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Problem statement

( )

( )0 0

Problem:   Given a nonlinear system  
,

Derive an approximate linear system 
 

about an "Operating Point" ,

X f X U

X AX BU
X U

=

= +

�

�

Note: An operating point is a point through 
which the system trajectory passes.
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Linearization:
Scalar homogeneous systems

Scalar system:

Operating point:

Define:

Taylor series:

Neglecting HOT,

( ),x f x x R= ∈�

( )
00

2

0 0 0( ) ( ) ( ) ( )
2!x

x

x
x x f x x f x f x x f x

⎧ ⎫Δ⎪ ⎪′ ′′+ Δ = + Δ = + Δ + +⎨ ⎬
⎪ ⎪⎩ ⎭

� � "

0x

0 0 0( ) ( )x x f x f x x′+ Δ ≈ + Δ� �

xxx Δ+= 0

HOT
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Linearization:
Scalar homogeneous systems

x xΔ�

[ ]0( )x f x x a x′Δ = Δ = Δ�

( )where
x ax

a f x
=

′=

�

satisfies the differential equation ( )00 xfx =�
This leads to

For convenience, redefine

0x

This leads to
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Example – 1

Linearize: 2 1, (0) 1x x x= − = ±�

Solution: 0

0

0 0

1 0 1
1

2 1 0 1

2 | 2

| 2 | 2

x
x

x x

dfa x
dx

dfa x
dx

=
=

=− =−

= = =

= = = −

The linearized system:

Note: As the reference point changes, the
linearized approximation also changes!

12
12

0

0

−=−=
==

xxx
xxx

�
�
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Linearization:
General homogeneous systems
Homogeneous System: 

Taylor Series:

( ) [ ] [ ]1 2 1 2, ,T T
n nX f X f f f f X x x x=� � … � "

0

0 0( ) ( )
X

ff X X f X X HOT
X
∂⎡ ⎤+ Δ = + Δ +⎢ ⎥∂⎣ ⎦

0

0 0( )
X

fX X f X X
X

X X
X A X

∂⎡ ⎤+ Δ ≈ + Δ⎢ ⎥∂⎣ ⎦

Δ

=

� �

�
� 0

1 1

1

1

n

X
n n

n

f f
x x

fA
X

f f
x x

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥∂⎡ ⎤= ⎢ ⎥⎢ ⎥∂⎣ ⎦ ⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

"

� # % #

"
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Example – 2: Van-der Pol’s Oscillator 
(Limit cycle behaviour)

Equation

State variables

State Space Equation

( ) { }22 1 0 , 0M x c x x k x c k+ − + = >�� �

1 2,x x x x�� �

N ( )
( )

2
1

2
2 1 2 1

:  Homogeneous nonlinear system2 1
X

F X

xx
c kx x x x

m m

⎡ ⎤⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦�

�
�

�����	����
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Example – 2: Van-der Pol’s Oscillator 
(Limit cycle behaviour)

Operating Point:

Linearized State Space Equation

[ ]
0 01 2 0 0

T Tx x⎡ ⎤ =⎣ ⎦

N
( ) ( ) N

N

0

1 1
2 1 2

2 21 1
0

1

2

0 1
2 2 2 1

0 1
20

X XX

X
A

x x
cx x k cx xx x

m m m

x
c x

m

=

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

�

�
�

��	�
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Linearization: General Systems

System having control input

Reference point:
Taylor series expansion:

( ), , , ,n mX f X U f X U= ∈ ∈� R R

( )0 0,X U

( )

( )
0, 0 0 0

0 0

0 0
( ) ( , )

,

,
X U X U

f X X U U

f ff X U X U HOT
X U

+ Δ + Δ

∂ ∂⎡ ⎤ ⎡ ⎤= + Δ + Δ +⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦
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Linearization

0, 0 0 0

0 0 0
( ) ( , )

( , )

Re-define:     ,
This leads to   

X U X U

f fX X f X U X U
X U

X A X B U
X X U U
X AX BU

∂ ∂⎡ ⎤ ⎡ ⎤+ Δ ≈ + Δ + Δ⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

Δ = Δ + Δ

Δ Δ

= +

� �

�

� �
�

0 0

0 0

1 1

1

( , )

1 ( , )

n

n n
X U

n n

n X U

f f
x x

fA
X

f f
x x

×

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥∂⎡ ⎤= = ⎢ ⎥⎢ ⎥∂⎣ ⎦ ⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

"

# % #

"

0 0

0 0

1 1

1

( , )

1 ( , )

m

n m
X U

n n

m X U

f f
u u

fB
U

f f
u u

×

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥∂⎡ ⎤= = ⎢ ⎥⎢ ⎥∂⎣ ⎦ ⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

"

# % #

"
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Example – 3: Spinning Body Dynamics
(Satellite dynamics)

Dynamics: 2 3
1 2 3 1

1 1

3 1
2 3 1 2

2 2

1 2
3 1 2 3

3 3

1

1

1

I I
I I

I I
I I

I I
I I

ω ω ω τ

ω ω ω τ

ω ωω τ

⎛ ⎞ ⎛ ⎞−
= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞−

= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞−

= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

�

�

�

1 2 3

1 2 3

1 2 3

, , : MI about principal axes
, , :  Angular velocities about principal axes
, , :    Torques about principal axes

I I I
ω ω ω
τ τ τ
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Example – 3: Spinning Body Dynamics
(Satellite dynamics)

Operating Point:

Linearized State Space Equation (Double Integrator)

[ ]

[ ]
0 0 0

0 0 0

1 2 3

1 2 3

0 0 0

0 0 0

T T

T T

ω ω ω

τ τ τ

⎡ ⎤ =⎣ ⎦

⎡ ⎤ =⎣ ⎦

N N

( )
( )

( ) N

1 1 1 1

2 2 2 2

3 3 3 3

0 0 0 1/ 0 0
0 0 0 0 1/ 0
0 0 0 0 0 1/

X UX A B

I
I

I

ω ω τ
ω ω τ
ω ω τ

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

�

�
�
�

��	�
 �����	����
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Example – 4: Airplane Dynamics, 
Six Degree-of-Freedom Nonlinear Model
Ref: Roskam J., Airplane Flight Dynamics and Automatic Controls, 1995

( ) ( )
( ) ( )

( ) ( )

1 2 3 A 4 A

2 2
5 6 7

8 2 4 9

 = c PQ+c L +c

 = c

 = c

T T

A T

A T A T

P QR c L N N

Q PR c P R c M M

R PQ c QR c L L c N N

+ + +

− − + +

− + + + +

�

�

�

( )
( )
( )

  sin /

 sin cos /

 cos cos /

X X

Y Y

Z Z

A T

A T

A T

U VR WQ g F F m

V WP UR g F F m

W UQ VP g F F m

= − − Θ+ +

= − + Φ Θ+ +

= − + Φ Θ+ +

�

�

�

( )

= sin tan cos tan
 = cos sin
 = sin cos sec

P Q R
Q R

Q R

Φ + Φ Θ+ Φ Θ

Θ Φ − Φ

Ψ Φ+ Φ Θ

�
�
�

cos sin 0 cos 0 sin 1 0 0
sin cos 0 0 1 0 0 cos sin

0 0 1 sin 0 cos 0 sin cos

X U
Y V
Z W

′⎡ ⎤ Ψ − Ψ Θ Θ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ = Ψ Ψ Φ − Φ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥′ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− Θ Θ Φ Φ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

�
�
� Note:    h Z⎡ ⎤′= −⎣ ⎦

� �
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Linearization using Small 
Perturbation Theory

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

Perturbation in the variables:
             

              
             

      

        
T T T T T T T T

U U U V V V W W W
P P P Q Q Q R R R
X X X Y Y Y Z Z Z
X X X Y Y Y Z Z Z

M M M N N N L L L

= + Δ = + Δ = + Δ

= + Δ = + Δ = + Δ
= + Δ = + Δ = + Δ

= + Δ = + Δ = + Δ

= + Δ = + Δ = + Δ

Φ = Φ

0 0 0

0 0 0

A A A E E E R R R

φ θ ψ
δ δ δ δ δ δ δ δ δ

+ Δ Θ = Θ + Δ Ψ = Ψ +Δ

= + Δ = + Δ = + Δ
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Trim Condition for 
Straight and Level Flight

Assume:

Select: 

Enforce:

Solve for:

Verify:

0 00 0 0 0 0

Typically True 

0T T

t

V P Q R Y Z
∀

= = = = Φ = = =
��	�


0 0 0, ( . . )T IX z i e h

0IU V W P Q R z= = = = = = Φ = Θ = =�� � � � � �� �

0 0 0 0 0 0 0 0 0, , , , , , , ,U W X Y Z L M N Θ

0 0 0 0 0Y L M N= = = =
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Linearization using Small 
Perturbation Theory
Reference: R. C. Nelson, Flight Stability and Automatic Control, McGraw-Hill, 1989.

E T
E T

R
R

E T
E T

X X X XX U W
U W
Y Y Y YY V P R
V P R
Z Z Z Z Z ZZ U W W Q
U W W Q

δ δ
δ δ

δ
δ

δ δ
δ δ

∂ ∂ ∂ ∂
Δ = Δ + Δ + Δ + Δ

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

Δ = Δ + Δ + Δ + Δ
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

Δ = Δ + Δ + Δ + Δ + Δ + Δ
∂ ∂ ∂ ∂ ∂ ∂

�
�

R A
R A

E T
E T

R A
R A

L L L L LL V P R
V P R
M M M M M MM U W W Q
U W W Q

N N N N NN V P R
V P R

δ δ
δ δ

δ δ
δ δ

δ δ
δ δ

∂ ∂ ∂ ∂ ∂
Δ = Δ + Δ + Δ + Δ + Δ

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

Δ = Δ + Δ + Δ + Δ + Δ + Δ
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

Δ = Δ + Δ + Δ + Δ + Δ
∂ ∂ ∂ ∂ ∂

�
�
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State Variable Representation of 
Longitudinal Dynamics
Reference: R. C. Nelson, Flight Stability and Automatic Control, McGraw-Hill, 1989.

State space form:  

cX AX BU= +�

0

0

0
0
0

0 0 1 0

U W

U W

U U W W QW W W

X X g
Z Z U

A
M M Z M M Z M M U

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥+ + +
⎢ ⎥
⎣ ⎦

� � �

0 0

E T

E T

E E TTW W

X X

Z Z
B

M M Z M M Z

δ δ

δ δ

δ δ δ δ

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥+ +⎢ ⎥
⎢ ⎥⎣ ⎦

� �

U
W

X
Q
θ

Δ⎡ ⎤
⎢ ⎥Δ⎢ ⎥=
⎢ ⎥Δ
⎢ ⎥Δ⎣ ⎦

E
c

T

U
δ
δ

Δ⎡ ⎤
= ⎢ ⎥Δ⎣ ⎦

1 1,    .U W
X XX X etc

m U m W
∂ ∂⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

Uploaded By: Mohammad AwawdehSTUDENTS-HUB.com



ADVANCED CONTROL SYSTEM DESIGN  
Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

18

State Variable Representation 
of  Lateral Dynamics

State space form:  cX AX BU= +�
0 0

*

( ) cos

0

0

0 1 0 1

V P R

XZ XZ XZ
V V P P R R

X X X

XZ XZ XZ
V V P P R R

Z Z Z

Y Y U Y g
I I IL N L N L N
I I I

A
I I IN L N L N L
I I I

θ

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

− −⎡ ⎤
⎢ ⎥
⎢ ⎥+ + +
⎢ ⎥

= ⎢ ⎥
⎢ ⎥+ + +
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

*

0

0 0

R

A A R R

A A R R

XZ XZ

X X

XZ XZ

Z Z

Y

I IL N L N
I I

B
I IN L N L
I I

δ

δ δ δ δ

δ δ δ δ

∗

∗ ∗ ∗ ∗

⎡ ⎤
⎢ ⎥
⎢ ⎥+ +
⎢ ⎥

= ⎢ ⎥
⎢ ⎥+ +⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

V
P

X
R
φ

Δ⎡ ⎤
⎢ ⎥Δ⎢ ⎥=
⎢ ⎥Δ
⎢ ⎥Δ⎣ ⎦

A
c

R

U
δ
δ

Δ⎡ ⎤
= ⎢ ⎥Δ⎣ ⎦
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Linearization: Points to remember

Linearized system is always a local 
approximation about the operating point

As the operating point changes, the linearized
model changes (for the same nonlinear system)

The usual objective of control design using the 
linearized dynamics is “deviation minimization”
(i.e. regulation)

Control design based on linearized dynamics 
always relies on the philosophy of “gain 
scheduling” (i.e. gain interpolation)
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