
Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 6: Synchronization

Tools

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Outline

 Background

 The Critical-Section Problem

 Peterson’s Solution

 Hardware Support for Synchronization

 Mutex Locks

 Semaphores

 Monitors

 Liveness

 Evaluation

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.3 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Objectives

 Describe the critical-section problem and illustrate a

race condition

 Illustrate hardware solutions to the critical-section

problem using memory barriers, compare-and-swap

operations, and atomic variables

 Demonstrate how mutex locks, semaphores,

monitors, and condition variables can be used to

solve the critical section problem

 Evaluate tools that solve the critical-section problem

in low-, Moderate-, and high-contention scenarios

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.4 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Background

 Processes can execute concurrently

• May be interrupted at any time, partially completing execution

 Concurrent access to shared data may result in data

inconsistency

 Maintaining data consistency requires mechanisms to ensure the

orderly execution of cooperating processes

 We illustrated in chapter 4 the problem when we considered the

Bounded Buffer problem with use of a counter that is updated

concurrently by the producer and consumer,. Which lead to race

condition.

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.5 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Race Condition

 Processes P0 and P1 are creating child processes using the fork()

system call

 Race condition on kernel variable next_available_pid which

represents the next available process identifier (pid)

 Unless there is a mechanism to prevent P0 and P1 from accessing the
variable next_available_pid the same pid could be assigned to

two different processes!

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.6 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Critical Section Problem

 Consider system of n processes {p0, p1, … pn-1}

 Each process has critical section segment of code

• Process may be changing common variables, updating table,

writing file, etc.

• When one process in critical section, no other may be in its

critical section

 Critical section problem is to design protocol to solve this

 Each process must ask permission to enter critical section in entry

section, may follow critical section with exit section, then

remainder section

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.7 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Critical Section

 General structure of process Pi

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.8 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Critical-Section Problem (Cont.)

1. Mutual Exclusion - If process Pi is executing in its critical section,

then no other processes can be executing in their critical sections

2. Progress - If no process is executing in its critical section and there

exist some processes that wish to enter their critical section, then the

selection of the process that will enter the critical section next cannot

be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times that

other processes are allowed to enter their critical sections after a

process has made a request to enter its critical section and before that

request is granted

• Assume that each process executes at a nonzero speed

• No assumption concerning relative speed of the n processes

Requirements for solution to critical-section problem

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.9 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Interrupt-based Solution

 Entry section: disable interrupts

 Exit section: enable interrupts

 Will this solve the problem?

• What if the critical section is code that runs for an hour?

• Can some processes starve – never enter their critical section.

• What if there are two CPUs?

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.10 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Software Solution 1

 Two process solution

 Assume that the load and store machine-language

instructions are atomic; that is, cannot be interrupted

 The two processes share one variable:

• int turn;

 The variable turn indicates whose turn it is to enter the

critical section

 initially, the value of turn is set to i

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.11 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Algorithm for Process Pi

while (true){

while (turn = = j);

/* critical section */

turn = j;

/* remainder section */

}

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.12 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Correctness of the Software Solution

 Mutual exclusion is preserved

Pi enters critical section only if:

turn = i

and turn cannot be both 0 and 1 at the same time

 What about the Progress requirement?

 What about the Bounded-waiting requirement?

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.13 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Peterson’s Solution

 Two process solution

 Assume that the load and store machine-language

instructions are atomic; that is, cannot be interrupted

 The two processes share two variables:

• int turn;

• boolean flag[2]

 The variable turn indicates whose turn it is to enter the

critical section

 The flag array is used to indicate if a process is ready to
enter the critical section.

• flag[i] = true implies that process Pi is ready!

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.14 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Algorithm for Process Pi

while (true){

flag[i] = true;

turn = j;

while (flag[j] && turn = = j)

;

/* critical section */

flag[i] = false;

/* remainder section */

}

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.15 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Correctness of Peterson’s Solution

 Provable that the three CS requirement are met:

1. Mutual exclusion is preserved

Pi enters CS only if:

either flag[j] = false or turn = i

2. Progress requirement is satisfied

3. Bounded-waiting requirement is met

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.16 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Peterson’s Solution and Modern Architecture

 Although useful for demonstrating an algorithm, Peterson’s

Solution is not guaranteed to work on modern architectures.

• To improve performance, processors and/or compilers may

reorder operations that have no dependencies

 Understanding why it will not work is useful for better

understanding race conditions.

 For single-threaded this is ok as the result will always be the

same.

 For multithreaded the reordering may produce inconsistent or

unexpected results!

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.17 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Modern Architecture Example

 Two threads share the data:
boolean flag = false;

int x = 0;

 Thread 1 performs
while (!flag)

;

print x

 Thread 2 performs
x = 100;

flag = true

 What is the expected output?

100

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.18 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Modern Architecture Example (Cont.)

 However, since the variables flag and x are independent

of each other, the instructions:

flag = true;

x = 100;

for Thread 2 may be reordered

 If this occurs, the output may be 0!

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.19 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Peterson’s Solution Revisited

 The effects of instruction reordering in Peterson’s Solution

 This allows both processes to be in their critical section at the same

time!

 To ensure that Peterson’s solution will work correctly on modern

computer architecture we must use Memory Barrier.

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.20 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Memory Barrier

 Memory model are the memory guarantees a computer

architecture makes to application programs.

 Memory models may be either:

• Strongly ordered – where a memory modification of one

processor is immediately visible to all other processors.

• Weakly ordered – where a memory modification of one

processor may not be immediately visible to all other

processors.

 A memory barrier is an instruction that forces any change in

memory to be propagated (made visible) to all other processors.

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.21 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Memory Barrier Example

 Returning to the example of slides 6.17 - 6.18

 We could add a memory barrier to the following instructions

to ensure Thread 1 outputs 100:

 Thread 1 now performs
while (!flag)

memory_barrier();

print x

 Thread 2 now performs
x = 100;

memory_barrier();

flag = true

 For Thread 1 we are guaranteed that that the value of flag

is loaded before the value of x.

 For Thread 2 we ensure that the assignment to x occurs

before the assignment flag.

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.22 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Synchronization Hardware

 Many systems provide hardware support for implementing the
critical section code.

 Uniprocessors – could disable interrupts

• Currently running code would execute without preemption

• Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.23 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Hardware Instructions

 Special hardware instructions that allow us to either

test-and-modify the content of a word, or to swap the

contents of two words atomically (uninterruptedly.)

• Test-and-Set instruction

• Compare-and-Swap instruction

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.24 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

The test_and_set Instruction

 Definition

boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = true;

return rv:

}

 Properties

• Executed atomically

• Returns the original value of passed parameter

• Set the new value of passed parameter to true

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.25 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Solution Using test_and_set()

 Shared boolean variable lock, initialized to false

 Solution:

do {

while (test_and_set(&lock))

; /* do nothing */

/* critical section */

lock = false;

/* remainder section */

} while (true);

 Does it solve the critical-section problem?

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.26 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

The compare_and_swap Instruction

 Definition

int compare_and_swap(int *value, int expected, int new_value)

{

int temp = *value;

if (*value == expected)

*value = new_value;

return temp;

}

 Properties

• Executed atomically

• Returns the original value of passed parameter value

• Set the variable value the value of the passed parameter

new_value but only if *value == expected is true. That is, the

swap takes place only under this condition.

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.27 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Solution using compare_and_swap

 Shared integer lock initialized to 0;

 Solution:

while (true){

while (compare_and_swap(&lock, 0, 1) != 0)

; /* do nothing */

/* critical section */

lock = 0;

/* remainder section */

}

 Does it solve the critical-section problem?

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.28 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Bounded-waiting with compare-and-swap

while (true) {

waiting[i] = true;

key = 1;

while (waiting[i] && key == 1)

key = compare_and_swap(&lock,0,1);

waiting[i] = false;

/* critical section */

j = (i + 1) % n;

while ((j != i) && !waiting[j])

j = (j + 1) % n;

if (j == i)

lock = 0;

else

waiting[j] = false;

/* remainder section */

}

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.29 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Mutex Locks

 Previous solutions are complicated and generally inaccessible to
application programmers

 OS designers build software tools to solve critical section problem

 Simplest is mutex lock

• Boolean variable indicating if lock is available or not

 Protect a critical section by

• First acquire() a lock

• Then release() the lock

 Calls to acquire() and release() must be atomic

• Usually implemented via hardware atomic instructions such as
compare-and-swap.

 But this solution requires busy waiting

• This lock therefore called a spinlock

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.30 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Solution to CS Problem Using Mutex Locks

while (true) {

acquire lock

critical section

release lock

remainder section

}

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.31 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Semaphore

 Synchronization tool that provides more sophisticated ways
(than Mutex locks) for processes to synchronize their activities.

 Semaphore S – integer variable

 Can only be accessed via two indivisible (atomic) operations

• wait() and signal()

 Originally called P() and V()

 Definition of the wait() operation

wait(S) {

while (S <= 0)

; // busy wait

S--;

}

 Definition of the signal() operation

signal(S) {

S++;

}

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.32 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Semaphore (Cont.)

 Counting semaphore – integer value can range over

an unrestricted domain

 Binary semaphore – integer value can range only

between 0 and 1

• Same as a mutex lock

 Can implement a counting semaphore S as a binary

semaphore

 With semaphores we can solve various synchronization

problems

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.33 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Semaphore Usage Example

 Solution to the CS Problem

• Create a semaphore “mutex” initialized to 1

wait(mutex);

CS

signal(mutex);

 Consider P1 and P2 that with two statements S1 and S2 and

the requirement that S1 to happen before S2

• Create a semaphore “synch” initialized to 0

P1:

S1;

signal(synch);

P2:

wait(synch);

S2;

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.34 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Semaphore Implementation

 Must guarantee that no two processes can execute the wait()

and signal() on the same semaphore at the same time

 Thus, the implementation becomes the critical section problem

where the wait and signal code are placed in the critical

section

 Could now have busy waiting in critical section implementation

• But implementation code is short

• Little busy waiting if critical section rarely occupied

 Note that applications may spend lots of time in critical sections

and therefore this is not a good solution

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.35 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Semaphore Implementation with no Busy waiting

 With each semaphore there is an associated waiting queue

 Each entry in a waiting queue has two data items:

• Value (of type integer)

• Pointer to next record in the list

 Two operations:

• block – place the process invoking the operation on the

appropriate waiting queue

• wakeup – remove one of processes in the waiting queue

and place it in the ready queue

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.36 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Implementation with no Busy waiting (Cont.)

 Waiting queue

typedef struct {

int value;

struct process *list;

} semaphore;

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.37 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Implementation with no Busy waiting (Cont.)

wait(semaphore *S) {

S->value--;

if (S->value < 0) {

add this process to S->list;

block();

}

}

signal(semaphore *S) {

S->value++;

if (S->value <= 0) {

remove a process P from S->list;

wakeup(P);

}

}

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.38 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Liveness

 Processes may have to wait indefinitely while trying to acquire a

synchronization tool such as a mutex lock or semaphore.

 Waiting indefinitely violates the progress and bounded-waiting criteria

discussed at the beginning of this chapter.

 Liveness refers to a set of properties that a system must satisfy to

ensure processes make progress.

 Indefinite waiting is an example of a liveness failure.

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.39 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

 Deadlock – two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes

 Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S); signal(Q);

signal(Q); signal(S);

 Consider if P0 executes wait(S) and P1 wait(Q). When P0 executes
wait(Q), it must wait until P1 executes signal(Q)

 However, P1 is waiting until P0 execute signal(S).

 Since these signal() operations will never be executed, P0 and P1 are
deadlocked.

Liveness

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.40 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

 Other forms of deadlock:

 Starvation – indefinite blocking

• A process may never be removed from the semaphore queue in
which it is suspended

 Priority Inversion – Scheduling problem when lower-priority process
holds a lock needed by higher-priority process

• Solved via priority-inheritance protocol

Liveness

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 7: Synchronization

Examples

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.42 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Classical Problems of Synchronization

 Classical problems used to test newly-proposed

synchronization schemes

• Bounded-Buffer Problem

• Readers and Writers Problem

• Dining-Philosophers Problem

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.43 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Bounded-Buffer Problem

 n buffers, each can hold one item

 Semaphore mutex initialized to the value 1

 Semaphore full initialized to the value 0

 Semaphore empty initialized to the value n

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.44 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Bounded Buffer Problem (Cont.)

 The structure of the producer process

while (true) {

...

/* produce an item in next_produced */

...

wait(empty);

wait(mutex);

...

/* add next produced to the buffer */

...

signal(mutex);

signal(full);

}

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.45 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Bounded Buffer Problem (Cont.)

 The structure of the consumer process

while (true) {

wait(full);

wait(mutex);

...

/* remove an item from buffer to next_consumed */

...

signal(mutex);

signal(empty);

...

/* consume the item in next consumed */

...

}

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.46 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Readers-Writers Problem

 A data set is shared among a number of concurrent processes

• Readers – only read the data set; they do not perform any

updates

• Writers – can both read and write

 Problem – allow multiple readers to read at the same time

• Only one single writer can access the shared data at the same

time

 Several variations of how readers and writers are considered – all

involve some form of priorities

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.47 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Readers-Writers Problem (Cont.)

 Shared Data

• Data set

• Semaphore rw_mutex initialized to 1

• Semaphore mutex initialized to 1

• Integer read_count initialized to 0

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.48 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Readers-Writers Problem (Cont.)

 The structure of a writer process

while (true) {

wait(rw_mutex);

...

/* writing is performed */

...

signal(rw_mutex);

}

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.49 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Readers-Writers Problem (Cont.)

 The structure of a reader process

while (true){

wait(mutex);

read_count++;

if (read_count == 1) /* first reader */

wait(rw_mutex);

signal(mutex);

...

/* reading is performed */

...

wait(mutex);

read_count--;

if (read_count == 0) /* last reader */

signal(rw_mutex);

signal(mutex);

}

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

6.50 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Readers-Writers Problem Variations

 The solution in previous slide can result in a situation where

a writer process never writes. It is referred to as the “First

reader-writer” problem.

 The “Second reader-writer” problem is a variation the first

reader-writer problem that state:

• Once a writer is ready to write, no “newly arrived

reader” is allowed to read.

 Both the first and second may result in starvation. leading to

even more variations

 Problem is solved on some systems by kernel providing

reader-writer locks

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

