#### Spur gear:

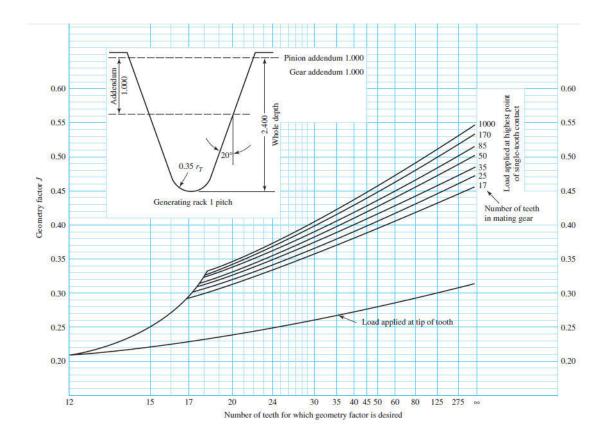

# Addendum values (a) for spur gear:

Table 13-1 Standard and Commonly Used Tooth Systems for Spur Gears

| Tooth System | Pressure Angle $\phi$ , deg | Addendum a      | Dedendum b        |
|--------------|-----------------------------|-----------------|-------------------|
| Full depth   | 20                          | 1/P or $m$      | 1.25/P or 1.25m   |
|              |                             |                 | 1.35/P or $1.35m$ |
|              | $22\frac{1}{2}$             | 1/P or $m$      | 1.25/P or 1.25m   |
|              |                             |                 | 1.35/P or $1.35m$ |
|              | 25                          | 1/P or $m$      | 1.25/P or 1.25m   |
|              |                             |                 | 1.35/P or $1.35m$ |
| Stub         | 20                          | 0.8/P or $0.8m$ | 1/P or m          |

### 1-Based on Bending Stress:

# geometry factor (J):



#### **Velocity Factor (Kv):**

$$K_v = \begin{cases} \left(\frac{A + \sqrt{V}}{A}\right)^B & V \text{ in ft/min} \\ \left(\frac{A + \sqrt{200V}}{A}\right)^B & V \text{ in m/s} \end{cases}$$

where

$$A = 50 + 56(1 - B)$$
$$B = 0.25(12 - Q_v)^{2/3}$$

#### **Mounting Factor (Km):**

$$K_m = C_{mf} = 1 + C_{mc}(C_{pf}C_{pm} + C_{ma}C_e)$$

#### Cmc:

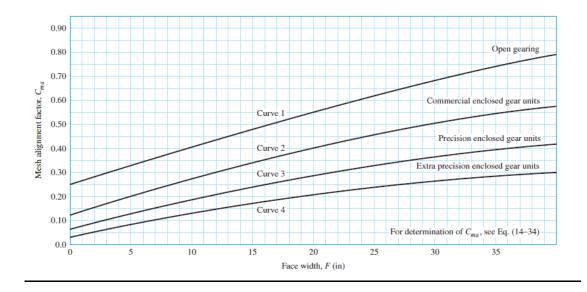
$$C_{mc} = \begin{cases} 1 & \text{for uncrowned teeth} \\ 0.8 & \text{for crowned teeth} \end{cases}$$

#### Cpf , where F = face width (b):

$$C_{pf} = \begin{cases} \frac{F}{10d_P} - 0.025 & F \le 1 \text{ in} \\ \frac{F}{10d_P} - 0.0375 + 0.0125F & 1 < F \le 17 \text{ in} \\ \frac{F}{10d_P} - 0.1109 + 0.0207F - 0.000 228F^2 & 17 < F \le 40 \text{ in} \end{cases}$$

### Cpm:

$$C_{pm} = \begin{cases} 1 \\ 1.1 \end{cases}$$

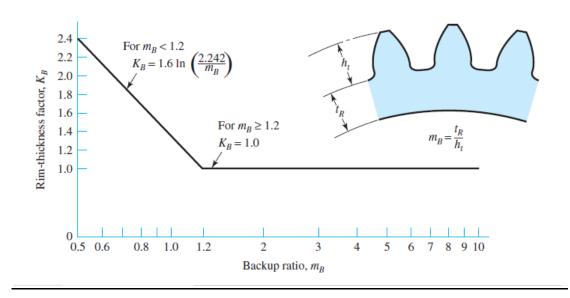

for straddle-mounted pinion with  $S_1/S < 0.175$  for straddle-mounted pinion with  $S_1/S \ge 0.175$ 

## Cma, where F = face width (b):

$$C_{ma} = A + BF + CF^2$$

| Condition                          | A       | В      | С                 |
|------------------------------------|---------|--------|-------------------|
| Open gearing                       | 0.247   | 0.0167 | $-0.765(10^{-4})$ |
| Commercial, enclosed units         | 0.127   | 0.0158 | $-0.930(10^{-4})$ |
| Precision, enclosed units          | 0.0675  | 0.0128 | $-0.926(10^{-4})$ |
| Extraprecision enclosed gear units | 0.00360 | 0.0102 | $-0.822(10^{-4})$ |

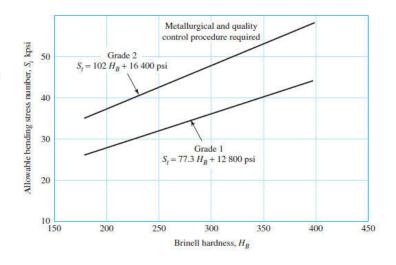
### Or we can determine Cma by following figure:



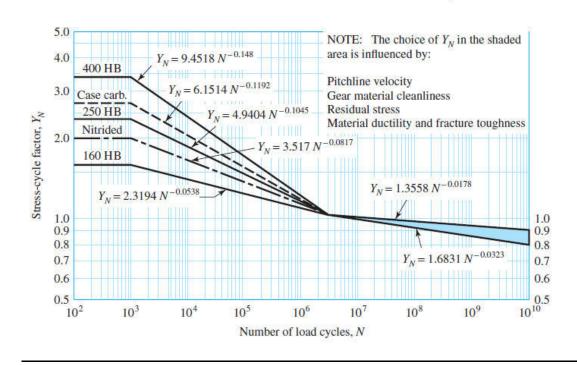

#### Ce:

$$C_e = \begin{cases} 0.8 & \text{for gearing adjusted at assembly, or compatibility} \\ & \text{is improved by lapping, or both} \\ 1 & \text{for all other conditions} \end{cases}$$

#### (KB) For Cases with Rim gear only:


$$K_B = \begin{cases} 1.6 \ln \frac{2.242}{m_B} & m_B < 1.2\\ 1 & m_B \ge 1.2 \end{cases}$$




### **Endueance limit (St):**

#### Figure 14-2

Allowable bending stress number for through-hardened steels,  $S_t$ . The SI equations are:  $S_t = 0.533H_B + 88.3$  MPa, grade 1, and  $S_t = 0.703H_B + 113$  MPa, grade 2. (Source: ANSI/AGMA 2001-D04 and 2101-D04.)



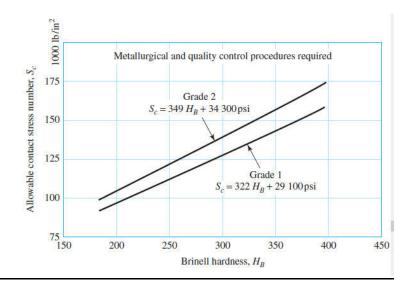
## Life Factor (KL):



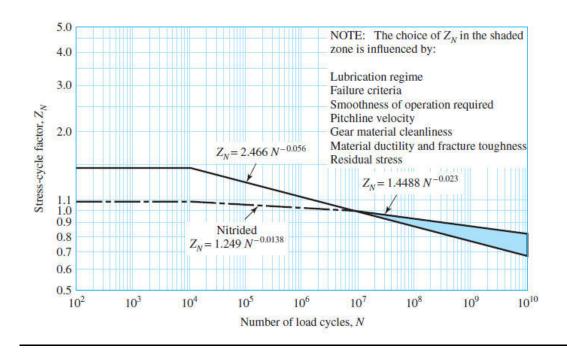
# Reliability Factor (KR):

| Reliability | K <sub>R</sub> (Y <sub>z</sub> ) |
|-------------|----------------------------------|
| 0.9999      | 1.50                             |
| 0.999       | 1.25                             |
| 0.99        | 1.00                             |
| 0.90        | 0.85                             |
| 0.50        | 0.70                             |
|             |                                  |

# **2-Based on Contact Stress:**


# Elastic Factor (Cp):

|                    |                                                              |                                                         |                                                                       |                                                                     | il and Modulus<br>, lbf/in² (MPa)                                |                                                        |                                                                 |
|--------------------|--------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------|
| Pinion<br>Material | Pinion Modulus of<br>Elasticity E <sub>p</sub><br>psi (MPa)* | Steel<br>30 × 10 <sup>6</sup><br>(2 × 10 <sup>5</sup> ) | Malleable<br>Iron<br>25 × 10 <sup>6</sup><br>(1.7 × 10 <sup>5</sup> ) | Nodular<br>Iron<br>24 × 10 <sup>6</sup><br>(1.7 × 10 <sup>5</sup> ) | Cast<br>Iron<br>22 × 10 <sup>6</sup><br>(1.5 × 10 <sup>5</sup> ) | Aluminum Bronze $17.5 \times 10^6$ $(1.2 \times 10^5)$ | Tin<br>Bronze<br>16 × 10 <sup>6</sup><br>(1.1 × 10 <sup>5</sup> |
| Steel              | $30 \times 10^6$ $(2 \times 10^5)$                           | 2300<br>(191)                                           | 2180<br>(181)                                                         | 2160<br>(179)                                                       | 2100<br>(174)                                                    | 1950<br>(162)                                          | 1900<br>(158)                                                   |
| Malleable iron     | $25 \times 10^6$ $(1.7 \times 10^5)$                         | 2180<br>(181)                                           | 2090<br>(174)                                                         | 2070<br>(172)                                                       | 2020<br>(168)                                                    | 1900<br>(158)                                          | 1850<br>(154)                                                   |
| Nodular iron       | $24 \times 10^6$ $(1.7 \times 10^5)$                         | 2160<br>(179)                                           | 2070<br>(172)                                                         | 2050<br>(170)                                                       | 2000<br>(166)                                                    | 1880<br>(156)                                          | 1830<br>(152)                                                   |
| Cast iron          | $22 \times 10^6$<br>(1.5 × 10 <sup>5</sup> )                 | 2100<br>(174)                                           | 2020<br>(168)                                                         | 2000<br>(166)                                                       | 1960<br>(163)                                                    | 1850<br>(154)                                          | 1800<br>(149)                                                   |
| Aluminum bronze    | $17.5 \times 10^6$<br>$(1.2 \times 10^5)$                    | 1950<br>(162)                                           | 1900<br>(158)                                                         | 1880<br>(156)                                                       | 1850<br>(154)                                                    | 1750<br>(145)                                          | 1700<br>(141)                                                   |
| Tin bronze         | $16 \times 10^6$<br>(1.1 × 10 <sup>5</sup> )                 | 1900<br>(158)                                           | 1850<br>(154)                                                         | 1830<br>(152)                                                       | 1800<br>(149)                                                    | 1700<br>(141)                                          | 1650<br>(137)                                                   |

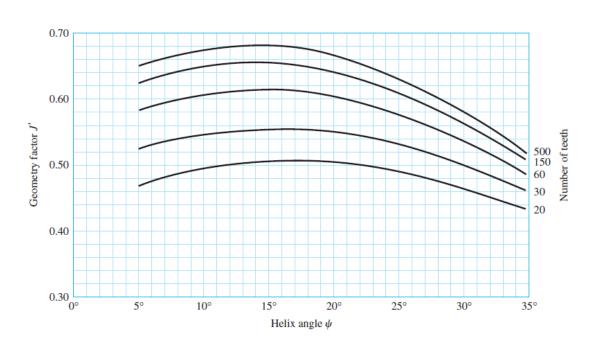

#### Fatigue Strength (Sc):

#### Figure 14-5

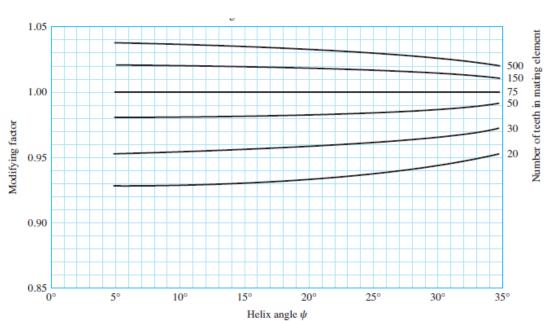
Contact-fatigue strength  $S_c$  at  $10^7$  cycles and 0.99 reliability for through-hardened steel gears. The SI equations are:  $S_c = 2.22H_B + 200$  MPa, grade 1, and  $S_c = 2.41H_B + 237$  MPa, grade 2. (Source: ANSI/AGMA 2001-D04 and 2101-D04.)



### Life Factor(CL):




# 2- Helical gear:


# geometry factor (J):

J = J' \* KJ

# <u>J':</u>



# <u>KJ:</u>



# **Bearing:**

# For Ball bearing:

Table 11-1

Equivalent Radial Load
Factors for Ball Bearings

|                                |      | F <sub>a</sub> /(VF <sub>r</sub> | ) ≤ e | F <sub>a</sub> /(V | F <sub>r</sub> ) > e |
|--------------------------------|------|----------------------------------|-------|--------------------|----------------------|
| F <sub>a</sub> /C <sub>o</sub> | e    | <i>X</i> <sub>1</sub>            | Yı    | X <sub>2</sub>     | Y <sub>2</sub>       |
| 0.014*                         | 0.19 | 1.00                             | 0     | 0.56               | 2.30                 |
| 0.021                          | 0.21 | 1.00                             | 0     | 0.56               | 2.15                 |
| 0.028                          | 0.22 | 1.00                             | 0     | 0.56               | 1.99                 |
| 0.042                          | 0.24 | 1.00                             | 0     | 0.56               | 1.85                 |
| 0.056                          | 0.26 | 1.00                             | 0     | 0.56               | 1.71                 |
| 0.070                          | 0.27 | 1.00                             | 0     | 0.56               | 1.63                 |
| 0.084                          | 0.28 | 1.00                             | 0     | 0.56               | 1.55                 |
| 0.110                          | 0.30 | 1.00                             | 0     | 0.56               | 1.45                 |
| 0.17                           | 0.34 | 1.00                             | 0     | 0.56               | 1.31                 |
| 0.28                           | 0.38 | 1.00                             | 0     | 0.56               | 1.15                 |
| 0.42                           | 0.42 | 1.00                             | 0     | 0.56               | 1.04                 |
| 0.56                           | 0.44 | 1.00                             | 0     | 0.56               | 1.00                 |

<sup>\*</sup>Use 0.014 if  $F_a/C_0 < 0.014$ .

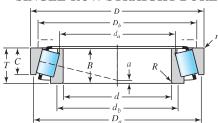
# For Ball bearing:

Dimensions and Load Ratings for Single-Row 02-Series Deep-Groove and Angular-Contact Ball Bearings

|       | Fillet Shoulde |        |         |        | lder           | Load Ratings, kN |                |                 |         |  |  |  |  |
|-------|----------------|--------|---------|--------|----------------|------------------|----------------|-----------------|---------|--|--|--|--|
| Bore, | OD,            | Width, | Radius, | Diamet | er, mm         | Deep (           |                | Angular         | Contact |  |  |  |  |
| mm    | mm             | mm     | mm      | ds     | d <sub>H</sub> | C <sub>10</sub>  | C <sub>o</sub> | C <sub>10</sub> | Co      |  |  |  |  |
| 10    | 30             | 9      | 0.6     | 12.5   | 27             | 5.07             | 2.24           | 4.94            | 2.12    |  |  |  |  |
| 12    | 32             | 10     | 0.6     | 14.5   | 28             | 6.89             | 3.10           | 7.02            | 3.05    |  |  |  |  |
| 15    | 35             | 11     | 0.6     | 17.5   | 31             | 7.80             | 3.55           | 8.06            | 3.65    |  |  |  |  |
| 17    | 40             | 12     | 0.6     | 19.5   | 34             | 9.56             | 4.50           | 9.95            | 4.75    |  |  |  |  |
| 20    | 47             | 14     | 1.0     | 25     | 41             | 12.7             | 6.20           | 13.3            | 6.55    |  |  |  |  |
| 25    | 52             | 15     | 1.0     | 30     | 47             | 14.0             | 6.95           | 14.8            | 7.65    |  |  |  |  |
| 30    | 62             | 16     | 1.0     | 35     | 55             | 19.5             | 10.0           | 20.3            | 11.0    |  |  |  |  |
| 35    | 72             | 17     | 1.0     | 41     | 65             | 25.5             | 13.7           | 27.0            | 15.0    |  |  |  |  |
| 40    | 80             | 18     | 1.0     | 46     | 72             | 30.7             | 16.6           | 31.9            | 18.6    |  |  |  |  |
| 45    | 85             | 19     | 1.0     | 52     | 77             | 33.2             | 18.6           | 35.8            | 21.2    |  |  |  |  |
| 50    | 90             | 20     | 1.0     | 56     | 82             | 35.1             | 19.6           | 37.7            | 22.8    |  |  |  |  |
| 55    | 100            | 21     | 1.5     | 63     | 90             | 43.6             | 25.0           | 46.2            | 28.5    |  |  |  |  |
| 60    | 110            | 22     | 1.5     | 70     | 99             | 47.5             | 28.0           | 55.9            | 35.5    |  |  |  |  |
| 65    | 120            | 23     | 1.5     | 74     | 109            | 55.9             | 34.0           | 63.7            | 41.5    |  |  |  |  |
| 70    | 125            | 24     | 1.5     | 79     | 114            | 61.8             | 37.5           | 68.9            | 45.5    |  |  |  |  |
| 75    | 130            | 25     | 1.5     | 86     | 119            | 66.3             | 40.5           | 71.5            | 49.0    |  |  |  |  |
| 80    | 140            | 26     | 2.0     | 93     | 127            | 70.2             | 45.0           | 80.6            | 55.0    |  |  |  |  |
| 85    | 150            | 28     | 2.0     | 99     | 136            | 83.2             | 53.0           | 90.4            | 63.0    |  |  |  |  |
| 90    | 160            | 30     | 2.0     | 104    | 146            | 95.6             | 62.0           | 106             | 73.5    |  |  |  |  |
| 95    | 170            | 32     | 2.0     | 110    | 156            | 108              | 69.5           | 121             | 85.0    |  |  |  |  |

# **For cylindrical Roller bearing:**

Dimensions and Basic Load Ratings for Cylindrical Roller Bearings


|       |     | 02-5   | eries           |          | 03-S |        |                 |          |
|-------|-----|--------|-----------------|----------|------|--------|-----------------|----------|
| Bore, | OD, | Width, | Load Ra         | ting, kN | OD,  | Width, | Load Ra         | ting, kN |
| mm    | mm  | mm     | C <sub>10</sub> | Co       | mm   | mm     | C <sub>10</sub> | Co       |
| 25    | 52  | 15     | 16.8            | 8.8      | 62   | 17     | 28.6            | 15.0     |
| 30    | 62  | 16     | 22.4            | 12.0     | 72   | 19     | 36.9            | 20.0     |
| 35    | 72  | 17     | 31.9            | 17.6     | 80   | 21     | 44.6            | 27.1     |
| 40    | 80  | 18     | 41.8            | 24.0     | 90   | 23     | 56.1            | 32.5     |
| 45    | 85  | 19     | 44.0            | 25.5     | 100  | 25     | 72.1            | 45.4     |
| 50    | 90  | 20     | 45.7            | 27.5     | 110  | 27     | 88.0            | 52.0     |
| 55    | 100 | 21     | 56.1            | 34.0     | 120  | 29     | 102             | 67.2     |
| 60    | 110 | 22     | 64.4            | 43.1     | 130  | 31     | 123             | 76.5     |
| 65    | 120 | 23     | 76.5            | 51.2     | 140  | 33     | 138             | 85.0     |
| 70    | 125 | 24     | 79.2            | 51.2     | 150  | 35     | 151             | 102      |
| 75    | 130 | 25     | 93.1            | 63.2     | 160  | 37     | 183             | 125      |
| 80    | 140 | 26     | 106             | 69.4     | 170  | 39     | 190             | 125      |
| 85    | 150 | 28     | 119             | 78.3     | 180  | 41     | 212             | 149      |
| 90    | 160 | 30     | 142             | 100      | 190  | 43     | 242             | 160      |
| 95    | 170 | 32     | 165             | 112      | 200  | 45     | 264             | 189      |
| 100   | 180 | 34     | 183             | 125      | 215  | 47     | 303             | 220      |
| 110   | 200 | 38     | 229             | 167      | 240  | 50     | 391             | 304      |
| 120   | 215 | 40     | 260             | 183      | 260  | 55     | 457             | 340      |
| 130   | 230 | 40     | 270             | 193      | 280  | 58     | 539             | 408      |
| 140   | 250 | 42     | 319             | 240      | 300  | 62     | 682             | 454      |
| 150   | 270 | 45     | 446             | 260      | 320  | 65     | 781             | 502      |

# **Load application factor (Ka):**

| Type of Application                  | Load Factor |
|--------------------------------------|-------------|
| Precision gearing                    | 1.0-1.1     |
| Commercial gearing                   | 1.1-1.3     |
| Applications with poor bearing seals | 1.2         |
| Machinery with no impact             | 1.0-1.2     |
| Machinery with light impact          | 1.2-1.5     |
| Machinery with moderate impact       | 1.5-3.0     |

# **Timken Cataloge:**

#### SINGLE-ROW STRAIGHT BORE



|                      |                         |                         |                                             |                     |      |                       |                |                | co                     | ne                      |                      |                     | cu                  | p                       |                     |                           |
|----------------------|-------------------------|-------------------------|---------------------------------------------|---------------------|------|-----------------------|----------------|----------------|------------------------|-------------------------|----------------------|---------------------|---------------------|-------------------------|---------------------|---------------------------|
| bore                 | outside<br>diameter     | width                   | rating at<br>500 rpm for<br>3000 hours L 10 |                     | fac- | eff.                  | part nu        | mbers          | max<br>shaft<br>fillet | width                   | back<br>shou<br>diam | ılder               | max<br>hous-<br>ing | width                   | sh                  | cking<br>oulder<br>meters |
|                      |                         |                         | one-<br>row<br>radial                       | thrust              |      | center                | cone           | cup            | radius                 |                         |                      | I                   | fillet<br>radius    |                         |                     |                           |
| d                    | D                       | T                       | N<br>lbf                                    | N<br>lbf            | K    | a <sup>②</sup>        |                |                | R®                     | В                       | d <sub>b</sub>       | d <sub>a</sub>      | r <sup>①</sup>      | C                       | D <sub>b</sub>      | D <sub>a</sub>            |
| <b>25.000</b> 0.9843 | <b>52.000</b> 2.0472    | 16.250<br>0.6398        | <b>8190</b><br>1840                         | <b>5260</b><br>1180 | 1.56 | -3.6<br>-0.14         | <b>♦</b> 30205 | <b>♦</b> 30205 | 1.0<br>0.04            | <b>15.000</b> 0.5906    | <b>30.5</b> 1.20     | <b>29.0</b> 1.14    | 1.0<br>0.04         | <b>13.000</b> 0.5118    | <b>46.0</b><br>1.81 | <b>48.5</b><br>1.91       |
| <b>25.000</b> 0,9843 | <b>52.000</b> 2.0472    | 19.250<br>0.7579        | <b>9520</b><br>2140                         | <b>9510</b> 2140    | 1.00 | -3.0<br>-0.12         | ♦32205-B       | ♦32205-В       | 1.0<br>0.04            | 18.000<br>0.7087        | <b>34.0</b><br>1.34  | <b>31.0</b> 1.22    | 1.0<br>0.04         | <b>15.000</b><br>0.5906 | <b>43.5</b> 1.71    | <b>49.5</b><br>1.95       |
| <b>25.000</b> 0.9843 | <b>52.000</b> 2.0472    | <b>22.000</b><br>0.8661 | 13200<br>2980                               | <b>7960</b><br>1790 | 1.66 | - <b>7.6</b><br>-0.30 | ♦33205         | <b>♦</b> 33205 | 1.0<br>0.04            | <b>22.000</b><br>0.8661 | <b>34.0</b><br>1.34  | <b>30.5</b><br>1.20 | 1.0<br>0.04         | <b>18.000</b> 0.7087    | <b>44.5</b> 1.75    | <b>49.0</b> 1.93          |
| <b>25.000</b> 0,9843 | <b>62.000</b> 2.4409    | 18.250<br>0.7185        | 13000<br>2930                               | 6680<br>1500        | 1.95 | - <b>5.1</b><br>-0.20 | <b>♦</b> 30305 | ♦30305         | 1.5<br>0.06            | <b>17.000</b> 0.6693    | <b>32.5</b> 1.28     | <b>30.0</b><br>1.18 | 1.5<br>0.06         | 15.000<br>0.5906        | <b>55.0</b> 2.17    | <b>57.0</b> 2.24          |
| <b>25.000</b> 0.9843 | <b>62.000</b> 2.4409    | <b>25.250</b> 0.9941    | <b>17400</b><br>3910                        | <b>8930</b><br>2010 | 1.95 | - <b>9.7</b><br>-0.38 | <b>♦</b> 32305 | <b>♦</b> 32305 | 1.5<br>0.06            | <b>24.000</b><br>0.9449 | <b>35.0</b> 1.38     | <b>31.5</b> 1.24    | 1.5<br>0.06         | <b>20.000</b> 0.7874    | <b>54.0</b> 2.13    | <b>57.0</b> 2.24          |
| <b>25.159</b> 0.9905 | <b>50.005</b><br>1.9687 | 13.495<br>0.5313        | <b>6990</b><br>1570                         | <b>4810</b><br>1080 | 1.45 | -2.8<br>-0.11         | 07096          | 07196          | 1.5<br>0.06            | <b>14.260</b> 0.5614    | <b>31.5</b> 1.24     | <b>29.5</b> 1.16    | 1.0<br>0.04         | <b>9.525</b> 0.3750     | <b>44.5</b> 1.75    | <b>47.0</b> 1.85          |
| <b>25.400</b> 1.0000 | <b>50.005</b><br>1.9687 | 13.495<br>0.5313        | <b>6990</b><br>1570                         | <b>4810</b><br>1080 | 1.45 | -2.8<br>-0.11         | 07100          | 07196          | 1.0<br>0.04            | <b>14.260</b> 0.5614    | <b>30.5</b><br>1.20  | <b>29.5</b> 1.16    | 1.0<br>0.04         | <b>9.525</b> 0.3750     | <b>44.5</b> 1.75    | <b>47.0</b> 1.85          |
| <b>25.400</b> 1.0000 | <b>50.005</b><br>1.9687 | 13.495<br>0.5313        | <b>6990</b><br>1570                         | <b>4810</b><br>1080 | 1.45 | -2.8<br>-0.11         | 07100-S        | 07196          | 1.5<br>0.06            | <b>14.260</b> 0.5614    | <b>31.5</b> 1.24     | <b>29.5</b> 1.16    | 1.0<br>0.04         | <b>9.525</b> 0.3750     | <b>44.5</b> 1.75    | <b>47.0</b> 1.85          |
| <b>25.400</b> 1.0000 | <b>50.292</b><br>1.9800 | 14.224<br>0.5600        | <b>7210</b> 1620                            | <b>4620</b><br>1040 | 1.56 | -3.3<br>-0.13         | L44642         | L44610         | 3.5<br>0.14            | 14.732<br>0.5800        | <b>36.0</b> 1.42     | <b>29.5</b> 1.16    | 1.3<br>0.05         | 10.668<br>0.4200        | <b>44.5</b> 1.75    | <b>47.0</b> 1.85          |
| <b>25.400</b> 1.0000 | <b>50.292</b><br>1.9800 | 14.224<br>0.5600        | <b>7210</b><br>1620                         | <b>4620</b><br>1040 | 1.56 | -3.3<br>-0.13         | L44643         | L44610         | 1.3<br>0.05            | 14.732<br>0.5800        | <b>31.5</b> 1.24     | <b>29.5</b> 1.16    | 1.3<br>0.05         | 10.668<br>0.4200        | <b>44.5</b> 1.75    | <b>47.0</b> 1.85          |
| <b>25.400</b> 1.0000 | <b>51.994</b> 2.0470    | <b>15.011</b> 0.5910    | <b>6990</b><br>1570                         | <b>4810</b><br>1080 | 1.45 | -2.8<br>-0.11         | 07100          | 07204          | 1.0<br>0.04            | 14.260<br>0.5614        | <b>30.5</b><br>1.20  | <b>29.5</b> 1.16    | 1.3<br>0.05         | 12.700<br>0.5000        | <b>45.0</b> 1.77    | <b>48.0</b><br>1.89       |
| <b>25.400</b> 1.0000 | <b>56.896</b> 2.2400    | 19.368<br>0.7625        | 10900<br>2450                               | <b>5740</b><br>1290 | 1.90 | - <b>6.9</b><br>-0.27 | 1780           | 1729           | <b>0.8</b> 0.03        | <b>19.837</b><br>0.7810 | <b>30.5</b><br>1.20  | <b>30.0</b><br>1.18 | 1.3<br>0.05         | 15.875<br>0.6250        | <b>49.0</b> 1.93    | <b>51.0</b> 2.01          |
| <b>25.400</b> 1.0000 | <b>57.150</b> 2.2500    | 19.431<br>0.7650        | 11700<br>2620                               | 10900<br>2450       | 1.07 | -3.0<br>-0.12         | M84548         | M84510         | 1.5<br>0.06            | <b>19.431</b> 0.7650    | <b>36.0</b> 1.42     | <b>33.0</b><br>1.30 | 1.5<br>0.06         | 14.732<br>0.5800        | <b>48.5</b> 1.91    | <b>54.0</b> 2.13          |
| <b>25.400</b> 1.0000 | <b>58.738</b> 2.3125    | 19.050<br>0.7500        | 11600<br>2610                               | <b>6560</b><br>1470 | 1.77 | - <b>5.8</b><br>-0.23 | 1986           | 1932           | 1.3<br>0.05            | <b>19.355</b><br>0.7620 | <b>32.5</b> 1.28     | <b>30.5</b><br>1.20 | 1.3<br>0.05         | 15.080<br>0.5937        | <b>52.0</b> 2.05    | <b>54.0</b> 2.13          |
| <b>25.400</b> 1.0000 | <b>59.530</b> 2.3437    | <b>23.368</b><br>0.9200 | 13900<br>3140                               | 13000<br>2930       | 1.07 | - <b>5.1</b><br>-0.20 | M84249         | M84210         | <b>0.8</b> 0.03        | <b>23.114</b> 0.9100    | <b>36.0</b> 1.42     | <b>32.5</b> 1.27    | 1.5<br>0.06         | <b>18.288</b><br>0.7200 | <b>49.5</b> 1.95    | <b>56.0</b> 2.20          |
| <b>25.400</b> 1.0000 | <b>60.325</b> 2.3750    | 19.842<br>0.7812        | 11000<br>2480                               | <b>6550</b><br>1470 | 1.69 | - <b>5.1</b><br>-0.20 | 15578          | 15523          | 1.3<br>0.05            | 17.462<br>0.6875        | <b>32.5</b> 1.28     | <b>30.5</b> 1.20    | 1.5<br>0.06         | 15.875<br>0.6250        | <b>51.0</b> 2.01    | <b>54.0</b> 2.13          |
| <b>25.400</b> 1.0000 | <b>61.912</b> 2.4375    | 19.050<br>0.7500        | 12100<br>2730                               | <b>7280</b><br>1640 | 1.67 | -5.8<br>-0.23         | 15101          | 15243          | <b>0.8</b> 0.03        | <b>20.638</b><br>0.8125 | <b>32.5</b> 1.28     | <b>31.5</b> 1.24    | 2.0<br>0.08         | 14.288<br>0.5625        | <b>54.0</b> 2.13    | <b>58.0</b> 2.28          |
| <b>25.400</b> 1.0000 | <b>62.000</b> 2.4409    | 19.050<br>0.7500        | 12100<br>2730                               | <b>7280</b><br>1640 | 1.67 | -5.8<br>-0.23         | 15100          | 15245          | 3.5<br>0.14            | <b>20.638</b><br>0.8125 | 38.0<br>1.50         | <b>31.5</b> 1.24    | 1.3<br>0.05         | 14.288<br>0.5625        | <b>55.0</b> 2.17    | <b>58.0</b> 2.28          |
| <b>25.400</b> 1.0000 | <b>62.000</b> 2.4409    | 19.050<br>0.7500        | 12100<br>2730                               | <b>7280</b><br>1640 | 1.67 | - <b>5.8</b><br>-0.23 | 15101          | 15245          | <b>0.8</b> 0.03        | <b>20.638</b><br>0.8125 | <b>32.5</b> 1.28     | <b>31.5</b> 1.24    | 1.3<br>0.05         | 14.288<br>0.5625        | <b>55.0</b> 2.17    | <b>58.0</b> 2.28          |

Figure 11-15 (Continued on next page)

Catalog entry of single-row straight-bore Timken roller bearings, in part. (Courtesy of The Timken Company.)

#### **SINGLE-ROW STRAIGHT BORE**

|                             |                         |                         |                           |                              |             |                              |         |         |                                  | ne                      |                      |                     | сир                           |                      |                  |                           |
|-----------------------------|-------------------------|-------------------------|---------------------------|------------------------------|-------------|------------------------------|---------|---------|----------------------------------|-------------------------|----------------------|---------------------|-------------------------------|----------------------|------------------|---------------------------|
| bore                        | outside<br>diameter     | width                   | 500 r<br>3000 h           | ng at<br>pm for<br>ours L 10 | fac-<br>tor | eff.<br>load<br>center       | part nu | mbers   | max<br>shaft<br>fillet<br>radius | width                   | back<br>shou<br>diam | lder                | max<br>hous-<br>ing<br>fillet | width                | sho              | cking<br>oulder<br>meters |
| d                           | D                       | Т                       | row<br>radial<br>N<br>lbf | thrust<br>N<br>lbf           | K           | a <sup>②</sup>               | cone    | cup     | R®                               | В                       | d <sub>b</sub>       | d <sub>a</sub>      | radius<br>r①                  | C                    | D <sub>b</sub>   | D <sub>a</sub>            |
| <b>25.400</b><br>1.0000     | <b>62.000</b> 2.4409    | <b>19.050</b> 0.7500    | 12100<br>2730             | <b>7280</b><br>1640          | 1.67        | <b>-5.8</b><br><b>-</b> 0.23 | 15102   | 15245   | 1.5<br>0.06                      | <b>20.638</b><br>0.8125 | <b>34.0</b> 1.34     | <b>31.5</b> 1.24    | 1.3<br>0.05                   | 14.288<br>0.5625     | <b>55.0</b> 2.17 | 58.0<br>2.28              |
| <b>25.400</b> 1.0000        | <b>62.000</b> 2.4409    | <b>20.638</b><br>0.8125 | <b>12100</b> 2730         | <b>7280</b><br>1640          | 1.67        | -5.8<br>-0.23                | 15101   | 15244   | <b>0.8</b><br>0.03               | <b>20.638</b><br>0.8125 | <b>32.5</b> 1.28     | <b>31.5</b> 1.24    | 1.3<br>0.05                   | 15.875<br>0.6250     | <b>55.0</b> 2.17 | 58.0<br>2.28              |
| <b>25.400</b> 1.0000        | <b>63.500</b> 2.5000    | <b>20.638</b><br>0.8125 | 12100<br>2730             | <b>7280</b><br>1640          | 1.67        | -5.8<br>-0.23                | 15101   | 15250   | <b>0.8</b> 0.03                  | <b>20.638</b><br>0.8125 | 32.5<br>1.28         | 31.5<br>1.24        | 1.3<br>0.05                   | 15.875<br>0.6250     | <b>56.0</b> 2.20 | <b>59.0</b> 2.32          |
| <b>25.400</b> 1.0000        | <b>63.500</b> 2.5000    | <b>20.638</b><br>0.8125 | 12100<br>2730             | <b>7280</b><br>1640          | 1.67        | -5.8<br>-0.23                | 15101   | 15250X  | <b>0.8</b><br>0.03               | <b>20.638</b><br>0.8125 | <b>32.5</b> 1.28     | <b>31.5</b> 1.24    | 1.5<br>0.06                   | 15.875<br>0.6250     | <b>55.0</b> 2.17 | <b>59.0</b> 2.32          |
| <b>25.400</b> 1.0000        | <b>64.292</b> 2.5312    | <b>21.433</b><br>0.8438 | 14500<br>3250             | 13500<br>3040                | 1.07        | -3.3<br>-0.13                | M86643  | M86610  | 1.5<br>0.06                      | <b>21.433</b><br>0.8438 | <b>38.0</b><br>1.50  | <b>36.5</b> 1.44    | 1.5<br>0.06                   | 16.670<br>0.6563     | <b>54.0</b> 2.13 | 61.0<br>2.40              |
| <b>25.400</b> 1.0000        | <b>65.088</b> 2.5625    | 22.225<br>0.8750        | 13100<br>2950             | <b>16400</b><br>3690         | 0.80        | <b>-2.3</b><br><b>-</b> 0.09 | 23100   | 23256   | 1.5<br>0.06                      | 21.463<br>0.8450        | <b>39.0</b><br>1.54  | <b>34.5</b><br>1.36 | 1.5<br>0.06                   | 15.875<br>0.6250     | <b>53.0</b> 2.09 | <b>63.0</b> 2.48          |
| <b>25.400</b> 1.0000        | <b>66.421</b> 2.6150    | <b>23.812</b> 0.9375    | <b>18400</b><br>4140      | <b>8000</b><br>1800          | 2.30        | <b>-9.4</b><br><b>-</b> 0.37 | 2687    | 2631    | 1.3<br>0.05                      | <b>25.433</b> 1.0013    | <b>33.5</b> 1.32     | <b>31.5</b> 1.24    | 1.3<br>0.05                   | <b>19.050</b> 0.7500 | <b>58.0</b> 2.28 | <b>60.0</b> 2.36          |
| <b>25.400</b> 1.0000        | <b>68.262</b> 2.6875    | 22.225<br>0.8750        | 15300<br>3440             | 10900<br>2450                | 1.40        | -5.1<br>-0.20                | 02473   | 02420   | <b>0.8</b> 0.03                  | 22.225<br>0.8750        | <b>34.5</b> 1.36     | 33.5<br>1.32        | 1.5<br>0.06                   | 17.462<br>0.6875     | <b>59.0</b> 2.32 | <b>63.0</b> 2.48          |
| <b>25.400</b> 1.0000        | <b>72.233</b> 2.8438    | <b>25.400</b> 1.0000    | 18400<br>4140             | <b>17200</b><br>3870         | 1.07        | -4.6<br>-0.18                | HM88630 | HM88610 | <b>0.8</b> 0.03                  | <b>25.400</b> 1.0000    | <b>39.5</b> 1.56     | <b>39.5</b><br>1.56 | <b>2.3</b> 0.09               | <b>19.842</b> 0.7812 | <b>60.0</b> 2.36 | <b>69.0</b> 2.72          |
| <b>25.400</b> 1.0000        | <b>72.626</b> 2.8593    | <b>30.162</b><br>1.1875 | <b>22700</b> 5110         | 13000<br>2910                | 1.76        | -10.2<br>-0.40               | 3189    | 3120    | <b>0.8</b> 0.03                  | <b>29.997</b><br>1.1810 | <b>35.5</b> 1.40     | 35.0<br>1.38        | 3.3<br>0.13                   | <b>23.812</b> 0.9375 | <b>61.0</b> 2.40 | <b>67.0</b> 2.64          |
| <b>26.157</b> 1.0298        | <b>62.000</b> 2.4409    | 19.050<br>0.7500        | 12100<br>2730             | <b>7280</b><br>1640          | 1.67        | -5.8<br>-0.23                | 15103   | 15245   | <b>0.8</b> 0.03                  | <b>20.638</b> 0.8125    | <b>33.0</b><br>1.30  | <b>32.5</b> 1.28    | 1.3<br>0.05                   | 14.288<br>0.5625     | <b>55.0</b> 2.17 | <b>58.0</b> 2.28          |
| <b>26.162</b> 1.0300        | <b>63.100</b> 2.4843    | <b>23.812</b> 0.9375    | 18400<br>4140             | <b>8000</b><br>1800          | 2.30        | <b>-9.4</b><br><b>-</b> 0.37 | 2682    | 2630    | 1.5<br>0.06                      | <b>25.433</b> 1.0013    | <b>34.5</b> 1.36     | <b>32.0</b><br>1.26 | <b>0.8</b> 0.03               | <b>19.050</b> 0.7500 | <b>57.0</b> 2.24 | <b>59.0</b> 2.32          |
| <b>26.162</b> 1.0300        | <b>66.421</b> 2.6150    | <b>23.812</b> 0.9375    | 18400<br>4140             | <b>8000</b><br>1800          | 2.30        | <b>-9.4</b><br><b>-</b> 0.37 | 2682    | 2631    | 1.5<br>0.06                      | <b>25.433</b> 1.0013    | <b>34.5</b> 1.36     | <b>32.0</b><br>1.26 | 1.3<br>0.05                   | <b>19.050</b> 0.7500 | <b>58.0</b> 2.28 | <b>60.0</b> 2.36          |
| <b>26.975</b> 1.0620        | <b>58.738</b> 2.3125    | <b>19.050</b> 0.7500    | 11600<br>2610             | <b>6560</b><br>1470          | 1.77        | -5.8<br>-0.23                | 1987    | 1932    | <b>0.8</b> 0.03                  | <b>19.355</b> 0.7620    | <b>32.5</b> 1.28     | <b>31.5</b> 1.24    | 1.3<br>0.05                   | <b>15.080</b> 0.5937 | <b>52.0</b> 2.05 | <b>54.0</b> 2.13          |
| † <b>26.988</b><br>† 1.0625 | <b>50.292</b><br>1.9800 | 14.224<br>0.5600        | <b>7210</b><br>1620       | <b>4620</b><br>1040          | 1.56        | -3.3<br>-0.13                | L44649  | L44610  | 3.5<br>0.14                      | 14.732<br>0.5800        | <b>37.5</b> 1.48     | <b>31.0</b> 1.22    | 1.3<br>0.05                   | 10.668<br>0.4200     | <b>44.5</b> 1.75 | <b>47.0</b> 1.85          |
| † <b>26.988</b><br>† 1.0625 | <b>60.325</b> 2.3750    | 19.842<br>0.7812        | 11000<br>2480             | <b>6550</b><br>1470          | 1.69        | -5.1<br>-0.20                | 15580   | 15523   | 3.5<br>0.14                      | <b>17.462</b> 0.6875    | <b>38.5</b> 1.52     | <b>32.0</b><br>1.26 | 1.5<br>0.06                   | 15.875<br>0.6250     | <b>51.0</b> 2.01 | <b>54.0</b> 2.13          |
| † <b>26.988</b><br>† 1.0625 | <b>62.000</b> 2.4409    | 19.050<br>0.7500        | 12100<br>2730             | <b>7280</b><br>1640          | 1.67        | -5.8<br>-0.23                | 15106   | 15245   | <b>0.8</b> 0.03                  | <b>20.638</b> 0.8125    | <b>33.5</b> 1.32     | <b>33.0</b><br>1.30 | 1.3<br>0.05                   | 14.288<br>0.5625     | <b>55.0</b> 2.17 | <b>58.0</b> 2.28          |
| † <b>26.988</b><br>† 1.0625 | <b>66.421</b> 2.6150    | <b>23.812</b> 0.9375    | 18400<br>4140             | <b>8000</b><br>1800          | 2.30        | <b>-9.4</b><br><b>-</b> 0.37 | 2688    | 2631    | 1.5<br>0.06                      | <b>25.433</b> 1.0013    | <b>35.0</b> 1.38     | <b>33.0</b><br>1.30 | 1.3<br>0.05                   | <b>19.050</b> 0.7500 | <b>58.0</b> 2.28 | <b>60.0</b> 2.36          |
| <b>28.575</b> 1.1250        | <b>56.896</b> 2.2400    | 19.845<br>0.7813        | 11600<br>2610             | <b>6560</b><br>1470          | 1.77        | -5.8<br>-0.23                | 1985    | 1930    | <b>0.8</b> 0.03                  | <b>19.355</b> 0.7620    | <b>34.0</b><br>1.34  | <b>33.5</b> 1.32    | <b>0.8</b> 0.03               | 15.875<br>0.6250     | <b>51.0</b> 2.01 | <b>54.0</b> 2.11          |
| <b>28.575</b> 1.1250        | <b>57.150</b> 2.2500    | 17.462<br>0.6875        | 11000<br>2480             | <b>6550</b><br>1470          | 1.69        | -5.1<br>-0.20                | 15590   | 15520   | 3.5<br>0.14                      | <b>17.462</b> 0.6875    | <b>39.5</b> 1.56     | <b>33.5</b> 1.32    | 1.5<br>0.06                   | 13.495<br>0.5313     | <b>51.0</b> 2.01 | <b>53.0</b> 2.09          |
| <b>28.575</b> 1.1250        | <b>58.738</b> 2.3125    | 19.050<br>0.7500        | 11600<br>2610             | <b>6560</b><br>1470          | 1.77        | -5.8<br>-0.23                | 1985    | 1932    | <b>0.8</b> 0.03                  | <b>19.355</b> 0.7620    | <b>34.0</b><br>1.34  | <b>33.5</b> 1.32    | 1.3<br>0.05                   | <b>15.080</b> 0.5937 | <b>52.0</b> 2.05 | <b>54.0</b> 2.13          |
| <b>28.575</b> 1.1250        | <b>58.738</b> 2.3125    | 19.050<br>0.7500        | 11600<br>2610             | <b>6560</b><br>1470          | 1.77        | -5.8<br>-0.23                | 1988    | 1932    | 3.5<br>0.14                      | <b>19.355</b> 0.7620    | <b>39.5</b> 1.56     | <b>33.5</b> 1.32    | 1.3<br>0.05                   | <b>15.080</b> 0.5937 | <b>52.0</b> 2.05 | <b>54.0</b> 2.13          |
| <b>28.575</b> 1.1250        | <b>60.325</b> 2.3750    | 19.842<br>0.7812        | 11000<br>2480             | <b>6550</b><br>1470          | 1.69        | -5.1<br>-0.20                | 15590   | 15523   | 3.5<br>0.14                      | <b>17.462</b> 0.6875    | <b>39.5</b> 1.56     | <b>33.5</b> 1.32    | 1.5<br>0.06                   | 15.875<br>0.6250     | <b>51.0</b> 2.01 | <b>54.0</b> 2.13          |
| <b>28.575</b> 1.1250        | <b>60.325</b> 2.3750    | 19.845<br>0.7813        | 11600<br>2610             | <b>6560</b><br>1470          | 1.77        | -5.8<br>-0.23                | 1985    | 1931    | <b>0.5</b> 0.03                  | <b>19.355</b> 0.7620    | <b>34.0</b><br>1.34  | 33.5<br>1.32        | 1.3<br>0.05                   | 15.875<br>0.6250     | <b>52.0</b> 2.05 | <b>55.0</b> 2.17          |

 $<sup>\</sup>ensuremath{\mathfrak{O}}$  These maximum fillet radii will be cleared by the bearing corners.

**Figure 11-15** 

587

(Continued)

<sup>&</sup>lt;sup>20</sup> Minus value indicates center is inside cone backface.

For standard class **ONLY**, the maximum metric size is a whole mm value.

For "J" part tolerances—see metric tolerances, page 73, and fitting practice, page 65.
 ISO cone and cup combinations are designated with a common part number and should be purchased as an assembly. For ISO bearing tolerances—see metric tolerances, page 73, and fitting practice, page 65.