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1.16 Curvilinear Coordinates 
 
 
1.16.1 The What and Why of Curvilinear Coordinate Systems 
 
Up until now, a rectangular Cartesian coordinate system has been used, and a set of 
orthogonal unit base vectors ie  has been employed as the basis for representation of 

vectors and tensors. More general coordinate systems, called curvilinear coordinate 
systems, can also be used. An example is shown in Fig. 1.16.1: a Cartesian system shown 
in Fig. 1.16.1a with basis vectors ie  and a curvilinear system is shown in Fig. 1.16.1b 

with basis vectors ig . Some important points are as follows: 

1. The Cartesian space can be generated from the coordinate axes ix ; the generated 

lines (the dotted lines in Fig. 1.16.1) are perpendicular to each other. The base 
vectors ie  lie along these lines (they are tangent to them). In a similar way, the 

curvilinear space is generated from coordinate curves i ; the base vectors ig  are 

tangent to these curves.  
2. The Cartesian base vectors ie  are orthogonal to each other and of unit size; in 

general, the basis vectors ig  are not orthogonal to each other and are not of unit size. 

3. The Cartesian basis is independent of position; the curvilinear basis changes from 
point to point in the space (the base vectors may change in orientation and/or 
magnitude). 

 

 
 

Figure 1.16.1: A Cartesian coordinate system and a curvilinear coordinate system 
 
An example of a curvilinear system is the commonly-used cylindrical coordinate system, 
shown in Fig. 1.16.2. Here, the curvilinear coordinates 1 2 3, ,    are the familiar , ,r z . 

This cylindrical system is itself a special case of curvilinear coordinates in that the base 
vectors are always orthogonal to each other. However, unlike the Cartesian system, the 
orientations of the 1 2,g g   ,r   base vectors change as one moves about the cylinder axis. 
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Figure 1.16.2: Cylindrical Coordinates 
 
The question arises: why would one want to use a curvilinear system? There are two main 
reasons: 
1. The problem domain might be of a particular shape, for example a spherical cell, or a 

soil specimen that is roughly cylindrical. In that case, it is often easier to solve the 
problems posed by first describing the problem geometry in terms of a curvilinear, 
e.g. spherical or cylindrical, coordinate system. 

2. It may be easier to solve the problem using a Cartesian coordinate system, but a 
description of the problem in terms of a curvilinear coordinate system allows one to 
see aspects of the problem which are not obvious in the Cartesian system: it allows 
for a deeper understanding of the problem. 

 
To give an idea of what is meant by the second point here, consider a simple mechanical 
deformation of a “square” into a “parallelogram”, as shown in Figure 1.16.3. This can be 
viewed as a deformation of the actual coordinate system, from the Cartesian system 
aligned with the square, to the “curved” system (actually straight lines, but now not 
perpendicular) aligned with the edges of the parallelogram. The relationship between the 
sets of base vectors, the ie  and the ig , is intimately connected to the actual physical 

deformation taking place. In our study of curvilinear coordinates, we will examine this 
relationship, and also the relationship between the Cartesian coordinates ix  and the 

curvilinear coordinates i , and this will give us a very deep knowledge of the essence of 

the deformation which is taking place. This notion will become more clear when we look 
at kinematics, convected coordinates and related topics in the next chapter. 
 

 
 

Figure 1.16.3: Deformation of a Square into a Parallelogram 
 
 
1.16.2 Vectors in Curvilinear Coordinates 
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The description of scalars in curvilinear coordinates is no different to that in Cartesian 
coordinates, as they are independent of the basis used. However, the description of 
vectors is not so straightforward, or obvious, and it will be useful here to work carefully 
through an example two dimensional problem: consider again the Cartesian coordinate 
system and the oblique coordinate system (which delineates a “parallelogram”-type 
space), Fig. 1.16.4. These systems have, respectively, base vectors ie  and ig , and 

coordinates ix  and i . (We will take the ig  to be of unit size for the purposes of this 

example.) The base vector 2g  makes an angle   with the horizontal, as shown. 

 

 
 

Figure 1.16.4: A Cartesian coordinate system and an oblique coordinate system 
 
Let a vector v have Cartesian components ,x yv v , so that it can be described in the 

Cartesian coordinate system by 
 

1 2x yv v v e e                  (1.16.1) 

 
Let the same vector v have components 1 2,v v (the reason for using superscripts, when we 
have always used subscripts hitherto, will become clearer below), so that it can be 
described in the oblique coordinate system by 
 

1 2
1 2v v v g g     (1.16.2) 

 
Using some trigonometry, one can see that these components are related through 
 

1

2

1

tan
1

sin

x y

y

v v v

v v





 

 
                          (1.16.3) 

 
Now we come to a very important issue: in our work on vector and tensor analysis thus 
far, a number of important and useful “rules” and relations have been derived. These rules 
have been independent of the coordinate system used. One example is that the magnitude 

of a vector v is given by the square root of the dot product: 
2  v v v . A natural question 

to ask is: does this rule work for our oblique coordinate system? To see, first let us 
evaluate the length squared directly from the Cartesian system: 
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2 2 2

x yv v   v v v                             (1.16.4) 

 
Following the same logic, we can evaluate 
 

   
2 2

2 21 2

2 2
2 2

1 1

tan sin

1 1 1
2

tan tan sin

x y y

x x y y

v v v v v

v v v v

 

  

         
   

     
 

        (1.16.5) 

 
It is clear from this calculation that our “sum of the squares of the vector components” 
rule which worked in Cartesian coordinates does not now give us the square of the vector 
length in curvilinear coordinates. 
 
To find the general rule which works in both (all) coordinate systems, we have to 
complicate matters somewhat: introduce a second set of base vectors into our oblique 
system. The first set of base vectors, the 1g  and 2g  aligned with the coordinate directions 

1  and 2  of Fig. 1.16.4, are termed covariant base vectors. Our second set of vectors, 

which will be termed contravariant base vectors, will be denoted by superscripts: 1g  and 
2g , and will be aligned with a new set of coordinate directions, 1  and 2 . 

 

The new set is defined as follows: the base vector 1g  is perpendicular to 2g   1
2 0 g g  , 

and the base vector 2g  is perpendicular to 1g   2
1 0 g g , Fig. 1.16.5a. (The base 

vectors’ orientation with respect to each other follows the “right-hand rule” familiar with 
Cartesian bases; this will be discussed further below when the general 3D case is 
examined.) Further, we ensure that  
 

1 2
1 21, 1   g g g g                              (1.16.6) 

 
With 1 1 2 1 2, cos sin   g e g e e , these conditions lead to 

 
1 2

1 2 2

1 1
,

tan sin 
  g e e g e                         (1.16.7) 

 

and 1 2 1 / sin g g . 

 
A good trick for remembering which are the covariant and which are the contravariant is 
that the third letter of the word tells us whether the word is associated with subscripts or 
with superscripts. In “covariant”, the “v” is pointing down, so we use subscripts; for 
“contravariant”, the “n” is (with a bit of imagination) pointing up, so we use superscripts. 
 
Let the components of the vector v using this new contravariant basis be 1v  and 2v , Fig. 

1.16.5b, so that 
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1 2
1 2v v v g g               (1.16.8) 

 
Note the positon of the subscripts and superscripts in this expression: when the base 
vectors are contravariant (“superscripts”), the associated vector components are covariant 
(“subscripts”); compare this with the alternative expression for v using the covariant 
basis, Eqn. 1.16.2, 1 2

1 2v v v g g , which has covariant base vectors and contravariant 

vector components. 
 
When v is written with covariant components, Eqn. 1.16.8, it is called a covariant vector.  
When v is written with contravariant components, Eqn. 1.16.2, it is called a 
contravariant vector. This is not the best of terminology, since it gives the impression 
that the vector is intrinsically covariant or contravariant, when it is in fact only a matter of 
which base vectors are being used to describe the vector. For this reason, this terminology 
will be avoided in what follows. 
 

Examining Fig. 1.16.5b, one can see that 1
1 / sinxv v g  and 2

2 / tanx yv v v g , so 

that 
 

1

2 cos sin
x

x y

v v

v v v 


 
                             (1.16.9) 

 

 
 

Figure 1.16.5: 2 sets of basis vectors; (a) covariant and contravariant base vectors, 
(b) covariant and contravariant components of a vector 

 
 
Now one can evaluate the quantity 

 

   1 2
1 2

2 2

1 1
cos sin

tan sinx x y x y y

x y

v v v v v v v v v v
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 
 

          
   

 
   (1.16.10) 

 
Thus multiplying the covariant and contravariant components together gives the length 
squared of the vector; this had to be so given how we earlier defined the two sets of base 
vectors: 
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   
       

2 1 2 1 2
1 2 1 2

1 1 2 2 2 1 1 2
1 1 2 2 1 2 2 1

1 2
1 2

v v v v

v v v v v v v v

v v v v

     

       

 

v v v g g g g

g g g g g g g g       (1.16.11) 

 
In general, the dot product of two vectors u and v in the general curvilinear coordinate 
system is defined through (the fact that the latter equality holds is another consequence of 
our choice of base vectors, as can be seen by re-doing the calculation of Eqn. 1.16.11 with 
2 different vectors, and their different, covariant and contravariant, representations) 
 

1 2 1 2
1 2 1 2u v u v u v u v    u v                      (1.16.12) 

 
 
Cartesian Coordinates as Curvilinear Coordinates 
 
The Cartesian coordinate system is a special case of the more general curvilinear 
coordinate system, where the covariant and contravariant bases are identically the same 
and the covariant and contravariant components of a vector are identically the same, so 
that one does not have to bother with carefully keeping track of whether an index is 
subscript or superscript – we just use subscripts for everything because it is easier. 
 
More formally, in our two-dimensional space, our covariant base vectors are 

1 1 2 2, g e g e . With the contravariant base vectors orthogonal to these, 1
2 0 g g , 

2
1 0 g g , and with Eqn. 1.16.6, 1 2

1 21, 1   g g g g , the contravariant basis is 
1 2

1 2, g e g e . A vector v can then be represented as 

 
1 2 1 2

1 2 1 2v v v v   v g g g g                                    (1.16.13) 

 
which is nothing other than 1 1 2 2v v v e e , with 1 2

1 2,v v v v  . The dot product is, 

formally,  
 

1 2 1 2
1 2 1 2u v u v u v u v    u v                     (1.16.14) 

 
which we choose to write as the equivalent 1 1 2 2u v u v  u v . 

 
 
1.16.3 General Curvilinear Coordinates 
 
We now define more generally the concepts discussed above. 
 
A Cartesian coordinate system is defined by the fixed base vectors 321 ,, eee  and the 

coordinates ),,( 321 xxx , and any point p in space is then determined by the position 

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

https://students-hub.com


Section 1.16 

Solid Mechanics Part III                                                                                Kelly 141

vector i
ix ex   (see Fig. 1.16.6) 1.  This can be expressed in terms of curvilinear 

coordinates ),,( 321   by the transformation (and inverse transformation) 
 

 
),,(

,,
321

321




ii

ii

xx

xxx
      (1.16.15) 

 
For example, the transformation equations for the oblique coordinate system of Fig. 
1.16.4 are 
 

1 1 2 2 2 3 3

1 1 2 2 2 3 3

1 1
, ,

tan sin

cos , sin ,

x x x x

x x x

 
 

      

       
                           (1.16.16) 

 
If 1  is varied while holding 2  and 3  constant, a space curve is generated called a 

1  coordinate curve.  Similarly, 2  and 3  coordinate curves may be generated.  
Three coordinate surfaces intersect in pairs along the coordinate curves.  On each 
surface, one of the curvilinear coordinates is constant. 
 

 
 

Figure 1.16.6: curvilinear coordinate system and coordinate curves 
 
 
In order to be able to solve for the i  given the ix , and to solve for the ix  given the i , 
it is necessary and sufficient that the following determinants are non-zero – see Appendix 
1.B.2 (the first here is termed the Jacobian J of the transformation): 
 

                                                 
1 superscripts are used for the Cartesian system here and in much of what follows for notational consistency 
(see later) 
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Jxx
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J

j

i

j

i

j

i

j

i 1
det,det 





























 ,                 (1.16.17) 

 
the last equality following from (1.15.2, 1.10.18d). 
 
Clearly Eqns 1.16.15a can be inverted to get Eqn. 1.16.15b, and vice versa, but just to be 
sure, we can check that the Jacobian and inverse are non-zero: 
 

1
tan

1
sin

1 cos 0 1 0
1 1

0 sin 0 sin , 0 0
sin

0 0 1 0 0 1

J
J






 




    ,        (1.16.18) 

 
The Jacobian is zero, i.e. the transformation is singular, only when 0  , i.e. when the 
parallelogram is shrunk down to a line. 
 
 
1.16.4 Base Vectors in the Moving Frame 
 
Covariant Base Vectors 
 
From §1.6.2, writing  i xx , tangent vectors to the coordinate curves at x are given 
by2 
 

mi

m

ii

x
e

x
g








      Covariant Base Vectors    (1.16.19) 

 
with inverse   m

im
i x ge  / .  The ig  emanate from the point p and are directed 

towards the site of increasing coordinate i .  They are called covariant base vectors. 
Increments in the two coordinate systems are related through 
 

i
i

i
i

dd
d

d 


 g
x

x  

  
Note that the triple scalar product  321 ggg  , Eqns. 1.3.17-18, is equivalent to the 

determinant in 1.16.17, 
 

 
     
     
     













j

ix
J det

332313

322212

312111

321

ggg

ggg

ggg

ggg         (1.16.20) 

 

                                                 
2 in the Cartesian system, with the coordinate curves parallel to the coordinate axes, these equations reduce 

trivially to   mmim
im

i xx eee  /  
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so that the condition that the determinant does not vanish is equivalent to the condition 
that the vectors ig  are linearly independent, and so the ig  can form a basis.   

 
For example, from Eqns. 1.16.16b, the covariant base vectors for the oblique coordinate 
system of Fig. 1.16.4, are 
 

1 2 3

1 1 2 3 11 1 1

1 2 3

2 1 2 3 1 22 2 2

1 2 3

3 1 2 3 33 3 3

cos sin

x x x

x x x

x x x

 

  
   
  
  

    
  
  

   
  

g e e e e

g e e e e e

g e e e e

                 (1.16.21) 

 
 
Contravariant Base Vectors 
 
Unlike in Cartesian coordinates, where ijji ee , the covariant base vectors do not 

necessarily form an orthonormal basis, and ijji gg .  As discussed earlier, in order to 

deal with this complication, a second set of base vectors are introduced, which are defined 
as follows: introduce three contravariant base vectors ig  such that each vector is 
normal to one of the three coordinate surfaces through the point p.  From §1.6.4, the 

normal to the coordinate surface  1 1 2 3, , constx x x   is given by the gradient vector 
1grad , with Cartesian representation 

 

m
mx

e




1

1grad                                              (1.16.22) 

 
and, in general, one may define the contravariant base vectors through 
 

m
m

i
i

x
eg




      Contravariant Base Vectors        (1.16.23) 

 
The contravariant base vector 1g  is shown in Fig. 1.16.6. 
 
As with the covariant base vectors, the triple scalar product  321 ggg   is equivalent to 
the determinant in 1.16.17, 
 

 
     
     
     













i

j

xJ
det

1

3
3

2
3

1
3

3
2

2
2

1
2

3
1

2
1

1
1

321

ggg

ggg

ggg

ggg         (1.16.24) 

 
and again the condition that the determinant does not vanish is equivalent to the condition 
that the vectors ig  are linearly independent, and so the contravariant vectors also form a 
basis. 
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From Eqns. 1.16.16a, the contravariant base vectors for the oblique coordinate system are 
 

1 1 1
1

1 2 3 1 21 2 3

2 2 2
2

1 2 3 21 2 3

3 3 3
3

1 2 3 31 2 3

1

tan

1

sin

x x x

x x x

x x x





  
    
  
  

   
  
  

   
  

g e e e e e

g e e e e

g e e e e

                 (1.16.25) 

 
 
1.16.5 Metric Coefficients 
 
It follows from the definitions of the covariant and contravariant vectors that {▲Problem 
1} 
 

i
jj

i gg      (1.16.26) 

 
This relation implies that each base vector ig  is orthogonal to two of the reciprocal base 

vectors ig .  For example, 1g  is orthogonal to both 2g  and 3g .  Eqn. 1.16.26 is the 

defining relationship between reciprocal pairs of general bases.  Of course the ig  were 

chosen precisely because they satisfy this relation.  Here, j
i  is again the Kronecker 

delta3, with a value of 1 when ji   and zero otherwise. 
 
One needs to be careful to distinguish between subscripts and superscripts when dealing 
with arbitrary bases, but the rules to follow are straightforward.  For example, each free 
index which is not summed over, such as i or j in 1.16.26, must be either a subscript or 
superscript on both sides of an equation.  Hence the new notation for the Kronecker delta 
symbol. 
 
Unlike the orthogonal base vectors, the dot product of a covariant/contravariant base 
vector with another base vector is not necessarily one or zero.  Because of their 
importance in curvilinear coordinate systems, the dot products are given a special symbol: 
define the metric coefficients to be 
 

jiij

jiij

g

g

gg

gg




     Metric Coefficients  (1.16.27) 

 
For example, the metric coefficients for the oblique coordinate system of Fig. 1.16.4 are 
 

11 12 21 22

11 12 21 22
2 2 2

1, cos , 1

1 cos 1
, ,

sin sin sin

g g g g

g g g g




  

   

    
              (1.16.28) 

                                                 
3 although in this context it is called the mixed Kronecker delta 

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

https://students-hub.com


Section 1.16 

Solid Mechanics Part III                                                                                Kelly 145

The following important and useful relations may be derived by manipulating the 
equations already introduced: {▲Problem 2} 
 

j
iji

j
iji

g

g

gg

gg




     (1.16.29) 

 
and {▲Problem 3} 

 
i
k

i
kkj

ij ggg       (1.16.30) 

 
Note here another rule about indices in equations involving general bases: summation can 
only take place over a dummy index if one is a subscript and the other is a superscript – 
they are paired off as with the j’s in these equations. 
 
The metric coefficients can be written explicitly in terms of the curvilinear components: 
 

k

j

k

i
jiij

j

k

i

k

jiij xx
g

xx
g














 gggg ,      (1.16.31) 

 
Note here also a rule regarding derivatives with general bases: the index i on the right 
hand side of 1.16.31a is a superscript of   but it is in the denominator of a quotient and 
so is regarded as a subscript to the entire symbol, matching the subscript i on the g on the 
left hand side 4. 
 
One can also write 1.16.31 in the matrix form 
 

   
TT

, 












































k

j

k

i
ij

j

k

i

k

ij xx
g

xx
g               (1.16.32) 

 
and, from 1.10.16a,b, 
 

   
2

2

2

2

1
detdet,detdet

Jx
gJ

x
g

j

i
ij

j

i

ij 





































    (1.16.33) 

 
These determinants play an important role, and are denoted by g: 
 

1
det ,

det
ij ij

g g g J
g

       
            (1.16.34) 

 
Note: 

 The matrix  ikx  /  is called the Jacobian matrix J, so  ijgJJ T  

 

                                                 
4 the rule for pairing off indices has been broken in Eqn. 1.16.31 for clarity; more precisely, these equations 

should be written as    mn
jnim

ij xxg  //  and    mnnjmiij xxg  //  
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1.16.6 Scale Factors 
 
The covariant and contravariant base vectors are not necessarily unit vectors. the unit 

vectors are, with , i i i
i i i   g g g g g g , : 

  

ˆ ˆ,
i i

ii i
i i ii

i iig g
   

g g g g
g g

g g
     (no sum)                (1.16.35) 

 
The lengths of the covariant base vectors are denoted by h and are called the scale 
factors: 
 

iiii gh  g      (no sum)              (1.16.36) 

 
 
1.16.7 Line Elements and The Metric 
 
Consider a differential line element, Fig. 1.16.7, 
 

i
i

i
i ddxd gex           (1.16.37) 

 

The square of the length of this line element, denoted by  2s  and called the metric of 
the space, is then 
 

      ji
ijj

j
i

i ddgdddds  ggxx2   (1.16.38) 

 

This relation   ji
ij ddgs  2  is called the fundamental differential quadratic form.  

The sgij '  can be regarded as a set of scale factors for converting increments in i  to 

changes in length. 

 
 

Figure 1.16.7: a line element in space 
 
For a two dimensional space,  

x

1x
2x

3x

1
1gd

3
3gd

curve1 

curve2 

curve3 

xd 2
2gd
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 

   

2 1 1 1 2 2 1 2 2
11 12 21 22

2 21 1 2 2
11 12 222

s g d d g d d g d d g d d

g d g d d g d

            

      
            (1.16.39) 

 
so that, for the oblique coordinate system of Fig. 1.16.4, from 1.16.28, 
 

     2 22 1 1 2 22coss d d d d                                (1.16.40) 

 
This relation can be verified by applying Pythagoras’ theorem to the geometry of Figure 
1.16.8. 
 

 
 

Figure 1.16.8: Length of a line element 
 
 
1.16.8 Line, Surface and Volume Elements 
 
Here we list expressions for the area of a surface element S  and the volume of a volume 
element V , in terms of the increments in the curvilinear coordinates 321 ,,  . 
These are particularly useful for the evaluation of surface and volume integrals in 
curvlinear coordinates.  
 
Surface Area and Volume Elements 
 
The surface area 1S  of a face of the elemental parallelepiped on which 1  is constant 

(to which 1g  is normal) is, using 1.7.6, 
 

   
     

3211

322
233322

32
32323322

32
3232

32
32

3
3

2
2

1

)(

)()(













gg

ggg

S

gggggggg

gggg

gg

gg

         (1.16.41) 

 
and similarly for the other surfaces. For a two dimensional space, one has 

1
1g

2g

2



ds
2d

1d

2sin d 

2cos d 
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 

1 2
1 2

2 1 2
11 22 12

1 2 1 2

( ) ( )

( )

S

g g g

g J

    

   

     

g g

                       (1.16.42) 

 
 
The volume V  of the parallelepiped involves the triple scalar product 1.16.20: 
 

   1 2 3 1 2 3 1 2 3
1 2 3V g J              g g g      (1.16.43) 

 
 
1.16.9 Orthogonal Curvilinear Coordinates 
 
In the special case of orthogonal curvilinear coordinates, one has 
 

 

















2
3

2
2

2
1

00

00

00

,

h

h

h

ghhg ijjiijjiijjiij  gggg   (1.16.44) 

 
The contravariant base vectors are collinear with the covariant, but the vectors are of 
different magnitudes: 
 

i
i

i
iii h

h gggg ˆ
1

,ˆ                   (1.16.45) 

 
It follows that 
 

 

321321

21213

13132

32321

2
3

2
3

2
2

2
2

2
1

2
1

2









hhhV

hhS

hhS

hhS

dhdhdhs

       (1.16.46) 

 
Examples 
 
1. Cylindrical Coordinates 
 
Consider the cylindrical coordinates,    321 ,,,, zr  , cf. §1.6.10, Fig. 1.16.9: 
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33

212

211

sin

cos







x

x

x

, 

   
 

33

1212

22211

/tan

x

xx

xx






  

 
with  
 

 321 ,20,0   
 

 
 

Figure 1.16.9: Cylindrical Coordinates 
 
From Eqns. 1.16.19 (compare with 1.6.29), 1.16.27, 
 

2 2
1 1 2

1 2 1 2
2 1 2

3 3

cos sin

sin cos

    

    


g e e

g e e

g e

,           21

1 0 0

0 0

0 0 1

ijg

 
 

  
 
  

 

 
and, from 1.16.17, 
 

1det 











j

ix
J  

 
so that there is a one-to-one correspondence between the Cartesian and cylindrical 
coordinates at all point except for 01   (which corresponds to the axis of the cylinder).  
These points are called singular points of the transformation. The unit vectors and scale 
factors are {▲Problem 11} 
 

   
   
   z

r

h

rh

h

eggg

e
g

gg

eggg










3333

1
2

2
1

22

1111

ˆ11

ˆ

ˆ11

  

 
The line, surface and volume elements are 
 

Metric:             2 2 22 21 1 2 3 2 2s d d d dr rd dz            

1x

2x

3x



1
1e


3e

2e

3g

1g

2g

2

3
curve1 

curve2 

curve3 
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Surface Element: 
211

3

13
2

321
1







S

S

S

 

Volume Element:  zrrV  3211  
 
 
2. Spherical Coordinates 
 
Consider the spherical coordinates,    321 ,,,, r , cf. §1.6.10, Fig. 1.16.10: 
 

213

3212

3211

cos

sinsin

cossin







x

x

x

, 

     
     

    21221
3

2322211
2

232221
1

/tan

/tan

xx

xxx

xxx













 



 

 
with  
 

 20,0,0 32
1   

 

 
 

Figure 1.16.10: Spherical Coordinates 
 
From Eqns. 1.16.19 (compare with 1.6.36), 1.16.27, 
 

 
 

2 3 2 3 2
1 1 2 3

1 2 3 2 3 2
2 1 2 3

1 2 3 3
3 1 2

sin cos sin sin cos

cos cos cos sin sin

sin sin cos

        

         

      

g e e e

g e e e

g e e

,    
 

21

21 2

1 0 0

0 0

0 0 sin

ijg

 
 
   
    

 

 
and, from 1.16.17, 
 

  221 sindet 











j

ix
J      

 
so that there is a one-to-one correspondence between the Cartesian and spherical 
coordinates at all point except for the singular points along the 3x  axis. 



1g

1x

2x

3x



3

1

2

curve1 

curve2 

curve3 

1e

3e

2e

3g

2g
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The unit vectors and scale factors are {▲Problem 11} 
 

   
   

   



 e
g

gg

e
g

gg

eggg













21
3

3
21

33

1
2

2
1

22

1111

sin
ˆsinsin

ˆ

ˆ11

rh

rh

h r

 

 
The line, surface and volume elements are 
 

Metric:   
       

    222

2321221212

sin

sin

 drrddr

ddds




 

Surface Element: 

 

211
3

1321
2

32221
1

sin

sin







S

S

S

 

Volume Element:      rrV sinsin 2321221  
 
 
1.16.10 Vectors in Curvilinear Coordinates 
 
A vector can now be represented in terms of either basis: 
 

    i
ii

i uu ggu 321321 ,,,,        (1.16.47) 

 
The iu  are the covariant components of u and iu  are the contravariant components of 

u.  Thus the covariant components are the coefficients of the contravariant base vectors 
and vice versa – subscripts denote covariance while superscripts denote contravariance. 
 
Analogous to the orthonormal case, where ii ueu  {▲Problem 4}: 

 
ii

ii uu  gugu ,       (1.16.48) 

 
Note the following useful formula involving the metric coefficients, for raising or 
lowering the index on a vector component, relating the covariant and contravariant 
components, {▲Problem 5} 
 

j
ijij

iji uguugu  ,       (1.16.49) 

 
Physical Components of a Vector 
 
The contravariant and covariant components of a vector do not have the same physical 
significance in a curvilinear coordinate system as they do in a rectangular Cartesian 
system; in fact, they often have different dimensions.  For example, the differential xd  of 
the position vector has in cylindrical coordinates the contravariant components 
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),,( dzddr  , that is, 3
3

2
2

1
1 gggx  dddd  with r1 , 2 , z3 .  Here, 

d  does not have the same dimensions as the others.  The physical components in this 
example are ),,( dzrddr  . 
 

The physical components iu  of a vector u are defined to be the components along the 
covariant base vectors, referred to unit vectors.  Thus, 
 

i
i

i
ii

i

i
i

uhu

u

gg

gu

ˆˆ
3

1








                                  (1.16.50) 

 
and 
 

i i i
i iiu hu g u     (no sum)   Physical Components of a Vector   (1.16.51) 

 
From the above, the physical components of a vector v in the cylindrical coordinate 
system are 3211 ,, vvv   and, for the spherical system, 321211 sin,, vv  . 
 
 
The Vector Dot Product 
 
The dot product of two vectors can be written in one of two ways: {▲Problem 6} 
 

i
ii

i vuvu  vu      Dot Product of Two Vectors      (1.16.52) 

 
 
 
The Vector Cross Product 
 
The triple scalar product is an important quantity in analysis with general bases, 
particularly when evaluating cross products.  From Eqns. 1.16.20, 1.16.24, 1.16.24,  
 

   

   ij

ij

g

gg

det

11

det

2321

2
321








ggg

ggg

          (1.16.53) 

 
Introducing permutation symbols ijk

ijk ee , , one can in general write5 

 

g
ege ijkkjiijk

ijkkjiijk

1
,   gggggg  

 

                                                 
5 assuming the base vectors form a right handed set, otherwise a negative sign needs to be included 
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where ijk
ijk    is the Cartesian permutation symbol (Eqn. 1.3.10).  The cross product of 

the base vectors can now be written in terms of the reciprocal base vectors as (note the 
similarity to the Cartesian relation 1.3.12) {▲Problem 7} 
 

k
ijkji

k
ijkji

e

e

ggg

ggg




     Cross Products of Base Vectors  (1.16.54) 

 
Further, from 1.3.19, 
 

i
q

j
p

j
q

i
ppqk

ijk
pqr

ijk
pqr

ijk eeee   ,         (1.16.55) 

 
The Cross Product 
 
The cross product of vectors can be written as {▲Problem 8} 
 

321

321

321

321

321

321

1

vvv

uuu
g

vue

vvv

uuugvue

kji
ijk

kji
ijk

ggg

g

ggg

gvu





   Cross Product of Two Vectors    (1.16.56) 

 
 
1.16.11 Tensors in Curvilinear Coordinates 
 
Tensors can be represented in any of four ways, depending on which combination of base 
vectors is being utilised: 
 

j
ij

i
j

i
i
j

ji
ijji

ij AAAA ggggggggA  
           (1.16.56) 

 
Here, ijA  are the contravariant components, ijA  are the covariant components, i

jA  

and j
iA  are the mixed components of the tensor A.  On the mixed components, the 

subscript is a covariant index, whereas the superscript is called a contravariant index.  
Note that the “first” index always refers to the first base vector in the tensor product. 
 
An “index switching” rule for tensors is 
 

ikk
j

ij
ik

j
kij AAAA   ,         (1.16.57) 

 
and the rule for obtaining the components of a tensor A is (compare with 1.9.4), 
{▲Problem 9} 
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 
 
 
  j

i
j

i
j

i

j
ii

j
i
j

jiijij

jiijij

A

A

A

A

AggA

AggA

AggA

AggA












               (1.16.58) 

 
As with the vectors, the metric coefficients can be used to lower and raise the indices on 
tensors, for example: 
 

kj
ik

j
i

kl
jlikij

TgT

TggT






        (1.16.59) 

 
In matrix form, these expressions can be conveniently used to evaluate tensor 
components, e.g. (note that the matrix of metric coefficients is symmetric) 
 

     lj
kl

ikij gTgT  . 

 
An example of a higher order tensor is the permutation tensor E, whose components are 
the permutation symbols introduced earlier:  
 

kji
ijkkji

ijk ee ggggggE  .                     (1.16.60) 

 
 
Physical Components of a Tensor 
 
Physical components of tensors can also be defined.  For example, if two vectors a and b 
have physical components as defined earlier, then the physical components of a tensor T 
are obtained through6 
 

jiji bTa  .     (1.16.61) 
 
As mentioned, physical components are defined with respect to the covariant base 
vectors, and so the mixed components of a tensor are used, since 
 

  i
i

i
ji

jk
kj

i
i
j abTbT gggggTb    

 
as required.  Then 
 

ii

i

jj

j
i
j

g

a

g

b
T       (no sum on the g) 

 
and so from 1.16.51, 
 

                                                 
 
6 these are called right physical components; left physical components are defined through bTa   
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i
j

jj

iiij T
g

g
T       (no sum) Physical Components of a Tensor   (1.16.62) 

 
The Identity Tensor 
 
The components of the identity tensor I in a general basis can be obtained as follows: 
 

Iu

ugg

ggu

g

gu











)(

)(

ji
ij

ij
ij

ij
ij

i
i

g

g

ug

u

 

 
Thus the contravariant components of the identity tensor are the metric coefficients ijg  

and, similarly, the covariant components are ijg .  For this reason the identity tensor is 

also called the metric tensor.  On the other hand, the mixed components are the 
Kronecker delta, i

j  (also denoted by i
jg ).  In summary7, 

 
   
   
   
    i

i
j

ij
i

j
i

j
i

i
i

j
i

i
j

i
j

i
j

ji
ijijij

ji
ijijij

gg
gg

ggggII
ggggII

ggII
ggII













             (1.16.63) 

 
Symmetric Tensors 
 
A tensor S is symmetric if SS T , i.e. if vSuuSv  .  If S is symmetric, then 
 

k
m

im
jk

i
j

i
jjiij

jiij SggSSSSSS 


  ,,  

 
In terms of matrices, 
 

           T,, i
j

i
j

T
ijij

Tijij SSSSSS    

 
 
1.16.12 Generalising Cartesian Relations to the Case of General 

Bases 
 
The tensor relations and definitions already derived for Cartesian vectors and tensors in 
previous sections, for example in §1.10, are valid also in curvilinear coordinates, for 

                                                 
7 there is no distinction between i

j
j

i  , ;  they are often written as i
j

j
i gg ,  and there is no need to specify 

which index comes first, for example by j
ig   
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example IAA 1 , AIA :tr   and so on.  Formulae involving the index notation may 
be generalised to arbitrary components by: 
 
(1) raising or lowering the indices appropriately  
(2) replacing the (ordinary) Kronecker delta ij  with the metric coefficients ijg  

(3) replacing the Cartesian permutation symbol ijk  with ijke  in vector cross products 

 
Some examples of this are given in Table 1.16.1 below. 
 
Note that there is only one way of representing a scalar, there are two ways of 
representing a vector (in terms of its covariant or contravariant components), and there 
are four ways of representing a (second-order) tensor (in terms of its covariant, 
contravariant and both types of mixed components). 
 

 Cartesian General Bases 
ba   

iiba  
i

ii
i baba   

 
aB  

 

iji Ba  j
i

iij
i

j

ij
ii

jij

BaBa

BaBa








)(

)(

aB

aB
 

 
Ab  

 

jijbA  ji
jj

iji

j
j

i
j

iji

bAbA

bAbA









)(

)(

Ab

Ab
 

 
 
 

AB  

 
 
 

kjik BA  

 
 
 
  k

j
i
kkj

iki
j

kj
ik

j
k

k
i

j
i

kji
k

j
k

ikij

kj
k

i
k
jikij

BABA

BABA

BABA

BABA



















AB

AB

AB

AB

 

 
ba  

 

jiijk ba  
 
  ji

ijkk

ji
ijkk

bae

bae





ba

ba
 

 
 
ba  

 
 

jiba  

 
 
 
  j

ii
j

j
i

j
i

jiij

jiij

ba

ba

ba

ba













ba

ba

ba

ba

 

BA :  
ijij BA  i

j
j

i
j

i
i
jij

ijij
ij BABABABA 


   

AIA :tr   
iiA  i

i
i

i AA 
    

Adet  
321 kjiijk AAA  kji

ijk AAA 321   
TA    jiij

T AA     
    i

j
j
i

j

i
j
i

i
j

i

j

jiij

jiij

AAAA

AA









 


TT

TT

,

,

AA

AA
 

Table 1.16.1: Tensor relations in Cartesian and general curvilinear coordinates 
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Rectangular Cartesian (Orthonormal) Coordinate System 
 
In an orthonormal Cartesian coordinate system, i

i
i egg  , ijijg  , 1g , 1ih  and 

)( ijk
ijkijke   . 

 
 
1.16.13 Problems 
 
1. Derive the fundamental relation i

jj
i gg . 

2. Show that j
iji g gg   [Hint: assume that one can write k

iki a gg   and then dot both 

sides with jg .] 

3. Use the relations 1.16.29 to show that i
kkj

ij gg  .  Write these equations in matrix 

form. 
4. Show that ii ugu . 

5. Show that j
iji ugu  . 

6. Show that i
ii

i vuvu  vu  

7. Use the relation ge ijkkjiijk  ggg  to derive the cross product relation 
k

ijkji e ggg  .  [Hint: show that   k
kjiji gggggg  .] 

8. Derive equation 1.16.56 for the cross product of vectors 
9. Show that   jiij AggA  . 

10. Given 3132211 ,, eegegeg  , 321 eeev  .  Find j
iijkij

i vveg ,,,,g  (write 

the metric coefficients in matrix form). 
11. Derive the scale factors for the (a) cylindrical and (b) spherical coordinate systems. 
12. Parabolic Cylindrical (orthogonal) coordinates are given by 

     332122221
2
11 ,,  xxx  

with 
 321 ,0,  

Evaluate: 
(i) the scale factors 
(ii) the Jacobian – are there any singular points? 
(iii) the metric, surface elements, and volume element 

Verify that the base vectors ig  are mutually orthogonal. 

[These are intersecting parabolas in the 21 xx   plane, all with the same axis] 
13. Repeat Problem 7 for the Elliptical Cylindrical (orthogonal) coordinates: 

33212211 ,sinsinh,coscosh  xaxax  
with 

 321 ,20,0   

[These are intersecting ellipses and hyperbolas in the 21 xx   plane with foci at 
ax 1 .] 

14. Consider the non-orthogonal curvilinear system illustrated in Fig. 1.16.11, with 
transformation equations 
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33

22

211

3

2
3

1

x

x

xx







 

Derive the inverse transformation equations, i.e. ),,( 321  ii xx , 
the Jacobian matrices 























 
j

i

j

i

x

x 1, JJ , 

the covariant and contravariant base vectors, the matrix representation of the metric 
coefficients    ij

ij gg , , verify that    ij
ij gg   T1T , JJJJ  and evaluate g. 

 

 
Figure 1.16.11: non-orthogoanl curvilinear coordinate system 

 
15. Consider a (two dimensional) curvilinear coordinate system with covariant base 

vectors  

21211 , eegeg   

(a) Evaluate the contravariant base vectors and the metric coefficients ij
ij gg ,  

(b) Consider the vectors  

2121 2,3 ggvggu   
Evaluate the corresponding covariant components of the vectors.  Evaluate vu   
(this can be done in a number of different ways – by using the relations i

ii
i vuvu , , 

or by directly dotting the vectors in terms of the base vectors i
i gg ,  and using the 

metric coefficients ) 
(c) Evaluate the contravariant components of the vector Auw  , given that the 

mixed components i
jA  are 









 11

01
 

Evaluate the contravariant components ijA  using the index lowering/raising rule 
1.16.59.  Re-evaluate the contravariant components of the vector w using these 
components. 

16. Consider i
ji

jA ggA   .  Verify that any of the four versions of I in 1.16.63 results 

in IIA  . 

1x

2x 
1g

2g

1e

2e

curve1 

curve2 

O60

01 

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

https://students-hub.com


Section 1.16 

Solid Mechanics Part III                                                                                Kelly 159

17. Use the definitions 1.16.19, 1.16.23 to convert ji
ijA gg  , ji

ijA gg   and j
i

i
jA gg   

to the Cartesian bases.  Hence show that Adet  is given by the determinant of the 
matrix of mixed components,  i

jAdet , and not by  ijAdet  or  ijAdet . 
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