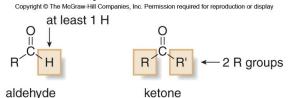
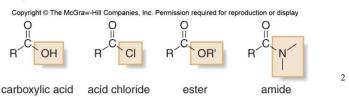
Organic Chemistry, Fourth Edition

Janice Gorzynski Smith University of Hawai'i

Chapter 20 Lecture Outline

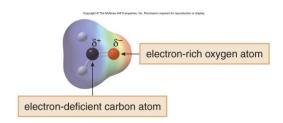

Prepared by Layne A. Morsch The University of Illinois - Springfield

Copyright © 2014 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


Compounds Containing Carbonyl Groups

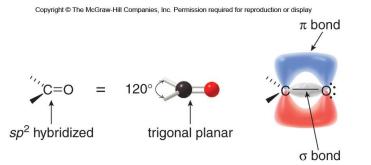
Two broad classes of compounds contain the carbonyl group:

[1] Compounds that have only carbon and hydrogen atoms bonded to the carbonyl.



[2] Compounds that contain an electronegative atom bonded to the carbonyl.

Electrostatic Potential Map of a Carbonyl Group

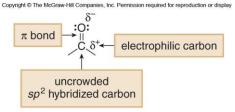

 An electrostatic potential map shows the electron-deficient carbon and the electron rich oxygen atom of the carbonyl group.

3

Carbonyl Group Structure

- The presence or absence of a leaving group on the carbonyl determines the type of reactions the carbonyl compound will undergo.
- Carbonyl carbons are sp² hybridized, trigonal planar, and have bond angles that are ~120°.
- In these ways, the carbonyl group resembles the trigonal planar sp^2 hybridized carbons of a C=C.

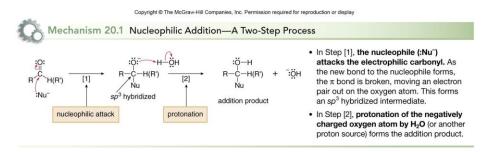
Polarity of Carbonyl Groups


- In one important way, the C=O and C=C are very different.
- The electronegative oxygen atom in the carbonyl group means that the bond is polarized, making the carbonyl carbon electron deficient.
- Using a resonance description, the carbonyl group is represented by two resonance structures.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

5

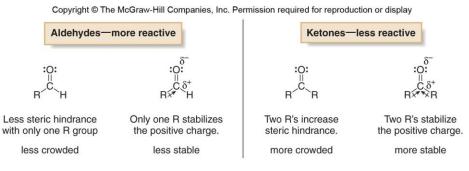
General Reactions of Carbonyl Compounds


· Carbonyl carbons are electrophilic and react with nucleophiles.

Copyright ® The McGraw-Hill Companies, Inc. Permission required for reproduction or display
 Aldehydes and ketones undergo nucleophilic addition.

| Nucleophilic addition | Part | Pa

Nucleophilic Addition


- Aldehydes and ketones react with nucleophiles to form addition products by a two-step process: nucleophilic attack followed by protonation.
- · This mechanism is called nucleophilic addition.

7

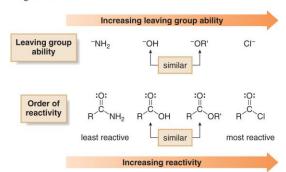
Reactivity to Nucleophilic Addition

- The net result is that the π bond is broken, two new σ bonds are formed, and the elements of H and Nu are added across the π bond.
- Aldehydes are more reactive than ketones towards nucleophilic attack for both steric and electronic reasons.

Nucleophilic Substitution

 Carbonyl compounds with leaving groups react with nucleophiles to form substitution products by a two-step process: nucleophilic attack, followed by loss of the leaving group.

- The net result is that Nu replaces Z, a nucleophilic substitution reaction.
- This reaction is often called nucleophilic acyl substitution.


Ç

Reactivity to Nucleophilic Substitution

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

 The better the leaving group Z, the more reactive RCOZ is in nucleophilic acyl substitution.

Thus, the following trends result:

- Acid chlorides (RCOCI), which have the best leaving group (CI⁻), are the most reactive carboxylic acid derivatives, and amides (RCONH₂), which have the worst leaving group (⁻NH₂), are the least reactive.
- Carboxylic acids (RCOOH) and esters (RCOOR'), which have leaving groups of similar basicity ("OH and "OR"), fall in the middle.

Comparison of Carbonyl Reaction Types

- Nucleophilic addition and nucleophilic acyl substitution involve the same first step—nucleophilic attack on the electrophilic carbonyl carbon to form a tetrahedral intermediate.
- The difference between the two reactions is what then happens to the intermediate.
- Aldehydes and ketones cannot undergo substitution because they do not have a good leaving group bonded to the newly formed sp³ hybridized carbon.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

An aldehyde does not undergo nucleophilic substitution....

Aldehyde

R

H

Nu

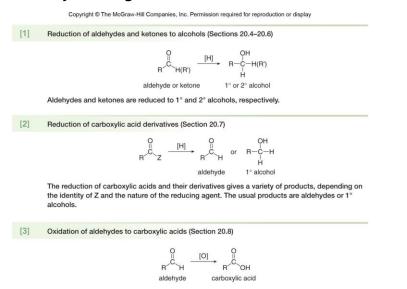
Sp³ hybridized

Nu

H:
...because a very poor leaving group would be formed.

Preview of Oxidation and Reduction

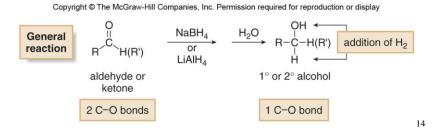
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display


- Oxidation results in an increase in the number of C-Z bonds (usually C-O bonds) or a
 decrease in the number of C-H bonds.
- Reduction results in a decrease in the number of C-Z bonds (usually C-O bonds) or an increase in the number of C-H bonds.
- Carbonyl compounds can be either reactants or products in oxidation-reduction reactions.

 $\begin{array}{c|c} \text{Copyright} \ @ \ \ \text{The McGraw-Hill Companies, Inc. Permission required for reproduction or display} \\ \hline \\ \textbf{OXidation} \\ \hline \\ \textbf{OH} \\ \textbf{R-C-H}(\textbf{R'}) & \hline {[O]} & \hline {O} \\ \textbf{II} & \hline {[O]} & \hline {[O]} & \hline {O} \\ \textbf{II} & \hline {[O]} & \hline {[O]} & \hline {[I]} & \hline {C} \\ \textbf{II} & \hline {[I]} & \hline {[C]} & \hline {$

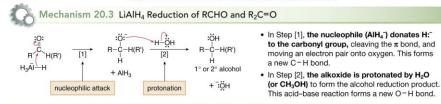
12

Oxidation and Reduction of Carbonyl Compounds


 The three most useful oxidation and reduction reactions of carbonyl starting materials can be summarized as follows:

Reduction of Aldehydes and Ketones

 The most useful reagents for reducing aldehydes and ketones are the metal hydride reagents.


 Treating an aldehyde or ketone with NaBH₄ or LiAlH₄, followed by H₂O or some other proton source affords an alcohol.

Metal Hydride Reduction of Carbonyls

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

opyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

• The net result of adding H: $^-$ (from NaBH $_4$ or LiAlH $_4$) and H $^+$ (from H $_2$ O) is the addition of the elements of H $_2$ to the carbonyl π bond.

15

Catalytic Hydrogenation of Carbonyls

 Catalytic hydrogenation also reduces aldehydes and ketones to 1° and 2° alcohols, respectively, using H₂ and a catalyst.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Ples

OH

CH2

Pd-C

CH3

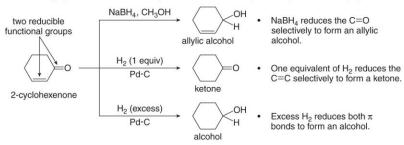
CH3

CH2

CH3

CH2

H


Pd-C

- When a compound contains both a carbonyl group and a carbon-carbon double bond, selective reduction of one functional group can be achieved by proper choice of the reagent.
 - A C=C is reduced faster than a C=O with H₂ (Pd-C).
 - A C=O is readily reduced with NaBH₄ and LiAlH₄, but a C=C is inert.

Comparison of Carbonyl Reductions

 Thus, 2-cyclohexenone, which contains both a C=C and a C=O, can be reduced to three different compounds depending upon the reagent used.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

17

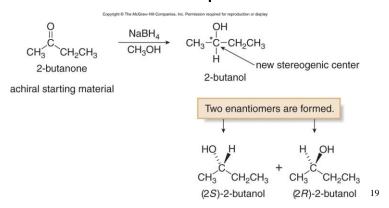
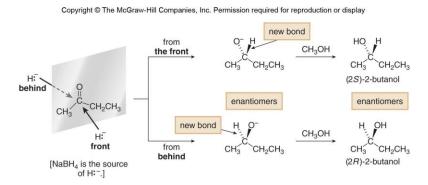

Sodium Borohydride Reductions in Synthesis

Figure 20.2

Copyright © The McGraw-Hill Companies. Inc. Permission required for reproduction or display СООН NaBH₄ CH₃ CH₃OH three steps ibuprofen (anti-inflammatory agent in Motrin and Advil) NaBH₄ CH₃OH muscone . Muscone is the major compound in musk, one of the oldest known ingredients in perfumes. Musk was originally isolated from the male odor of musk (perfume component) musk deer, but it can now be prepared synthetically in the laboratory in a variety of ways.


Stereochemistry of Carbonyl Reduction

- Hydride converts a planar sp² hybridized carbonyl carbon to a tetrahedral sp³ hybridized carbon.
- When an achiral reagent is used, a racemic product is obtained.
- Both enantiomers are formed in equal amounts.

Racemic Products of Carbonyl Reduction

- Why is the product racemic?
 - Since the carbonyl is planar, the hydride can approach the double bond with equal probability from both sides.

 Conclusion: Hydride reduction of an achiral ketone with LiAIH₄ or NaBH₄ gives a racemic mixture of two alcohols when a new stereogenic center is formed.

Enantioselective Carbonyl Reductions

- Selective formation of one enantiomer over another can occur if a chiral reducing agent is used.
- A reduction that forms one enantiomer predominantly or exclusively is an enantioselective or asymmetric reduction.
- An example of chiral reducing agents are the enantiomeric CBS reagents.

Two enantiomers of the chiral CBS reducing agent

Two enantiomers of the chiral CBS reducing agent

Two enantiomers of the chiral CBS reducing agent

A H Ph
Ph
Ph
CH
3

(S)-2-methyl-CBS-oxazaborolidine

(S)-CBS reagent

(R)-CBS reagent

(R)-CBS reagent

CBS Reducing Agents

- CBS refers to <u>Corey</u>, <u>Bakshi</u>, and <u>Shibata</u>, the chemists who developed these versatile reagents.
- One B–H bond serves as the source of hydride in this reduction.
- The (S)-CBS reagent delivers (H:) from the front side of the C=O. This generally affords the R alcohol as the major product.
- The (R)-CBS reagent delivers (H:-) from the back side of the C=O. This generally affords the S alcohol as the major product.

[1] (S)-CBS reagent | HQ | H | new C-H bond | CH₃ | major product | R isomer | CH₃ | major product | CH₃ | CH₃ | major product | CH₃ | major product | S isomer | CH₃ | major product | CH₃

Enantioselectivity of CBS Reagents

- These reagents are highly enantioselective.
- For example, treatment of propiophenone with the (S)-CBS reagent forms the R alcohol in 97% enantiomeric excess (ee).

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

23

Enantioselective Reductions in Synthesis

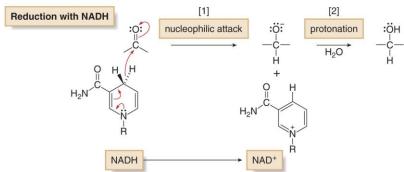
 Enantioselective reductions are key steps in the synthesis of several widely used drugs, including salmeterol, a long-acting bronchodilator.

Figure 20.3

- (R)-Salmeterol is a long-acting bronchodilator used for the treatment of asthma.
- In this example, the (R)-CBS reagent adds the new H atom from behind, the same result observed
 with acetophenone and propiophenone. In this case, however, alcohol A has the R configuration
 using the rules for assigning priority in Chapter 5.

Biological Reductions

- Biological reductions that occur in cells always proceed with complete selectivity, forming a single enantiomer.
- · In cells, the reducing agent is NADH.
- NADH is a coenzyme—an organic molecule that can function only in the presence of the enzyme.


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

25

Mechanism of NADH Reductions

- The active site of the enzyme binds both the carbonyl substrate and NADH, keeping them in close proximity.
- NADH then donates H: in much the same way as a hydride reducing agent.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Enantioselectivity of NADH Reduction

- The reaction is completely enantioselective.
- For example, reduction of pyruvic acid with NADH catalyzed by lactate dehydrogenase affords a single enantiomer with the S configuration.
- NADH reduces a variety of different carbonyl compounds in biological systems.
- The configuration of the product (R or S) depends on the enzyme used to catalyze the process.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

HO H

CH3 COOH

(H+ source)

pyruvic acid

lactate
dehydrogenase

(S)-lactic acid
only product

[* denotes a new stereogenic center]

NAD+—Biological Oxidizing Agent

- NAD+, the oxidized form of NADH, is a biological oxidizing agent capable of oxidizing alcohols to carbonyl compounds (it forms NADH in the process).
- NAD+ is synthesized from the vitamin niacin.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

HO
$$\stackrel{O}{\parallel}$$

niacin

vitamin B_3
 H_2N
 $\stackrel{O}{\parallel}$
 R
 R

NAD+

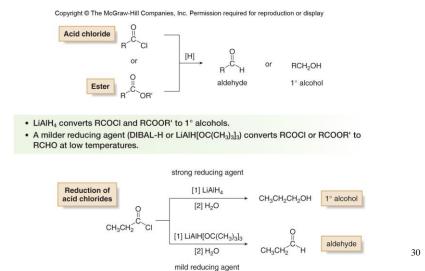
Other Metal Hydride Reducing Agents

- LiAlH₄ is a strong reducing agent that reacts with all carboxylic acid derivatives.
- Diisobutylaluminum hydride [(CH₃)₂CHCH₂]₂AIH, abbreviated DIBAL-H, has two bulky isobutyl groups which makes this reagent less reactive than LiAIH₄.
- Lithium tri-tert-butoxyaluminum hydride, LiAIH[OC(CH₃)₃]₃, has three electronegative O atoms bonded to aluminum, which makes this reagent less nucleophilic than LiAIH₄.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

OC(CH₃)₃

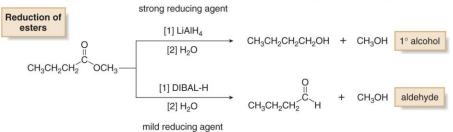
Al-H = [(CH₃)₂CHCH₂]₂AlH

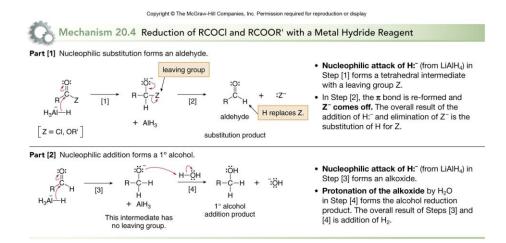

diisobutylaluminum hydride

DIBAL-H | Li⁺ H-Al-OC(CH₃)₃ = LiAIH[OC(CH₃)₃]₃

29

Reduction of Acid Halides and Esters

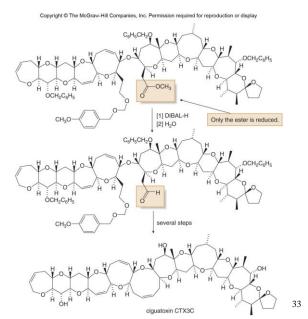

 Acid chlorides and esters can be reduced to either aldehydes or 1° alcohols depending on the reagent.



Reduction of Esters

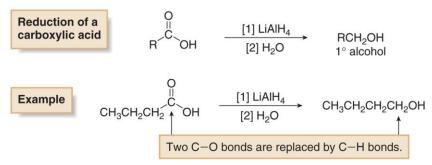
- In the reduction of an acid chloride, Cl⁻ comes off as the leaving group.
- In the reduction of the ester, CH₃O⁻ comes off as the leaving group, which is then protonated by H₂O to form CH₃OH.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

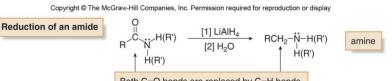

DIBAL-H Reduction of an Ester

The DIBAL-H reduction of an ester to an aldehyde in the synthesis of the marine neurotoxin ciguatoxin CTX3C

Thousands of people contract ciguatera seafood poisoning each year from ingesting tropical reef fish containing ciguatoxin. Even very low concentrations of ciguatoxin CTX3C cause gastrointestinal and neurological problems, leading to paralysis and sometimes death.



LiAIH₄ Reductions


- Carboxylic acids are reduced to 1° alcohols with LiAlH₄.
- LiAlH₄ is too strong of a reducing agent to stop the reaction at the aldehyde stage, but milder reagents are not strong enough to initiate the reaction in the first place.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

LiAIH₄ Reduction of Amides

 Unlike the LiAlH₄ reduction of all other carboxylic acid derivatives, which affords 1° alcohols, the LiAlH₄ reduction of amides forms amines.

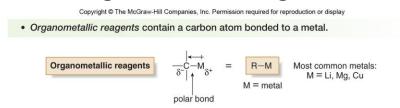
 Since ¬NH₂ is a very poor leaving group, it is never lost during the reduction, and therefore an amine is formed.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

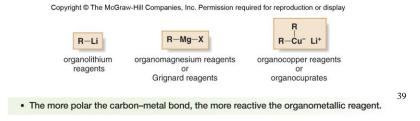
Examples

CH₃CH₂C NH₂ [1] LiAlH₄ CH₃CH₂CH₂ NH₂ | CH₃CH₂CH₂ NH₂ | CH₂NHCH₃ | (2) H₂O CH₂NHCH₃ | (2) H₂O CH₂NHCH₃ | (2) H₂O CH₂NHCH₃ | (35)

the **amine.** The overall result of Steps [5] and [6] is addition of H₂ to the intermediate imine.

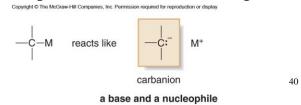

Table 20.1 A Summary of Metal Hydride Reducing Agents				
	Reagent	Starting material	\rightarrow	Product
Strong reagent	LiAIH ₄	RCHO	\rightarrow	RCH₂OH
		R ₂ CO	\rightarrow	R ₂ CHOH
		RCOOH	\rightarrow	RCH₂OH
		RCOOR'	\rightarrow	RCH₂OH
		RCOCI	\rightarrow	RCH₂OH
		RCONH ₂	\rightarrow	RCH ₂ NH ₂
Milder reagents	NaBH ₄	RCHO	\rightarrow	RCH₂OH
		R ₂ CO	\rightarrow	R ₂ CHOH
	LiAIH[OC(CH ₃) ₃] ₃	RCOCI	\rightarrow	RCHO
	DIBAL-H	RCOOR'	\rightarrow	RCHO

37

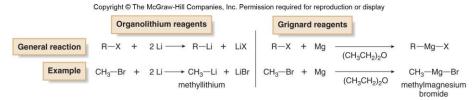

Oxidation of Aldehydes

- A variety of oxidizing agents can be used, including CrO₃, Na₂Cr₂O₇, K₂Cr₂O₇, and KMnO₄.
- Aldehydes can also be oxidized selectively in the presence of other functional groups using silver(I) oxide in aqueous ammonium hydroxide (Tollen's reagent).
- Since ketones have no H on the carbonyl carbon, they do not undergo this oxidation reaction.

Organometallic Reagents



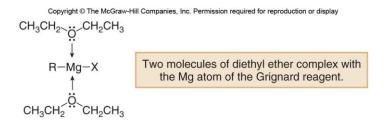
- Li, Mg, and Cu are the most common organometallic metals.
- Other metals found in organometallic reagents are Sn, Si, Tl, Al, Ti, and Hg.
- General structures of common organometallic reagents are shown.


Reactivity of Common Organometallic Compounds

- Since both Li and Mg are very electropositive metals, organolithium (RLi) and organomagnesium (RMgX) reagents contain very polar carbon-metal bonds and are therefore very reactive reagents.
- Organomagnesium reagents are called Grignard reagents.
- Organocopper reagents (R₂CuLi), also called organocuprates, have a less polar carbon-metal bond and are therefore less reactive.
- Although they contain two R groups bonded to Cu, only one R group is utilized in the reaction.
- In organometallic reagents, carbon bears a δ charge.

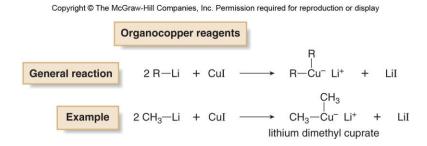
Preparation of Organolithium Compounds

 Organolithium and Grignard reagents are typically prepared by reaction of an alkyl halide with the corresponding metal.



- With lithium, the halogen and metal exchange to form the organolithium reagent.
- With Mg, the metal inserts in the carbon-halogen bond, forming the Grignard reagent.

41


Solvent Stabilization of Grignard Reagents

- Grignard reagents are usually prepared in diethyl ether (CH₃CH₂OCH₂CH₃) as solvent.
- It is thought that two ether O atoms complex with the Mg atom, stabilizing the reagent by Lewis Base-Lewis Acid interactions.

Preparation of Organocuprate Compounds

 Organocuprates are prepared from organolithium reagents by reaction with a Cu⁺ salt, often Cul.

43

Preparation of Acetylide Ions

- Acetylide ions are another example of "organometallic reagents".
- Acetylide ions can be thought of as "organosodium reagents".
- Since sodium is even more electropositive than lithium, the C-Na bond of these organosodium compounds is best described as ionic, rather than polar covalent.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display an ionic carbon—sodium bond $R-C \equiv \stackrel{\longleftarrow}{C-H} + Na^+ - NH_2 \qquad \longleftarrow \qquad R-C \equiv \stackrel{\longleftarrow}{C:} Na^+ + NH_3$ acetylide anion an organosodium compound

Preparation of Lithium Acetylides

- An acid-base reaction can also be used to prepare sp hybridized organolithium compounds.
- Treatment of a terminal alkyne with CH₃Li affords a lithium acetylide.
- The equilibrium favors the products because the sp hybridized C-H bond of the terminal alkyne is more acidic than the sp^3 hybridized conjugate acid, CH_4 , that is formed.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display
$$R-C \equiv C - H + CH_3 - Li \qquad \qquad R-C \equiv C - Li + CH_3 - H$$

$$p \mathcal{K}_a \approx 25 \qquad \text{base} \qquad \text{a lithium acetylide} \qquad p \mathcal{K}_a = 50$$

$$\text{stronger acid} \qquad \qquad \text{weaker acid}$$

45

Acid–Base Reactions of Organometallics

 Organometallic reagents are strong bases that readily abstract a proton from water to form hydrocarbons.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display
$$\begin{array}{cccc} CH_3-Li & + & H- \ddot{\bigcirc}H & \longrightarrow & CH_3-H & + & Li^+ \ \vdots \ddot{\bigcirc}H \\ \\ base & acid \\ pK_a = 15.7 & pK_a = 50 \\ \\ & stronger\ acid & a\ very\ weak\ acid \end{array}$$

 Similar reactions occur with the O-H proton of alcohols and carboxylic acids, and the N-H protons of amines.

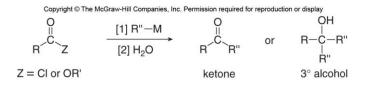
Uploaded By: Mariam Qadah

Uses of Organometallic Compounds

 Since organolithium and Grignard reagents are themselves prepared from alkyl halides, a two-step method converts an alkyl halide into an alkane (or other hydrocarbon).

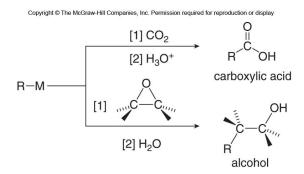
copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display $R = X \qquad \qquad M \qquad R = M \qquad \qquad H_2O \qquad R = H$ alkyl halide alkane

- Organometallic reagents are also strong nucleophiles that react with electrophilic carbon atoms to form new carbon carbon bonds.
- These reactions are very valuable in forming the carbon skeletons of complex organic molecules.


47

Functional Group Transformations Involving Organometallic Compounds

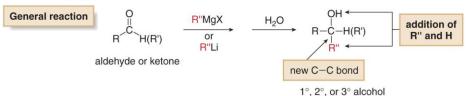
[1] Reaction of R-M with aldehydes and ketones to afford alcohols


$$\begin{array}{c} \text{Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display} \\ OH \\ \hline \\ R \\ \hline \\ C \\ H(R') \\ \hline \\ [2] \ H_2O \\ \end{array} \begin{array}{c} OH \\ R \\ \hline \\ R \\ \hline \\ C \\ H(R') \\ \end{array}$$
 aldehyde or ketone
$$\begin{array}{c} OH \\ R \\ \hline \\ R'' \\ \end{array}$$

[2] Reaction of R-M with carboxylic acid derivatives

Functional Group Transformations Involving Organometallic Compounds

[3] Reaction of R-M with other electrophilic functional groups



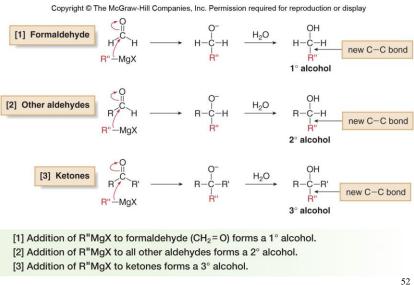
49

Addition of Organometallics to Aldehydes and Ketones

- Treatment of an aldehyde or ketone with either an organolithium or Grignard reagent followed by water forms an alcohol with a new carbon—carbon bond.
- This reaction is an addition because the elements of R" and H are added across the π bond.

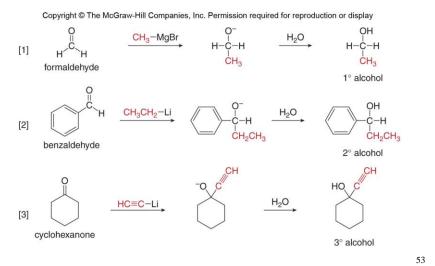
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Nucleophilic Addition of Grignard Reagents


Mechanism 20.6 Nucleophilic Addition of R''MgX to RCHO and R₂C=O

| Column | Colum

- This reaction follows the general mechanism for nucleophilic addition—that is, nucleophilic attack by a carbanion followed by protonation.
- Mechanism 20.6 is shown using R"MgX, but the same steps occur with RLi reagents and acetylide anions.


51

Mechanism of Organometallic Addition

Alcohols Formed by Organometallic Addition

• This reaction is used to prepare 1°, 2°, and 3° alcohols.

Synthesis of Ethynylestradiol

Figure 20.5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Nucleophilic addition occurs here.

OH

C≡C−H

one step

HO

ethynylestradiol

Synthesis of C₁₈ Juvenile Hormone

 C₁₈ juvenile hormone helps to regulate the complex life cycle of insects.

Figure 20.6

 $\begin{array}{c} \text{Copyright} \, \textcircled{Copoch}_3 \\ \text{CH}_3 - \text{MgCl} \\ \\ \text{C}_{18} \, \text{juvenile hormone} \\ \end{array} \begin{array}{c} \text{COOCH}_3 \\ \text{C}_{18} \, \text{juvenile hormone} \\ \end{array} \begin{array}{c} \text{COOCH}_3 \\ \text{C}_{18} \, \text{juvenile hormone} \\ \end{array} \begin{array}{c} \text{COOCH}_3 \\ \text{COOC$

- Addition of CH₃MgCl to ketone A gives an alkoxide, B, which is protonated with H₂O to form 3° alcohol C. Although the ester group (-COOCH₃) can also react with the Grignard reagent (Section 20.13), it is less reactive than the ketone carbonyl. Thus, with control of reaction conditions, nucleophilic addition occurs selectively at the ketone.
- Treatment of halohydrin C with K₂CO₃ forms the C₁₈ juvenile hormone in one step. Conversion of a
 halohydrin to an epoxide was discussed in Section 9.6.

55

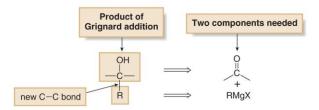
Juvenile Hormone Mimics

- Juvenile hormones maintain the juvenile stage of an insect until it is ready for adulthood.
- Juvenile hormone mimics have been used to effectively control insect populations.
- Application of these synthetic hormones to egg or larva prevents maturation.
- Methoprene is used in cattle salt blocks to control hornflies and on dogs and cats to control fleas.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

CH30

methoprene
juvenile hormone mimic


Retrosynthetic Analysis of Grignard Products

 To determine what carbonyl and Grignard components are needed to prepare a given compound, follow these two steps:

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Step [1] Find the carbon bonded to the OH group in the product.

Step [2] Break the molecule into two components: One alkyl group bonded to the carbon with the OH group comes from the organometallic reagent. The rest of the molecule comes from the carbonyl component.

57

Retrosynthetic Analysis of 3-pentanol

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

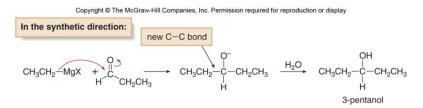
Retrosynthetic analysis for preparing 3-pentanol

Form this new bond by Grignard addition.

$$CH_3CH_2-C-CH_2CH_3\\H$$
3-pentanol

$$CH_3CH_2-C-CH_2CH_3\\H$$

$$CH_3CH_2-C-CH_2CH_3\\H$$

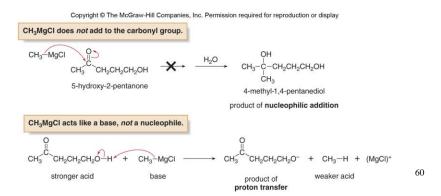

$$CH_3CH_2MgBr$$

$$two-carbon$$

$$Grignard reagent$$

Synthesis of 3-pentanol

 Writing the reaction in the synthetic direction—that is, from starting material to product—shows whether the synthesis is feasible and the analysis is correct.



Note that there is often more than one way to synthesize a 2° alcohol by Grignard addition.

59

Limitations of Organometallic Reagents

- Addition of organometallic reagents cannot be used with molecules that contain both a carbonyl group and N-H or O-H bonds.
- Carbonyl compounds that also contain N-H or O-H bonds undergo an acid-base reaction with organometallic reagents, not nucleophilic addition.

Use of Protecting Groups

Solving this problem requires a three-step strategy:

- [1] Convert the OH group into another functional group that does not interfere with the desired reaction.
 - This new blocking group is called a protecting group, and the reaction that creates it is called "protection".
- [2] Carry out the desired reaction.
- [3] Remove the protecting group.
 - This reaction is called "deprotection".
- A common OH protecting group is a silyl ether.

General Protecting Group Strategy

Figure 20.7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display no acidic OH proton Step [1] Protection

CH₃ CH₂CH₂CH₂OH

5-hydroxy-2-pentanone

Step [2] Carry out the reaction

OH

CH₃ C-CH₂CH₂CH₂OH

OH

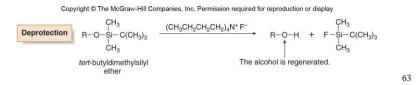
CH₃ C-CH₂CH₂CH₂OH

CH₃ C-CH₂CH₂CH

CH₃ C-CH₂CH₂CH

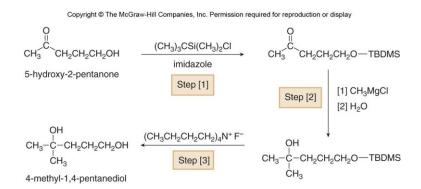
CH₃ C-CH₂CH

CH₃ C-CH


- In Step [1], the OH proton in 5-hydroxypentanone is replaced with a protecting group, written as PG.
- Because the product no longer has an OH proton, it can now undergo nucleophilic addition.
- In Step [2], CH₃MgCl adds to the carbonyl group to yield a 3° alcohol after protonation with water.
- · Removal of the protecting group in Step [3] forms the desired product.

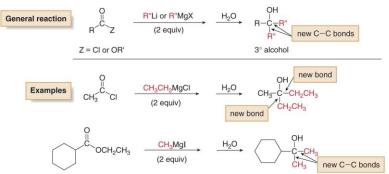
Preparing Silyl Ethers

 tert-butyldimethylsilyl ethers are prepared from alcohols by reaction with tert-butyldimethylsilyl chloride and an amine base, usually imidazole.



 The silyl ether is typically removed with a fluoride salt such as tetrabutylammonium fluoride (CH₃CH₂CH₂CH₂)₄N⁺F⁻.

Preparing Silyl Ethers


 The use of tert-butyldimethylsilyl ether as a protecting group makes possible the synthesis of 4-methyl-1,4-pentanediol by a three-step sequence.

Organometallic Reactions with Esters and Acid Chlorides

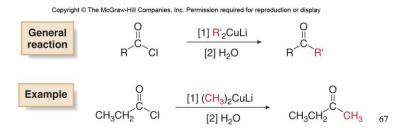
 Both esters and acid chlorides form 3° alcohols when treated with two equivalents of either Grignard or organolithium reagents.

65

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

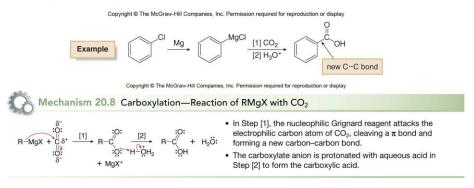
Mechanism 20.7 Reaction of R"MgX or R"Li with RCOCI and RCOOR'

Part [1] Nucleophilic substitution forms a ketone.

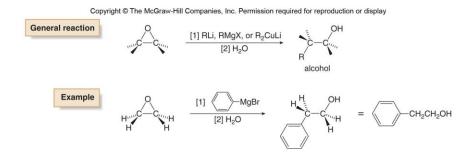

- Nucleophilic attack of (R")⁻ (from R"MgX) in Step [1] forms a tetrahedral intermediate with a leaving group Z.
- In Step [2], the π bond is re-formed and Z⁻ comes off. The overall result of the addition of (R")⁻ and elimination of Z⁻ is the substitution of R⁺ for Z.
- Because the product of Part [1] is a ketone, it can react with a second equivalent of R*MgX to form an alcohol by nucleophilic addition in Part [2].

Part [2] Nucleophilic addition forms a 3° alcohol.

- Nucleophilic attack of (R")⁻ (from R"MgX) in Step [3] forms an alkoxide.
- Protonation of the alkoxide by H₂O in Step [4] forms a 3° alcohol.


Organocuprates—a Less Reactive Organometallic

- To form a ketone from a carboxylic acid derivative, a less reactive organometallic reagent—namely an organocuprate is needed.
- Acid chlorides, which have the best leaving group (Cl⁻) of the carboxylic acid derivatives, react with R₂CuLi to give a ketone as the product.
- Esters, which contain a poorer leaving group (-OR), do not react with R'2CuLi.


Grignard Reaction with CO₂

- Grignards react with CO₂ to give carboxylic acids after protonation with aqueous acid.
- · This reaction is called carboxylation.
- The carboxylic acid formed has one more carbon atom than the Grignard reagent from which it was prepared.

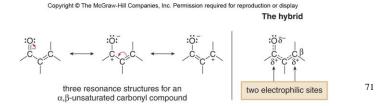
Organometallic Reactions with Epoxides

• Like other strong nucleophiles, organometallic reagents— RLi, RMgX, and R₂CuLi—open epoxide rings to form alcohols.

69

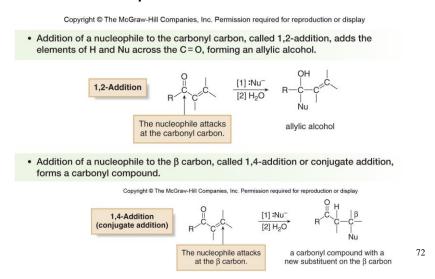
Organometallic Reactions with Epoxides

- The reaction follows the same two-step process as opening of epoxide rings with other negatively charged nucleophiles that is, nucleophilic attack from the back side of the epoxide, followed by protonation of the resulting alkoxide.
- In unsymmetrical epoxides, nucleophilic attack occurs at the less-substituted carbon atom.


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Organometallic Reactions with α,β -Unsaturated Carbonyl Compounds

 α,β-Unsaturated carbonyl compounds are conjugated molecules containing a carbonyl group and a C=C separated by a single σ bond.


α,β-unsaturated carbonyl compound

• Resonance shows that the carbonyl carbon and the β carbon bear a partial positive charge.

α,β-Unsaturated Carbonyl Compounds

• This means that α,β -unsaturated carbonyl compounds can react with nucleophiles at two different sites.

1,2-Addition Mechanism

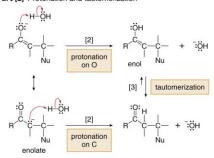
 The steps for the mechanism of 1,2-addition are exactly the same as those for the nucleophilic addition of an aldehyde or a ketone—that is, nucleophilic attack, followed by protonation.

Mechanism 20.9 1,2-Addition to an α,β-Unsaturated Carbonyl Compound

73

O

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display


Mechanism 20.10 1,4-Addition to an α,β -Unsaturated Carbonyl Compound

Part [1] Nucleophilic attack at the β carbon

a resonance-stabilized enolate anion

 In Part [1], nucleophilic attack at the β carbon forms a resonance-stabilized anion called an enolate. Either resonance structure can be used to continue the mechanism in Part [2].

Part [2] Protonation and tautomerization

- Protonation on the carbon end of the enolate forms the 1,4-addition product directly.
- Protonation of the oxygen end of the enolate forms an **enol**. Recall from Section 11.9 that enols are unstable and tautomerize (by a two-step process) to carbonyl compounds. Tautomerization forms the same 1,4-addition product that results from protonation on carbon.

1,2 vs. 1,4-Addition Products

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

· Organolithium and Grignard reagents form 1,2-addition products.

Organocuprate reagents form 1,4-addition products.

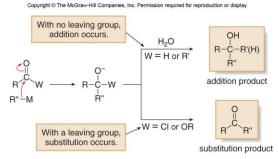
1,4-Addition—
General reaction

R

C

$$(2) H_2O$$
 $(3) H_2CULi$
 $(2) H_2O$
 $(3) H_2CULi$
 $(4) H_2CULi$
 $(5) H_2CULi$
 $(5) H_2CULi$
 $(6) H_2CULi$
 $(7) H_2CULi$
 $(7$

Summary of Organometallic Reactions


[1] Organometallic reagents (R-M) attack electrophilic atoms, especially the carbonyl carbon.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

76

Summary of Organometallic Reactions

[2] After an organometallic reagent adds to the carbonyl group, the fate of the intermediate depends on the presence or absence of a leaving group.



- [3] The polarity of the R-M bond determines the reactivity of the reagents:
 - RLi and RMgX are very reactive reagents.
 - R₂CuLi is much less reactive.

77

Synthesis

- Oxidation and reduction reactions are extremely useful in organic synthesis.
- Conversion of a functional group to a good leaving group also allows for other reactions.

Synthesis Practice

 Synthesize 1-methylcyclohexene from cyclohexanol and any organic alcohol.

CH₃
$$\longrightarrow$$
 1-methylcyclohexene cyclohexanone

- Begin with Retrosynthetic Analysis:
 - · Form double bond from alcohol dehydration.
 - Make the 3° alcohol by Grignard addition.
 - · Prepare the Grignard from methanol.

Synthesis Practice

· Four steps are required to accomplish the synthesis.

- Convert methanol to the Grignard reagent by forming the alkyl halide, followed by reaction with Mg.
- Add the Grignard reagent to cyclohexanone, followed by protonation, to form the alcohol.
- Acid-catalyzed elimination of water forms the desired product as the major product.