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Objectives

 Describe the critical-section problem and illustrate a 

race condition

 Illustrate hardware solutions to the critical-section 

problem using memory barriers, compare-and-swap 

operations, and atomic variables

 Demonstrate how mutex locks, semaphores, 

monitors, and condition variables can be used to 

solve the critical section problem

 Evaluate tools that solve the critical-section problem 

in low-,  Moderate-, and high-contention scenarios
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Background

 Processes can execute concurrently

• May be interrupted at any time, partially completing execution

 Concurrent access to shared data may result in data 

inconsistency

 Maintaining data consistency requires mechanisms to ensure the 

orderly execution of cooperating processes

 We illustrated in chapter 4 the problem when we considered the 

Bounded Buffer problem with use of a counter that is updated 

concurrently by the producer and consumer,. Which lead to race 

condition.
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Race Condition

 Processes P0 and P1 are creating child processes using the fork() 

system call

 Race condition on kernel variable next_available_pid which 

represents the next available process identifier (pid)

 Unless there is a mechanism to prevent P0 and P1 from accessing  the 
variable next_available_pid the same pid could be assigned to 

two different processes!
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Critical Section Problem

 Consider system of n processes {p0, p1, … pn-1}

 Each process has critical section segment of code

• Process may be changing common variables, updating table, 

writing file, etc.

• When one process in critical section, no other may be in its 

critical section

 Critical section problem is to design protocol to solve this

 Each process must ask permission to enter critical section in entry

section, may follow critical section with exit section, then 

remainder section
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Critical Section

 General structure of process Pi  
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Critical-Section Problem (Cont.)

1. Mutual Exclusion - If process Pi is executing in its critical section, 

then no other processes can be executing in their critical sections

2. Progress - If no process is executing in its critical section and there 

exist some processes that wish to enter their critical section, then the 

selection of the process that will enter the critical section next cannot 

be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times that 

other processes are allowed to enter their critical sections after a 

process has made a request to enter its critical section and before that 

request is granted

• Assume that each process executes at a nonzero speed 

• No assumption concerning relative speed of the n processes

Requirements for solution to critical-section problem

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com



6.9 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Interrupt-based Solution

 Entry section:  disable interrupts

 Exit section:  enable  interrupts

 Will this solve the problem?

• What if the critical section is code that runs for an hour?

• Can some processes starve – never enter their critical section.

• What if there are two CPUs?
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Software Solution 1

 Two process solution

 Assume that the load and store machine-language 

instructions are atomic; that is, cannot be interrupted

 The two processes share one variable:

• int turn; 

 The variable turn indicates whose turn it is to enter the 

critical section

 initially, the value of turn is set to i 
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Algorithm for Process Pi

while (true){ 

while (turn = = j);

/* critical section */

turn = j;

/* remainder section */

}
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Correctness of the Software Solution 

 Mutual exclusion is preserved

Pi enters critical section only if:

turn = i

and turn cannot be both 0 and 1 at the same time

 What about the Progress requirement?

 What about the Bounded-waiting requirement?
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Peterson’s Solution

 Two process solution

 Assume that the load and store machine-language 

instructions are atomic; that is, cannot be interrupted

 The two processes share two variables:

• int turn; 

• boolean flag[2]

 The variable turn indicates whose turn it is to enter the 

critical section

 The flag array is used to indicate if a process is ready to 
enter the critical section. 

• flag[i] = true implies that process Pi is ready!
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Algorithm for Process Pi

while (true){ 

flag[i] = true; 

turn = j; 

while (flag[j] && turn = = j)

;

/* critical section */

flag[i] = false;

/* remainder section */

}
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Correctness of Peterson’s Solution 

 Provable that the three  CS requirement are met:

1.   Mutual exclusion is preserved

Pi enters CS only if:

either flag[j] = false or turn = i

2.   Progress requirement is satisfied

3.   Bounded-waiting requirement is met
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Peterson’s Solution and Modern Architecture

 Although useful for demonstrating an algorithm, Peterson’s 

Solution is not guaranteed to work on modern architectures.

• To improve performance, processors and/or compilers may 

reorder operations that have no dependencies

 Understanding why it will not work is useful for better 

understanding race conditions.

 For single-threaded this is ok as the result will always be the 

same.

 For multithreaded the reordering may produce inconsistent or 

unexpected results!
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Modern Architecture Example

 Two threads share the data:
boolean flag = false;

int x = 0;

 Thread 1 performs
while (!flag)

;

print x

 Thread 2 performs
x = 100;

flag = true

 What is the expected output?

100
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Modern Architecture Example (Cont.)

 However, since the variables flag and x are independent 

of each other, the instructions:

flag = true;

x = 100;

for Thread 2 may be reordered

 If this occurs, the output may be 0!
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Peterson’s Solution Revisited

 The effects of instruction reordering in Peterson’s Solution

 This allows both processes to be in their critical section at the same 

time!

 To ensure that Peterson’s solution will work correctly on modern 

computer architecture we must use Memory Barrier.
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Memory Barrier

 Memory model are the memory guarantees a computer 

architecture makes to application programs.

 Memory models may be either:

• Strongly ordered – where a memory modification of one 

processor is immediately visible to all other processors.

• Weakly ordered  – where a memory modification of one 

processor may not be immediately visible to all other 

processors.

 A memory barrier is an instruction that forces any change in 

memory to be propagated (made visible) to all other processors.
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Memory Barrier Example

 Returning to the example of slides 6.17 - 6.18

 We could add a memory barrier to the following instructions 

to ensure Thread 1 outputs 100:

 Thread 1 now performs
while (!flag)

memory_barrier();

print x

 Thread 2 now performs
x = 100;

memory_barrier();

flag = true

 For Thread 1 we are guaranteed that  that the value of flag

is loaded before the value of x.

 For Thread 2 we ensure that the assignment to x occurs 

before the assignment flag.
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Synchronization Hardware

 Many systems provide hardware support for implementing the 
critical section code.

 Uniprocessors – could disable interrupts

• Currently running code would execute without preemption

• Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable
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Hardware Instructions

 Special hardware instructions that allow us to either 

test-and-modify the content of a word, or to swap the 

contents of two words atomically (uninterruptedly.)

• Test-and-Set instruction

• Compare-and-Swap instruction
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The test_and_set  Instruction 

 Definition

boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = true;

return rv:

}

 Properties

• Executed atomically

• Returns the original value of passed parameter

• Set the new value of passed parameter to true
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Solution Using test_and_set()

 Shared boolean variable lock, initialized to false

 Solution:

do {

while (test_and_set(&lock)) 

; /* do nothing */ 

/* critical section */ 

lock = false; 

/* remainder section */ 

} while (true);

 Does it solve the critical-section problem?
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The compare_and_swap Instruction 

 Definition

int compare_and_swap(int *value, int expected, int new_value)

{                  

int temp = *value; 

if (*value == expected) 

*value = new_value; 

return temp; 

} 

 Properties

• Executed atomically

• Returns the original value of passed parameter value

• Set  the variable value the value of the passed parameter 

new_value but only if *value == expected is true. That is, the 

swap takes place only under this condition.
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Solution using compare_and_swap

 Shared integer  lock initialized to 0; 

 Solution:

while (true){

while (compare_and_swap(&lock, 0, 1) != 0) 

; /* do nothing */ 

/* critical section */ 

lock = 0; 

/* remainder section */ 

} 

 Does it solve the critical-section problem?
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Bounded-waiting with compare-and-swap

while (true) {

waiting[i] = true;

key = 1;

while (waiting[i] && key == 1) 

key = compare_and_swap(&lock,0,1); 

waiting[i] = false; 

/* critical section */ 

j = (i + 1) % n; 

while ((j != i) && !waiting[j]) 

j = (j + 1) % n; 

if (j == i) 

lock = 0; 

else 

waiting[j] = false; 

/* remainder section */ 

}
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Mutex Locks

 Previous solutions are complicated and generally inaccessible to 
application programmers

 OS designers build software tools to solve critical section problem

 Simplest is mutex lock

• Boolean variable indicating if lock is available or not

 Protect a critical section  by 

• First acquire() a lock 

• Then release() the lock

 Calls to acquire() and release() must be atomic

• Usually implemented via hardware atomic instructions such as 
compare-and-swap.

 But this solution requires busy waiting

• This lock therefore called a spinlock
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Solution to CS Problem Using Mutex Locks

while (true) { 

acquire lock 

critical section 

release lock 

remainder section 

} 
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Semaphore

 Synchronization tool that provides more sophisticated ways 
(than Mutex locks)  for processes to synchronize their activities.

 Semaphore S – integer variable

 Can only be accessed via two indivisible (atomic) operations

• wait() and signal()

 Originally called P() and V()

 Definition of  the wait() operation

wait(S) { 

while (S <= 0)

; // busy wait

S--;

}

 Definition of  the signal() operation

signal(S) { 

S++;

}
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Semaphore (Cont.)

 Counting semaphore – integer value can range over 

an unrestricted domain

 Binary semaphore – integer value can range only 

between 0 and 1

• Same as a mutex lock

 Can implement a counting semaphore S as a binary 

semaphore

 With semaphores we can solve various synchronization 

problems
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Semaphore Usage Example

 Solution to the CS Problem

• Create a semaphore “mutex” initialized to 1 

wait(mutex);

CS

signal(mutex);

 Consider P1 and P2 that with two statements S1 and S2    and 

the requirement that S1 to happen before S2

• Create a semaphore “synch” initialized to 0 

P1:

S1;

signal(synch);

P2:

wait(synch);

S2;
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Semaphore Implementation

 Must guarantee that no two processes can execute  the wait() 

and signal() on the same semaphore at the same time

 Thus, the implementation becomes the critical section problem 

where the wait and signal code are placed in the critical 

section

 Could now have busy waiting in critical section implementation

• But implementation code is short

• Little busy waiting if critical section rarely occupied

 Note that applications may spend lots of time in critical sections 

and therefore this is not a good solution
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Semaphore Implementation with no Busy waiting 

 With each semaphore there is an associated waiting queue

 Each entry in a waiting queue has two data items:

• Value (of type integer)

• Pointer to next record in the list

 Two operations:

• block – place the process invoking the operation on the 

appropriate waiting queue

• wakeup – remove one of processes in the waiting queue 

and place it in the ready queue
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Implementation with no Busy waiting (Cont.)

 Waiting queue

typedef struct { 

int value; 

struct process *list; 

} semaphore; 
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Implementation with no Busy waiting (Cont.)

wait(semaphore *S) { 

S->value--; 

if (S->value < 0) {

add this process to S->list; 

block(); 

} 

}

signal(semaphore *S) { 

S->value++; 

if (S->value <= 0) {

remove a process P from S->list; 

wakeup(P); 

} 

} 
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Liveness

 Processes may have to wait indefinitely while trying to acquire a 

synchronization tool such as a mutex lock or semaphore.

 Waiting indefinitely violates the progress and bounded-waiting criteria 

discussed at the beginning of this chapter.

 Liveness refers to a set of properties that a system must satisfy to 

ensure processes make progress.

 Indefinite waiting is an example of a liveness failure.
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 Deadlock – two or more processes are waiting indefinitely for an 
event that can be caused by only one of the waiting processes

 Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S);                 signal(Q);

signal(Q);                 signal(S);

 Consider if P0 executes wait(S) and P1 wait(Q). When P0 executes 
wait(Q), it must wait until P1 executes signal(Q)

 However, P1 is waiting until P0 execute signal(S).

 Since these signal() operations will never be executed, P0 and P1 are 
deadlocked.

Liveness
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 Other forms of deadlock:

 Starvation – indefinite blocking  

• A process may never be removed from the semaphore queue in 
which it is suspended

 Priority Inversion – Scheduling problem when lower-priority process 
holds a lock needed by higher-priority process

• Solved via priority-inheritance protocol

Liveness
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Chapter 7:  Synchronization 

Examples
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Classical Problems of Synchronization

 Classical problems used to test newly-proposed 

synchronization schemes

• Bounded-Buffer Problem

• Readers and Writers Problem

• Dining-Philosophers Problem

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com



6.43 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Bounded-Buffer Problem

 n buffers, each can hold one item

 Semaphore mutex initialized to the value 1

 Semaphore full initialized to the value 0

 Semaphore empty initialized to the value n
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Bounded Buffer Problem (Cont.)

 The structure of the producer process

while (true) { 

...

/* produce an item in next_produced */ 

... 

wait(empty); 

wait(mutex); 

...

/* add next produced to the buffer */ 

... 

signal(mutex); 

signal(full); 

}
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Bounded Buffer Problem (Cont.)

 The structure of the consumer process

while (true) { 

wait(full); 

wait(mutex); 

...

/* remove an item from buffer to next_consumed */ 

... 

signal(mutex); 

signal(empty); 

...

/* consume the item in next consumed */ 

...

}
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Readers-Writers Problem

 A data set is shared among a number of concurrent processes

• Readers – only read the data set; they do not perform any 

updates

• Writers – can both read and write

 Problem – allow multiple readers to read at the same time

• Only one single writer can access the shared data at the same 

time

 Several variations of how readers and writers are considered  – all 

involve some form of priorities
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Readers-Writers Problem (Cont.)

 Shared Data

• Data set

• Semaphore rw_mutex initialized to 1

• Semaphore mutex initialized to 1

• Integer read_count initialized to 0
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Readers-Writers Problem (Cont.)

 The structure of a writer process

while (true) {

wait(rw_mutex); 

...

/* writing is performed */ 

... 

signal(rw_mutex); 

}
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Readers-Writers Problem (Cont.)

 The structure of a reader process

while (true){

wait(mutex);

read_count++;

if (read_count == 1) /* first reader */ 

wait(rw_mutex); 

signal(mutex); 

...

/* reading is performed */ 

... 

wait(mutex);

read_count--;

if (read_count == 0) /* last reader */

signal(rw_mutex); 

signal(mutex); 

}
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Readers-Writers Problem Variations

 The solution in previous slide can result in a situation where 

a writer  process never writes.  It is referred to as the “First 

reader-writer” problem.

 The “Second reader-writer” problem is  a variation the first 

reader-writer problem that state:

• Once a writer is ready to write, no “newly arrived 

reader” is allowed  to read.

 Both the first and second may result in starvation. leading to 

even more variations

 Problem is solved on some systems by kernel providing 

reader-writer locks
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