab
Experiment No. 9 - A Simple Security System Using FPGA

9.1 Objectives

e To practice building different digital components using Quartus either by building Verilog
codes or Block diagrams.

e Learning how to put some of the digital components, you have studied and build in pervious
lab sessions, together to build useful systems.

e To become more familiar with FPGA programming.

9.2 Equipment Required

e A computer with Quartus Il (7.2 +) and USB driver installed
e Altera DE1 system with its datasheets. (For FPGA pins map)

9.3 Pre-Lab (Bring a soft copy of your prelab with you to the lab)

1) Prepare each part of the procedure section where it says (Pre-Lab).

2) NOTE: You must come prepared, as this will reflect your work time during the lab plus it will
be a critical variable in the evaluation of your lab report.

137
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

9.4 Theory

In this experiment, we are going to build a simple security system using Altera Quartus

software. Then we will program and download this system on the FPGA board. This security

system is simply a 2-digit digital lock. The user enters a number of two digits, such that, the

digit ranges from 0O to 3. Thus, every digit has a lower limit of 0 and an upper limit of 3. The

number is entered using a keypad (using the 91 switch keys built in our FPGASs). Each digit is

represented by a 7-segment display and if the total number entered on the displays equals to

XX a green led is on; allowing us to pass. Otherwise, a red LED is always on, blocking us

from passing.

Figure 9.1 depicts this security system architecture.

}-: Do}

Enable {SW4)

BNDJ

T-Segmant Display

1]

40 Poorty Encodes

- o
s £
" B n

sw3
sw2

Figure 9.1: The Security System Architecture.

138
STUDENTS-HUB.com

Uploaded By: Ahmad K Hamdan

4bits
1[3:0])

select first or second digit

clk

A 4

v

Simple Security System

e Ru'\l l ED

7-bits

7-bits

Figure 9.2: High level view of the system.

——p

—7&’ 1

» Green LED

H

—
—

o
o

—

Ty

]

—

L

= *%

El

As Figure 9.1 shows, this security system comprises the following components:
9.4.1 4x2 Priority Encoder

The normal digital encoder is a combinational circuit that encodes 2n input lines by n

output lines. In other words, it generates the binary code equivalent of the input line, which is

active high. However, this kind of encoders has a problem. It only works when only one of the

inputs is active. In other words, if there is more than one input line active, the encoder will

generate the wrong code.

This issue can be resolved using the priority encoder. This kind of encoders prioritizes the level

of each input. If multiple input lines are active, the output code will correspond to the input line

with the highest priority as shown in Figure 9.3.

The user will use this priority encoder to choose what value to view on a 7-segment display

(values range from 0 to 3 in decimal), for example, if the user switches SW1 to high and keeps
SW2 and SW3 low then the output of the encoder will be b’01.

Lowest Priority

X0 —»
X1 b
v S—
X3 ="

Highest Priority

Priority
Encoder

—> YO
¥l

STUDENTS-HUB.com

Iz T2 T1 To|Y1 Yo
Bz 7 z |1 1
O B z |1 O
O 0O = |0 1
0 0 0 = 1|0 O

Figure 9.3: 4x2 Priority Encoder.

Uploaded By: Ahmad K Hamdan

9.4.2 Enable Port

The purpose of this port is to allow the user to select which memory system is active,
and hence which 7- 7-segment display to use, for example, if SW4 is high then the En pin of
the first memory system is enabled, and ready to read the user input on the 4x2 priority
encoder.

Note: The enable pin of the decoder must be active low while switching between the

selection lines of the decoder.

9.4.3 segment display driver

This driver is used to convert the output of the priority encoder to the proper input for
the 7- 7-segment displays, the output of the driver is first stored in a memory unit before it is
transferred to a 7- 7-segment (depending on which memory system is enabled using the 2x4
decoder). Figure 9.4 show a 4x7 7-segment decoder in this experiment we will use a 2x7 7-

segment decoder.

a a

b a

D—]|D . =
Co—C d d fl |b
B—B e E | |
e C

A o— A ; ! —_—

Clock 9 d

BCD to 7 Segment 7- Segment
Decoder LED Display

Figure 9.4: 7 -segment decoder.

9.4.4 Memory System

The purpose of such a system is to ensure that the value selected by the user to display
on a certain 7- 7-segment is kept there when the user switches to select another 7-segment.
Each memory system consists of seven D- flip-flops and 2x1 MUXs as shown in Figure 9.5.
When the enable pin equals 0, the output of each DFF becomes its input at every clock
cycle. On the other hand, when the Enable pin becomes 1, the data coming from the 7-segment
driver is stored in each DFF. The output of each DFF is sent on a data bus to a 7-segment
display.
140
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Note: For each 7- segment display, we need a memory system block

Data out to a 7-segment

~
”~

) a §
DFF DFF DFF DFF OFF DEF OFF
- "‘ e - < X 3
o 3 = 1| 3 s, o8 . - 8
1 I l [| [|
cut
l 2x1 MUX 2x1 MUX 2x1 MUX 2x1 MUX 2xt MUX 2x1 MUX
24 MOX]
| l L B Sel LA B se LA = Set LA Sel L;-. Sel LA 8 Se!
‘r =) FE—1 = - ' T 1 !
] |] | | |]
Enable l
x X 4 b
Data 0 Data 1 Data 2 Data 3 Dats 4 Dats Data b

FIG 2: Memory System

Figure 9.5: Memory System.

9.45 Comparator
The input of each 7-segment display is connected also to a comparator. every

comparator has a built-in value (reference) which is compared with the value of the 7-segment
display. If both values are equal, then the output of the comparator is 1, and it is 0, otherwise.
For example, if one of the comparators has a reference value equals 5, then its output will be 1
if and only if the input is equal to=7'b0100100 (which is the value of 5 in the 7-segment

display). The purpose of the comparator is to lock/unlock the security system.

9.4.6 2-input AND gate
This AND gate will make sure that the two 7-segment displays have the correct

combination. In other words, if each comparator output is “1”, then the AND gate output will

be “1”, and the green light is ON. Otherwise, the red light will be always ON.

141
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

9.5 Procedure

1. Design a4 x 2 priority encoder by writing and simulating the Verilog code shown in
Figure 9.6 using Quartus. (Pre-LAB).

//4 x 2 Priority encoder
module priority_encoder(out, in);

input [3:0] 1in;
output reg [1:0] out;
always @ (in)

begin
casex(in)
4'b0001:0ut = 2'b00;
4'b001x:out = 2"'b01;
4'b01xx:out = 2"'bl0;
4'blxxx:out = 2'bll;
default:out = 2'b00;
endcase
end
endmodule

Figure 9.6: 4 x 2 Priority Encoder Verilog Code.

2. Design the 7-segment display driver by writing and simulating the Verilog code shown in
Figure 7 using Quartus. (Pre-Lab).

142
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

e willdl LAV EL L BMLIIALlY ol A

to 7-segment input

module sevenSegmentDriver (in v , out_wv) ;
input [1:0] in v :

output [€:0] out_wv ;

wire[1l:0] in v ;

reg [6:0] out_v ;

always [i:_v]

begin
case (in_v)
0 : out_v = 7'bl000000;
1 : ouc_v = 7'bl111001;
2 : out_v = 7'b0100100;
3 : out_v = 7'b0110000;
endcase
end
endmodule

Figure 9.7: 7-Segment Display Driver Verilog Code.

3. Write and simulate the Verilog code of a D- Flip Flop using Quartus (Pre Lab)

4. Write and simulate the Verilog code of a 2x1 MUX using Quartus (Pre Lab).
Note: The MUX should behave as explained in the memory system section (check
back the theory).

5. Use a block diagram to build the design shown in Figure 9.8.

6. Write and simulate the Verilog code of the comparator shown in Figure 9.9 using
Quartus
Note: for simplification, we will build one comparator based on the reference value
X (in this case, it is 5). You can build four different comparators with four different

values to compare with.

143
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

B E MyMUX A= 2n My FlipFlop

o1 [e— A ouT D a =10

B CLK

select 8‘

inst8 insté

MyMUX MyFIonIup

D2 [—— v 5 e A ouT D a —

B CLK
select

inst

MyMUX MyFquFlup

= 0n il Q[2
BT A our ° a =

B CLK

select

inst10 inst1

MyMUX T MthpFlop T

QI3]

A ouT D Q

select

e MthpFlop TR

b5 Q4]

A ouT D Q
B CLK
select

inst12 inst3

Qrs]

e [— e A ouT) a
3 cLk
select

inst13 inst4

are)

A ouT D Q

select

Figure 9.8: Memory System Block Diagram.

144
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

module MyComp (CData,out):;
input [6:0] CData;
wire [6:0] CData;
output out;
reg out;
always @ (CData)
begin
//compare value in regist
if(CDhata == 7'b0100100)
out <=1'bl;
else
out <=1'b0;

r with

(10

end
endmodule

Figure (9): Comparator Verilog Code.

7. Build and design the security system using the components you built in the previous
steps. The final block design should look like the one in Figure 9.10. Assign pins
values to the security system design you just built and then download the system on
the FPGA board.

145
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

z o =
s 1% H
H s |
- i i 1
-1 ot i=| 2 H
< B il & 2!
> -1 inlLe =i
:_.I._'“ 5 l :
---------------- ey i
S i Pl
) : i =
o i i o
i b=
= { H
el «% i { 2 |
ol 58— nwnmwwmonr - g|l <8 H
= u DO000 s 52 ccvmvowonr -l
i S| Chocoooa o =i
i !

e EEE sEREEEER
Datal6..0] wlalcloigicls slalsislslsls

al¢

FIG4 The Securty System

Figure 9.10: The Security System Final Block Diagram.

96 Doinlab
1. Change in code to make user enter number from 0-7.
2. Make your system take four different password numbers.

146
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

BIRZEIT UNIVERSITY

L .2

Faculty of Engineering and Technology

Department of Electrical and Computer Engineering

ENCS 2110

Digital Electronics and Computer Organization Lab
Experiment No. 10 - Simple Computer Simulation

10.1 Objectives

In this experiment, we are going to design the Verilog HDL control sequence for a simple computer

(SIMCOMP). The SIMCOMRP is a very small computer to give the students practice in the ideas of designing
a simple CPU with the Verilog HDL notation.

10.2 Equipment Required

e A computer with Quartus Il

10.3 Pre-Lab

1) Read the experiment to find the prelab.

147

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

10.4 Theory

10.4.1 Basic Computer Model - Von Neumann Model

VVon Neumann computer systems contain three main building blocks: the central
processing unit (CPU), memory, and input/output devices (1/0). These three components are
connected together using the system bus. The most prominent items within the CPU are the
registers: they can be manipulated directly by a computer program, See Figure 10.1:
Function of the Von Neumann Component:

Memory: Storage of information (data/program)

Processing Unit: Computation/Processing of Information

Input: Means of getting information into the computer. e.g., keyboard, mouse

Output: Means of getting information out of the computer. e.g., printer, monitor
Control Unit: Makes sure that all the other parts perform their tasks correctly and at the

correct time.

0

MEMORY
|
I
|
|
IMPUT : SUTPUT
|
I
* Kayhoard | * Monitor
* Mouse ! * Printer
* Spanner : PROGESSING UNIT LED
* Card reader X * Disk
* Digk, |
|
|
I
|
|
I
|
|
1

A
|
|

;
I
|
|
|
|
|
1

CONTROL UNIT

0 =

Figure 10.1: Von Neumann computer systems.

148
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

10.4.2 General Registers

1) One of the CPU registers is called as an accumulator AC or 'A' register. It is the
main operand register of the ALU it is used to store the result generated by ALU.
2) The data register (MDR) acts as a buffer between the CPU and main memory. It is
used as an input operand register with the accumulator.
3) The instruction register (IR) holds the opcode of the current instruction.
4) The address register (MAR) holds the address of the memory in which the operand
resides.
5) The program counter (PC) holds the address of the next instruction to be
fetched/execution.
Additional addressable registers can be provided for storing operands and address. This can be
viewed as replacing the single accumulator by a set of registers. If the registers are used for many
purposes, the resulting computer is said to have general register organization. In the case of

processor registers, a register is selected by the multiplexers that form the buses.

10.4.3 Communication Between Memory and Processing Unit

Communication between memory and processing unit consists of two registers:
Memory Address Register (MAR). Memory Data Register (MDR).
To read,

1- The address of the location is put in MAR.

2- The memory is enabled for a read.

3- The value is put in MDR by the memory.

To write,

1- The address of the location is put in MAR.

2- The data is put in MDR.

3

4- The value in MDR is written to the location specified.

The Write Enable signal is asserted.

10.4.4 Generic CPU Instruction Cycle

149
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

The generic instruction cycle for an unspecified CPU consists of the following stages:
1) Fetch instruction:

Read instruction code from address in PC and place in IR. (IR ¢ Memory [PC])

2) Decode instruction:
Hardware determines what the opcode/function is and determines which registers
or memory addresses contain the operands.

3) Fetch operands from memory if necessary:

If any operands are memory addresses, initiate memory read cycles to read them
into CPU registers. If an operand is in memory, not a register, then the memory address
of the operand is known as the effective address, or EA for short. The fetching of an
operand can therefore be denoted as Register ¢ Memory [EA]. On today's
computers, CPUs are much faster than memory, so operand fetching usually takes

multiple CPU clock cycles to complete.

4) Execute:

Perform the function of the instruction. If arithmetic or logic instruction, utilize
the ALU circuits to carry out the operation on data in registers. This is the only stage
of the instruction cycle that is useful from the perspective of the end user. Everything
else is overhead required to make the execute stage happen. One of the major goals of
CPU design is to eliminate overhead and spend a higher percentage of the time in the

execute stage.

5) Store result in memory if necessary:

If destination is a memory address, initiate a memory write cycle to transfer the
result from the CPU to memory. Depending on the situation, the CPU may or may not
have to wait until this operation completes. If the next instruction does not need to
access the memory chip where the result is stored, it can proceed with the next
instruction while the memory unit is carrying out the write operation.

Below is an example of a full instruction cycle which uses memory addresses for all

150
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

three operands:
1- Mull product, x, y
2- Fetch the instruction code from Memory [PC]
3- Decode the instruction. This reveals that it's a multiply instruction, and that the
operands are memory locations X, y, and product.
4- Fetchx andy from memory.
5- Multiply x and y, storing the result in a CPU register.

6- Save the result from the CPU to memory location product.

10.4.5 Addressing Modes

The term addressing modes refers to the way in which the operand of an instruction is
specified. Information contained in the instruction code is the value of the operand or the address

of the result/operand.

[PC][IR]
N

Memory

Figure 10.2: connection between memory and registers.

10.5 Our Simple Computer

SIMCOMP has a two byte-addressable memory with size of 128byte. The memory is synchronous to
the CPU, and the CPU can read or write a word (or cell) in single clock period.

The memory can only be accessed through the memory address register (MAR) and the memory buffer
register (MBR). To read from memory, you use:

- MBR <= Memory [MAR];

And to write to memory, you use:

- Memory [MA] <= MBR;

1. The CPU has three registers: an accumulator (AC), a program counter (PC) and an instruction
151
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Instruction Format

register (IR).

The SIMCOMP has only three instructions: Load, Store, and Add.
The size of all instructions is 16 bits; all the instructions are single address instructions and access

a word in memory.

The opcodes are:

15 1211 0

Opcode

Address

Figure 10.3: Instruction format.

Op-code Instruction Description
0011 Load M Loads the contents of memory location M into the
accumulator.
1011 Store M Stores the contents of th_e accumulator in memory
location M.
0111 Add M Adds the contents of memory location M to the
contents of the accumulator.

Table 1

Prelab

1) You must write the basic code shown in Fig 1 at the last page of this experiment in your own

Quiartus Il file.

2) You have to trace the basic code manually so that you can understand what does the code do. Use

the following table:

Line #

Code

Description of what is done

reg [15:0] Memory [0:63]

reg [2:0] state

13

Memory [10] =16’h3020

14

Memory [11] =16’h7021

15

Memory [12] =16’hB014

18

Memory [32] =16’d7

19

Memory [32] =16’d7

STUDENTS-HUB.com

152
Uploaded By: Ahmad K Hamdan

22 PC =10; state =0

29 MAR <= PC

30 state =1

33 IR <= Memory [MAR]

34 PC<=PC+1

35 state =2

38 MAR <= IR [11:0]

39 state = 3

42 state =4

43 case (IR [15:12])

44 load: MBR <= Memory
[MAR]

45 add: MBR <= Memory [MAR]

46 store: MBR <= AC

52 AC <=AC + MBR

56 AC <= MBR

60 Memory [MAR] <= MBR

Table 2

3) You have to summarize the objective of Program #1 above, then repeat for Program #2

10.6 Accumulator Based Simple Computer

The Verilog program described by the following table is shown in Fig 1, study, and simulate the

code.

Instructions
II\/Iempry Instruction assembly | Instruction machine code in Hex
ocation
10 Load [32] 0011-0000-0010-0000b 16'h3020
11 Add [33] 0111-0000-0010-0001b 16'h7021h
12 Store [20] 1011-0000-0001-0100b 16'hB014h
Data
32 Data 7 Memory [32] 16'h7
33 Data 5 Memory [32] 16'd5

STUDENTS-HUB.com

153

Uploaded By:

Ahmad K Hamdan

Table 3

Taskl: Modify the code to include the jump instruction

Choose any opcode e.g., jump=4'b0001, you have to include the execution of jump which changes the

PC to the specified address in the instruction.

Instructions
II\/Iem_ory Instruction assembly | Instruction machine code in Hex
ocation
10 Load [32] 0011-0000-0010-0000b 16'h3020
11 Add [33] 0111-0000-0010-0001b 16'h7021h
12 Store [20] 1011-0000-0001-0100b 16'hB014h
13 Jump 11 0001-0000-0000-1011b 16'h100Bh
Data
32 Data 7 Memory [32] 16'h7
33 Data 5 Memory [32] 16'd5
Table 4

Task 2: Write the General form of the instruction set for Prog #1
Task 3: Trace the Modified code as was done in the prelab but this time using the

waveforms

10.7 Register Based Simple Computer [SIMCOMP?2]

Modify the instruction format so that SIMCOMP can handle four addressing modes and four
registers.

This new SIMCOMP?2 has four 16-bit general purpose registers, R[0], R[1], R[2] and R[3] which
replace the AC. In Verilog, you declare R as a bank of registers much like we do Memory.

reg [15:0] R [0:3]; // declaration of registers bank

Since registers are usually on the CPU chip, we have no modeling limitations as we do with Memory -

with Memory we have to use the MAR and MBR registers to access the memory. Therefore, in a load

154
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

you could use R as follows:
R [IR [9:8]] <= MBR; //where the 2 bits in the IR specify which R register to set.

Task 4: Modify the four instructions of the old SIMCOMP
The new instruction should follow the new form:

1. LOAD RJi], M loads the contents of memory location M into R[i].

2. STORE RYi], M stores the contents of R[i] in memory location M.

3. ADD RYi], R [jJ], R[K] adds contents of R[j] and R[k] and places result inR[i].

To test your SIMCOMP2 design, perform the following program where:

1. PC starts at 10,

2. Suppose IR [9:8] is used to specify the register number.

3. In the “add instruction” IR [11:10] destination register, IR [9:8], IR [7:6] sourcel, source2

respectively.

Instructions
Memory Instruction Destinatio Re S ouree . . .
location N register g|ste;//Memor Instruction set code in binary in Hex
10 Load R1 3 0011-0001-0000-0011b 16'h3103
11 Load R2 4 0011-0010-0000-0100b 16'h3204
12 Add R1 R1, R2 0111-0101-1000-0000b 16'h7580
13 Store R1 5 1011-0001-0000-0101b 16'hB105
Data
Data A Memory [3] 16'hA
4 Data 6 Memory [4] 16'd6
Table 5

Task 5: Write the General form of the instruction set for SIMCOMP?2,
Task 6: Trace SIMCOMP2 code using the waveforms.
Task 7: Add immediate addressing to the SIMCOMP2:

If bit (IR [11]) is a one in a Load, the last eight bits are not an address but an operand. The operand is
in the range -128 to 127.

If immediate addressing is used in a LOAD, the operand is loaded into the register.

155
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Load R1, 8
R1< 8
Simulate the following test with handwritten comments explaining what you are doing.
PC=10
Memory [10]: Load R1,3 // Load immediate
Memory [11]: Load R2, -4 //Use 2's complement to represent (-4) Memory [12] Add R1, R1, R1
Memory [13]: Store R1,5

Instructions
Memory Destinatio Source
location | 'nstruction |~ register Reglste;ll\/lemor Instruction set code in binary in Hex
Load
10 Immediat R1 3 0011-1001-0000-0011b 16'h3903
e
Load
11 Immediat R2 -4 0011-1010-1111-1100b 16'h3AFC
e
12 Add R1 R1, R2 0111-0101-1000-0000b 16'h7580
13 Store R1 5 1011-0001-0000-0101b 16'hB105
Data
Data A Memory [3] 16'hA
4 Data 6 Memory [4] 16'd6
Table 6

Hint: How to read the 2's complement (8 bit) in Verilog:
MBR <= - (~ (IR [7:0]) + 1)
Task 8: Write the General form of the instruction set for Prog #2 with immediate

load

156
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

1 Bwodule SIMNCOMP (elock, PC, IR, MBR, LC, MAR):
2 input clock:

3 output PC, IR, MBR, AC, MAER;

4 reg [15:0] IR, MBR, AC;

5 reg [11:0] PC,MAR;

B reg [15:0] HMemory [0:63]:

7 reg [2:0] state;

g

9

parameter load = 4'b0011, store = 4'b1011, add=4'b0111;

10

11 HBEinitial begin

12 / program

13 Memwory [10] = 16'h3020;

14 Memory [11] = 16'h7021;

15 Memory [12] = 16'hB0O14;

16

17 {f data at byte addres o L S5 IALELED B

18 Nemory [32] = 16'd7: 92 SEECE

19 Memory [33] = 16'dS: el =)

20 41 @ 3: begin // Operand fetch

21 {fset the program counter to the atart of t42 SIEEEE =

29 PC = 10: state = O 43 H caze (IR[15:12])

23 end 14 load : MBR <= Memory[MAR]:
54 45 add @ MBE <= Memory[MLR]:
2E 45 store: MBR<=LC;

26 HEalvays @ (posedge clock) begin 47 endcase

27 Ecase (state) ig G0

28 EO0: begin]
50 E4: begin /fexecute

29 MR <= PC; _ _
30 e 51 B if (IR[15:12]==4'h7] hegin
31 end 52 LC<= AC+HMER;
32 B 1: begin // fetch the instruction from memurg:S3 e =0
33 IR <= Memory[MAR]: h G _
314 PC ¢= PC + 1: 55 = glse if [IR[15:12] == 4'h3)] bhegin
35 state=2; //next state A9 5 35 LIAY
e end 57 gtate =0; // next state
37 HE Z: bhegin //Instruction decods =8 end ,)
59 H glse if [IR[15:12] == 4'hB] begin
60 Memorv[MAR] <= MER;
61 state = 0;
Bz end
63 end
64 endcase
65 end

Figure 10.4: Basic code.

157
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

At the end of this experiment, you should have two files:
1- An Accumulator Based Simple Computer with 4 instructions as in program 1
2- A register based simple computer with 3 opcodes (noting that the load opcode can be immediate or

normal) as in program 2.

10.8 Post Lab

1. Modify Program #2 so that it finds the sum of three elements and then traces the process

(using waveform).

2. Modify the program in the first part of the post-lab to include the jump instruction with opcode
(Jump=4'p1001) and change code to run this code below. (Write the instruction format)

3. Modify the previous program making it sum 10 elements using a jump (loop) opcode to sum

the 10 elements.

Instructions
Memory Instruction Destinatio Re S ouree . . .
location n register g|ste;//Memor Instruction set code in binary in Hex
10 Load R1 3
11 Load R2 4
12 Load R3 -9
13 Add R1 R1, R2, R3
14 Store R1 5
Table 7
158

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

D ‘*v/ g
BIRZEIT UNIVERSITY

Faculty of Engineering and Technology

Department of Electrical and Computer Engineering

ENCS 2110

Digital Electronics and Computer Organization Lab
Experiment No. 11 - Arithmetic Elements

11.1 Objectives

e To understand functions and applications of the ALU (arithmetic logic unit).
e To perform arithmetic and logic operations using the74181ALU IC.
e To understand the construction and applications of parity generators.

e To generate parity bit using XOR gates and parity generator IC.

11.2 Equipment Required
e KL-31001 Basic Electricity Circuit Lab
e KL-33003 Combinational Logic Circuit Experiment Model (2).
e KL-33004 Combinational Logic Circuit Experiment Model (3).

159
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

11.3 Theory

11.3.1 ARITHMETIC LOGIC UNIT (ALU) CIRCUIT

The logic diagram of the ALU is shown in Figure 11.1:

Cin Cout
——— —
A ,“
S - P
S0 otk Arithmetic
& P 4 4
$1 logic unit 1 4
§§ MUX |=yte F
0
P &
Mode

Figure 11.1: logic diagram of the ALU.

It consists of two major parts: the arithmetic unit and the logic unit. The output, either

arithmetic or logic which is selected by the selection switches. Figure 11.2 shows the pin

assignment:
e F2 e
A Out
et A1 F1 .
— AD FO fr—
Inputs
—ed B3 ALU Cned b Carry Out
—ed 62
B
Bo
Carry In ———eed Cn
" S3 S2 S1 S0

Mode —_—
Select

Figure 11.2: pin assignment.

The circuit has two 4-bit inputs A and B, as well as a “carry-in” (Cn) input. There is a
mode control input (M) and 4 function-select lines SO, S1, S2, S3 forming logic or arithmetic

operations.

160
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Also, it has a 4-bit output (F3~F0); a “carry-out” or “Cn+4” output. The biggest advantage
of the design is its ability to perform arithmetic functions such as addition, subtraction.
multiplication; and logic functions such as AND, XOR functions.

The mode control input (M) and function-select lines (S0~S3) determines which function

it will perform.

11.3.2 BIT PARITY GENERATOR CIRCUIT

A bit parity generated by the bit parity generator, usually accompanies the data
transmission process. The bit parity provides as a reference point and allows us to compare and
check whether the transmission process and the data transmitted are correct or not.

There are two types of bit parity generators: The “Odd” bit parity generator will
generate “1” if the data contains an even number of “1” s. For example, the data “10111011”
has six “1s”. When the bit parity is added to the end of this data, the number of “1s” in the data
will become an “ODD” number, hence the name “Odd Parity Generator”. On the other hand,
an “Even” bit parity generator will add a “1” to data with odd number of “1s” to make the total
number of “1s” even. If the data already has an even number of “1”’ s no bit parity is generated.
Output Y of the” Even” bit parity generator shown in Figure 11.3 will be 0 if the inputs
ABCDEFGH is equal to 10111011.

A

B

c ’ B parity output
Input 0] D—o

E ’ v

F

G

)

Figure 11.3: “Even” Bit Parity Generator Circuit.

161
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

11.4 Procedure

1141 ARITHMETIC LOGIC UNIT (ALU) CIRCUIT

A) Connect function-select lines S3~S0 to DIP2.7~2.4 respectively of Module KL-33003 block b.
Connect M to Data Switch SWO to select arithmetic and logic operations. When M= “0”
inputB3~B0 is displayed at output. When M= “1” arithmetic and logic function is performed.

(MSB) (LSB)
(MSB) 4, F3 F2 F1_FO Cn+4
16
O—sz 20
15 u14 s
0O 14] ¢
(LSB) A3 A2 A1 A0 B3 B2 B1 B0 M Cn

24 23 [22 21 28 [27 |26 25J;s £
O 0O 0O O
(MSB) (LSB)(MSB) (LSB)

Figure 11.4: “Even” Bit Parity Generator Circuit.

B) Connect inputs A3~A0 to DIP1.3~1.0 and B3~B0 to DIP2.3~2.0; Connect Cn to Data
Switch SW1,; outputs F3~F0 to Logic Indicators L3~L0 and Cn+4 to L4.
C) Set M to “1” to perform the following arithmetic functions.
- Set Cn to “0” and ignore the previous carry.
When S352S1S0=0000 perform the addition.
What is the output when A3A2A1A0=0000 and B3B2B1B0=1111?

F3F2F1F0= - Cn+4=
What is the output when A3A2A1A0=1001 and B3B2B1B0=0100?
F3F2F1F0= : Cn+4=

162

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

- Set Cn to “1” and add the previous carry.
When S3S5251S0=0000 perform the addition.
What is the output when A3A2A1A0=0000 and B3B2B1B0=1111?

F3F2F1F0= ; Cn+4=
What is the output when A3A2A1A0=1001 and B3B2B1B0=0100?
F3F2F1F0= ; Cn+4=

- Set Cn to “0”. When S35251S0=0001 perform the subtraction.
What is the output when A3A2A1A0=0000 and B3B2B1B0=1111?

F3F2F1F0= - Cn+4=
What is the output when A3A2A1A0=1001 and B3B2B1B0=0100?
F3F2F1F0= - Cn+4=

D) Again set M to “1” to perform the following arithmetic and logic functionns according to Table 1.
Set inputs sequence A0~A3=A, B0~B3=B from DIP switches.

Table 11.1:Data of part 11.4.1(D)

Input selection M=H Output
S3 S2 S1 SO Cn=L F3 F2 F1 FO
0 0 1 0 A
0 0 1 1 ~A
0 1 0 0 B
0 1 0 1 ~B
0 1 1 0 A&B
0 1 1 1 AxB
1 0 0 0 A" B
1 0 0 1 Ax(~B)
1 0 1 0 (~A)xB
1 0 1 1 (~A)x(~B)
163

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

11.4.2 BIT PARITY GENERATOR CIRCUIT

A) Bit Parity Generator Construct with XOR Gates (Module KL-33004 block a).
1) Insert connection clip according to Figure. 11.5 to construct the even bit parity generator

circuit of Figure 11.6.

+O - F3

) ué D O
8_4@—-&0';

1
A2
@

o=

él’.‘ 52

O s
F6
5

u7
us)
Jus)
us
v

mo Oo

Figure 11.5: Bit Parity Generator Circuit.

A
B
us
: D DS
F&
0o
EC

Figure 11.6: “Even” Bit Parity Generator Circuit.

2) Connect inputs A, B, C, D, E to DIP Switches 1.0~1.4 and output F6 to Logic

Indicator L1. Follow the input sequences in Table 11.2 and record the outputs.

164
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Table 11.2:Data of part 11.4.2 (A-2)

|

R P PP o o o o o o
PP R R R o o o o o
R R o O k| R L, O o ©
R R R O R O O k| |l O

| O O O O k| O] k| O] O

B) Bit Parity Generator IC.

A1O—
B1O—+
C1O—
D1Q—L
EIQ—2E uis
F1O—
61—
H1O—2+
1M O—2

s EVENE—O) vo

o W »

o

1 0DDe—0) v1

I o 2

Figure 11.6: Bit Parity Generator IC.

1) chip onblock d of module KL-33003 is a bit parity generator Connect inputs Al, B1, C1, D1,
E1, F1, G1, H1 and I1 to DIP Switches 1.0~1.7and DIP 2.0 respectively. Connect outputs YO to
LO; Y1 to L1. Follow the input sequences given in Table 11.3 and record the outputs.

Table 11.3:Data of part 11.4.2 (B-1)

165
STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

166

Uploaded By: Ahmad K Hamdan

STUDENTS-HUB.com

