
Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 10

Structure

Loading…

Chapter Objectives:

1. Declare a struct data type which consists of several data fields, each with its own name
and data type.

2. Use a struct to store data for a structured object or record.

3. Use dot notation to process individual fields of a structured object

4. Use structs as function parameters and to return function results

5. Understand the relationship between parallel arrays and arrays of structured objects.

And More…

➢ Unlike an array, a structure can have individual components that contain data
of different types.

➢ A single variable of a composite type designed for a textbook can store a book’s

author, title, publisher and year

➢ Each of these data items is stored in a separate component of the structure
and can be referenced by using the component name.

STRUCTU
RE

textbook => structure

author, title, publisher, year => components

Loading…

● Structure Type Definition:
● Before a structured data object can be created or saved, the format of its components

must be defined. (1)

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct { (2)

 char author[100];

 char title[100];

 char publisher[50];

 int year;

} textbook_t;

textbook_t book;

● EXAMPLE 10.1

● A single variable of a composite type designed for planets can store a planet’s
1. name
2. diameter
3. number of moons
4. the number of years to complete one solar orbit
5. the number of hours to make one rotation on its axis.

10.1 USER-DEFINED STRUCTURE TYPES

➢ This type definition is a template that describes the format of a planet structure and the name and
type of each component.

➢ A name chosen for a component of one structure may be the same as the name of a component

of another structure or the same as the name of a variable. (1)

➢ The typedef statement itself allocates no memory. A variable declaration is required to allocate
storage space for a structured data object.

 (2)

10.1 USER-DEFINED STRUCTURE TYPES

➢ The structured variables current_planet , previous_planet , and blank_planet all have the
format specified in the definition of type planet_t.

➢ Thus, the memory allocated for each consists of storage space for five distinct values.

 (1)

10.1 USER-DEFINED STRUCTURE TYPES

➢ A user-defined type like textbook_t can be used to declare both simple and array variables and
to declare components in other structure types.

➢ A structure containing components that are data structures (arrays or structs) is sometimes called

a hierarchical structure .

➢ The following definition of a structure type includes a component that is an array of textbooks.

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct {

 char author[100];

 int year;

 textbook_t books[10];

} all_textbooks_t;

➢ We can reference a component of a structure by using the direct component selection operator
, which is a period.

➢ The period is preceded by the name of a structure type variable and is followed by the name of

a component.

● Once data are stored in a record, they can be manipulated in the same way as other data in
memory.

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s was published in %d.\n",

book.title, book.year);
MyBook was published in 2000

strcpy(book.name, “MyBook”);

book.year = 2000;

Loading…

● EXAMPLE 10.2

Figure 10.1

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s's diameter is %.1f km.\n",

current_planet.name, current_planet.diameter);

Jupiter's diameter is 142800.0 km.

➢ See Table 10.1 p.572

● Manipulating Whole Structures
➢ The name of a structure type variable used with no component selection operator refers to the

entire structure.
➢ A new copy of a structure’s value can be made by simply assigning one structure to another as in

the following statement:

● Program Style: (1)
➢ To help reduce confusion, in this chapter we choose user-defined type names that use lowercase

letters and end in the suffix_t (2)

REVIEW OF OPERATOR PRECEDENCE

previous_planet = current_planet;

➢ When a structured variable is passed as an input argument to a function, all of its component
values are copied into the components of the function’s corresponding formal parameter.

➢ EXAMPLE 10.3, Figure 10.2 (1)

➢ To display the value of our structure current_planet , we would use the call statement:

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

print_planet(current_planet);

➢ Another function that would help us think of a planet as a data object is a function that would
perform an equality comparison of two planets.

➢ Although C permits copying of a structure using the assignment operator, the equality and

inequality operators CANNOT BE applied to a structured type as a unit.

➢ Figure 10.3 (1)

● Structures as output arguments:

➢ When such a variable is used as an output argument, the addressof operator must be applied in
the same way that we would pass output arguments of the standard types char , int , and double.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ Figure 10.4 (1)
➢ In order to use scanf to store a value in one component of the structure whose address is in plnp

, we must carry out the following steps (in order):

1. Follow the pointer in plnp to the structure.
2. Select the component of interest.
3. Unless this component is an array (e.g., component name in Fig. 10.4), get its address to pass

to scanf .

➢ When we check our precedence chart (see Table 10.1), we find that this reference
&*plnp.diameter would attempt step 2 before step 1.

➢ For this reason, the function in Fig. 10.4 overrides the default operator precedence by

parenthesizing the application of the indirect referencing (pointer-following) operator, the unary
*.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

Figure 10.5

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

status = scan_planet(¤t_planet);

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ indirect component selection operator (->) (1)

➢ If we rewrite the scan_planet function of Fig. 10.4 using the -> operator, the assignment to
result will be

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

(*structp).component structp->component=

result = scanf("%s%lf%d%lf%lf", plnp->name,

&plnp->diameter,

&plnp->moons,

&plnp->orbit_time,

&plnp->rotation_time);

➢ A function that computes a structured result can be modeled on a function computing a simple
result.

➢ A local variable of the structure type can be allocated, filled with the desired data, and returned

as the function result.

➢ The function does not return the address of the structure as it would with an array result; rather it
returns the values of all components.

➢ EXAMPLE 10.4, Fig. 10.6

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

current_planet = get_planet(); status = scan_planet(¤t_planet);
(1)

● EXAMPLE 10.5, Fig. 10.7 (1)
➢ Assuming a 24-hour clock, the structure type time_t is defined as follows:

➢ If time_now were 21:58:32 and secs had the value 97, the result returned by the call
new_time(time_now, secs) would be 22:00:09 (2)

➢ If the intent is to update time_now , an assignment statement is used:

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

typedef struct {

 int hour, minute, second;

} time_t;

time_now = new_time(time_now, secs);

Figure 10.8

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

● Parallel Arrays: (1)

➢ Arrays id and gpa are called parallel arrays because the data items with the same
subscript (for example, i) pertain to the same student (the ith student).

➢ Similarly, the ith elements of arrays x and y are the coordinates of one point.

➢ A better way to organize data collections like these is shown next.

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

● Declaring an Array of Structures:

➢ A more natural and convenient
organization of student data or polygon
points is to group the information
pertaining to one student or to one point in
a structure whose type we define. (1)

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

➢ The data for the first student are
stored in the structure stulist[0] .

➢ The individual data items are

stulist[0].id and stulist[0].gpa .
➢ stulist[0].gpa is 2.71 .

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

Figure 10.11

for (i = 0; i < MAX_STU; ++i) (1)

scan_student(&stulist[i]);

for (i = 0; i < MAX_STU; ++i) (2)

printf("%d\n", stulist[i].id);

CASE STUDY (Homework)
P. 594 – 602

Universal Measurement Conversion

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ When using the direct selection operator (.), always be aware of the type of the
component selected, and use the value in a manner consistent with its type. (1)

➢ For example, if the component selected is an array, passing it to a function as an

output argument does not require application of the address-of operator.

➢ If a structure type output parameter is used in a function, one can avoid the operator
precedence problems associated with combining the indirection (*) and direct
component selection (.) operators by using the indirect component selection operator
(->).

10.7 COMMON PROGRAMMING ERRORS

➢ C allows the use of structure type values in assignment statements as function
arguments and as function results, so one can easily forget that expressions of these
types cannot be operands of equality comparators or arguments of printf and scanf .

➢ You can select simple components from a structure to use in these contexts, or you

can write your own type-specific equality and I/O functions.

10.7 COMMON PROGRAMMING ERRORS

Loading…

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 10

Structure

Loading…

Chapter Objectives:

1. Declare a struct data type which consists of several data fields, each with its own name
and data type.

2. Use a struct to store data for a structured object or record.

3. Use dot notation to process individual fields of a structured object

4. Use structs as function parameters and to return function results

5. Understand the relationship between parallel arrays and arrays of structured objects.

And More…

➢ Unlike an array, a structure can have individual components that contain data
of different types.

➢ A single variable of a composite type designed for a textbook can store a book’s

author, title, publisher and year

➢ Each of these data items is stored in a separate component of the structure
and can be referenced by using the component name.

STRUCTU
RE

textbook => structure

author, title, publisher, year => components

Loading…

● Structure Type Definition:
● Before a structured data object can be created or saved, the format of its components

must be defined. (1)

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct { (2)

 char author[100];

 char title[100];

 char publisher[50];

 int year;

} textbook_t;

textbook_t book;

● EXAMPLE 10.1

● A single variable of a composite type designed for planets can store a planet’s
1. name
2. diameter
3. number of moons
4. the number of years to complete one solar orbit
5. the number of hours to make one rotation on its axis.

10.1 USER-DEFINED STRUCTURE TYPES

➢ This type definition is a template that describes the format of a planet structure and the name and
type of each component.

➢ A name chosen for a component of one structure may be the same as the name of a component

of another structure or the same as the name of a variable. (1)

➢ The typedef statement itself allocates no memory. A variable declaration is required to allocate
storage space for a structured data object.

 (2)

10.1 USER-DEFINED STRUCTURE TYPES

➢ The structured variables current_planet , previous_planet , and blank_planet all have the
format specified in the definition of type planet_t.

➢ Thus, the memory allocated for each consists of storage space for five distinct values.

 (1)

10.1 USER-DEFINED STRUCTURE TYPES

➢ A user-defined type like textbook_t can be used to declare both simple and array variables and
to declare components in other structure types.

➢ A structure containing components that are data structures (arrays or structs) is sometimes called

a hierarchical structure .

➢ The following definition of a structure type includes a component that is an array of textbooks.

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct {

 char author[100];

 int year;

 textbook_t books[10];

} all_textbooks_t;

➢ We can reference a component of a structure by using the direct component selection operator
, which is a period.

➢ The period is preceded by the name of a structure type variable and is followed by the name of

a component.

● Once data are stored in a record, they can be manipulated in the same way as other data in
memory.

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s was published in %d.\n",

book.title, book.year);
MyBook was published in 2000

strcpy(book.name, “MyBook”);

book.year = 2000;

Loading…

● EXAMPLE 10.2

Figure 10.1

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s's diameter is %.1f km.\n",

current_planet.name, current_planet.diameter);

Jupiter's diameter is 142800.0 km.

➢ See Table 10.1 p.572

● Manipulating Whole Structures
➢ The name of a structure type variable used with no component selection operator refers to the

entire structure.
➢ A new copy of a structure’s value can be made by simply assigning one structure to another as in

the following statement:

● Program Style: (1)
➢ To help reduce confusion, in this chapter we choose user-defined type names that use lowercase

letters and end in the suffix_t (2)

REVIEW OF OPERATOR PRECEDENCE

previous_planet = current_planet;

➢ When a structured variable is passed as an input argument to a function, all of its component
values are copied into the components of the function’s corresponding formal parameter.

➢ EXAMPLE 10.3, Figure 10.2 (1)

➢ To display the value of our structure current_planet , we would use the call statement:

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

print_planet(current_planet);

➢ Another function that would help us think of a planet as a data object is a function that would
perform an equality comparison of two planets.

➢ Although C permits copying of a structure using the assignment operator, the equality and

inequality operators CANNOT BE applied to a structured type as a unit.

➢ Figure 10.3 (1)

● Structures as output arguments:

➢ When such a variable is used as an output argument, the addressof operator must be applied in
the same way that we would pass output arguments of the standard types char , int , and double.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ Figure 10.4 (1)
➢ In order to use scanf to store a value in one component of the structure whose address is in plnp

, we must carry out the following steps (in order):

1. Follow the pointer in plnp to the structure.
2. Select the component of interest.
3. Unless this component is an array (e.g., component name in Fig. 10.4), get its address to pass

to scanf .

➢ When we check our precedence chart (see Table 10.1), we find that this reference
&*plnp.diameter would attempt step 2 before step 1.

➢ For this reason, the function in Fig. 10.4 overrides the default operator precedence by

parenthesizing the application of the indirect referencing (pointer-following) operator, the unary
*.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

Figure 10.5

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

status = scan_planet(¤t_planet);

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ indirect component selection operator (->) (1)

➢ If we rewrite the scan_planet function of Fig. 10.4 using the -> operator, the assignment to
result will be

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

(*structp).component structp->component=

result = scanf("%s%lf%d%lf%lf", plnp->name,

&plnp->diameter,

&plnp->moons,

&plnp->orbit_time,

&plnp->rotation_time);

➢ A function that computes a structured result can be modeled on a function computing a simple
result.

➢ A local variable of the structure type can be allocated, filled with the desired data, and returned

as the function result.

➢ The function does not return the address of the structure as it would with an array result; rather it
returns the values of all components.

➢ EXAMPLE 10.4, Fig. 10.6

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

current_planet = get_planet(); status = scan_planet(¤t_planet);
(1)

● EXAMPLE 10.5, Fig. 10.7 (1)
➢ Assuming a 24-hour clock, the structure type time_t is defined as follows:

➢ If time_now were 21:58:32 and secs had the value 97, the result returned by the call
new_time(time_now, secs) would be 22:00:09 (2)

➢ If the intent is to update time_now , an assignment statement is used:

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

typedef struct {

 int hour, minute, second;

} time_t;

time_now = new_time(time_now, secs);

Figure 10.8

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

● Parallel Arrays: (1)

➢ Arrays id and gpa are called parallel arrays because the data items with the same
subscript (for example, i) pertain to the same student (the ith student).

➢ Similarly, the ith elements of arrays x and y are the coordinates of one point.

➢ A better way to organize data collections like these is shown next.

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

● Declaring an Array of Structures:

➢ A more natural and convenient
organization of student data or polygon
points is to group the information
pertaining to one student or to one point in
a structure whose type we define. (1)

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

➢ The data for the first student are
stored in the structure stulist[0] .

➢ The individual data items are

stulist[0].id and stulist[0].gpa .
➢ stulist[0].gpa is 2.71 .

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

Figure 10.11

for (i = 0; i < MAX_STU; ++i) (1)

scan_student(&stulist[i]);

for (i = 0; i < MAX_STU; ++i) (2)

printf("%d\n", stulist[i].id);

CASE STUDY (Homework)
P. 594 – 602

Universal Measurement Conversion

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ When using the direct selection operator (.), always be aware of the type of the
component selected, and use the value in a manner consistent with its type. (1)

➢ For example, if the component selected is an array, passing it to a function as an

output argument does not require application of the address-of operator.

➢ If a structure type output parameter is used in a function, one can avoid the operator
precedence problems associated with combining the indirection (*) and direct
component selection (.) operators by using the indirect component selection operator
(->).

10.7 COMMON PROGRAMMING ERRORS

➢ C allows the use of structure type values in assignment statements as function
arguments and as function results, so one can easily forget that expressions of these
types cannot be operands of equality comparators or arguments of printf and scanf .

➢ You can select simple components from a structure to use in these contexts, or you

can write your own type-specific equality and I/O functions.

10.7 COMMON PROGRAMMING ERRORS

Loading…

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 10

Structure

Loading…

Chapter Objectives:

1. Declare a struct data type which consists of several data fields, each with its own name
and data type.

2. Use a struct to store data for a structured object or record.

3. Use dot notation to process individual fields of a structured object

4. Use structs as function parameters and to return function results

5. Understand the relationship between parallel arrays and arrays of structured objects.

And More…

➢ Unlike an array, a structure can have individual components that contain data
of different types.

➢ A single variable of a composite type designed for a textbook can store a book’s

author, title, publisher and year

➢ Each of these data items is stored in a separate component of the structure
and can be referenced by using the component name.

STRUCTU
RE

textbook => structure

author, title, publisher, year => components

Loading…

● Structure Type Definition:
● Before a structured data object can be created or saved, the format of its components

must be defined. (1)

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct { (2)

 char author[100];

 char title[100];

 char publisher[50];

 int year;

} textbook_t;

textbook_t book;

● EXAMPLE 10.1

● A single variable of a composite type designed for planets can store a planet’s
1. name
2. diameter
3. number of moons
4. the number of years to complete one solar orbit
5. the number of hours to make one rotation on its axis.

10.1 USER-DEFINED STRUCTURE TYPES

➢ This type definition is a template that describes the format of a planet structure and the name and
type of each component.

➢ A name chosen for a component of one structure may be the same as the name of a component

of another structure or the same as the name of a variable. (1)

➢ The typedef statement itself allocates no memory. A variable declaration is required to allocate
storage space for a structured data object.

 (2)

10.1 USER-DEFINED STRUCTURE TYPES

➢ The structured variables current_planet , previous_planet , and blank_planet all have the
format specified in the definition of type planet_t.

➢ Thus, the memory allocated for each consists of storage space for five distinct values.

 (1)

10.1 USER-DEFINED STRUCTURE TYPES

➢ A user-defined type like textbook_t can be used to declare both simple and array variables and
to declare components in other structure types.

➢ A structure containing components that are data structures (arrays or structs) is sometimes called

a hierarchical structure .

➢ The following definition of a structure type includes a component that is an array of textbooks.

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct {

 char author[100];

 int year;

 textbook_t books[10];

} all_textbooks_t;

➢ We can reference a component of a structure by using the direct component selection operator
, which is a period.

➢ The period is preceded by the name of a structure type variable and is followed by the name of

a component.

● Once data are stored in a record, they can be manipulated in the same way as other data in
memory.

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s was published in %d.\n",

book.title, book.year);
MyBook was published in 2000

strcpy(book.name, “MyBook”);

book.year = 2000;

Loading…

● EXAMPLE 10.2

Figure 10.1

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s's diameter is %.1f km.\n",

current_planet.name, current_planet.diameter);

Jupiter's diameter is 142800.0 km.

➢ See Table 10.1 p.572

● Manipulating Whole Structures
➢ The name of a structure type variable used with no component selection operator refers to the

entire structure.
➢ A new copy of a structure’s value can be made by simply assigning one structure to another as in

the following statement:

● Program Style: (1)
➢ To help reduce confusion, in this chapter we choose user-defined type names that use lowercase

letters and end in the suffix_t (2)

REVIEW OF OPERATOR PRECEDENCE

previous_planet = current_planet;

➢ When a structured variable is passed as an input argument to a function, all of its component
values are copied into the components of the function’s corresponding formal parameter.

➢ EXAMPLE 10.3, Figure 10.2 (1)

➢ To display the value of our structure current_planet , we would use the call statement:

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

print_planet(current_planet);

➢ Another function that would help us think of a planet as a data object is a function that would
perform an equality comparison of two planets.

➢ Although C permits copying of a structure using the assignment operator, the equality and

inequality operators CANNOT BE applied to a structured type as a unit.

➢ Figure 10.3 (1)

● Structures as output arguments:

➢ When such a variable is used as an output argument, the addressof operator must be applied in
the same way that we would pass output arguments of the standard types char , int , and double.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ Figure 10.4 (1)
➢ In order to use scanf to store a value in one component of the structure whose address is in plnp

, we must carry out the following steps (in order):

1. Follow the pointer in plnp to the structure.
2. Select the component of interest.
3. Unless this component is an array (e.g., component name in Fig. 10.4), get its address to pass

to scanf .

➢ When we check our precedence chart (see Table 10.1), we find that this reference
&*plnp.diameter would attempt step 2 before step 1.

➢ For this reason, the function in Fig. 10.4 overrides the default operator precedence by

parenthesizing the application of the indirect referencing (pointer-following) operator, the unary
*.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

Figure 10.5

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

status = scan_planet(¤t_planet);

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ indirect component selection operator (->) (1)

➢ If we rewrite the scan_planet function of Fig. 10.4 using the -> operator, the assignment to
result will be

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

(*structp).component structp->component=

result = scanf("%s%lf%d%lf%lf", plnp->name,

&plnp->diameter,

&plnp->moons,

&plnp->orbit_time,

&plnp->rotation_time);

➢ A function that computes a structured result can be modeled on a function computing a simple
result.

➢ A local variable of the structure type can be allocated, filled with the desired data, and returned

as the function result.

➢ The function does not return the address of the structure as it would with an array result; rather it
returns the values of all components.

➢ EXAMPLE 10.4, Fig. 10.6

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

current_planet = get_planet(); status = scan_planet(¤t_planet);
(1)

● EXAMPLE 10.5, Fig. 10.7 (1)
➢ Assuming a 24-hour clock, the structure type time_t is defined as follows:

➢ If time_now were 21:58:32 and secs had the value 97, the result returned by the call
new_time(time_now, secs) would be 22:00:09 (2)

➢ If the intent is to update time_now , an assignment statement is used:

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

typedef struct {

 int hour, minute, second;

} time_t;

time_now = new_time(time_now, secs);

Figure 10.8

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

● Parallel Arrays: (1)

➢ Arrays id and gpa are called parallel arrays because the data items with the same
subscript (for example, i) pertain to the same student (the ith student).

➢ Similarly, the ith elements of arrays x and y are the coordinates of one point.

➢ A better way to organize data collections like these is shown next.

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

● Declaring an Array of Structures:

➢ A more natural and convenient
organization of student data or polygon
points is to group the information
pertaining to one student or to one point in
a structure whose type we define. (1)

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

➢ The data for the first student are
stored in the structure stulist[0] .

➢ The individual data items are

stulist[0].id and stulist[0].gpa .
➢ stulist[0].gpa is 2.71 .

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

Figure 10.11

for (i = 0; i < MAX_STU; ++i) (1)

scan_student(&stulist[i]);

for (i = 0; i < MAX_STU; ++i) (2)

printf("%d\n", stulist[i].id);

CASE STUDY (Homework)
P. 594 – 602

Universal Measurement Conversion

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ When using the direct selection operator (.), always be aware of the type of the
component selected, and use the value in a manner consistent with its type. (1)

➢ For example, if the component selected is an array, passing it to a function as an

output argument does not require application of the address-of operator.

➢ If a structure type output parameter is used in a function, one can avoid the operator
precedence problems associated with combining the indirection (*) and direct
component selection (.) operators by using the indirect component selection operator
(->).

10.7 COMMON PROGRAMMING ERRORS

➢ C allows the use of structure type values in assignment statements as function
arguments and as function results, so one can easily forget that expressions of these
types cannot be operands of equality comparators or arguments of printf and scanf .

➢ You can select simple components from a structure to use in these contexts, or you

can write your own type-specific equality and I/O functions.

10.7 COMMON PROGRAMMING ERRORS

Loading…

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 10

Structure

Loading…

Chapter Objectives:

1. Declare a struct data type which consists of several data fields, each with its own name
and data type.

2. Use a struct to store data for a structured object or record.

3. Use dot notation to process individual fields of a structured object

4. Use structs as function parameters and to return function results

5. Understand the relationship between parallel arrays and arrays of structured objects.

And More…

➢ Unlike an array, a structure can have individual components that contain data
of different types.

➢ A single variable of a composite type designed for a textbook can store a book’s

author, title, publisher and year

➢ Each of these data items is stored in a separate component of the structure
and can be referenced by using the component name.

STRUCTU
RE

textbook => structure

author, title, publisher, year => components

Loading…

● Structure Type Definition:
● Before a structured data object can be created or saved, the format of its components

must be defined. (1)

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct { (2)

 char author[100];

 char title[100];

 char publisher[50];

 int year;

} textbook_t;

textbook_t book;

● EXAMPLE 10.1

● A single variable of a composite type designed for planets can store a planet’s
1. name
2. diameter
3. number of moons
4. the number of years to complete one solar orbit
5. the number of hours to make one rotation on its axis.

10.1 USER-DEFINED STRUCTURE TYPES

➢ This type definition is a template that describes the format of a planet structure and the name and
type of each component.

➢ A name chosen for a component of one structure may be the same as the name of a component

of another structure or the same as the name of a variable. (1)

➢ The typedef statement itself allocates no memory. A variable declaration is required to allocate
storage space for a structured data object.

 (2)

10.1 USER-DEFINED STRUCTURE TYPES

➢ The structured variables current_planet , previous_planet , and blank_planet all have the
format specified in the definition of type planet_t.

➢ Thus, the memory allocated for each consists of storage space for five distinct values.

 (1)

10.1 USER-DEFINED STRUCTURE TYPES

➢ A user-defined type like textbook_t can be used to declare both simple and array variables and
to declare components in other structure types.

➢ A structure containing components that are data structures (arrays or structs) is sometimes called

a hierarchical structure .

➢ The following definition of a structure type includes a component that is an array of textbooks.

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct {

 char author[100];

 int year;

 textbook_t books[10];

} all_textbooks_t;

➢ We can reference a component of a structure by using the direct component selection operator
, which is a period.

➢ The period is preceded by the name of a structure type variable and is followed by the name of

a component.

● Once data are stored in a record, they can be manipulated in the same way as other data in
memory.

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s was published in %d.\n",

book.title, book.year);
MyBook was published in 2000

strcpy(book.name, “MyBook”);

book.year = 2000;

Loading…

● EXAMPLE 10.2

Figure 10.1

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s's diameter is %.1f km.\n",

current_planet.name, current_planet.diameter);

Jupiter's diameter is 142800.0 km.

➢ See Table 10.1 p.572

● Manipulating Whole Structures
➢ The name of a structure type variable used with no component selection operator refers to the

entire structure.
➢ A new copy of a structure’s value can be made by simply assigning one structure to another as in

the following statement:

● Program Style: (1)
➢ To help reduce confusion, in this chapter we choose user-defined type names that use lowercase

letters and end in the suffix_t (2)

REVIEW OF OPERATOR PRECEDENCE

previous_planet = current_planet;

➢ When a structured variable is passed as an input argument to a function, all of its component
values are copied into the components of the function’s corresponding formal parameter.

➢ EXAMPLE 10.3, Figure 10.2 (1)

➢ To display the value of our structure current_planet , we would use the call statement:

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

print_planet(current_planet);

➢ Another function that would help us think of a planet as a data object is a function that would
perform an equality comparison of two planets.

➢ Although C permits copying of a structure using the assignment operator, the equality and

inequality operators CANNOT BE applied to a structured type as a unit.

➢ Figure 10.3 (1)

● Structures as output arguments:

➢ When such a variable is used as an output argument, the addressof operator must be applied in
the same way that we would pass output arguments of the standard types char , int , and double.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ Figure 10.4 (1)
➢ In order to use scanf to store a value in one component of the structure whose address is in plnp

, we must carry out the following steps (in order):

1. Follow the pointer in plnp to the structure.
2. Select the component of interest.
3. Unless this component is an array (e.g., component name in Fig. 10.4), get its address to pass

to scanf .

➢ When we check our precedence chart (see Table 10.1), we find that this reference
&*plnp.diameter would attempt step 2 before step 1.

➢ For this reason, the function in Fig. 10.4 overrides the default operator precedence by

parenthesizing the application of the indirect referencing (pointer-following) operator, the unary
*.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

Figure 10.5

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

status = scan_planet(¤t_planet);

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ indirect component selection operator (->) (1)

➢ If we rewrite the scan_planet function of Fig. 10.4 using the -> operator, the assignment to
result will be

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

(*structp).component structp->component=

result = scanf("%s%lf%d%lf%lf", plnp->name,

&plnp->diameter,

&plnp->moons,

&plnp->orbit_time,

&plnp->rotation_time);

➢ A function that computes a structured result can be modeled on a function computing a simple
result.

➢ A local variable of the structure type can be allocated, filled with the desired data, and returned

as the function result.

➢ The function does not return the address of the structure as it would with an array result; rather it
returns the values of all components.

➢ EXAMPLE 10.4, Fig. 10.6

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

current_planet = get_planet(); status = scan_planet(¤t_planet);
(1)

● EXAMPLE 10.5, Fig. 10.7 (1)
➢ Assuming a 24-hour clock, the structure type time_t is defined as follows:

➢ If time_now were 21:58:32 and secs had the value 97, the result returned by the call
new_time(time_now, secs) would be 22:00:09 (2)

➢ If the intent is to update time_now , an assignment statement is used:

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

typedef struct {

 int hour, minute, second;

} time_t;

time_now = new_time(time_now, secs);

Figure 10.8

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

● Parallel Arrays: (1)

➢ Arrays id and gpa are called parallel arrays because the data items with the same
subscript (for example, i) pertain to the same student (the ith student).

➢ Similarly, the ith elements of arrays x and y are the coordinates of one point.

➢ A better way to organize data collections like these is shown next.

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

● Declaring an Array of Structures:

➢ A more natural and convenient
organization of student data or polygon
points is to group the information
pertaining to one student or to one point in
a structure whose type we define. (1)

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

➢ The data for the first student are
stored in the structure stulist[0] .

➢ The individual data items are

stulist[0].id and stulist[0].gpa .
➢ stulist[0].gpa is 2.71 .

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

Figure 10.11

for (i = 0; i < MAX_STU; ++i) (1)

scan_student(&stulist[i]);

for (i = 0; i < MAX_STU; ++i) (2)

printf("%d\n", stulist[i].id);

CASE STUDY (Homework)
P. 594 – 602

Universal Measurement Conversion

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ When using the direct selection operator (.), always be aware of the type of the
component selected, and use the value in a manner consistent with its type. (1)

➢ For example, if the component selected is an array, passing it to a function as an

output argument does not require application of the address-of operator.

➢ If a structure type output parameter is used in a function, one can avoid the operator
precedence problems associated with combining the indirection (*) and direct
component selection (.) operators by using the indirect component selection operator
(->).

10.7 COMMON PROGRAMMING ERRORS

➢ C allows the use of structure type values in assignment statements as function
arguments and as function results, so one can easily forget that expressions of these
types cannot be operands of equality comparators or arguments of printf and scanf .

➢ You can select simple components from a structure to use in these contexts, or you

can write your own type-specific equality and I/O functions.

10.7 COMMON PROGRAMMING ERRORS

Loading…

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 10

Structure

Loading…

Chapter Objectives:

1. Declare a struct data type which consists of several data fields, each with its own name
and data type.

2. Use a struct to store data for a structured object or record.

3. Use dot notation to process individual fields of a structured object

4. Use structs as function parameters and to return function results

5. Understand the relationship between parallel arrays and arrays of structured objects.

And More…

➢ Unlike an array, a structure can have individual components that contain data
of different types.

➢ A single variable of a composite type designed for a textbook can store a book’s

author, title, publisher and year

➢ Each of these data items is stored in a separate component of the structure
and can be referenced by using the component name.

STRUCTU
RE

textbook => structure

author, title, publisher, year => components

Loading…

● Structure Type Definition:
● Before a structured data object can be created or saved, the format of its components

must be defined. (1)

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct { (2)

 char author[100];

 char title[100];

 char publisher[50];

 int year;

} textbook_t;

textbook_t book;

● EXAMPLE 10.1

● A single variable of a composite type designed for planets can store a planet’s
1. name
2. diameter
3. number of moons
4. the number of years to complete one solar orbit
5. the number of hours to make one rotation on its axis.

10.1 USER-DEFINED STRUCTURE TYPES

➢ This type definition is a template that describes the format of a planet structure and the name and
type of each component.

➢ A name chosen for a component of one structure may be the same as the name of a component

of another structure or the same as the name of a variable. (1)

➢ The typedef statement itself allocates no memory. A variable declaration is required to allocate
storage space for a structured data object.

 (2)

10.1 USER-DEFINED STRUCTURE TYPES

➢ The structured variables current_planet , previous_planet , and blank_planet all have the
format specified in the definition of type planet_t.

➢ Thus, the memory allocated for each consists of storage space for five distinct values.

 (1)

10.1 USER-DEFINED STRUCTURE TYPES

➢ A user-defined type like textbook_t can be used to declare both simple and array variables and
to declare components in other structure types.

➢ A structure containing components that are data structures (arrays or structs) is sometimes called

a hierarchical structure .

➢ The following definition of a structure type includes a component that is an array of textbooks.

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct {

 char author[100];

 int year;

 textbook_t books[10];

} all_textbooks_t;

➢ We can reference a component of a structure by using the direct component selection operator
, which is a period.

➢ The period is preceded by the name of a structure type variable and is followed by the name of

a component.

● Once data are stored in a record, they can be manipulated in the same way as other data in
memory.

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s was published in %d.\n",

book.title, book.year);
MyBook was published in 2000

strcpy(book.name, “MyBook”);

book.year = 2000;

Loading…

● EXAMPLE 10.2

Figure 10.1

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s's diameter is %.1f km.\n",

current_planet.name, current_planet.diameter);

Jupiter's diameter is 142800.0 km.

➢ See Table 10.1 p.572

● Manipulating Whole Structures
➢ The name of a structure type variable used with no component selection operator refers to the

entire structure.
➢ A new copy of a structure’s value can be made by simply assigning one structure to another as in

the following statement:

● Program Style: (1)
➢ To help reduce confusion, in this chapter we choose user-defined type names that use lowercase

letters and end in the suffix_t (2)

REVIEW OF OPERATOR PRECEDENCE

previous_planet = current_planet;

➢ When a structured variable is passed as an input argument to a function, all of its component
values are copied into the components of the function’s corresponding formal parameter.

➢ EXAMPLE 10.3, Figure 10.2 (1)

➢ To display the value of our structure current_planet , we would use the call statement:

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

print_planet(current_planet);

➢ Another function that would help us think of a planet as a data object is a function that would
perform an equality comparison of two planets.

➢ Although C permits copying of a structure using the assignment operator, the equality and

inequality operators CANNOT BE applied to a structured type as a unit.

➢ Figure 10.3 (1)

● Structures as output arguments:

➢ When such a variable is used as an output argument, the addressof operator must be applied in
the same way that we would pass output arguments of the standard types char , int , and double.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ Figure 10.4 (1)
➢ In order to use scanf to store a value in one component of the structure whose address is in plnp

, we must carry out the following steps (in order):

1. Follow the pointer in plnp to the structure.
2. Select the component of interest.
3. Unless this component is an array (e.g., component name in Fig. 10.4), get its address to pass

to scanf .

➢ When we check our precedence chart (see Table 10.1), we find that this reference
&*plnp.diameter would attempt step 2 before step 1.

➢ For this reason, the function in Fig. 10.4 overrides the default operator precedence by

parenthesizing the application of the indirect referencing (pointer-following) operator, the unary
*.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

Figure 10.5

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

status = scan_planet(¤t_planet);

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ indirect component selection operator (->) (1)

➢ If we rewrite the scan_planet function of Fig. 10.4 using the -> operator, the assignment to
result will be

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

(*structp).component structp->component=

result = scanf("%s%lf%d%lf%lf", plnp->name,

&plnp->diameter,

&plnp->moons,

&plnp->orbit_time,

&plnp->rotation_time);

➢ A function that computes a structured result can be modeled on a function computing a simple
result.

➢ A local variable of the structure type can be allocated, filled with the desired data, and returned

as the function result.

➢ The function does not return the address of the structure as it would with an array result; rather it
returns the values of all components.

➢ EXAMPLE 10.4, Fig. 10.6

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

current_planet = get_planet(); status = scan_planet(¤t_planet);
(1)

● EXAMPLE 10.5, Fig. 10.7 (1)
➢ Assuming a 24-hour clock, the structure type time_t is defined as follows:

➢ If time_now were 21:58:32 and secs had the value 97, the result returned by the call
new_time(time_now, secs) would be 22:00:09 (2)

➢ If the intent is to update time_now , an assignment statement is used:

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

typedef struct {

 int hour, minute, second;

} time_t;

time_now = new_time(time_now, secs);

Figure 10.8

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

● Parallel Arrays: (1)

➢ Arrays id and gpa are called parallel arrays because the data items with the same
subscript (for example, i) pertain to the same student (the ith student).

➢ Similarly, the ith elements of arrays x and y are the coordinates of one point.

➢ A better way to organize data collections like these is shown next.

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

● Declaring an Array of Structures:

➢ A more natural and convenient
organization of student data or polygon
points is to group the information
pertaining to one student or to one point in
a structure whose type we define. (1)

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

➢ The data for the first student are
stored in the structure stulist[0] .

➢ The individual data items are

stulist[0].id and stulist[0].gpa .
➢ stulist[0].gpa is 2.71 .

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

Figure 10.11

for (i = 0; i < MAX_STU; ++i) (1)

scan_student(&stulist[i]);

for (i = 0; i < MAX_STU; ++i) (2)

printf("%d\n", stulist[i].id);

CASE STUDY (Homework)
P. 594 – 602

Universal Measurement Conversion

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ When using the direct selection operator (.), always be aware of the type of the
component selected, and use the value in a manner consistent with its type. (1)

➢ For example, if the component selected is an array, passing it to a function as an

output argument does not require application of the address-of operator.

➢ If a structure type output parameter is used in a function, one can avoid the operator
precedence problems associated with combining the indirection (*) and direct
component selection (.) operators by using the indirect component selection operator
(->).

10.7 COMMON PROGRAMMING ERRORS

➢ C allows the use of structure type values in assignment statements as function
arguments and as function results, so one can easily forget that expressions of these
types cannot be operands of equality comparators or arguments of printf and scanf .

➢ You can select simple components from a structure to use in these contexts, or you

can write your own type-specific equality and I/O functions.

10.7 COMMON PROGRAMMING ERRORS

Loading…

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 10

Structure

Loading…

Chapter Objectives:

1. Declare a struct data type which consists of several data fields, each with its own name
and data type.

2. Use a struct to store data for a structured object or record.

3. Use dot notation to process individual fields of a structured object

4. Use structs as function parameters and to return function results

5. Understand the relationship between parallel arrays and arrays of structured objects.

And More…

➢ Unlike an array, a structure can have individual components that contain data
of different types.

➢ A single variable of a composite type designed for a textbook can store a book’s

author, title, publisher and year

➢ Each of these data items is stored in a separate component of the structure
and can be referenced by using the component name.

STRUCTU
RE

textbook => structure

author, title, publisher, year => components

Loading…

● Structure Type Definition:
● Before a structured data object can be created or saved, the format of its components

must be defined. (1)

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct { (2)

 char author[100];

 char title[100];

 char publisher[50];

 int year;

} textbook_t;

textbook_t book;

● EXAMPLE 10.1

● A single variable of a composite type designed for planets can store a planet’s
1. name
2. diameter
3. number of moons
4. the number of years to complete one solar orbit
5. the number of hours to make one rotation on its axis.

10.1 USER-DEFINED STRUCTURE TYPES

➢ This type definition is a template that describes the format of a planet structure and the name and
type of each component.

➢ A name chosen for a component of one structure may be the same as the name of a component

of another structure or the same as the name of a variable. (1)

➢ The typedef statement itself allocates no memory. A variable declaration is required to allocate
storage space for a structured data object.

 (2)

10.1 USER-DEFINED STRUCTURE TYPES

➢ The structured variables current_planet , previous_planet , and blank_planet all have the
format specified in the definition of type planet_t.

➢ Thus, the memory allocated for each consists of storage space for five distinct values.

 (1)

10.1 USER-DEFINED STRUCTURE TYPES

➢ A user-defined type like textbook_t can be used to declare both simple and array variables and
to declare components in other structure types.

➢ A structure containing components that are data structures (arrays or structs) is sometimes called

a hierarchical structure .

➢ The following definition of a structure type includes a component that is an array of textbooks.

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct {

 char author[100];

 int year;

 textbook_t books[10];

} all_textbooks_t;

➢ We can reference a component of a structure by using the direct component selection operator
, which is a period.

➢ The period is preceded by the name of a structure type variable and is followed by the name of

a component.

● Once data are stored in a record, they can be manipulated in the same way as other data in
memory.

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s was published in %d.\n",

book.title, book.year);
MyBook was published in 2000

strcpy(book.name, “MyBook”);

book.year = 2000;

Loading…

● EXAMPLE 10.2

Figure 10.1

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s's diameter is %.1f km.\n",

current_planet.name, current_planet.diameter);

Jupiter's diameter is 142800.0 km.

➢ See Table 10.1 p.572

● Manipulating Whole Structures
➢ The name of a structure type variable used with no component selection operator refers to the

entire structure.
➢ A new copy of a structure’s value can be made by simply assigning one structure to another as in

the following statement:

● Program Style: (1)
➢ To help reduce confusion, in this chapter we choose user-defined type names that use lowercase

letters and end in the suffix_t (2)

REVIEW OF OPERATOR PRECEDENCE

previous_planet = current_planet;

➢ When a structured variable is passed as an input argument to a function, all of its component
values are copied into the components of the function’s corresponding formal parameter.

➢ EXAMPLE 10.3, Figure 10.2 (1)

➢ To display the value of our structure current_planet , we would use the call statement:

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

print_planet(current_planet);

➢ Another function that would help us think of a planet as a data object is a function that would
perform an equality comparison of two planets.

➢ Although C permits copying of a structure using the assignment operator, the equality and

inequality operators CANNOT BE applied to a structured type as a unit.

➢ Figure 10.3 (1)

● Structures as output arguments:

➢ When such a variable is used as an output argument, the addressof operator must be applied in
the same way that we would pass output arguments of the standard types char , int , and double.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ Figure 10.4 (1)
➢ In order to use scanf to store a value in one component of the structure whose address is in plnp

, we must carry out the following steps (in order):

1. Follow the pointer in plnp to the structure.
2. Select the component of interest.
3. Unless this component is an array (e.g., component name in Fig. 10.4), get its address to pass

to scanf .

➢ When we check our precedence chart (see Table 10.1), we find that this reference
&*plnp.diameter would attempt step 2 before step 1.

➢ For this reason, the function in Fig. 10.4 overrides the default operator precedence by

parenthesizing the application of the indirect referencing (pointer-following) operator, the unary
*.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

Figure 10.5

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

status = scan_planet(¤t_planet);

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ indirect component selection operator (->) (1)

➢ If we rewrite the scan_planet function of Fig. 10.4 using the -> operator, the assignment to
result will be

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

(*structp).component structp->component=

result = scanf("%s%lf%d%lf%lf", plnp->name,

&plnp->diameter,

&plnp->moons,

&plnp->orbit_time,

&plnp->rotation_time);

➢ A function that computes a structured result can be modeled on a function computing a simple
result.

➢ A local variable of the structure type can be allocated, filled with the desired data, and returned

as the function result.

➢ The function does not return the address of the structure as it would with an array result; rather it
returns the values of all components.

➢ EXAMPLE 10.4, Fig. 10.6

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

current_planet = get_planet(); status = scan_planet(¤t_planet);
(1)

● EXAMPLE 10.5, Fig. 10.7 (1)
➢ Assuming a 24-hour clock, the structure type time_t is defined as follows:

➢ If time_now were 21:58:32 and secs had the value 97, the result returned by the call
new_time(time_now, secs) would be 22:00:09 (2)

➢ If the intent is to update time_now , an assignment statement is used:

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

typedef struct {

 int hour, minute, second;

} time_t;

time_now = new_time(time_now, secs);

Figure 10.8

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

● Parallel Arrays: (1)

➢ Arrays id and gpa are called parallel arrays because the data items with the same
subscript (for example, i) pertain to the same student (the ith student).

➢ Similarly, the ith elements of arrays x and y are the coordinates of one point.

➢ A better way to organize data collections like these is shown next.

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

● Declaring an Array of Structures:

➢ A more natural and convenient
organization of student data or polygon
points is to group the information
pertaining to one student or to one point in
a structure whose type we define. (1)

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

➢ The data for the first student are
stored in the structure stulist[0] .

➢ The individual data items are

stulist[0].id and stulist[0].gpa .
➢ stulist[0].gpa is 2.71 .

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

Figure 10.11

for (i = 0; i < MAX_STU; ++i) (1)

scan_student(&stulist[i]);

for (i = 0; i < MAX_STU; ++i) (2)

printf("%d\n", stulist[i].id);

CASE STUDY (Homework)
P. 594 – 602

Universal Measurement Conversion

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ When using the direct selection operator (.), always be aware of the type of the
component selected, and use the value in a manner consistent with its type. (1)

➢ For example, if the component selected is an array, passing it to a function as an

output argument does not require application of the address-of operator.

➢ If a structure type output parameter is used in a function, one can avoid the operator
precedence problems associated with combining the indirection (*) and direct
component selection (.) operators by using the indirect component selection operator
(->).

10.7 COMMON PROGRAMMING ERRORS

➢ C allows the use of structure type values in assignment statements as function
arguments and as function results, so one can easily forget that expressions of these
types cannot be operands of equality comparators or arguments of printf and scanf .

➢ You can select simple components from a structure to use in these contexts, or you

can write your own type-specific equality and I/O functions.

10.7 COMMON PROGRAMMING ERRORS

Loading…

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 10

Structure

Loading…

Chapter Objectives:

1. Declare a struct data type which consists of several data fields, each with its own name
and data type.

2. Use a struct to store data for a structured object or record.

3. Use dot notation to process individual fields of a structured object

4. Use structs as function parameters and to return function results

5. Understand the relationship between parallel arrays and arrays of structured objects.

And More…

➢ Unlike an array, a structure can have individual components that contain data
of different types.

➢ A single variable of a composite type designed for a textbook can store a book’s

author, title, publisher and year

➢ Each of these data items is stored in a separate component of the structure
and can be referenced by using the component name.

STRUCTU
RE

textbook => structure

author, title, publisher, year => components

Loading…

● Structure Type Definition:
● Before a structured data object can be created or saved, the format of its components

must be defined. (1)

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct { (2)

 char author[100];

 char title[100];

 char publisher[50];

 int year;

} textbook_t;

textbook_t book;

● EXAMPLE 10.1

● A single variable of a composite type designed for planets can store a planet’s
1. name
2. diameter
3. number of moons
4. the number of years to complete one solar orbit
5. the number of hours to make one rotation on its axis.

10.1 USER-DEFINED STRUCTURE TYPES

➢ This type definition is a template that describes the format of a planet structure and the name and
type of each component.

➢ A name chosen for a component of one structure may be the same as the name of a component

of another structure or the same as the name of a variable. (1)

➢ The typedef statement itself allocates no memory. A variable declaration is required to allocate
storage space for a structured data object.

 (2)

10.1 USER-DEFINED STRUCTURE TYPES

➢ The structured variables current_planet , previous_planet , and blank_planet all have the
format specified in the definition of type planet_t.

➢ Thus, the memory allocated for each consists of storage space for five distinct values.

 (1)

10.1 USER-DEFINED STRUCTURE TYPES

➢ A user-defined type like textbook_t can be used to declare both simple and array variables and
to declare components in other structure types.

➢ A structure containing components that are data structures (arrays or structs) is sometimes called

a hierarchical structure .

➢ The following definition of a structure type includes a component that is an array of textbooks.

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct {

 char author[100];

 int year;

 textbook_t books[10];

} all_textbooks_t;

➢ We can reference a component of a structure by using the direct component selection operator
, which is a period.

➢ The period is preceded by the name of a structure type variable and is followed by the name of

a component.

● Once data are stored in a record, they can be manipulated in the same way as other data in
memory.

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s was published in %d.\n",

book.title, book.year);
MyBook was published in 2000

strcpy(book.name, “MyBook”);

book.year = 2000;

Loading…

● EXAMPLE 10.2

Figure 10.1

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s's diameter is %.1f km.\n",

current_planet.name, current_planet.diameter);

Jupiter's diameter is 142800.0 km.

➢ See Table 10.1 p.572

● Manipulating Whole Structures
➢ The name of a structure type variable used with no component selection operator refers to the

entire structure.
➢ A new copy of a structure’s value can be made by simply assigning one structure to another as in

the following statement:

● Program Style: (1)
➢ To help reduce confusion, in this chapter we choose user-defined type names that use lowercase

letters and end in the suffix_t (2)

REVIEW OF OPERATOR PRECEDENCE

previous_planet = current_planet;

➢ When a structured variable is passed as an input argument to a function, all of its component
values are copied into the components of the function’s corresponding formal parameter.

➢ EXAMPLE 10.3, Figure 10.2 (1)

➢ To display the value of our structure current_planet , we would use the call statement:

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

print_planet(current_planet);

➢ Another function that would help us think of a planet as a data object is a function that would
perform an equality comparison of two planets.

➢ Although C permits copying of a structure using the assignment operator, the equality and

inequality operators CANNOT BE applied to a structured type as a unit.

➢ Figure 10.3 (1)

● Structures as output arguments:

➢ When such a variable is used as an output argument, the addressof operator must be applied in
the same way that we would pass output arguments of the standard types char , int , and double.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ Figure 10.4 (1)
➢ In order to use scanf to store a value in one component of the structure whose address is in plnp

, we must carry out the following steps (in order):

1. Follow the pointer in plnp to the structure.
2. Select the component of interest.
3. Unless this component is an array (e.g., component name in Fig. 10.4), get its address to pass

to scanf .

➢ When we check our precedence chart (see Table 10.1), we find that this reference
&*plnp.diameter would attempt step 2 before step 1.

➢ For this reason, the function in Fig. 10.4 overrides the default operator precedence by

parenthesizing the application of the indirect referencing (pointer-following) operator, the unary
*.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

Figure 10.5

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

status = scan_planet(¤t_planet);

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ indirect component selection operator (->) (1)

➢ If we rewrite the scan_planet function of Fig. 10.4 using the -> operator, the assignment to
result will be

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

(*structp).component structp->component=

result = scanf("%s%lf%d%lf%lf", plnp->name,

&plnp->diameter,

&plnp->moons,

&plnp->orbit_time,

&plnp->rotation_time);

➢ A function that computes a structured result can be modeled on a function computing a simple
result.

➢ A local variable of the structure type can be allocated, filled with the desired data, and returned

as the function result.

➢ The function does not return the address of the structure as it would with an array result; rather it
returns the values of all components.

➢ EXAMPLE 10.4, Fig. 10.6

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

current_planet = get_planet(); status = scan_planet(¤t_planet);
(1)

● EXAMPLE 10.5, Fig. 10.7 (1)
➢ Assuming a 24-hour clock, the structure type time_t is defined as follows:

➢ If time_now were 21:58:32 and secs had the value 97, the result returned by the call
new_time(time_now, secs) would be 22:00:09 (2)

➢ If the intent is to update time_now , an assignment statement is used:

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

typedef struct {

 int hour, minute, second;

} time_t;

time_now = new_time(time_now, secs);

Figure 10.8

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

● Parallel Arrays: (1)

➢ Arrays id and gpa are called parallel arrays because the data items with the same
subscript (for example, i) pertain to the same student (the ith student).

➢ Similarly, the ith elements of arrays x and y are the coordinates of one point.

➢ A better way to organize data collections like these is shown next.

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

● Declaring an Array of Structures:

➢ A more natural and convenient
organization of student data or polygon
points is to group the information
pertaining to one student or to one point in
a structure whose type we define. (1)

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

➢ The data for the first student are
stored in the structure stulist[0] .

➢ The individual data items are

stulist[0].id and stulist[0].gpa .
➢ stulist[0].gpa is 2.71 .

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

Figure 10.11

for (i = 0; i < MAX_STU; ++i) (1)

scan_student(&stulist[i]);

for (i = 0; i < MAX_STU; ++i) (2)

printf("%d\n", stulist[i].id);

CASE STUDY (Homework)
P. 594 – 602

Universal Measurement Conversion

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ When using the direct selection operator (.), always be aware of the type of the
component selected, and use the value in a manner consistent with its type. (1)

➢ For example, if the component selected is an array, passing it to a function as an

output argument does not require application of the address-of operator.

➢ If a structure type output parameter is used in a function, one can avoid the operator
precedence problems associated with combining the indirection (*) and direct
component selection (.) operators by using the indirect component selection operator
(->).

10.7 COMMON PROGRAMMING ERRORS

➢ C allows the use of structure type values in assignment statements as function
arguments and as function results, so one can easily forget that expressions of these
types cannot be operands of equality comparators or arguments of printf and scanf .

➢ You can select simple components from a structure to use in these contexts, or you

can write your own type-specific equality and I/O functions.

10.7 COMMON PROGRAMMING ERRORS

Loading…

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 10

Structure

Loading…

Chapter Objectives:

1. Declare a struct data type which consists of several data fields, each with its own name
and data type.

2. Use a struct to store data for a structured object or record.

3. Use dot notation to process individual fields of a structured object

4. Use structs as function parameters and to return function results

5. Understand the relationship between parallel arrays and arrays of structured objects.

And More…

➢ Unlike an array, a structure can have individual components that contain data
of different types.

➢ A single variable of a composite type designed for a textbook can store a book’s

author, title, publisher and year

➢ Each of these data items is stored in a separate component of the structure
and can be referenced by using the component name.

STRUCTU
RE

textbook => structure

author, title, publisher, year => components

Loading…

● Structure Type Definition:
● Before a structured data object can be created or saved, the format of its components

must be defined. (1)

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct { (2)

 char author[100];

 char title[100];

 char publisher[50];

 int year;

} textbook_t;

textbook_t book;

● EXAMPLE 10.1

● A single variable of a composite type designed for planets can store a planet’s
1. name
2. diameter
3. number of moons
4. the number of years to complete one solar orbit
5. the number of hours to make one rotation on its axis.

10.1 USER-DEFINED STRUCTURE TYPES

➢ This type definition is a template that describes the format of a planet structure and the name and
type of each component.

➢ A name chosen for a component of one structure may be the same as the name of a component

of another structure or the same as the name of a variable. (1)

➢ The typedef statement itself allocates no memory. A variable declaration is required to allocate
storage space for a structured data object.

 (2)

10.1 USER-DEFINED STRUCTURE TYPES

➢ The structured variables current_planet , previous_planet , and blank_planet all have the
format specified in the definition of type planet_t.

➢ Thus, the memory allocated for each consists of storage space for five distinct values.

 (1)

10.1 USER-DEFINED STRUCTURE TYPES

➢ A user-defined type like textbook_t can be used to declare both simple and array variables and
to declare components in other structure types.

➢ A structure containing components that are data structures (arrays or structs) is sometimes called

a hierarchical structure .

➢ The following definition of a structure type includes a component that is an array of textbooks.

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct {

 char author[100];

 int year;

 textbook_t books[10];

} all_textbooks_t;

➢ We can reference a component of a structure by using the direct component selection operator
, which is a period.

➢ The period is preceded by the name of a structure type variable and is followed by the name of

a component.

● Once data are stored in a record, they can be manipulated in the same way as other data in
memory.

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s was published in %d.\n",

book.title, book.year);
MyBook was published in 2000

strcpy(book.name, “MyBook”);

book.year = 2000;

Loading…

● EXAMPLE 10.2

Figure 10.1

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s's diameter is %.1f km.\n",

current_planet.name, current_planet.diameter);

Jupiter's diameter is 142800.0 km.

➢ See Table 10.1 p.572

● Manipulating Whole Structures
➢ The name of a structure type variable used with no component selection operator refers to the

entire structure.
➢ A new copy of a structure’s value can be made by simply assigning one structure to another as in

the following statement:

● Program Style: (1)
➢ To help reduce confusion, in this chapter we choose user-defined type names that use lowercase

letters and end in the suffix_t (2)

REVIEW OF OPERATOR PRECEDENCE

previous_planet = current_planet;

➢ When a structured variable is passed as an input argument to a function, all of its component
values are copied into the components of the function’s corresponding formal parameter.

➢ EXAMPLE 10.3, Figure 10.2 (1)

➢ To display the value of our structure current_planet , we would use the call statement:

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

print_planet(current_planet);

➢ Another function that would help us think of a planet as a data object is a function that would
perform an equality comparison of two planets.

➢ Although C permits copying of a structure using the assignment operator, the equality and

inequality operators CANNOT BE applied to a structured type as a unit.

➢ Figure 10.3 (1)

● Structures as output arguments:

➢ When such a variable is used as an output argument, the addressof operator must be applied in
the same way that we would pass output arguments of the standard types char , int , and double.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ Figure 10.4 (1)
➢ In order to use scanf to store a value in one component of the structure whose address is in plnp

, we must carry out the following steps (in order):

1. Follow the pointer in plnp to the structure.
2. Select the component of interest.
3. Unless this component is an array (e.g., component name in Fig. 10.4), get its address to pass

to scanf .

➢ When we check our precedence chart (see Table 10.1), we find that this reference
&*plnp.diameter would attempt step 2 before step 1.

➢ For this reason, the function in Fig. 10.4 overrides the default operator precedence by

parenthesizing the application of the indirect referencing (pointer-following) operator, the unary
*.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

Figure 10.5

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

status = scan_planet(¤t_planet);

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ indirect component selection operator (->) (1)

➢ If we rewrite the scan_planet function of Fig. 10.4 using the -> operator, the assignment to
result will be

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

(*structp).component structp->component=

result = scanf("%s%lf%d%lf%lf", plnp->name,

&plnp->diameter,

&plnp->moons,

&plnp->orbit_time,

&plnp->rotation_time);

➢ A function that computes a structured result can be modeled on a function computing a simple
result.

➢ A local variable of the structure type can be allocated, filled with the desired data, and returned

as the function result.

➢ The function does not return the address of the structure as it would with an array result; rather it
returns the values of all components.

➢ EXAMPLE 10.4, Fig. 10.6

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

current_planet = get_planet(); status = scan_planet(¤t_planet);
(1)

● EXAMPLE 10.5, Fig. 10.7 (1)
➢ Assuming a 24-hour clock, the structure type time_t is defined as follows:

➢ If time_now were 21:58:32 and secs had the value 97, the result returned by the call
new_time(time_now, secs) would be 22:00:09 (2)

➢ If the intent is to update time_now , an assignment statement is used:

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

typedef struct {

 int hour, minute, second;

} time_t;

time_now = new_time(time_now, secs);

Figure 10.8

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

● Parallel Arrays: (1)

➢ Arrays id and gpa are called parallel arrays because the data items with the same
subscript (for example, i) pertain to the same student (the ith student).

➢ Similarly, the ith elements of arrays x and y are the coordinates of one point.

➢ A better way to organize data collections like these is shown next.

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

● Declaring an Array of Structures:

➢ A more natural and convenient
organization of student data or polygon
points is to group the information
pertaining to one student or to one point in
a structure whose type we define. (1)

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

➢ The data for the first student are
stored in the structure stulist[0] .

➢ The individual data items are

stulist[0].id and stulist[0].gpa .
➢ stulist[0].gpa is 2.71 .

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

Figure 10.11

for (i = 0; i < MAX_STU; ++i) (1)

scan_student(&stulist[i]);

for (i = 0; i < MAX_STU; ++i) (2)

printf("%d\n", stulist[i].id);

CASE STUDY (Homework)
P. 594 – 602

Universal Measurement Conversion

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ When using the direct selection operator (.), always be aware of the type of the
component selected, and use the value in a manner consistent with its type. (1)

➢ For example, if the component selected is an array, passing it to a function as an

output argument does not require application of the address-of operator.

➢ If a structure type output parameter is used in a function, one can avoid the operator
precedence problems associated with combining the indirection (*) and direct
component selection (.) operators by using the indirect component selection operator
(->).

10.7 COMMON PROGRAMMING ERRORS

➢ C allows the use of structure type values in assignment statements as function
arguments and as function results, so one can easily forget that expressions of these
types cannot be operands of equality comparators or arguments of printf and scanf .

➢ You can select simple components from a structure to use in these contexts, or you

can write your own type-specific equality and I/O functions.

10.7 COMMON PROGRAMMING ERRORS

Loading…

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 10

Structure

Loading…

Chapter Objectives:

1. Declare a struct data type which consists of several data fields, each with its own name
and data type.

2. Use a struct to store data for a structured object or record.

3. Use dot notation to process individual fields of a structured object

4. Use structs as function parameters and to return function results

5. Understand the relationship between parallel arrays and arrays of structured objects.

And More…

➢ Unlike an array, a structure can have individual components that contain data
of different types.

➢ A single variable of a composite type designed for a textbook can store a book’s

author, title, publisher and year

➢ Each of these data items is stored in a separate component of the structure
and can be referenced by using the component name.

STRUCTU
RE

textbook => structure

author, title, publisher, year => components

Loading…

● Structure Type Definition:
● Before a structured data object can be created or saved, the format of its components

must be defined. (1)

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct { (2)

 char author[100];

 char title[100];

 char publisher[50];

 int year;

} textbook_t;

textbook_t book;

● EXAMPLE 10.1

● A single variable of a composite type designed for planets can store a planet’s
1. name
2. diameter
3. number of moons
4. the number of years to complete one solar orbit
5. the number of hours to make one rotation on its axis.

10.1 USER-DEFINED STRUCTURE TYPES

➢ This type definition is a template that describes the format of a planet structure and the name and
type of each component.

➢ A name chosen for a component of one structure may be the same as the name of a component

of another structure or the same as the name of a variable. (1)

➢ The typedef statement itself allocates no memory. A variable declaration is required to allocate
storage space for a structured data object.

 (2)

10.1 USER-DEFINED STRUCTURE TYPES

➢ The structured variables current_planet , previous_planet , and blank_planet all have the
format specified in the definition of type planet_t.

➢ Thus, the memory allocated for each consists of storage space for five distinct values.

 (1)

10.1 USER-DEFINED STRUCTURE TYPES

➢ A user-defined type like textbook_t can be used to declare both simple and array variables and
to declare components in other structure types.

➢ A structure containing components that are data structures (arrays or structs) is sometimes called

a hierarchical structure .

➢ The following definition of a structure type includes a component that is an array of textbooks.

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct {

 char author[100];

 int year;

 textbook_t books[10];

} all_textbooks_t;

➢ We can reference a component of a structure by using the direct component selection operator
, which is a period.

➢ The period is preceded by the name of a structure type variable and is followed by the name of

a component.

● Once data are stored in a record, they can be manipulated in the same way as other data in
memory.

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s was published in %d.\n",

book.title, book.year);
MyBook was published in 2000

strcpy(book.name, “MyBook”);

book.year = 2000;

Loading…

● EXAMPLE 10.2

Figure 10.1

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s's diameter is %.1f km.\n",

current_planet.name, current_planet.diameter);

Jupiter's diameter is 142800.0 km.

➢ See Table 10.1 p.572

● Manipulating Whole Structures
➢ The name of a structure type variable used with no component selection operator refers to the

entire structure.
➢ A new copy of a structure’s value can be made by simply assigning one structure to another as in

the following statement:

● Program Style: (1)
➢ To help reduce confusion, in this chapter we choose user-defined type names that use lowercase

letters and end in the suffix_t (2)

REVIEW OF OPERATOR PRECEDENCE

previous_planet = current_planet;

➢ When a structured variable is passed as an input argument to a function, all of its component
values are copied into the components of the function’s corresponding formal parameter.

➢ EXAMPLE 10.3, Figure 10.2 (1)

➢ To display the value of our structure current_planet , we would use the call statement:

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

print_planet(current_planet);

➢ Another function that would help us think of a planet as a data object is a function that would
perform an equality comparison of two planets.

➢ Although C permits copying of a structure using the assignment operator, the equality and

inequality operators CANNOT BE applied to a structured type as a unit.

➢ Figure 10.3 (1)

● Structures as output arguments:

➢ When such a variable is used as an output argument, the addressof operator must be applied in
the same way that we would pass output arguments of the standard types char , int , and double.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ Figure 10.4 (1)
➢ In order to use scanf to store a value in one component of the structure whose address is in plnp

, we must carry out the following steps (in order):

1. Follow the pointer in plnp to the structure.
2. Select the component of interest.
3. Unless this component is an array (e.g., component name in Fig. 10.4), get its address to pass

to scanf .

➢ When we check our precedence chart (see Table 10.1), we find that this reference
&*plnp.diameter would attempt step 2 before step 1.

➢ For this reason, the function in Fig. 10.4 overrides the default operator precedence by

parenthesizing the application of the indirect referencing (pointer-following) operator, the unary
*.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

Figure 10.5

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

status = scan_planet(¤t_planet);

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ indirect component selection operator (->) (1)

➢ If we rewrite the scan_planet function of Fig. 10.4 using the -> operator, the assignment to
result will be

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

(*structp).component structp->component=

result = scanf("%s%lf%d%lf%lf", plnp->name,

&plnp->diameter,

&plnp->moons,

&plnp->orbit_time,

&plnp->rotation_time);

➢ A function that computes a structured result can be modeled on a function computing a simple
result.

➢ A local variable of the structure type can be allocated, filled with the desired data, and returned

as the function result.

➢ The function does not return the address of the structure as it would with an array result; rather it
returns the values of all components.

➢ EXAMPLE 10.4, Fig. 10.6

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

current_planet = get_planet(); status = scan_planet(¤t_planet);
(1)

● EXAMPLE 10.5, Fig. 10.7 (1)
➢ Assuming a 24-hour clock, the structure type time_t is defined as follows:

➢ If time_now were 21:58:32 and secs had the value 97, the result returned by the call
new_time(time_now, secs) would be 22:00:09 (2)

➢ If the intent is to update time_now , an assignment statement is used:

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

typedef struct {

 int hour, minute, second;

} time_t;

time_now = new_time(time_now, secs);

Figure 10.8

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

● Parallel Arrays: (1)

➢ Arrays id and gpa are called parallel arrays because the data items with the same
subscript (for example, i) pertain to the same student (the ith student).

➢ Similarly, the ith elements of arrays x and y are the coordinates of one point.

➢ A better way to organize data collections like these is shown next.

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

● Declaring an Array of Structures:

➢ A more natural and convenient
organization of student data or polygon
points is to group the information
pertaining to one student or to one point in
a structure whose type we define. (1)

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

➢ The data for the first student are
stored in the structure stulist[0] .

➢ The individual data items are

stulist[0].id and stulist[0].gpa .
➢ stulist[0].gpa is 2.71 .

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

Figure 10.11

for (i = 0; i < MAX_STU; ++i) (1)

scan_student(&stulist[i]);

for (i = 0; i < MAX_STU; ++i) (2)

printf("%d\n", stulist[i].id);

CASE STUDY (Homework)
P. 594 – 602

Universal Measurement Conversion

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ When using the direct selection operator (.), always be aware of the type of the
component selected, and use the value in a manner consistent with its type. (1)

➢ For example, if the component selected is an array, passing it to a function as an

output argument does not require application of the address-of operator.

➢ If a structure type output parameter is used in a function, one can avoid the operator
precedence problems associated with combining the indirection (*) and direct
component selection (.) operators by using the indirect component selection operator
(->).

10.7 COMMON PROGRAMMING ERRORS

➢ C allows the use of structure type values in assignment statements as function
arguments and as function results, so one can easily forget that expressions of these
types cannot be operands of equality comparators or arguments of printf and scanf .

➢ You can select simple components from a structure to use in these contexts, or you

can write your own type-specific equality and I/O functions.

10.7 COMMON PROGRAMMING ERRORS

Loading…

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 10

Structure

Loading…

Chapter Objectives:

1. Declare a struct data type which consists of several data fields, each with its own name
and data type.

2. Use a struct to store data for a structured object or record.

3. Use dot notation to process individual fields of a structured object

4. Use structs as function parameters and to return function results

5. Understand the relationship between parallel arrays and arrays of structured objects.

And More…

➢ Unlike an array, a structure can have individual components that contain data
of different types.

➢ A single variable of a composite type designed for a textbook can store a book’s

author, title, publisher and year

➢ Each of these data items is stored in a separate component of the structure
and can be referenced by using the component name.

STRUCTU
RE

textbook => structure

author, title, publisher, year => components

Loading…

● Structure Type Definition:
● Before a structured data object can be created or saved, the format of its components

must be defined. (1)

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct { (2)

 char author[100];

 char title[100];

 char publisher[50];

 int year;

} textbook_t;

textbook_t book;

● EXAMPLE 10.1

● A single variable of a composite type designed for planets can store a planet’s
1. name
2. diameter
3. number of moons
4. the number of years to complete one solar orbit
5. the number of hours to make one rotation on its axis.

10.1 USER-DEFINED STRUCTURE TYPES

➢ This type definition is a template that describes the format of a planet structure and the name and
type of each component.

➢ A name chosen for a component of one structure may be the same as the name of a component

of another structure or the same as the name of a variable. (1)

➢ The typedef statement itself allocates no memory. A variable declaration is required to allocate
storage space for a structured data object.

 (2)

10.1 USER-DEFINED STRUCTURE TYPES

➢ The structured variables current_planet , previous_planet , and blank_planet all have the
format specified in the definition of type planet_t.

➢ Thus, the memory allocated for each consists of storage space for five distinct values.

 (1)

10.1 USER-DEFINED STRUCTURE TYPES

➢ A user-defined type like textbook_t can be used to declare both simple and array variables and
to declare components in other structure types.

➢ A structure containing components that are data structures (arrays or structs) is sometimes called

a hierarchical structure .

➢ The following definition of a structure type includes a component that is an array of textbooks.

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct {

 char author[100];

 int year;

 textbook_t books[10];

} all_textbooks_t;

➢ We can reference a component of a structure by using the direct component selection operator
, which is a period.

➢ The period is preceded by the name of a structure type variable and is followed by the name of

a component.

● Once data are stored in a record, they can be manipulated in the same way as other data in
memory.

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s was published in %d.\n",

book.title, book.year);
MyBook was published in 2000

strcpy(book.name, “MyBook”);

book.year = 2000;

Loading…

● EXAMPLE 10.2

Figure 10.1

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s's diameter is %.1f km.\n",

current_planet.name, current_planet.diameter);

Jupiter's diameter is 142800.0 km.

➢ See Table 10.1 p.572

● Manipulating Whole Structures
➢ The name of a structure type variable used with no component selection operator refers to the

entire structure.
➢ A new copy of a structure’s value can be made by simply assigning one structure to another as in

the following statement:

● Program Style: (1)
➢ To help reduce confusion, in this chapter we choose user-defined type names that use lowercase

letters and end in the suffix_t (2)

REVIEW OF OPERATOR PRECEDENCE

previous_planet = current_planet;

➢ When a structured variable is passed as an input argument to a function, all of its component
values are copied into the components of the function’s corresponding formal parameter.

➢ EXAMPLE 10.3, Figure 10.2 (1)

➢ To display the value of our structure current_planet , we would use the call statement:

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

print_planet(current_planet);

➢ Another function that would help us think of a planet as a data object is a function that would
perform an equality comparison of two planets.

➢ Although C permits copying of a structure using the assignment operator, the equality and

inequality operators CANNOT BE applied to a structured type as a unit.

➢ Figure 10.3 (1)

● Structures as output arguments:

➢ When such a variable is used as an output argument, the addressof operator must be applied in
the same way that we would pass output arguments of the standard types char , int , and double.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ Figure 10.4 (1)
➢ In order to use scanf to store a value in one component of the structure whose address is in plnp

, we must carry out the following steps (in order):

1. Follow the pointer in plnp to the structure.
2. Select the component of interest.
3. Unless this component is an array (e.g., component name in Fig. 10.4), get its address to pass

to scanf .

➢ When we check our precedence chart (see Table 10.1), we find that this reference
&*plnp.diameter would attempt step 2 before step 1.

➢ For this reason, the function in Fig. 10.4 overrides the default operator precedence by

parenthesizing the application of the indirect referencing (pointer-following) operator, the unary
*.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

Figure 10.5

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

status = scan_planet(¤t_planet);

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ indirect component selection operator (->) (1)

➢ If we rewrite the scan_planet function of Fig. 10.4 using the -> operator, the assignment to
result will be

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

(*structp).component structp->component=

result = scanf("%s%lf%d%lf%lf", plnp->name,

&plnp->diameter,

&plnp->moons,

&plnp->orbit_time,

&plnp->rotation_time);

➢ A function that computes a structured result can be modeled on a function computing a simple
result.

➢ A local variable of the structure type can be allocated, filled with the desired data, and returned

as the function result.

➢ The function does not return the address of the structure as it would with an array result; rather it
returns the values of all components.

➢ EXAMPLE 10.4, Fig. 10.6

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

current_planet = get_planet(); status = scan_planet(¤t_planet);
(1)

● EXAMPLE 10.5, Fig. 10.7 (1)
➢ Assuming a 24-hour clock, the structure type time_t is defined as follows:

➢ If time_now were 21:58:32 and secs had the value 97, the result returned by the call
new_time(time_now, secs) would be 22:00:09 (2)

➢ If the intent is to update time_now , an assignment statement is used:

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

typedef struct {

 int hour, minute, second;

} time_t;

time_now = new_time(time_now, secs);

Figure 10.8

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

● Parallel Arrays: (1)

➢ Arrays id and gpa are called parallel arrays because the data items with the same
subscript (for example, i) pertain to the same student (the ith student).

➢ Similarly, the ith elements of arrays x and y are the coordinates of one point.

➢ A better way to organize data collections like these is shown next.

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

● Declaring an Array of Structures:

➢ A more natural and convenient
organization of student data or polygon
points is to group the information
pertaining to one student or to one point in
a structure whose type we define. (1)

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

➢ The data for the first student are
stored in the structure stulist[0] .

➢ The individual data items are

stulist[0].id and stulist[0].gpa .
➢ stulist[0].gpa is 2.71 .

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

Figure 10.11

for (i = 0; i < MAX_STU; ++i) (1)

scan_student(&stulist[i]);

for (i = 0; i < MAX_STU; ++i) (2)

printf("%d\n", stulist[i].id);

CASE STUDY (Homework)
P. 594 – 602

Universal Measurement Conversion

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ When using the direct selection operator (.), always be aware of the type of the
component selected, and use the value in a manner consistent with its type. (1)

➢ For example, if the component selected is an array, passing it to a function as an

output argument does not require application of the address-of operator.

➢ If a structure type output parameter is used in a function, one can avoid the operator
precedence problems associated with combining the indirection (*) and direct
component selection (.) operators by using the indirect component selection operator
(->).

10.7 COMMON PROGRAMMING ERRORS

➢ C allows the use of structure type values in assignment statements as function
arguments and as function results, so one can easily forget that expressions of these
types cannot be operands of equality comparators or arguments of printf and scanf .

➢ You can select simple components from a structure to use in these contexts, or you

can write your own type-specific equality and I/O functions.

10.7 COMMON PROGRAMMING ERRORS

Loading…

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 10

Structure

Loading…

Chapter Objectives:

1. Declare a struct data type which consists of several data fields, each with its own name
and data type.

2. Use a struct to store data for a structured object or record.

3. Use dot notation to process individual fields of a structured object

4. Use structs as function parameters and to return function results

5. Understand the relationship between parallel arrays and arrays of structured objects.

And More…

➢ Unlike an array, a structure can have individual components that contain data
of different types.

➢ A single variable of a composite type designed for a textbook can store a book’s

author, title, publisher and year

➢ Each of these data items is stored in a separate component of the structure
and can be referenced by using the component name.

STRUCTU
RE

textbook => structure

author, title, publisher, year => components

Loading…

● Structure Type Definition:
● Before a structured data object can be created or saved, the format of its components

must be defined. (1)

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct { (2)

 char author[100];

 char title[100];

 char publisher[50];

 int year;

} textbook_t;

textbook_t book;

● EXAMPLE 10.1

● A single variable of a composite type designed for planets can store a planet’s
1. name
2. diameter
3. number of moons
4. the number of years to complete one solar orbit
5. the number of hours to make one rotation on its axis.

10.1 USER-DEFINED STRUCTURE TYPES

➢ This type definition is a template that describes the format of a planet structure and the name and
type of each component.

➢ A name chosen for a component of one structure may be the same as the name of a component

of another structure or the same as the name of a variable. (1)

➢ The typedef statement itself allocates no memory. A variable declaration is required to allocate
storage space for a structured data object.

 (2)

10.1 USER-DEFINED STRUCTURE TYPES

➢ The structured variables current_planet , previous_planet , and blank_planet all have the
format specified in the definition of type planet_t.

➢ Thus, the memory allocated for each consists of storage space for five distinct values.

 (1)

10.1 USER-DEFINED STRUCTURE TYPES

➢ A user-defined type like textbook_t can be used to declare both simple and array variables and
to declare components in other structure types.

➢ A structure containing components that are data structures (arrays or structs) is sometimes called

a hierarchical structure .

➢ The following definition of a structure type includes a component that is an array of textbooks.

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct {

 char author[100];

 int year;

 textbook_t books[10];

} all_textbooks_t;

➢ We can reference a component of a structure by using the direct component selection operator
, which is a period.

➢ The period is preceded by the name of a structure type variable and is followed by the name of

a component.

● Once data are stored in a record, they can be manipulated in the same way as other data in
memory.

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s was published in %d.\n",

book.title, book.year);
MyBook was published in 2000

strcpy(book.name, “MyBook”);

book.year = 2000;

Loading…

● EXAMPLE 10.2

Figure 10.1

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s's diameter is %.1f km.\n",

current_planet.name, current_planet.diameter);

Jupiter's diameter is 142800.0 km.

➢ See Table 10.1 p.572

● Manipulating Whole Structures
➢ The name of a structure type variable used with no component selection operator refers to the

entire structure.
➢ A new copy of a structure’s value can be made by simply assigning one structure to another as in

the following statement:

● Program Style: (1)
➢ To help reduce confusion, in this chapter we choose user-defined type names that use lowercase

letters and end in the suffix_t (2)

REVIEW OF OPERATOR PRECEDENCE

previous_planet = current_planet;

➢ When a structured variable is passed as an input argument to a function, all of its component
values are copied into the components of the function’s corresponding formal parameter.

➢ EXAMPLE 10.3, Figure 10.2 (1)

➢ To display the value of our structure current_planet , we would use the call statement:

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

print_planet(current_planet);

➢ Another function that would help us think of a planet as a data object is a function that would
perform an equality comparison of two planets.

➢ Although C permits copying of a structure using the assignment operator, the equality and

inequality operators CANNOT BE applied to a structured type as a unit.

➢ Figure 10.3 (1)

● Structures as output arguments:

➢ When such a variable is used as an output argument, the addressof operator must be applied in
the same way that we would pass output arguments of the standard types char , int , and double.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ Figure 10.4 (1)
➢ In order to use scanf to store a value in one component of the structure whose address is in plnp

, we must carry out the following steps (in order):

1. Follow the pointer in plnp to the structure.
2. Select the component of interest.
3. Unless this component is an array (e.g., component name in Fig. 10.4), get its address to pass

to scanf .

➢ When we check our precedence chart (see Table 10.1), we find that this reference
&*plnp.diameter would attempt step 2 before step 1.

➢ For this reason, the function in Fig. 10.4 overrides the default operator precedence by

parenthesizing the application of the indirect referencing (pointer-following) operator, the unary
*.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

Figure 10.5

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

status = scan_planet(¤t_planet);

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ indirect component selection operator (->) (1)

➢ If we rewrite the scan_planet function of Fig. 10.4 using the -> operator, the assignment to
result will be

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

(*structp).component structp->component=

result = scanf("%s%lf%d%lf%lf", plnp->name,

&plnp->diameter,

&plnp->moons,

&plnp->orbit_time,

&plnp->rotation_time);

➢ A function that computes a structured result can be modeled on a function computing a simple
result.

➢ A local variable of the structure type can be allocated, filled with the desired data, and returned

as the function result.

➢ The function does not return the address of the structure as it would with an array result; rather it
returns the values of all components.

➢ EXAMPLE 10.4, Fig. 10.6

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

current_planet = get_planet(); status = scan_planet(¤t_planet);
(1)

● EXAMPLE 10.5, Fig. 10.7 (1)
➢ Assuming a 24-hour clock, the structure type time_t is defined as follows:

➢ If time_now were 21:58:32 and secs had the value 97, the result returned by the call
new_time(time_now, secs) would be 22:00:09 (2)

➢ If the intent is to update time_now , an assignment statement is used:

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

typedef struct {

 int hour, minute, second;

} time_t;

time_now = new_time(time_now, secs);

Figure 10.8

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

● Parallel Arrays: (1)

➢ Arrays id and gpa are called parallel arrays because the data items with the same
subscript (for example, i) pertain to the same student (the ith student).

➢ Similarly, the ith elements of arrays x and y are the coordinates of one point.

➢ A better way to organize data collections like these is shown next.

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

● Declaring an Array of Structures:

➢ A more natural and convenient
organization of student data or polygon
points is to group the information
pertaining to one student or to one point in
a structure whose type we define. (1)

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

➢ The data for the first student are
stored in the structure stulist[0] .

➢ The individual data items are

stulist[0].id and stulist[0].gpa .
➢ stulist[0].gpa is 2.71 .

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

Figure 10.11

for (i = 0; i < MAX_STU; ++i) (1)

scan_student(&stulist[i]);

for (i = 0; i < MAX_STU; ++i) (2)

printf("%d\n", stulist[i].id);

CASE STUDY (Homework)
P. 594 – 602

Universal Measurement Conversion

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ When using the direct selection operator (.), always be aware of the type of the
component selected, and use the value in a manner consistent with its type. (1)

➢ For example, if the component selected is an array, passing it to a function as an

output argument does not require application of the address-of operator.

➢ If a structure type output parameter is used in a function, one can avoid the operator
precedence problems associated with combining the indirection (*) and direct
component selection (.) operators by using the indirect component selection operator
(->).

10.7 COMMON PROGRAMMING ERRORS

➢ C allows the use of structure type values in assignment statements as function
arguments and as function results, so one can easily forget that expressions of these
types cannot be operands of equality comparators or arguments of printf and scanf .

➢ You can select simple components from a structure to use in these contexts, or you

can write your own type-specific equality and I/O functions.

10.7 COMMON PROGRAMMING ERRORS

Loading…

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 10

Structure

Loading…

Chapter Objectives:

1. Declare a struct data type which consists of several data fields, each with its own name
and data type.

2. Use a struct to store data for a structured object or record.

3. Use dot notation to process individual fields of a structured object

4. Use structs as function parameters and to return function results

5. Understand the relationship between parallel arrays and arrays of structured objects.

And More…

➢ Unlike an array, a structure can have individual components that contain data
of different types.

➢ A single variable of a composite type designed for a textbook can store a book’s

author, title, publisher and year

➢ Each of these data items is stored in a separate component of the structure
and can be referenced by using the component name.

STRUCTU
RE

textbook => structure

author, title, publisher, year => components

Loading…

● Structure Type Definition:
● Before a structured data object can be created or saved, the format of its components

must be defined. (1)

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct { (2)

 char author[100];

 char title[100];

 char publisher[50];

 int year;

} textbook_t;

textbook_t book;

● EXAMPLE 10.1

● A single variable of a composite type designed for planets can store a planet’s
1. name
2. diameter
3. number of moons
4. the number of years to complete one solar orbit
5. the number of hours to make one rotation on its axis.

10.1 USER-DEFINED STRUCTURE TYPES

➢ This type definition is a template that describes the format of a planet structure and the name and
type of each component.

➢ A name chosen for a component of one structure may be the same as the name of a component

of another structure or the same as the name of a variable. (1)

➢ The typedef statement itself allocates no memory. A variable declaration is required to allocate
storage space for a structured data object.

 (2)

10.1 USER-DEFINED STRUCTURE TYPES

➢ The structured variables current_planet , previous_planet , and blank_planet all have the
format specified in the definition of type planet_t.

➢ Thus, the memory allocated for each consists of storage space for five distinct values.

 (1)

10.1 USER-DEFINED STRUCTURE TYPES

➢ A user-defined type like textbook_t can be used to declare both simple and array variables and
to declare components in other structure types.

➢ A structure containing components that are data structures (arrays or structs) is sometimes called

a hierarchical structure .

➢ The following definition of a structure type includes a component that is an array of textbooks.

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct {

 char author[100];

 int year;

 textbook_t books[10];

} all_textbooks_t;

➢ We can reference a component of a structure by using the direct component selection operator
, which is a period.

➢ The period is preceded by the name of a structure type variable and is followed by the name of

a component.

● Once data are stored in a record, they can be manipulated in the same way as other data in
memory.

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s was published in %d.\n",

book.title, book.year);
MyBook was published in 2000

strcpy(book.name, “MyBook”);

book.year = 2000;

Loading…

● EXAMPLE 10.2

Figure 10.1

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s's diameter is %.1f km.\n",

current_planet.name, current_planet.diameter);

Jupiter's diameter is 142800.0 km.

➢ See Table 10.1 p.572

● Manipulating Whole Structures
➢ The name of a structure type variable used with no component selection operator refers to the

entire structure.
➢ A new copy of a structure’s value can be made by simply assigning one structure to another as in

the following statement:

● Program Style: (1)
➢ To help reduce confusion, in this chapter we choose user-defined type names that use lowercase

letters and end in the suffix_t (2)

REVIEW OF OPERATOR PRECEDENCE

previous_planet = current_planet;

➢ When a structured variable is passed as an input argument to a function, all of its component
values are copied into the components of the function’s corresponding formal parameter.

➢ EXAMPLE 10.3, Figure 10.2 (1)

➢ To display the value of our structure current_planet , we would use the call statement:

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

print_planet(current_planet);

➢ Another function that would help us think of a planet as a data object is a function that would
perform an equality comparison of two planets.

➢ Although C permits copying of a structure using the assignment operator, the equality and

inequality operators CANNOT BE applied to a structured type as a unit.

➢ Figure 10.3 (1)

● Structures as output arguments:

➢ When such a variable is used as an output argument, the addressof operator must be applied in
the same way that we would pass output arguments of the standard types char , int , and double.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ Figure 10.4 (1)
➢ In order to use scanf to store a value in one component of the structure whose address is in plnp

, we must carry out the following steps (in order):

1. Follow the pointer in plnp to the structure.
2. Select the component of interest.
3. Unless this component is an array (e.g., component name in Fig. 10.4), get its address to pass

to scanf .

➢ When we check our precedence chart (see Table 10.1), we find that this reference
&*plnp.diameter would attempt step 2 before step 1.

➢ For this reason, the function in Fig. 10.4 overrides the default operator precedence by

parenthesizing the application of the indirect referencing (pointer-following) operator, the unary
*.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

Figure 10.5

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

status = scan_planet(¤t_planet);

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ indirect component selection operator (->) (1)

➢ If we rewrite the scan_planet function of Fig. 10.4 using the -> operator, the assignment to
result will be

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

(*structp).component structp->component=

result = scanf("%s%lf%d%lf%lf", plnp->name,

&plnp->diameter,

&plnp->moons,

&plnp->orbit_time,

&plnp->rotation_time);

➢ A function that computes a structured result can be modeled on a function computing a simple
result.

➢ A local variable of the structure type can be allocated, filled with the desired data, and returned

as the function result.

➢ The function does not return the address of the structure as it would with an array result; rather it
returns the values of all components.

➢ EXAMPLE 10.4, Fig. 10.6

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

current_planet = get_planet(); status = scan_planet(¤t_planet);
(1)

● EXAMPLE 10.5, Fig. 10.7 (1)
➢ Assuming a 24-hour clock, the structure type time_t is defined as follows:

➢ If time_now were 21:58:32 and secs had the value 97, the result returned by the call
new_time(time_now, secs) would be 22:00:09 (2)

➢ If the intent is to update time_now , an assignment statement is used:

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

typedef struct {

 int hour, minute, second;

} time_t;

time_now = new_time(time_now, secs);

Figure 10.8

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

● Parallel Arrays: (1)

➢ Arrays id and gpa are called parallel arrays because the data items with the same
subscript (for example, i) pertain to the same student (the ith student).

➢ Similarly, the ith elements of arrays x and y are the coordinates of one point.

➢ A better way to organize data collections like these is shown next.

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

● Declaring an Array of Structures:

➢ A more natural and convenient
organization of student data or polygon
points is to group the information
pertaining to one student or to one point in
a structure whose type we define. (1)

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

➢ The data for the first student are
stored in the structure stulist[0] .

➢ The individual data items are

stulist[0].id and stulist[0].gpa .
➢ stulist[0].gpa is 2.71 .

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

Figure 10.11

for (i = 0; i < MAX_STU; ++i) (1)

scan_student(&stulist[i]);

for (i = 0; i < MAX_STU; ++i) (2)

printf("%d\n", stulist[i].id);

CASE STUDY (Homework)
P. 594 – 602

Universal Measurement Conversion

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ When using the direct selection operator (.), always be aware of the type of the
component selected, and use the value in a manner consistent with its type. (1)

➢ For example, if the component selected is an array, passing it to a function as an

output argument does not require application of the address-of operator.

➢ If a structure type output parameter is used in a function, one can avoid the operator
precedence problems associated with combining the indirection (*) and direct
component selection (.) operators by using the indirect component selection operator
(->).

10.7 COMMON PROGRAMMING ERRORS

➢ C allows the use of structure type values in assignment statements as function
arguments and as function results, so one can easily forget that expressions of these
types cannot be operands of equality comparators or arguments of printf and scanf .

➢ You can select simple components from a structure to use in these contexts, or you

can write your own type-specific equality and I/O functions.

10.7 COMMON PROGRAMMING ERRORS

Loading…

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 10

Structure

Loading…

Chapter Objectives:

1. Declare a struct data type which consists of several data fields, each with its own name
and data type.

2. Use a struct to store data for a structured object or record.

3. Use dot notation to process individual fields of a structured object

4. Use structs as function parameters and to return function results

5. Understand the relationship between parallel arrays and arrays of structured objects.

And More…

➢ Unlike an array, a structure can have individual components that contain data
of different types.

➢ A single variable of a composite type designed for a textbook can store a book’s

author, title, publisher and year

➢ Each of these data items is stored in a separate component of the structure
and can be referenced by using the component name.

STRUCTU
RE

textbook => structure

author, title, publisher, year => components

Loading…

● Structure Type Definition:
● Before a structured data object can be created or saved, the format of its components

must be defined. (1)

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct { (2)

 char author[100];

 char title[100];

 char publisher[50];

 int year;

} textbook_t;

textbook_t book;

● EXAMPLE 10.1

● A single variable of a composite type designed for planets can store a planet’s
1. name
2. diameter
3. number of moons
4. the number of years to complete one solar orbit
5. the number of hours to make one rotation on its axis.

10.1 USER-DEFINED STRUCTURE TYPES

➢ This type definition is a template that describes the format of a planet structure and the name and
type of each component.

➢ A name chosen for a component of one structure may be the same as the name of a component

of another structure or the same as the name of a variable. (1)

➢ The typedef statement itself allocates no memory. A variable declaration is required to allocate
storage space for a structured data object.

 (2)

10.1 USER-DEFINED STRUCTURE TYPES

➢ The structured variables current_planet , previous_planet , and blank_planet all have the
format specified in the definition of type planet_t.

➢ Thus, the memory allocated for each consists of storage space for five distinct values.

 (1)

10.1 USER-DEFINED STRUCTURE TYPES

➢ A user-defined type like textbook_t can be used to declare both simple and array variables and
to declare components in other structure types.

➢ A structure containing components that are data structures (arrays or structs) is sometimes called

a hierarchical structure .

➢ The following definition of a structure type includes a component that is an array of textbooks.

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct {

 char author[100];

 int year;

 textbook_t books[10];

} all_textbooks_t;

➢ We can reference a component of a structure by using the direct component selection operator
, which is a period.

➢ The period is preceded by the name of a structure type variable and is followed by the name of

a component.

● Once data are stored in a record, they can be manipulated in the same way as other data in
memory.

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s was published in %d.\n",

book.title, book.year);
MyBook was published in 2000

strcpy(book.name, “MyBook”);

book.year = 2000;

Loading…

● EXAMPLE 10.2

Figure 10.1

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s's diameter is %.1f km.\n",

current_planet.name, current_planet.diameter);

Jupiter's diameter is 142800.0 km.

➢ See Table 10.1 p.572

● Manipulating Whole Structures
➢ The name of a structure type variable used with no component selection operator refers to the

entire structure.
➢ A new copy of a structure’s value can be made by simply assigning one structure to another as in

the following statement:

● Program Style: (1)
➢ To help reduce confusion, in this chapter we choose user-defined type names that use lowercase

letters and end in the suffix_t (2)

REVIEW OF OPERATOR PRECEDENCE

previous_planet = current_planet;

➢ When a structured variable is passed as an input argument to a function, all of its component
values are copied into the components of the function’s corresponding formal parameter.

➢ EXAMPLE 10.3, Figure 10.2 (1)

➢ To display the value of our structure current_planet , we would use the call statement:

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

print_planet(current_planet);

➢ Another function that would help us think of a planet as a data object is a function that would
perform an equality comparison of two planets.

➢ Although C permits copying of a structure using the assignment operator, the equality and

inequality operators CANNOT BE applied to a structured type as a unit.

➢ Figure 10.3 (1)

● Structures as output arguments:

➢ When such a variable is used as an output argument, the addressof operator must be applied in
the same way that we would pass output arguments of the standard types char , int , and double.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ Figure 10.4 (1)
➢ In order to use scanf to store a value in one component of the structure whose address is in plnp

, we must carry out the following steps (in order):

1. Follow the pointer in plnp to the structure.
2. Select the component of interest.
3. Unless this component is an array (e.g., component name in Fig. 10.4), get its address to pass

to scanf .

➢ When we check our precedence chart (see Table 10.1), we find that this reference
&*plnp.diameter would attempt step 2 before step 1.

➢ For this reason, the function in Fig. 10.4 overrides the default operator precedence by

parenthesizing the application of the indirect referencing (pointer-following) operator, the unary
*.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

Figure 10.5

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

status = scan_planet(¤t_planet);

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ indirect component selection operator (->) (1)

➢ If we rewrite the scan_planet function of Fig. 10.4 using the -> operator, the assignment to
result will be

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

(*structp).component structp->component=

result = scanf("%s%lf%d%lf%lf", plnp->name,

&plnp->diameter,

&plnp->moons,

&plnp->orbit_time,

&plnp->rotation_time);

➢ A function that computes a structured result can be modeled on a function computing a simple
result.

➢ A local variable of the structure type can be allocated, filled with the desired data, and returned

as the function result.

➢ The function does not return the address of the structure as it would with an array result; rather it
returns the values of all components.

➢ EXAMPLE 10.4, Fig. 10.6

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

current_planet = get_planet(); status = scan_planet(¤t_planet);
(1)

● EXAMPLE 10.5, Fig. 10.7 (1)
➢ Assuming a 24-hour clock, the structure type time_t is defined as follows:

➢ If time_now were 21:58:32 and secs had the value 97, the result returned by the call
new_time(time_now, secs) would be 22:00:09 (2)

➢ If the intent is to update time_now , an assignment statement is used:

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

typedef struct {

 int hour, minute, second;

} time_t;

time_now = new_time(time_now, secs);

Figure 10.8

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

● Parallel Arrays: (1)

➢ Arrays id and gpa are called parallel arrays because the data items with the same
subscript (for example, i) pertain to the same student (the ith student).

➢ Similarly, the ith elements of arrays x and y are the coordinates of one point.

➢ A better way to organize data collections like these is shown next.

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

● Declaring an Array of Structures:

➢ A more natural and convenient
organization of student data or polygon
points is to group the information
pertaining to one student or to one point in
a structure whose type we define. (1)

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

➢ The data for the first student are
stored in the structure stulist[0] .

➢ The individual data items are

stulist[0].id and stulist[0].gpa .
➢ stulist[0].gpa is 2.71 .

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

Figure 10.11

for (i = 0; i < MAX_STU; ++i) (1)

scan_student(&stulist[i]);

for (i = 0; i < MAX_STU; ++i) (2)

printf("%d\n", stulist[i].id);

CASE STUDY (Homework)
P. 594 – 602

Universal Measurement Conversion

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ When using the direct selection operator (.), always be aware of the type of the
component selected, and use the value in a manner consistent with its type. (1)

➢ For example, if the component selected is an array, passing it to a function as an

output argument does not require application of the address-of operator.

➢ If a structure type output parameter is used in a function, one can avoid the operator
precedence problems associated with combining the indirection (*) and direct
component selection (.) operators by using the indirect component selection operator
(->).

10.7 COMMON PROGRAMMING ERRORS

➢ C allows the use of structure type values in assignment statements as function
arguments and as function results, so one can easily forget that expressions of these
types cannot be operands of equality comparators or arguments of printf and scanf .

➢ You can select simple components from a structure to use in these contexts, or you

can write your own type-specific equality and I/O functions.

10.7 COMMON PROGRAMMING ERRORS

Loading…

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 10

Structure

Loading…

Chapter Objectives:

1. Declare a struct data type which consists of several data fields, each with its own name
and data type.

2. Use a struct to store data for a structured object or record.

3. Use dot notation to process individual fields of a structured object

4. Use structs as function parameters and to return function results

5. Understand the relationship between parallel arrays and arrays of structured objects.

And More…

➢ Unlike an array, a structure can have individual components that contain data
of different types.

➢ A single variable of a composite type designed for a textbook can store a book’s

author, title, publisher and year

➢ Each of these data items is stored in a separate component of the structure
and can be referenced by using the component name.

STRUCTU
RE

textbook => structure

author, title, publisher, year => components

Loading…

● Structure Type Definition:
● Before a structured data object can be created or saved, the format of its components

must be defined. (1)

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct { (2)

 char author[100];

 char title[100];

 char publisher[50];

 int year;

} textbook_t;

textbook_t book;

● EXAMPLE 10.1

● A single variable of a composite type designed for planets can store a planet’s
1. name
2. diameter
3. number of moons
4. the number of years to complete one solar orbit
5. the number of hours to make one rotation on its axis.

10.1 USER-DEFINED STRUCTURE TYPES

➢ This type definition is a template that describes the format of a planet structure and the name and
type of each component.

➢ A name chosen for a component of one structure may be the same as the name of a component

of another structure or the same as the name of a variable. (1)

➢ The typedef statement itself allocates no memory. A variable declaration is required to allocate
storage space for a structured data object.

 (2)

10.1 USER-DEFINED STRUCTURE TYPES

➢ The structured variables current_planet , previous_planet , and blank_planet all have the
format specified in the definition of type planet_t.

➢ Thus, the memory allocated for each consists of storage space for five distinct values.

 (1)

10.1 USER-DEFINED STRUCTURE TYPES

➢ A user-defined type like textbook_t can be used to declare both simple and array variables and
to declare components in other structure types.

➢ A structure containing components that are data structures (arrays or structs) is sometimes called

a hierarchical structure .

➢ The following definition of a structure type includes a component that is an array of textbooks.

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct {

 char author[100];

 int year;

 textbook_t books[10];

} all_textbooks_t;

➢ We can reference a component of a structure by using the direct component selection operator
, which is a period.

➢ The period is preceded by the name of a structure type variable and is followed by the name of

a component.

● Once data are stored in a record, they can be manipulated in the same way as other data in
memory.

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s was published in %d.\n",

book.title, book.year);
MyBook was published in 2000

strcpy(book.name, “MyBook”);

book.year = 2000;

Loading…

● EXAMPLE 10.2

Figure 10.1

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s's diameter is %.1f km.\n",

current_planet.name, current_planet.diameter);

Jupiter's diameter is 142800.0 km.

➢ See Table 10.1 p.572

● Manipulating Whole Structures
➢ The name of a structure type variable used with no component selection operator refers to the

entire structure.
➢ A new copy of a structure’s value can be made by simply assigning one structure to another as in

the following statement:

● Program Style: (1)
➢ To help reduce confusion, in this chapter we choose user-defined type names that use lowercase

letters and end in the suffix_t (2)

REVIEW OF OPERATOR PRECEDENCE

previous_planet = current_planet;

➢ When a structured variable is passed as an input argument to a function, all of its component
values are copied into the components of the function’s corresponding formal parameter.

➢ EXAMPLE 10.3, Figure 10.2 (1)

➢ To display the value of our structure current_planet , we would use the call statement:

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

print_planet(current_planet);

➢ Another function that would help us think of a planet as a data object is a function that would
perform an equality comparison of two planets.

➢ Although C permits copying of a structure using the assignment operator, the equality and

inequality operators CANNOT BE applied to a structured type as a unit.

➢ Figure 10.3 (1)

● Structures as output arguments:

➢ When such a variable is used as an output argument, the addressof operator must be applied in
the same way that we would pass output arguments of the standard types char , int , and double.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ Figure 10.4 (1)
➢ In order to use scanf to store a value in one component of the structure whose address is in plnp

, we must carry out the following steps (in order):

1. Follow the pointer in plnp to the structure.
2. Select the component of interest.
3. Unless this component is an array (e.g., component name in Fig. 10.4), get its address to pass

to scanf .

➢ When we check our precedence chart (see Table 10.1), we find that this reference
&*plnp.diameter would attempt step 2 before step 1.

➢ For this reason, the function in Fig. 10.4 overrides the default operator precedence by

parenthesizing the application of the indirect referencing (pointer-following) operator, the unary
*.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

Figure 10.5

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

status = scan_planet(¤t_planet);

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ indirect component selection operator (->) (1)

➢ If we rewrite the scan_planet function of Fig. 10.4 using the -> operator, the assignment to
result will be

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

(*structp).component structp->component=

result = scanf("%s%lf%d%lf%lf", plnp->name,

&plnp->diameter,

&plnp->moons,

&plnp->orbit_time,

&plnp->rotation_time);

➢ A function that computes a structured result can be modeled on a function computing a simple
result.

➢ A local variable of the structure type can be allocated, filled with the desired data, and returned

as the function result.

➢ The function does not return the address of the structure as it would with an array result; rather it
returns the values of all components.

➢ EXAMPLE 10.4, Fig. 10.6

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

current_planet = get_planet(); status = scan_planet(¤t_planet);
(1)

● EXAMPLE 10.5, Fig. 10.7 (1)
➢ Assuming a 24-hour clock, the structure type time_t is defined as follows:

➢ If time_now were 21:58:32 and secs had the value 97, the result returned by the call
new_time(time_now, secs) would be 22:00:09 (2)

➢ If the intent is to update time_now , an assignment statement is used:

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

typedef struct {

 int hour, minute, second;

} time_t;

time_now = new_time(time_now, secs);

Figure 10.8

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

● Parallel Arrays: (1)

➢ Arrays id and gpa are called parallel arrays because the data items with the same
subscript (for example, i) pertain to the same student (the ith student).

➢ Similarly, the ith elements of arrays x and y are the coordinates of one point.

➢ A better way to organize data collections like these is shown next.

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

● Declaring an Array of Structures:

➢ A more natural and convenient
organization of student data or polygon
points is to group the information
pertaining to one student or to one point in
a structure whose type we define. (1)

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

➢ The data for the first student are
stored in the structure stulist[0] .

➢ The individual data items are

stulist[0].id and stulist[0].gpa .
➢ stulist[0].gpa is 2.71 .

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

Figure 10.11

for (i = 0; i < MAX_STU; ++i) (1)

scan_student(&stulist[i]);

for (i = 0; i < MAX_STU; ++i) (2)

printf("%d\n", stulist[i].id);

CASE STUDY (Homework)
P. 594 – 602

Universal Measurement Conversion

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ When using the direct selection operator (.), always be aware of the type of the
component selected, and use the value in a manner consistent with its type. (1)

➢ For example, if the component selected is an array, passing it to a function as an

output argument does not require application of the address-of operator.

➢ If a structure type output parameter is used in a function, one can avoid the operator
precedence problems associated with combining the indirection (*) and direct
component selection (.) operators by using the indirect component selection operator
(->).

10.7 COMMON PROGRAMMING ERRORS

➢ C allows the use of structure type values in assignment statements as function
arguments and as function results, so one can easily forget that expressions of these
types cannot be operands of equality comparators or arguments of printf and scanf .

➢ You can select simple components from a structure to use in these contexts, or you

can write your own type-specific equality and I/O functions.

10.7 COMMON PROGRAMMING ERRORS

Loading…

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 10

Structure

Loading…

Chapter Objectives:

1. Declare a struct data type which consists of several data fields, each with its own name
and data type.

2. Use a struct to store data for a structured object or record.

3. Use dot notation to process individual fields of a structured object

4. Use structs as function parameters and to return function results

5. Understand the relationship between parallel arrays and arrays of structured objects.

And More…

➢ Unlike an array, a structure can have individual components that contain data
of different types.

➢ A single variable of a composite type designed for a textbook can store a book’s

author, title, publisher and year

➢ Each of these data items is stored in a separate component of the structure
and can be referenced by using the component name.

STRUCTU
RE

textbook => structure

author, title, publisher, year => components

Loading…

● Structure Type Definition:
● Before a structured data object can be created or saved, the format of its components

must be defined. (1)

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct { (2)

 char author[100];

 char title[100];

 char publisher[50];

 int year;

} textbook_t;

textbook_t book;

● EXAMPLE 10.1

● A single variable of a composite type designed for planets can store a planet’s
1. name
2. diameter
3. number of moons
4. the number of years to complete one solar orbit
5. the number of hours to make one rotation on its axis.

10.1 USER-DEFINED STRUCTURE TYPES

➢ This type definition is a template that describes the format of a planet structure and the name and
type of each component.

➢ A name chosen for a component of one structure may be the same as the name of a component

of another structure or the same as the name of a variable. (1)

➢ The typedef statement itself allocates no memory. A variable declaration is required to allocate
storage space for a structured data object.

 (2)

10.1 USER-DEFINED STRUCTURE TYPES

➢ The structured variables current_planet , previous_planet , and blank_planet all have the
format specified in the definition of type planet_t.

➢ Thus, the memory allocated for each consists of storage space for five distinct values.

 (1)

10.1 USER-DEFINED STRUCTURE TYPES

➢ A user-defined type like textbook_t can be used to declare both simple and array variables and
to declare components in other structure types.

➢ A structure containing components that are data structures (arrays or structs) is sometimes called

a hierarchical structure .

➢ The following definition of a structure type includes a component that is an array of textbooks.

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct {

 char author[100];

 int year;

 textbook_t books[10];

} all_textbooks_t;

➢ We can reference a component of a structure by using the direct component selection operator
, which is a period.

➢ The period is preceded by the name of a structure type variable and is followed by the name of

a component.

● Once data are stored in a record, they can be manipulated in the same way as other data in
memory.

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s was published in %d.\n",

book.title, book.year);
MyBook was published in 2000

strcpy(book.name, “MyBook”);

book.year = 2000;

Loading…

● EXAMPLE 10.2

Figure 10.1

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s's diameter is %.1f km.\n",

current_planet.name, current_planet.diameter);

Jupiter's diameter is 142800.0 km.

➢ See Table 10.1 p.572

● Manipulating Whole Structures
➢ The name of a structure type variable used with no component selection operator refers to the

entire structure.
➢ A new copy of a structure’s value can be made by simply assigning one structure to another as in

the following statement:

● Program Style: (1)
➢ To help reduce confusion, in this chapter we choose user-defined type names that use lowercase

letters and end in the suffix_t (2)

REVIEW OF OPERATOR PRECEDENCE

previous_planet = current_planet;

➢ When a structured variable is passed as an input argument to a function, all of its component
values are copied into the components of the function’s corresponding formal parameter.

➢ EXAMPLE 10.3, Figure 10.2 (1)

➢ To display the value of our structure current_planet , we would use the call statement:

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

print_planet(current_planet);

➢ Another function that would help us think of a planet as a data object is a function that would
perform an equality comparison of two planets.

➢ Although C permits copying of a structure using the assignment operator, the equality and

inequality operators CANNOT BE applied to a structured type as a unit.

➢ Figure 10.3 (1)

● Structures as output arguments:

➢ When such a variable is used as an output argument, the addressof operator must be applied in
the same way that we would pass output arguments of the standard types char , int , and double.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ Figure 10.4 (1)
➢ In order to use scanf to store a value in one component of the structure whose address is in plnp

, we must carry out the following steps (in order):

1. Follow the pointer in plnp to the structure.
2. Select the component of interest.
3. Unless this component is an array (e.g., component name in Fig. 10.4), get its address to pass

to scanf .

➢ When we check our precedence chart (see Table 10.1), we find that this reference
&*plnp.diameter would attempt step 2 before step 1.

➢ For this reason, the function in Fig. 10.4 overrides the default operator precedence by

parenthesizing the application of the indirect referencing (pointer-following) operator, the unary
*.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

Figure 10.5

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

status = scan_planet(¤t_planet);

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ indirect component selection operator (->) (1)

➢ If we rewrite the scan_planet function of Fig. 10.4 using the -> operator, the assignment to
result will be

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

(*structp).component structp->component=

result = scanf("%s%lf%d%lf%lf", plnp->name,

&plnp->diameter,

&plnp->moons,

&plnp->orbit_time,

&plnp->rotation_time);

➢ A function that computes a structured result can be modeled on a function computing a simple
result.

➢ A local variable of the structure type can be allocated, filled with the desired data, and returned

as the function result.

➢ The function does not return the address of the structure as it would with an array result; rather it
returns the values of all components.

➢ EXAMPLE 10.4, Fig. 10.6

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

current_planet = get_planet(); status = scan_planet(¤t_planet);
(1)

● EXAMPLE 10.5, Fig. 10.7 (1)
➢ Assuming a 24-hour clock, the structure type time_t is defined as follows:

➢ If time_now were 21:58:32 and secs had the value 97, the result returned by the call
new_time(time_now, secs) would be 22:00:09 (2)

➢ If the intent is to update time_now , an assignment statement is used:

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

typedef struct {

 int hour, minute, second;

} time_t;

time_now = new_time(time_now, secs);

Figure 10.8

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

● Parallel Arrays: (1)

➢ Arrays id and gpa are called parallel arrays because the data items with the same
subscript (for example, i) pertain to the same student (the ith student).

➢ Similarly, the ith elements of arrays x and y are the coordinates of one point.

➢ A better way to organize data collections like these is shown next.

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

● Declaring an Array of Structures:

➢ A more natural and convenient
organization of student data or polygon
points is to group the information
pertaining to one student or to one point in
a structure whose type we define. (1)

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

➢ The data for the first student are
stored in the structure stulist[0] .

➢ The individual data items are

stulist[0].id and stulist[0].gpa .
➢ stulist[0].gpa is 2.71 .

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

Figure 10.11

for (i = 0; i < MAX_STU; ++i) (1)

scan_student(&stulist[i]);

for (i = 0; i < MAX_STU; ++i) (2)

printf("%d\n", stulist[i].id);

CASE STUDY (Homework)
P. 594 – 602

Universal Measurement Conversion

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ When using the direct selection operator (.), always be aware of the type of the
component selected, and use the value in a manner consistent with its type. (1)

➢ For example, if the component selected is an array, passing it to a function as an

output argument does not require application of the address-of operator.

➢ If a structure type output parameter is used in a function, one can avoid the operator
precedence problems associated with combining the indirection (*) and direct
component selection (.) operators by using the indirect component selection operator
(->).

10.7 COMMON PROGRAMMING ERRORS

➢ C allows the use of structure type values in assignment statements as function
arguments and as function results, so one can easily forget that expressions of these
types cannot be operands of equality comparators or arguments of printf and scanf .

➢ You can select simple components from a structure to use in these contexts, or you

can write your own type-specific equality and I/O functions.

10.7 COMMON PROGRAMMING ERRORS

Loading…

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 10

Structure

Loading…

Chapter Objectives:

1. Declare a struct data type which consists of several data fields, each with its own name
and data type.

2. Use a struct to store data for a structured object or record.

3. Use dot notation to process individual fields of a structured object

4. Use structs as function parameters and to return function results

5. Understand the relationship between parallel arrays and arrays of structured objects.

And More…

➢ Unlike an array, a structure can have individual components that contain data
of different types.

➢ A single variable of a composite type designed for a textbook can store a book’s

author, title, publisher and year

➢ Each of these data items is stored in a separate component of the structure
and can be referenced by using the component name.

STRUCTU
RE

textbook => structure

author, title, publisher, year => components

Loading…

● Structure Type Definition:
● Before a structured data object can be created or saved, the format of its components

must be defined. (1)

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct { (2)

 char author[100];

 char title[100];

 char publisher[50];

 int year;

} textbook_t;

textbook_t book;

● EXAMPLE 10.1

● A single variable of a composite type designed for planets can store a planet’s
1. name
2. diameter
3. number of moons
4. the number of years to complete one solar orbit
5. the number of hours to make one rotation on its axis.

10.1 USER-DEFINED STRUCTURE TYPES

➢ This type definition is a template that describes the format of a planet structure and the name and
type of each component.

➢ A name chosen for a component of one structure may be the same as the name of a component

of another structure or the same as the name of a variable. (1)

➢ The typedef statement itself allocates no memory. A variable declaration is required to allocate
storage space for a structured data object.

 (2)

10.1 USER-DEFINED STRUCTURE TYPES

➢ The structured variables current_planet , previous_planet , and blank_planet all have the
format specified in the definition of type planet_t.

➢ Thus, the memory allocated for each consists of storage space for five distinct values.

 (1)

10.1 USER-DEFINED STRUCTURE TYPES

➢ A user-defined type like textbook_t can be used to declare both simple and array variables and
to declare components in other structure types.

➢ A structure containing components that are data structures (arrays or structs) is sometimes called

a hierarchical structure .

➢ The following definition of a structure type includes a component that is an array of textbooks.

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct {

 char author[100];

 int year;

 textbook_t books[10];

} all_textbooks_t;

➢ We can reference a component of a structure by using the direct component selection operator
, which is a period.

➢ The period is preceded by the name of a structure type variable and is followed by the name of

a component.

● Once data are stored in a record, they can be manipulated in the same way as other data in
memory.

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s was published in %d.\n",

book.title, book.year);
MyBook was published in 2000

strcpy(book.name, “MyBook”);

book.year = 2000;

Loading…

● EXAMPLE 10.2

Figure 10.1

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s's diameter is %.1f km.\n",

current_planet.name, current_planet.diameter);

Jupiter's diameter is 142800.0 km.

➢ See Table 10.1 p.572

● Manipulating Whole Structures
➢ The name of a structure type variable used with no component selection operator refers to the

entire structure.
➢ A new copy of a structure’s value can be made by simply assigning one structure to another as in

the following statement:

● Program Style: (1)
➢ To help reduce confusion, in this chapter we choose user-defined type names that use lowercase

letters and end in the suffix_t (2)

REVIEW OF OPERATOR PRECEDENCE

previous_planet = current_planet;

➢ When a structured variable is passed as an input argument to a function, all of its component
values are copied into the components of the function’s corresponding formal parameter.

➢ EXAMPLE 10.3, Figure 10.2 (1)

➢ To display the value of our structure current_planet , we would use the call statement:

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

print_planet(current_planet);

➢ Another function that would help us think of a planet as a data object is a function that would
perform an equality comparison of two planets.

➢ Although C permits copying of a structure using the assignment operator, the equality and

inequality operators CANNOT BE applied to a structured type as a unit.

➢ Figure 10.3 (1)

● Structures as output arguments:

➢ When such a variable is used as an output argument, the addressof operator must be applied in
the same way that we would pass output arguments of the standard types char , int , and double.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ Figure 10.4 (1)
➢ In order to use scanf to store a value in one component of the structure whose address is in plnp

, we must carry out the following steps (in order):

1. Follow the pointer in plnp to the structure.
2. Select the component of interest.
3. Unless this component is an array (e.g., component name in Fig. 10.4), get its address to pass

to scanf .

➢ When we check our precedence chart (see Table 10.1), we find that this reference
&*plnp.diameter would attempt step 2 before step 1.

➢ For this reason, the function in Fig. 10.4 overrides the default operator precedence by

parenthesizing the application of the indirect referencing (pointer-following) operator, the unary
*.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

Figure 10.5

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

status = scan_planet(¤t_planet);

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ indirect component selection operator (->) (1)

➢ If we rewrite the scan_planet function of Fig. 10.4 using the -> operator, the assignment to
result will be

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

(*structp).component structp->component=

result = scanf("%s%lf%d%lf%lf", plnp->name,

&plnp->diameter,

&plnp->moons,

&plnp->orbit_time,

&plnp->rotation_time);

➢ A function that computes a structured result can be modeled on a function computing a simple
result.

➢ A local variable of the structure type can be allocated, filled with the desired data, and returned

as the function result.

➢ The function does not return the address of the structure as it would with an array result; rather it
returns the values of all components.

➢ EXAMPLE 10.4, Fig. 10.6

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

current_planet = get_planet(); status = scan_planet(¤t_planet);
(1)

● EXAMPLE 10.5, Fig. 10.7 (1)
➢ Assuming a 24-hour clock, the structure type time_t is defined as follows:

➢ If time_now were 21:58:32 and secs had the value 97, the result returned by the call
new_time(time_now, secs) would be 22:00:09 (2)

➢ If the intent is to update time_now , an assignment statement is used:

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

typedef struct {

 int hour, minute, second;

} time_t;

time_now = new_time(time_now, secs);

Figure 10.8

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

● Parallel Arrays: (1)

➢ Arrays id and gpa are called parallel arrays because the data items with the same
subscript (for example, i) pertain to the same student (the ith student).

➢ Similarly, the ith elements of arrays x and y are the coordinates of one point.

➢ A better way to organize data collections like these is shown next.

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

● Declaring an Array of Structures:

➢ A more natural and convenient
organization of student data or polygon
points is to group the information
pertaining to one student or to one point in
a structure whose type we define. (1)

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

➢ The data for the first student are
stored in the structure stulist[0] .

➢ The individual data items are

stulist[0].id and stulist[0].gpa .
➢ stulist[0].gpa is 2.71 .

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

Figure 10.11

for (i = 0; i < MAX_STU; ++i) (1)

scan_student(&stulist[i]);

for (i = 0; i < MAX_STU; ++i) (2)

printf("%d\n", stulist[i].id);

CASE STUDY (Homework)
P. 594 – 602

Universal Measurement Conversion

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ When using the direct selection operator (.), always be aware of the type of the
component selected, and use the value in a manner consistent with its type. (1)

➢ For example, if the component selected is an array, passing it to a function as an

output argument does not require application of the address-of operator.

➢ If a structure type output parameter is used in a function, one can avoid the operator
precedence problems associated with combining the indirection (*) and direct
component selection (.) operators by using the indirect component selection operator
(->).

10.7 COMMON PROGRAMMING ERRORS

➢ C allows the use of structure type values in assignment statements as function
arguments and as function results, so one can easily forget that expressions of these
types cannot be operands of equality comparators or arguments of printf and scanf .

➢ You can select simple components from a structure to use in these contexts, or you

can write your own type-specific equality and I/O functions.

10.7 COMMON PROGRAMMING ERRORS

Loading…

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 10

Structure

Loading…

Chapter Objectives:

1. Declare a struct data type which consists of several data fields, each with its own name
and data type.

2. Use a struct to store data for a structured object or record.

3. Use dot notation to process individual fields of a structured object

4. Use structs as function parameters and to return function results

5. Understand the relationship between parallel arrays and arrays of structured objects.

And More…

➢ Unlike an array, a structure can have individual components that contain data
of different types.

➢ A single variable of a composite type designed for a textbook can store a book’s

author, title, publisher and year

➢ Each of these data items is stored in a separate component of the structure
and can be referenced by using the component name.

STRUCTU
RE

textbook => structure

author, title, publisher, year => components

Loading…

● Structure Type Definition:
● Before a structured data object can be created or saved, the format of its components

must be defined. (1)

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct { (2)

 char author[100];

 char title[100];

 char publisher[50];

 int year;

} textbook_t;

textbook_t book;

● EXAMPLE 10.1

● A single variable of a composite type designed for planets can store a planet’s
1. name
2. diameter
3. number of moons
4. the number of years to complete one solar orbit
5. the number of hours to make one rotation on its axis.

10.1 USER-DEFINED STRUCTURE TYPES

➢ This type definition is a template that describes the format of a planet structure and the name and
type of each component.

➢ A name chosen for a component of one structure may be the same as the name of a component

of another structure or the same as the name of a variable. (1)

➢ The typedef statement itself allocates no memory. A variable declaration is required to allocate
storage space for a structured data object.

 (2)

10.1 USER-DEFINED STRUCTURE TYPES

➢ The structured variables current_planet , previous_planet , and blank_planet all have the
format specified in the definition of type planet_t.

➢ Thus, the memory allocated for each consists of storage space for five distinct values.

 (1)

10.1 USER-DEFINED STRUCTURE TYPES

➢ A user-defined type like textbook_t can be used to declare both simple and array variables and
to declare components in other structure types.

➢ A structure containing components that are data structures (arrays or structs) is sometimes called

a hierarchical structure .

➢ The following definition of a structure type includes a component that is an array of textbooks.

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct {

 char author[100];

 int year;

 textbook_t books[10];

} all_textbooks_t;

➢ We can reference a component of a structure by using the direct component selection operator
, which is a period.

➢ The period is preceded by the name of a structure type variable and is followed by the name of

a component.

● Once data are stored in a record, they can be manipulated in the same way as other data in
memory.

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s was published in %d.\n",

book.title, book.year);
MyBook was published in 2000

strcpy(book.name, “MyBook”);

book.year = 2000;

Loading…

● EXAMPLE 10.2

Figure 10.1

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s's diameter is %.1f km.\n",

current_planet.name, current_planet.diameter);

Jupiter's diameter is 142800.0 km.

➢ See Table 10.1 p.572

● Manipulating Whole Structures
➢ The name of a structure type variable used with no component selection operator refers to the

entire structure.
➢ A new copy of a structure’s value can be made by simply assigning one structure to another as in

the following statement:

● Program Style: (1)
➢ To help reduce confusion, in this chapter we choose user-defined type names that use lowercase

letters and end in the suffix_t (2)

REVIEW OF OPERATOR PRECEDENCE

previous_planet = current_planet;

➢ When a structured variable is passed as an input argument to a function, all of its component
values are copied into the components of the function’s corresponding formal parameter.

➢ EXAMPLE 10.3, Figure 10.2 (1)

➢ To display the value of our structure current_planet , we would use the call statement:

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

print_planet(current_planet);

➢ Another function that would help us think of a planet as a data object is a function that would
perform an equality comparison of two planets.

➢ Although C permits copying of a structure using the assignment operator, the equality and

inequality operators CANNOT BE applied to a structured type as a unit.

➢ Figure 10.3 (1)

● Structures as output arguments:

➢ When such a variable is used as an output argument, the addressof operator must be applied in
the same way that we would pass output arguments of the standard types char , int , and double.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ Figure 10.4 (1)
➢ In order to use scanf to store a value in one component of the structure whose address is in plnp

, we must carry out the following steps (in order):

1. Follow the pointer in plnp to the structure.
2. Select the component of interest.
3. Unless this component is an array (e.g., component name in Fig. 10.4), get its address to pass

to scanf .

➢ When we check our precedence chart (see Table 10.1), we find that this reference
&*plnp.diameter would attempt step 2 before step 1.

➢ For this reason, the function in Fig. 10.4 overrides the default operator precedence by

parenthesizing the application of the indirect referencing (pointer-following) operator, the unary
*.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

Figure 10.5

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

status = scan_planet(¤t_planet);

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ indirect component selection operator (->) (1)

➢ If we rewrite the scan_planet function of Fig. 10.4 using the -> operator, the assignment to
result will be

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

(*structp).component structp->component=

result = scanf("%s%lf%d%lf%lf", plnp->name,

&plnp->diameter,

&plnp->moons,

&plnp->orbit_time,

&plnp->rotation_time);

➢ A function that computes a structured result can be modeled on a function computing a simple
result.

➢ A local variable of the structure type can be allocated, filled with the desired data, and returned

as the function result.

➢ The function does not return the address of the structure as it would with an array result; rather it
returns the values of all components.

➢ EXAMPLE 10.4, Fig. 10.6

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

current_planet = get_planet(); status = scan_planet(¤t_planet);
(1)

● EXAMPLE 10.5, Fig. 10.7 (1)
➢ Assuming a 24-hour clock, the structure type time_t is defined as follows:

➢ If time_now were 21:58:32 and secs had the value 97, the result returned by the call
new_time(time_now, secs) would be 22:00:09 (2)

➢ If the intent is to update time_now , an assignment statement is used:

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

typedef struct {

 int hour, minute, second;

} time_t;

time_now = new_time(time_now, secs);

Figure 10.8

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

● Parallel Arrays: (1)

➢ Arrays id and gpa are called parallel arrays because the data items with the same
subscript (for example, i) pertain to the same student (the ith student).

➢ Similarly, the ith elements of arrays x and y are the coordinates of one point.

➢ A better way to organize data collections like these is shown next.

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

● Declaring an Array of Structures:

➢ A more natural and convenient
organization of student data or polygon
points is to group the information
pertaining to one student or to one point in
a structure whose type we define. (1)

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

➢ The data for the first student are
stored in the structure stulist[0] .

➢ The individual data items are

stulist[0].id and stulist[0].gpa .
➢ stulist[0].gpa is 2.71 .

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

Figure 10.11

for (i = 0; i < MAX_STU; ++i) (1)

scan_student(&stulist[i]);

for (i = 0; i < MAX_STU; ++i) (2)

printf("%d\n", stulist[i].id);

CASE STUDY (Homework)
P. 594 – 602

Universal Measurement Conversion

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ When using the direct selection operator (.), always be aware of the type of the
component selected, and use the value in a manner consistent with its type. (1)

➢ For example, if the component selected is an array, passing it to a function as an

output argument does not require application of the address-of operator.

➢ If a structure type output parameter is used in a function, one can avoid the operator
precedence problems associated with combining the indirection (*) and direct
component selection (.) operators by using the indirect component selection operator
(->).

10.7 COMMON PROGRAMMING ERRORS

➢ C allows the use of structure type values in assignment statements as function
arguments and as function results, so one can easily forget that expressions of these
types cannot be operands of equality comparators or arguments of printf and scanf .

➢ You can select simple components from a structure to use in these contexts, or you

can write your own type-specific equality and I/O functions.

10.7 COMMON PROGRAMMING ERRORS

Loading…

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 10

Structure

Loading…

Chapter Objectives:

1. Declare a struct data type which consists of several data fields, each with its own name
and data type.

2. Use a struct to store data for a structured object or record.

3. Use dot notation to process individual fields of a structured object

4. Use structs as function parameters and to return function results

5. Understand the relationship between parallel arrays and arrays of structured objects.

And More…

➢ Unlike an array, a structure can have individual components that contain data
of different types.

➢ A single variable of a composite type designed for a textbook can store a book’s

author, title, publisher and year

➢ Each of these data items is stored in a separate component of the structure
and can be referenced by using the component name.

STRUCTU
RE

textbook => structure

author, title, publisher, year => components

Loading…

● Structure Type Definition:
● Before a structured data object can be created or saved, the format of its components

must be defined. (1)

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct { (2)

 char author[100];

 char title[100];

 char publisher[50];

 int year;

} textbook_t;

textbook_t book;

● EXAMPLE 10.1

● A single variable of a composite type designed for planets can store a planet’s
1. name
2. diameter
3. number of moons
4. the number of years to complete one solar orbit
5. the number of hours to make one rotation on its axis.

10.1 USER-DEFINED STRUCTURE TYPES

➢ This type definition is a template that describes the format of a planet structure and the name and
type of each component.

➢ A name chosen for a component of one structure may be the same as the name of a component

of another structure or the same as the name of a variable. (1)

➢ The typedef statement itself allocates no memory. A variable declaration is required to allocate
storage space for a structured data object.

 (2)

10.1 USER-DEFINED STRUCTURE TYPES

➢ The structured variables current_planet , previous_planet , and blank_planet all have the
format specified in the definition of type planet_t.

➢ Thus, the memory allocated for each consists of storage space for five distinct values.

 (1)

10.1 USER-DEFINED STRUCTURE TYPES

➢ A user-defined type like textbook_t can be used to declare both simple and array variables and
to declare components in other structure types.

➢ A structure containing components that are data structures (arrays or structs) is sometimes called

a hierarchical structure .

➢ The following definition of a structure type includes a component that is an array of textbooks.

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct {

 char author[100];

 int year;

 textbook_t books[10];

} all_textbooks_t;

➢ We can reference a component of a structure by using the direct component selection operator
, which is a period.

➢ The period is preceded by the name of a structure type variable and is followed by the name of

a component.

● Once data are stored in a record, they can be manipulated in the same way as other data in
memory.

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s was published in %d.\n",

book.title, book.year);
MyBook was published in 2000

strcpy(book.name, “MyBook”);

book.year = 2000;

Loading…

● EXAMPLE 10.2

Figure 10.1

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s's diameter is %.1f km.\n",

current_planet.name, current_planet.diameter);

Jupiter's diameter is 142800.0 km.

➢ See Table 10.1 p.572

● Manipulating Whole Structures
➢ The name of a structure type variable used with no component selection operator refers to the

entire structure.
➢ A new copy of a structure’s value can be made by simply assigning one structure to another as in

the following statement:

● Program Style: (1)
➢ To help reduce confusion, in this chapter we choose user-defined type names that use lowercase

letters and end in the suffix_t (2)

REVIEW OF OPERATOR PRECEDENCE

previous_planet = current_planet;

➢ When a structured variable is passed as an input argument to a function, all of its component
values are copied into the components of the function’s corresponding formal parameter.

➢ EXAMPLE 10.3, Figure 10.2 (1)

➢ To display the value of our structure current_planet , we would use the call statement:

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

print_planet(current_planet);

➢ Another function that would help us think of a planet as a data object is a function that would
perform an equality comparison of two planets.

➢ Although C permits copying of a structure using the assignment operator, the equality and

inequality operators CANNOT BE applied to a structured type as a unit.

➢ Figure 10.3 (1)

● Structures as output arguments:

➢ When such a variable is used as an output argument, the addressof operator must be applied in
the same way that we would pass output arguments of the standard types char , int , and double.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ Figure 10.4 (1)
➢ In order to use scanf to store a value in one component of the structure whose address is in plnp

, we must carry out the following steps (in order):

1. Follow the pointer in plnp to the structure.
2. Select the component of interest.
3. Unless this component is an array (e.g., component name in Fig. 10.4), get its address to pass

to scanf .

➢ When we check our precedence chart (see Table 10.1), we find that this reference
&*plnp.diameter would attempt step 2 before step 1.

➢ For this reason, the function in Fig. 10.4 overrides the default operator precedence by

parenthesizing the application of the indirect referencing (pointer-following) operator, the unary
*.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

Figure 10.5

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

status = scan_planet(¤t_planet);

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ indirect component selection operator (->) (1)

➢ If we rewrite the scan_planet function of Fig. 10.4 using the -> operator, the assignment to
result will be

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

(*structp).component structp->component=

result = scanf("%s%lf%d%lf%lf", plnp->name,

&plnp->diameter,

&plnp->moons,

&plnp->orbit_time,

&plnp->rotation_time);

➢ A function that computes a structured result can be modeled on a function computing a simple
result.

➢ A local variable of the structure type can be allocated, filled with the desired data, and returned

as the function result.

➢ The function does not return the address of the structure as it would with an array result; rather it
returns the values of all components.

➢ EXAMPLE 10.4, Fig. 10.6

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

current_planet = get_planet(); status = scan_planet(¤t_planet);
(1)

● EXAMPLE 10.5, Fig. 10.7 (1)
➢ Assuming a 24-hour clock, the structure type time_t is defined as follows:

➢ If time_now were 21:58:32 and secs had the value 97, the result returned by the call
new_time(time_now, secs) would be 22:00:09 (2)

➢ If the intent is to update time_now , an assignment statement is used:

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

typedef struct {

 int hour, minute, second;

} time_t;

time_now = new_time(time_now, secs);

Figure 10.8

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

● Parallel Arrays: (1)

➢ Arrays id and gpa are called parallel arrays because the data items with the same
subscript (for example, i) pertain to the same student (the ith student).

➢ Similarly, the ith elements of arrays x and y are the coordinates of one point.

➢ A better way to organize data collections like these is shown next.

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

● Declaring an Array of Structures:

➢ A more natural and convenient
organization of student data or polygon
points is to group the information
pertaining to one student or to one point in
a structure whose type we define. (1)

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

➢ The data for the first student are
stored in the structure stulist[0] .

➢ The individual data items are

stulist[0].id and stulist[0].gpa .
➢ stulist[0].gpa is 2.71 .

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

Figure 10.11

for (i = 0; i < MAX_STU; ++i) (1)

scan_student(&stulist[i]);

for (i = 0; i < MAX_STU; ++i) (2)

printf("%d\n", stulist[i].id);

CASE STUDY (Homework)
P. 594 – 602

Universal Measurement Conversion

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ When using the direct selection operator (.), always be aware of the type of the
component selected, and use the value in a manner consistent with its type. (1)

➢ For example, if the component selected is an array, passing it to a function as an

output argument does not require application of the address-of operator.

➢ If a structure type output parameter is used in a function, one can avoid the operator
precedence problems associated with combining the indirection (*) and direct
component selection (.) operators by using the indirect component selection operator
(->).

10.7 COMMON PROGRAMMING ERRORS

➢ C allows the use of structure type values in assignment statements as function
arguments and as function results, so one can easily forget that expressions of these
types cannot be operands of equality comparators or arguments of printf and scanf .

➢ You can select simple components from a structure to use in these contexts, or you

can write your own type-specific equality and I/O functions.

10.7 COMMON PROGRAMMING ERRORS

Loading…

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 10

Structure

Loading…

Chapter Objectives:

1. Declare a struct data type which consists of several data fields, each with its own name
and data type.

2. Use a struct to store data for a structured object or record.

3. Use dot notation to process individual fields of a structured object

4. Use structs as function parameters and to return function results

5. Understand the relationship between parallel arrays and arrays of structured objects.

And More…

➢ Unlike an array, a structure can have individual components that contain data
of different types.

➢ A single variable of a composite type designed for a textbook can store a book’s

author, title, publisher and year

➢ Each of these data items is stored in a separate component of the structure
and can be referenced by using the component name.

STRUCTU
RE

textbook => structure

author, title, publisher, year => components

Loading…

● Structure Type Definition:
● Before a structured data object can be created or saved, the format of its components

must be defined. (1)

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct { (2)

 char author[100];

 char title[100];

 char publisher[50];

 int year;

} textbook_t;

textbook_t book;

● EXAMPLE 10.1

● A single variable of a composite type designed for planets can store a planet’s
1. name
2. diameter
3. number of moons
4. the number of years to complete one solar orbit
5. the number of hours to make one rotation on its axis.

10.1 USER-DEFINED STRUCTURE TYPES

➢ This type definition is a template that describes the format of a planet structure and the name and
type of each component.

➢ A name chosen for a component of one structure may be the same as the name of a component

of another structure or the same as the name of a variable. (1)

➢ The typedef statement itself allocates no memory. A variable declaration is required to allocate
storage space for a structured data object.

 (2)

10.1 USER-DEFINED STRUCTURE TYPES

➢ The structured variables current_planet , previous_planet , and blank_planet all have the
format specified in the definition of type planet_t.

➢ Thus, the memory allocated for each consists of storage space for five distinct values.

 (1)

10.1 USER-DEFINED STRUCTURE TYPES

➢ A user-defined type like textbook_t can be used to declare both simple and array variables and
to declare components in other structure types.

➢ A structure containing components that are data structures (arrays or structs) is sometimes called

a hierarchical structure .

➢ The following definition of a structure type includes a component that is an array of textbooks.

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct {

 char author[100];

 int year;

 textbook_t books[10];

} all_textbooks_t;

➢ We can reference a component of a structure by using the direct component selection operator
, which is a period.

➢ The period is preceded by the name of a structure type variable and is followed by the name of

a component.

● Once data are stored in a record, they can be manipulated in the same way as other data in
memory.

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s was published in %d.\n",

book.title, book.year);
MyBook was published in 2000

strcpy(book.name, “MyBook”);

book.year = 2000;

Loading…

● EXAMPLE 10.2

Figure 10.1

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s's diameter is %.1f km.\n",

current_planet.name, current_planet.diameter);

Jupiter's diameter is 142800.0 km.

➢ See Table 10.1 p.572

● Manipulating Whole Structures
➢ The name of a structure type variable used with no component selection operator refers to the

entire structure.
➢ A new copy of a structure’s value can be made by simply assigning one structure to another as in

the following statement:

● Program Style: (1)
➢ To help reduce confusion, in this chapter we choose user-defined type names that use lowercase

letters and end in the suffix_t (2)

REVIEW OF OPERATOR PRECEDENCE

previous_planet = current_planet;

➢ When a structured variable is passed as an input argument to a function, all of its component
values are copied into the components of the function’s corresponding formal parameter.

➢ EXAMPLE 10.3, Figure 10.2 (1)

➢ To display the value of our structure current_planet , we would use the call statement:

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

print_planet(current_planet);

➢ Another function that would help us think of a planet as a data object is a function that would
perform an equality comparison of two planets.

➢ Although C permits copying of a structure using the assignment operator, the equality and

inequality operators CANNOT BE applied to a structured type as a unit.

➢ Figure 10.3 (1)

● Structures as output arguments:

➢ When such a variable is used as an output argument, the addressof operator must be applied in
the same way that we would pass output arguments of the standard types char , int , and double.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ Figure 10.4 (1)
➢ In order to use scanf to store a value in one component of the structure whose address is in plnp

, we must carry out the following steps (in order):

1. Follow the pointer in plnp to the structure.
2. Select the component of interest.
3. Unless this component is an array (e.g., component name in Fig. 10.4), get its address to pass

to scanf .

➢ When we check our precedence chart (see Table 10.1), we find that this reference
&*plnp.diameter would attempt step 2 before step 1.

➢ For this reason, the function in Fig. 10.4 overrides the default operator precedence by

parenthesizing the application of the indirect referencing (pointer-following) operator, the unary
*.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

Figure 10.5

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

status = scan_planet(¤t_planet);

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ indirect component selection operator (->) (1)

➢ If we rewrite the scan_planet function of Fig. 10.4 using the -> operator, the assignment to
result will be

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

(*structp).component structp->component=

result = scanf("%s%lf%d%lf%lf", plnp->name,

&plnp->diameter,

&plnp->moons,

&plnp->orbit_time,

&plnp->rotation_time);

➢ A function that computes a structured result can be modeled on a function computing a simple
result.

➢ A local variable of the structure type can be allocated, filled with the desired data, and returned

as the function result.

➢ The function does not return the address of the structure as it would with an array result; rather it
returns the values of all components.

➢ EXAMPLE 10.4, Fig. 10.6

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

current_planet = get_planet(); status = scan_planet(¤t_planet);
(1)

● EXAMPLE 10.5, Fig. 10.7 (1)
➢ Assuming a 24-hour clock, the structure type time_t is defined as follows:

➢ If time_now were 21:58:32 and secs had the value 97, the result returned by the call
new_time(time_now, secs) would be 22:00:09 (2)

➢ If the intent is to update time_now , an assignment statement is used:

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

typedef struct {

 int hour, minute, second;

} time_t;

time_now = new_time(time_now, secs);

Figure 10.8

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

● Parallel Arrays: (1)

➢ Arrays id and gpa are called parallel arrays because the data items with the same
subscript (for example, i) pertain to the same student (the ith student).

➢ Similarly, the ith elements of arrays x and y are the coordinates of one point.

➢ A better way to organize data collections like these is shown next.

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

● Declaring an Array of Structures:

➢ A more natural and convenient
organization of student data or polygon
points is to group the information
pertaining to one student or to one point in
a structure whose type we define. (1)

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

➢ The data for the first student are
stored in the structure stulist[0] .

➢ The individual data items are

stulist[0].id and stulist[0].gpa .
➢ stulist[0].gpa is 2.71 .

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

Figure 10.11

for (i = 0; i < MAX_STU; ++i) (1)

scan_student(&stulist[i]);

for (i = 0; i < MAX_STU; ++i) (2)

printf("%d\n", stulist[i].id);

CASE STUDY (Homework)
P. 594 – 602

Universal Measurement Conversion

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ When using the direct selection operator (.), always be aware of the type of the
component selected, and use the value in a manner consistent with its type. (1)

➢ For example, if the component selected is an array, passing it to a function as an

output argument does not require application of the address-of operator.

➢ If a structure type output parameter is used in a function, one can avoid the operator
precedence problems associated with combining the indirection (*) and direct
component selection (.) operators by using the indirect component selection operator
(->).

10.7 COMMON PROGRAMMING ERRORS

➢ C allows the use of structure type values in assignment statements as function
arguments and as function results, so one can easily forget that expressions of these
types cannot be operands of equality comparators or arguments of printf and scanf .

➢ You can select simple components from a structure to use in these contexts, or you

can write your own type-specific equality and I/O functions.

10.7 COMMON PROGRAMMING ERRORS

Loading…

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 10

Structure

Loading…

Chapter Objectives:

1. Declare a struct data type which consists of several data fields, each with its own name
and data type.

2. Use a struct to store data for a structured object or record.

3. Use dot notation to process individual fields of a structured object

4. Use structs as function parameters and to return function results

5. Understand the relationship between parallel arrays and arrays of structured objects.

And More…

➢ Unlike an array, a structure can have individual components that contain data
of different types.

➢ A single variable of a composite type designed for a textbook can store a book’s

author, title, publisher and year

➢ Each of these data items is stored in a separate component of the structure
and can be referenced by using the component name.

STRUCTU
RE

textbook => structure

author, title, publisher, year => components

Loading…

● Structure Type Definition:
● Before a structured data object can be created or saved, the format of its components

must be defined. (1)

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct { (2)

 char author[100];

 char title[100];

 char publisher[50];

 int year;

} textbook_t;

textbook_t book;

● EXAMPLE 10.1

● A single variable of a composite type designed for planets can store a planet’s
1. name
2. diameter
3. number of moons
4. the number of years to complete one solar orbit
5. the number of hours to make one rotation on its axis.

10.1 USER-DEFINED STRUCTURE TYPES

➢ This type definition is a template that describes the format of a planet structure and the name and
type of each component.

➢ A name chosen for a component of one structure may be the same as the name of a component

of another structure or the same as the name of a variable. (1)

➢ The typedef statement itself allocates no memory. A variable declaration is required to allocate
storage space for a structured data object.

 (2)

10.1 USER-DEFINED STRUCTURE TYPES

➢ The structured variables current_planet , previous_planet , and blank_planet all have the
format specified in the definition of type planet_t.

➢ Thus, the memory allocated for each consists of storage space for five distinct values.

 (1)

10.1 USER-DEFINED STRUCTURE TYPES

➢ A user-defined type like textbook_t can be used to declare both simple and array variables and
to declare components in other structure types.

➢ A structure containing components that are data structures (arrays or structs) is sometimes called

a hierarchical structure .

➢ The following definition of a structure type includes a component that is an array of textbooks.

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct {

 char author[100];

 int year;

 textbook_t books[10];

} all_textbooks_t;

➢ We can reference a component of a structure by using the direct component selection operator
, which is a period.

➢ The period is preceded by the name of a structure type variable and is followed by the name of

a component.

● Once data are stored in a record, they can be manipulated in the same way as other data in
memory.

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s was published in %d.\n",

book.title, book.year);
MyBook was published in 2000

strcpy(book.name, “MyBook”);

book.year = 2000;

Loading…

● EXAMPLE 10.2

Figure 10.1

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s's diameter is %.1f km.\n",

current_planet.name, current_planet.diameter);

Jupiter's diameter is 142800.0 km.

➢ See Table 10.1 p.572

● Manipulating Whole Structures
➢ The name of a structure type variable used with no component selection operator refers to the

entire structure.
➢ A new copy of a structure’s value can be made by simply assigning one structure to another as in

the following statement:

● Program Style: (1)
➢ To help reduce confusion, in this chapter we choose user-defined type names that use lowercase

letters and end in the suffix_t (2)

REVIEW OF OPERATOR PRECEDENCE

previous_planet = current_planet;

➢ When a structured variable is passed as an input argument to a function, all of its component
values are copied into the components of the function’s corresponding formal parameter.

➢ EXAMPLE 10.3, Figure 10.2 (1)

➢ To display the value of our structure current_planet , we would use the call statement:

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

print_planet(current_planet);

➢ Another function that would help us think of a planet as a data object is a function that would
perform an equality comparison of two planets.

➢ Although C permits copying of a structure using the assignment operator, the equality and

inequality operators CANNOT BE applied to a structured type as a unit.

➢ Figure 10.3 (1)

● Structures as output arguments:

➢ When such a variable is used as an output argument, the addressof operator must be applied in
the same way that we would pass output arguments of the standard types char , int , and double.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ Figure 10.4 (1)
➢ In order to use scanf to store a value in one component of the structure whose address is in plnp

, we must carry out the following steps (in order):

1. Follow the pointer in plnp to the structure.
2. Select the component of interest.
3. Unless this component is an array (e.g., component name in Fig. 10.4), get its address to pass

to scanf .

➢ When we check our precedence chart (see Table 10.1), we find that this reference
&*plnp.diameter would attempt step 2 before step 1.

➢ For this reason, the function in Fig. 10.4 overrides the default operator precedence by

parenthesizing the application of the indirect referencing (pointer-following) operator, the unary
*.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

Figure 10.5

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

status = scan_planet(¤t_planet);

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ indirect component selection operator (->) (1)

➢ If we rewrite the scan_planet function of Fig. 10.4 using the -> operator, the assignment to
result will be

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

(*structp).component structp->component=

result = scanf("%s%lf%d%lf%lf", plnp->name,

&plnp->diameter,

&plnp->moons,

&plnp->orbit_time,

&plnp->rotation_time);

➢ A function that computes a structured result can be modeled on a function computing a simple
result.

➢ A local variable of the structure type can be allocated, filled with the desired data, and returned

as the function result.

➢ The function does not return the address of the structure as it would with an array result; rather it
returns the values of all components.

➢ EXAMPLE 10.4, Fig. 10.6

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

current_planet = get_planet(); status = scan_planet(¤t_planet);
(1)

● EXAMPLE 10.5, Fig. 10.7 (1)
➢ Assuming a 24-hour clock, the structure type time_t is defined as follows:

➢ If time_now were 21:58:32 and secs had the value 97, the result returned by the call
new_time(time_now, secs) would be 22:00:09 (2)

➢ If the intent is to update time_now , an assignment statement is used:

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

typedef struct {

 int hour, minute, second;

} time_t;

time_now = new_time(time_now, secs);

Figure 10.8

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

● Parallel Arrays: (1)

➢ Arrays id and gpa are called parallel arrays because the data items with the same
subscript (for example, i) pertain to the same student (the ith student).

➢ Similarly, the ith elements of arrays x and y are the coordinates of one point.

➢ A better way to organize data collections like these is shown next.

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

● Declaring an Array of Structures:

➢ A more natural and convenient
organization of student data or polygon
points is to group the information
pertaining to one student or to one point in
a structure whose type we define. (1)

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

➢ The data for the first student are
stored in the structure stulist[0] .

➢ The individual data items are

stulist[0].id and stulist[0].gpa .
➢ stulist[0].gpa is 2.71 .

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

Figure 10.11

for (i = 0; i < MAX_STU; ++i) (1)

scan_student(&stulist[i]);

for (i = 0; i < MAX_STU; ++i) (2)

printf("%d\n", stulist[i].id);

CASE STUDY (Homework)
P. 594 – 602

Universal Measurement Conversion

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ When using the direct selection operator (.), always be aware of the type of the
component selected, and use the value in a manner consistent with its type. (1)

➢ For example, if the component selected is an array, passing it to a function as an

output argument does not require application of the address-of operator.

➢ If a structure type output parameter is used in a function, one can avoid the operator
precedence problems associated with combining the indirection (*) and direct
component selection (.) operators by using the indirect component selection operator
(->).

10.7 COMMON PROGRAMMING ERRORS

➢ C allows the use of structure type values in assignment statements as function
arguments and as function results, so one can easily forget that expressions of these
types cannot be operands of equality comparators or arguments of printf and scanf .

➢ You can select simple components from a structure to use in these contexts, or you

can write your own type-specific equality and I/O functions.

10.7 COMMON PROGRAMMING ERRORS

Loading…

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 10

Structure

Loading…

Chapter Objectives:

1. Declare a struct data type which consists of several data fields, each with its own name
and data type.

2. Use a struct to store data for a structured object or record.

3. Use dot notation to process individual fields of a structured object

4. Use structs as function parameters and to return function results

5. Understand the relationship between parallel arrays and arrays of structured objects.

And More…

➢ Unlike an array, a structure can have individual components that contain data
of different types.

➢ A single variable of a composite type designed for a textbook can store a book’s

author, title, publisher and year

➢ Each of these data items is stored in a separate component of the structure
and can be referenced by using the component name.

STRUCTU
RE

textbook => structure

author, title, publisher, year => components

Loading…

● Structure Type Definition:
● Before a structured data object can be created or saved, the format of its components

must be defined. (1)

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct { (2)

 char author[100];

 char title[100];

 char publisher[50];

 int year;

} textbook_t;

textbook_t book;

● EXAMPLE 10.1

● A single variable of a composite type designed for planets can store a planet’s
1. name
2. diameter
3. number of moons
4. the number of years to complete one solar orbit
5. the number of hours to make one rotation on its axis.

10.1 USER-DEFINED STRUCTURE TYPES

➢ This type definition is a template that describes the format of a planet structure and the name and
type of each component.

➢ A name chosen for a component of one structure may be the same as the name of a component

of another structure or the same as the name of a variable. (1)

➢ The typedef statement itself allocates no memory. A variable declaration is required to allocate
storage space for a structured data object.

 (2)

10.1 USER-DEFINED STRUCTURE TYPES

➢ The structured variables current_planet , previous_planet , and blank_planet all have the
format specified in the definition of type planet_t.

➢ Thus, the memory allocated for each consists of storage space for five distinct values.

 (1)

10.1 USER-DEFINED STRUCTURE TYPES

➢ A user-defined type like textbook_t can be used to declare both simple and array variables and
to declare components in other structure types.

➢ A structure containing components that are data structures (arrays or structs) is sometimes called

a hierarchical structure .

➢ The following definition of a structure type includes a component that is an array of textbooks.

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct {

 char author[100];

 int year;

 textbook_t books[10];

} all_textbooks_t;

➢ We can reference a component of a structure by using the direct component selection operator
, which is a period.

➢ The period is preceded by the name of a structure type variable and is followed by the name of

a component.

● Once data are stored in a record, they can be manipulated in the same way as other data in
memory.

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s was published in %d.\n",

book.title, book.year);
MyBook was published in 2000

strcpy(book.name, “MyBook”);

book.year = 2000;

Loading…

● EXAMPLE 10.2

Figure 10.1

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s's diameter is %.1f km.\n",

current_planet.name, current_planet.diameter);

Jupiter's diameter is 142800.0 km.

➢ See Table 10.1 p.572

● Manipulating Whole Structures
➢ The name of a structure type variable used with no component selection operator refers to the

entire structure.
➢ A new copy of a structure’s value can be made by simply assigning one structure to another as in

the following statement:

● Program Style: (1)
➢ To help reduce confusion, in this chapter we choose user-defined type names that use lowercase

letters and end in the suffix_t (2)

REVIEW OF OPERATOR PRECEDENCE

previous_planet = current_planet;

➢ When a structured variable is passed as an input argument to a function, all of its component
values are copied into the components of the function’s corresponding formal parameter.

➢ EXAMPLE 10.3, Figure 10.2 (1)

➢ To display the value of our structure current_planet , we would use the call statement:

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

print_planet(current_planet);

➢ Another function that would help us think of a planet as a data object is a function that would
perform an equality comparison of two planets.

➢ Although C permits copying of a structure using the assignment operator, the equality and

inequality operators CANNOT BE applied to a structured type as a unit.

➢ Figure 10.3 (1)

● Structures as output arguments:

➢ When such a variable is used as an output argument, the addressof operator must be applied in
the same way that we would pass output arguments of the standard types char , int , and double.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ Figure 10.4 (1)
➢ In order to use scanf to store a value in one component of the structure whose address is in plnp

, we must carry out the following steps (in order):

1. Follow the pointer in plnp to the structure.
2. Select the component of interest.
3. Unless this component is an array (e.g., component name in Fig. 10.4), get its address to pass

to scanf .

➢ When we check our precedence chart (see Table 10.1), we find that this reference
&*plnp.diameter would attempt step 2 before step 1.

➢ For this reason, the function in Fig. 10.4 overrides the default operator precedence by

parenthesizing the application of the indirect referencing (pointer-following) operator, the unary
*.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

Figure 10.5

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

status = scan_planet(¤t_planet);

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ indirect component selection operator (->) (1)

➢ If we rewrite the scan_planet function of Fig. 10.4 using the -> operator, the assignment to
result will be

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

(*structp).component structp->component=

result = scanf("%s%lf%d%lf%lf", plnp->name,

&plnp->diameter,

&plnp->moons,

&plnp->orbit_time,

&plnp->rotation_time);

➢ A function that computes a structured result can be modeled on a function computing a simple
result.

➢ A local variable of the structure type can be allocated, filled with the desired data, and returned

as the function result.

➢ The function does not return the address of the structure as it would with an array result; rather it
returns the values of all components.

➢ EXAMPLE 10.4, Fig. 10.6

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

current_planet = get_planet(); status = scan_planet(¤t_planet);
(1)

● EXAMPLE 10.5, Fig. 10.7 (1)
➢ Assuming a 24-hour clock, the structure type time_t is defined as follows:

➢ If time_now were 21:58:32 and secs had the value 97, the result returned by the call
new_time(time_now, secs) would be 22:00:09 (2)

➢ If the intent is to update time_now , an assignment statement is used:

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

typedef struct {

 int hour, minute, second;

} time_t;

time_now = new_time(time_now, secs);

Figure 10.8

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

● Parallel Arrays: (1)

➢ Arrays id and gpa are called parallel arrays because the data items with the same
subscript (for example, i) pertain to the same student (the ith student).

➢ Similarly, the ith elements of arrays x and y are the coordinates of one point.

➢ A better way to organize data collections like these is shown next.

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

● Declaring an Array of Structures:

➢ A more natural and convenient
organization of student data or polygon
points is to group the information
pertaining to one student or to one point in
a structure whose type we define. (1)

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

➢ The data for the first student are
stored in the structure stulist[0] .

➢ The individual data items are

stulist[0].id and stulist[0].gpa .
➢ stulist[0].gpa is 2.71 .

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

Figure 10.11

for (i = 0; i < MAX_STU; ++i) (1)

scan_student(&stulist[i]);

for (i = 0; i < MAX_STU; ++i) (2)

printf("%d\n", stulist[i].id);

CASE STUDY (Homework)
P. 594 – 602

Universal Measurement Conversion

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ When using the direct selection operator (.), always be aware of the type of the
component selected, and use the value in a manner consistent with its type. (1)

➢ For example, if the component selected is an array, passing it to a function as an

output argument does not require application of the address-of operator.

➢ If a structure type output parameter is used in a function, one can avoid the operator
precedence problems associated with combining the indirection (*) and direct
component selection (.) operators by using the indirect component selection operator
(->).

10.7 COMMON PROGRAMMING ERRORS

➢ C allows the use of structure type values in assignment statements as function
arguments and as function results, so one can easily forget that expressions of these
types cannot be operands of equality comparators or arguments of printf and scanf .

➢ You can select simple components from a structure to use in these contexts, or you

can write your own type-specific equality and I/O functions.

10.7 COMMON PROGRAMMING ERRORS

Loading…

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 10

Structure

Loading…

Chapter Objectives:

1. Declare a struct data type which consists of several data fields, each with its own name
and data type.

2. Use a struct to store data for a structured object or record.

3. Use dot notation to process individual fields of a structured object

4. Use structs as function parameters and to return function results

5. Understand the relationship between parallel arrays and arrays of structured objects.

And More…

➢ Unlike an array, a structure can have individual components that contain data
of different types.

➢ A single variable of a composite type designed for a textbook can store a book’s

author, title, publisher and year

➢ Each of these data items is stored in a separate component of the structure
and can be referenced by using the component name.

STRUCTU
RE

textbook => structure

author, title, publisher, year => components

Loading…

● Structure Type Definition:
● Before a structured data object can be created or saved, the format of its components

must be defined. (1)

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct { (2)

 char author[100];

 char title[100];

 char publisher[50];

 int year;

} textbook_t;

textbook_t book;

● EXAMPLE 10.1

● A single variable of a composite type designed for planets can store a planet’s
1. name
2. diameter
3. number of moons
4. the number of years to complete one solar orbit
5. the number of hours to make one rotation on its axis.

10.1 USER-DEFINED STRUCTURE TYPES

➢ This type definition is a template that describes the format of a planet structure and the name and
type of each component.

➢ A name chosen for a component of one structure may be the same as the name of a component

of another structure or the same as the name of a variable. (1)

➢ The typedef statement itself allocates no memory. A variable declaration is required to allocate
storage space for a structured data object.

 (2)

10.1 USER-DEFINED STRUCTURE TYPES

➢ The structured variables current_planet , previous_planet , and blank_planet all have the
format specified in the definition of type planet_t.

➢ Thus, the memory allocated for each consists of storage space for five distinct values.

 (1)

10.1 USER-DEFINED STRUCTURE TYPES

➢ A user-defined type like textbook_t can be used to declare both simple and array variables and
to declare components in other structure types.

➢ A structure containing components that are data structures (arrays or structs) is sometimes called

a hierarchical structure .

➢ The following definition of a structure type includes a component that is an array of textbooks.

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct {

 char author[100];

 int year;

 textbook_t books[10];

} all_textbooks_t;

➢ We can reference a component of a structure by using the direct component selection operator
, which is a period.

➢ The period is preceded by the name of a structure type variable and is followed by the name of

a component.

● Once data are stored in a record, they can be manipulated in the same way as other data in
memory.

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s was published in %d.\n",

book.title, book.year);
MyBook was published in 2000

strcpy(book.name, “MyBook”);

book.year = 2000;

Loading…

● EXAMPLE 10.2

Figure 10.1

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s's diameter is %.1f km.\n",

current_planet.name, current_planet.diameter);

Jupiter's diameter is 142800.0 km.

➢ See Table 10.1 p.572

● Manipulating Whole Structures
➢ The name of a structure type variable used with no component selection operator refers to the

entire structure.
➢ A new copy of a structure’s value can be made by simply assigning one structure to another as in

the following statement:

● Program Style: (1)
➢ To help reduce confusion, in this chapter we choose user-defined type names that use lowercase

letters and end in the suffix_t (2)

REVIEW OF OPERATOR PRECEDENCE

previous_planet = current_planet;

➢ When a structured variable is passed as an input argument to a function, all of its component
values are copied into the components of the function’s corresponding formal parameter.

➢ EXAMPLE 10.3, Figure 10.2 (1)

➢ To display the value of our structure current_planet , we would use the call statement:

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

print_planet(current_planet);

➢ Another function that would help us think of a planet as a data object is a function that would
perform an equality comparison of two planets.

➢ Although C permits copying of a structure using the assignment operator, the equality and

inequality operators CANNOT BE applied to a structured type as a unit.

➢ Figure 10.3 (1)

● Structures as output arguments:

➢ When such a variable is used as an output argument, the addressof operator must be applied in
the same way that we would pass output arguments of the standard types char , int , and double.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ Figure 10.4 (1)
➢ In order to use scanf to store a value in one component of the structure whose address is in plnp

, we must carry out the following steps (in order):

1. Follow the pointer in plnp to the structure.
2. Select the component of interest.
3. Unless this component is an array (e.g., component name in Fig. 10.4), get its address to pass

to scanf .

➢ When we check our precedence chart (see Table 10.1), we find that this reference
&*plnp.diameter would attempt step 2 before step 1.

➢ For this reason, the function in Fig. 10.4 overrides the default operator precedence by

parenthesizing the application of the indirect referencing (pointer-following) operator, the unary
*.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

Figure 10.5

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

status = scan_planet(¤t_planet);

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ indirect component selection operator (->) (1)

➢ If we rewrite the scan_planet function of Fig. 10.4 using the -> operator, the assignment to
result will be

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

(*structp).component structp->component=

result = scanf("%s%lf%d%lf%lf", plnp->name,

&plnp->diameter,

&plnp->moons,

&plnp->orbit_time,

&plnp->rotation_time);

➢ A function that computes a structured result can be modeled on a function computing a simple
result.

➢ A local variable of the structure type can be allocated, filled with the desired data, and returned

as the function result.

➢ The function does not return the address of the structure as it would with an array result; rather it
returns the values of all components.

➢ EXAMPLE 10.4, Fig. 10.6

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

current_planet = get_planet(); status = scan_planet(¤t_planet);
(1)

● EXAMPLE 10.5, Fig. 10.7 (1)
➢ Assuming a 24-hour clock, the structure type time_t is defined as follows:

➢ If time_now were 21:58:32 and secs had the value 97, the result returned by the call
new_time(time_now, secs) would be 22:00:09 (2)

➢ If the intent is to update time_now , an assignment statement is used:

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

typedef struct {

 int hour, minute, second;

} time_t;

time_now = new_time(time_now, secs);

Figure 10.8

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

● Parallel Arrays: (1)

➢ Arrays id and gpa are called parallel arrays because the data items with the same
subscript (for example, i) pertain to the same student (the ith student).

➢ Similarly, the ith elements of arrays x and y are the coordinates of one point.

➢ A better way to organize data collections like these is shown next.

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

● Declaring an Array of Structures:

➢ A more natural and convenient
organization of student data or polygon
points is to group the information
pertaining to one student or to one point in
a structure whose type we define. (1)

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

➢ The data for the first student are
stored in the structure stulist[0] .

➢ The individual data items are

stulist[0].id and stulist[0].gpa .
➢ stulist[0].gpa is 2.71 .

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

Figure 10.11

for (i = 0; i < MAX_STU; ++i) (1)

scan_student(&stulist[i]);

for (i = 0; i < MAX_STU; ++i) (2)

printf("%d\n", stulist[i].id);

CASE STUDY (Homework)
P. 594 – 602

Universal Measurement Conversion

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ When using the direct selection operator (.), always be aware of the type of the
component selected, and use the value in a manner consistent with its type. (1)

➢ For example, if the component selected is an array, passing it to a function as an

output argument does not require application of the address-of operator.

➢ If a structure type output parameter is used in a function, one can avoid the operator
precedence problems associated with combining the indirection (*) and direct
component selection (.) operators by using the indirect component selection operator
(->).

10.7 COMMON PROGRAMMING ERRORS

➢ C allows the use of structure type values in assignment statements as function
arguments and as function results, so one can easily forget that expressions of these
types cannot be operands of equality comparators or arguments of printf and scanf .

➢ You can select simple components from a structure to use in these contexts, or you

can write your own type-specific equality and I/O functions.

10.7 COMMON PROGRAMMING ERRORS

Loading…

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 10

Structure

Loading…

Chapter Objectives:

1. Declare a struct data type which consists of several data fields, each with its own name
and data type.

2. Use a struct to store data for a structured object or record.

3. Use dot notation to process individual fields of a structured object

4. Use structs as function parameters and to return function results

5. Understand the relationship between parallel arrays and arrays of structured objects.

And More…

➢ Unlike an array, a structure can have individual components that contain data
of different types.

➢ A single variable of a composite type designed for a textbook can store a book’s

author, title, publisher and year

➢ Each of these data items is stored in a separate component of the structure
and can be referenced by using the component name.

STRUCTU
RE

textbook => structure

author, title, publisher, year => components

Loading…

● Structure Type Definition:
● Before a structured data object can be created or saved, the format of its components

must be defined. (1)

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct { (2)

 char author[100];

 char title[100];

 char publisher[50];

 int year;

} textbook_t;

textbook_t book;

● EXAMPLE 10.1

● A single variable of a composite type designed for planets can store a planet’s
1. name
2. diameter
3. number of moons
4. the number of years to complete one solar orbit
5. the number of hours to make one rotation on its axis.

10.1 USER-DEFINED STRUCTURE TYPES

➢ This type definition is a template that describes the format of a planet structure and the name and
type of each component.

➢ A name chosen for a component of one structure may be the same as the name of a component

of another structure or the same as the name of a variable. (1)

➢ The typedef statement itself allocates no memory. A variable declaration is required to allocate
storage space for a structured data object.

 (2)

10.1 USER-DEFINED STRUCTURE TYPES

➢ The structured variables current_planet , previous_planet , and blank_planet all have the
format specified in the definition of type planet_t.

➢ Thus, the memory allocated for each consists of storage space for five distinct values.

 (1)

10.1 USER-DEFINED STRUCTURE TYPES

➢ A user-defined type like textbook_t can be used to declare both simple and array variables and
to declare components in other structure types.

➢ A structure containing components that are data structures (arrays or structs) is sometimes called

a hierarchical structure .

➢ The following definition of a structure type includes a component that is an array of textbooks.

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct {

 char author[100];

 int year;

 textbook_t books[10];

} all_textbooks_t;

➢ We can reference a component of a structure by using the direct component selection operator
, which is a period.

➢ The period is preceded by the name of a structure type variable and is followed by the name of

a component.

● Once data are stored in a record, they can be manipulated in the same way as other data in
memory.

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s was published in %d.\n",

book.title, book.year);
MyBook was published in 2000

strcpy(book.name, “MyBook”);

book.year = 2000;

Loading…

● EXAMPLE 10.2

Figure 10.1

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s's diameter is %.1f km.\n",

current_planet.name, current_planet.diameter);

Jupiter's diameter is 142800.0 km.

➢ See Table 10.1 p.572

● Manipulating Whole Structures
➢ The name of a structure type variable used with no component selection operator refers to the

entire structure.
➢ A new copy of a structure’s value can be made by simply assigning one structure to another as in

the following statement:

● Program Style: (1)
➢ To help reduce confusion, in this chapter we choose user-defined type names that use lowercase

letters and end in the suffix_t (2)

REVIEW OF OPERATOR PRECEDENCE

previous_planet = current_planet;

➢ When a structured variable is passed as an input argument to a function, all of its component
values are copied into the components of the function’s corresponding formal parameter.

➢ EXAMPLE 10.3, Figure 10.2 (1)

➢ To display the value of our structure current_planet , we would use the call statement:

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

print_planet(current_planet);

➢ Another function that would help us think of a planet as a data object is a function that would
perform an equality comparison of two planets.

➢ Although C permits copying of a structure using the assignment operator, the equality and

inequality operators CANNOT BE applied to a structured type as a unit.

➢ Figure 10.3 (1)

● Structures as output arguments:

➢ When such a variable is used as an output argument, the addressof operator must be applied in
the same way that we would pass output arguments of the standard types char , int , and double.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ Figure 10.4 (1)
➢ In order to use scanf to store a value in one component of the structure whose address is in plnp

, we must carry out the following steps (in order):

1. Follow the pointer in plnp to the structure.
2. Select the component of interest.
3. Unless this component is an array (e.g., component name in Fig. 10.4), get its address to pass

to scanf .

➢ When we check our precedence chart (see Table 10.1), we find that this reference
&*plnp.diameter would attempt step 2 before step 1.

➢ For this reason, the function in Fig. 10.4 overrides the default operator precedence by

parenthesizing the application of the indirect referencing (pointer-following) operator, the unary
*.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

Figure 10.5

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

status = scan_planet(¤t_planet);

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ indirect component selection operator (->) (1)

➢ If we rewrite the scan_planet function of Fig. 10.4 using the -> operator, the assignment to
result will be

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

(*structp).component structp->component=

result = scanf("%s%lf%d%lf%lf", plnp->name,

&plnp->diameter,

&plnp->moons,

&plnp->orbit_time,

&plnp->rotation_time);

➢ A function that computes a structured result can be modeled on a function computing a simple
result.

➢ A local variable of the structure type can be allocated, filled with the desired data, and returned

as the function result.

➢ The function does not return the address of the structure as it would with an array result; rather it
returns the values of all components.

➢ EXAMPLE 10.4, Fig. 10.6

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

current_planet = get_planet(); status = scan_planet(¤t_planet);
(1)

● EXAMPLE 10.5, Fig. 10.7 (1)
➢ Assuming a 24-hour clock, the structure type time_t is defined as follows:

➢ If time_now were 21:58:32 and secs had the value 97, the result returned by the call
new_time(time_now, secs) would be 22:00:09 (2)

➢ If the intent is to update time_now , an assignment statement is used:

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

typedef struct {

 int hour, minute, second;

} time_t;

time_now = new_time(time_now, secs);

Figure 10.8

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

● Parallel Arrays: (1)

➢ Arrays id and gpa are called parallel arrays because the data items with the same
subscript (for example, i) pertain to the same student (the ith student).

➢ Similarly, the ith elements of arrays x and y are the coordinates of one point.

➢ A better way to organize data collections like these is shown next.

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

● Declaring an Array of Structures:

➢ A more natural and convenient
organization of student data or polygon
points is to group the information
pertaining to one student or to one point in
a structure whose type we define. (1)

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

➢ The data for the first student are
stored in the structure stulist[0] .

➢ The individual data items are

stulist[0].id and stulist[0].gpa .
➢ stulist[0].gpa is 2.71 .

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

Figure 10.11

for (i = 0; i < MAX_STU; ++i) (1)

scan_student(&stulist[i]);

for (i = 0; i < MAX_STU; ++i) (2)

printf("%d\n", stulist[i].id);

CASE STUDY (Homework)
P. 594 – 602

Universal Measurement Conversion

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ When using the direct selection operator (.), always be aware of the type of the
component selected, and use the value in a manner consistent with its type. (1)

➢ For example, if the component selected is an array, passing it to a function as an

output argument does not require application of the address-of operator.

➢ If a structure type output parameter is used in a function, one can avoid the operator
precedence problems associated with combining the indirection (*) and direct
component selection (.) operators by using the indirect component selection operator
(->).

10.7 COMMON PROGRAMMING ERRORS

➢ C allows the use of structure type values in assignment statements as function
arguments and as function results, so one can easily forget that expressions of these
types cannot be operands of equality comparators or arguments of printf and scanf .

➢ You can select simple components from a structure to use in these contexts, or you

can write your own type-specific equality and I/O functions.

10.7 COMMON PROGRAMMING ERRORS

Loading…

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 10

Structure

Loading…

Chapter Objectives:

1. Declare a struct data type which consists of several data fields, each with its own name
and data type.

2. Use a struct to store data for a structured object or record.

3. Use dot notation to process individual fields of a structured object

4. Use structs as function parameters and to return function results

5. Understand the relationship between parallel arrays and arrays of structured objects.

And More…

➢ Unlike an array, a structure can have individual components that contain data
of different types.

➢ A single variable of a composite type designed for a textbook can store a book’s

author, title, publisher and year

➢ Each of these data items is stored in a separate component of the structure
and can be referenced by using the component name.

STRUCTU
RE

textbook => structure

author, title, publisher, year => components

Loading…

● Structure Type Definition:
● Before a structured data object can be created or saved, the format of its components

must be defined. (1)

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct { (2)

 char author[100];

 char title[100];

 char publisher[50];

 int year;

} textbook_t;

textbook_t book;

● EXAMPLE 10.1

● A single variable of a composite type designed for planets can store a planet’s
1. name
2. diameter
3. number of moons
4. the number of years to complete one solar orbit
5. the number of hours to make one rotation on its axis.

10.1 USER-DEFINED STRUCTURE TYPES

➢ This type definition is a template that describes the format of a planet structure and the name and
type of each component.

➢ A name chosen for a component of one structure may be the same as the name of a component

of another structure or the same as the name of a variable. (1)

➢ The typedef statement itself allocates no memory. A variable declaration is required to allocate
storage space for a structured data object.

 (2)

10.1 USER-DEFINED STRUCTURE TYPES

➢ The structured variables current_planet , previous_planet , and blank_planet all have the
format specified in the definition of type planet_t.

➢ Thus, the memory allocated for each consists of storage space for five distinct values.

 (1)

10.1 USER-DEFINED STRUCTURE TYPES

➢ A user-defined type like textbook_t can be used to declare both simple and array variables and
to declare components in other structure types.

➢ A structure containing components that are data structures (arrays or structs) is sometimes called

a hierarchical structure .

➢ The following definition of a structure type includes a component that is an array of textbooks.

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct {

 char author[100];

 int year;

 textbook_t books[10];

} all_textbooks_t;

➢ We can reference a component of a structure by using the direct component selection operator
, which is a period.

➢ The period is preceded by the name of a structure type variable and is followed by the name of

a component.

● Once data are stored in a record, they can be manipulated in the same way as other data in
memory.

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s was published in %d.\n",

book.title, book.year);
MyBook was published in 2000

strcpy(book.name, “MyBook”);

book.year = 2000;

Loading…

● EXAMPLE 10.2

Figure 10.1

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s's diameter is %.1f km.\n",

current_planet.name, current_planet.diameter);

Jupiter's diameter is 142800.0 km.

➢ See Table 10.1 p.572

● Manipulating Whole Structures
➢ The name of a structure type variable used with no component selection operator refers to the

entire structure.
➢ A new copy of a structure’s value can be made by simply assigning one structure to another as in

the following statement:

● Program Style: (1)
➢ To help reduce confusion, in this chapter we choose user-defined type names that use lowercase

letters and end in the suffix_t (2)

REVIEW OF OPERATOR PRECEDENCE

previous_planet = current_planet;

➢ When a structured variable is passed as an input argument to a function, all of its component
values are copied into the components of the function’s corresponding formal parameter.

➢ EXAMPLE 10.3, Figure 10.2 (1)

➢ To display the value of our structure current_planet , we would use the call statement:

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

print_planet(current_planet);

➢ Another function that would help us think of a planet as a data object is a function that would
perform an equality comparison of two planets.

➢ Although C permits copying of a structure using the assignment operator, the equality and

inequality operators CANNOT BE applied to a structured type as a unit.

➢ Figure 10.3 (1)

● Structures as output arguments:

➢ When such a variable is used as an output argument, the addressof operator must be applied in
the same way that we would pass output arguments of the standard types char , int , and double.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ Figure 10.4 (1)
➢ In order to use scanf to store a value in one component of the structure whose address is in plnp

, we must carry out the following steps (in order):

1. Follow the pointer in plnp to the structure.
2. Select the component of interest.
3. Unless this component is an array (e.g., component name in Fig. 10.4), get its address to pass

to scanf .

➢ When we check our precedence chart (see Table 10.1), we find that this reference
&*plnp.diameter would attempt step 2 before step 1.

➢ For this reason, the function in Fig. 10.4 overrides the default operator precedence by

parenthesizing the application of the indirect referencing (pointer-following) operator, the unary
*.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

Figure 10.5

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

status = scan_planet(¤t_planet);

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ indirect component selection operator (->) (1)

➢ If we rewrite the scan_planet function of Fig. 10.4 using the -> operator, the assignment to
result will be

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

(*structp).component structp->component=

result = scanf("%s%lf%d%lf%lf", plnp->name,

&plnp->diameter,

&plnp->moons,

&plnp->orbit_time,

&plnp->rotation_time);

➢ A function that computes a structured result can be modeled on a function computing a simple
result.

➢ A local variable of the structure type can be allocated, filled with the desired data, and returned

as the function result.

➢ The function does not return the address of the structure as it would with an array result; rather it
returns the values of all components.

➢ EXAMPLE 10.4, Fig. 10.6

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

current_planet = get_planet(); status = scan_planet(¤t_planet);
(1)

● EXAMPLE 10.5, Fig. 10.7 (1)
➢ Assuming a 24-hour clock, the structure type time_t is defined as follows:

➢ If time_now were 21:58:32 and secs had the value 97, the result returned by the call
new_time(time_now, secs) would be 22:00:09 (2)

➢ If the intent is to update time_now , an assignment statement is used:

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

typedef struct {

 int hour, minute, second;

} time_t;

time_now = new_time(time_now, secs);

Figure 10.8

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

● Parallel Arrays: (1)

➢ Arrays id and gpa are called parallel arrays because the data items with the same
subscript (for example, i) pertain to the same student (the ith student).

➢ Similarly, the ith elements of arrays x and y are the coordinates of one point.

➢ A better way to organize data collections like these is shown next.

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

● Declaring an Array of Structures:

➢ A more natural and convenient
organization of student data or polygon
points is to group the information
pertaining to one student or to one point in
a structure whose type we define. (1)

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

➢ The data for the first student are
stored in the structure stulist[0] .

➢ The individual data items are

stulist[0].id and stulist[0].gpa .
➢ stulist[0].gpa is 2.71 .

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

Figure 10.11

for (i = 0; i < MAX_STU; ++i) (1)

scan_student(&stulist[i]);

for (i = 0; i < MAX_STU; ++i) (2)

printf("%d\n", stulist[i].id);

CASE STUDY (Homework)
P. 594 – 602

Universal Measurement Conversion

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ When using the direct selection operator (.), always be aware of the type of the
component selected, and use the value in a manner consistent with its type. (1)

➢ For example, if the component selected is an array, passing it to a function as an

output argument does not require application of the address-of operator.

➢ If a structure type output parameter is used in a function, one can avoid the operator
precedence problems associated with combining the indirection (*) and direct
component selection (.) operators by using the indirect component selection operator
(->).

10.7 COMMON PROGRAMMING ERRORS

➢ C allows the use of structure type values in assignment statements as function
arguments and as function results, so one can easily forget that expressions of these
types cannot be operands of equality comparators or arguments of printf and scanf .

➢ You can select simple components from a structure to use in these contexts, or you

can write your own type-specific equality and I/O functions.

10.7 COMMON PROGRAMMING ERRORS

Loading…

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 10

Structure

Loading…

Chapter Objectives:

1. Declare a struct data type which consists of several data fields, each with its own name
and data type.

2. Use a struct to store data for a structured object or record.

3. Use dot notation to process individual fields of a structured object

4. Use structs as function parameters and to return function results

5. Understand the relationship between parallel arrays and arrays of structured objects.

And More…

➢ Unlike an array, a structure can have individual components that contain data
of different types.

➢ A single variable of a composite type designed for a textbook can store a book’s

author, title, publisher and year

➢ Each of these data items is stored in a separate component of the structure
and can be referenced by using the component name.

STRUCTU
RE

textbook => structure

author, title, publisher, year => components

Loading…

● Structure Type Definition:
● Before a structured data object can be created or saved, the format of its components

must be defined. (1)

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct { (2)

 char author[100];

 char title[100];

 char publisher[50];

 int year;

} textbook_t;

textbook_t book;

● EXAMPLE 10.1

● A single variable of a composite type designed for planets can store a planet’s
1. name
2. diameter
3. number of moons
4. the number of years to complete one solar orbit
5. the number of hours to make one rotation on its axis.

10.1 USER-DEFINED STRUCTURE TYPES

➢ This type definition is a template that describes the format of a planet structure and the name and
type of each component.

➢ A name chosen for a component of one structure may be the same as the name of a component

of another structure or the same as the name of a variable. (1)

➢ The typedef statement itself allocates no memory. A variable declaration is required to allocate
storage space for a structured data object.

 (2)

10.1 USER-DEFINED STRUCTURE TYPES

➢ The structured variables current_planet , previous_planet , and blank_planet all have the
format specified in the definition of type planet_t.

➢ Thus, the memory allocated for each consists of storage space for five distinct values.

 (1)

10.1 USER-DEFINED STRUCTURE TYPES

➢ A user-defined type like textbook_t can be used to declare both simple and array variables and
to declare components in other structure types.

➢ A structure containing components that are data structures (arrays or structs) is sometimes called

a hierarchical structure .

➢ The following definition of a structure type includes a component that is an array of textbooks.

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct {

 char author[100];

 int year;

 textbook_t books[10];

} all_textbooks_t;

➢ We can reference a component of a structure by using the direct component selection operator
, which is a period.

➢ The period is preceded by the name of a structure type variable and is followed by the name of

a component.

● Once data are stored in a record, they can be manipulated in the same way as other data in
memory.

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s was published in %d.\n",

book.title, book.year);
MyBook was published in 2000

strcpy(book.name, “MyBook”);

book.year = 2000;

Loading…

● EXAMPLE 10.2

Figure 10.1

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s's diameter is %.1f km.\n",

current_planet.name, current_planet.diameter);

Jupiter's diameter is 142800.0 km.

➢ See Table 10.1 p.572

● Manipulating Whole Structures
➢ The name of a structure type variable used with no component selection operator refers to the

entire structure.
➢ A new copy of a structure’s value can be made by simply assigning one structure to another as in

the following statement:

● Program Style: (1)
➢ To help reduce confusion, in this chapter we choose user-defined type names that use lowercase

letters and end in the suffix_t (2)

REVIEW OF OPERATOR PRECEDENCE

previous_planet = current_planet;

➢ When a structured variable is passed as an input argument to a function, all of its component
values are copied into the components of the function’s corresponding formal parameter.

➢ EXAMPLE 10.3, Figure 10.2 (1)

➢ To display the value of our structure current_planet , we would use the call statement:

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

print_planet(current_planet);

➢ Another function that would help us think of a planet as a data object is a function that would
perform an equality comparison of two planets.

➢ Although C permits copying of a structure using the assignment operator, the equality and

inequality operators CANNOT BE applied to a structured type as a unit.

➢ Figure 10.3 (1)

● Structures as output arguments:

➢ When such a variable is used as an output argument, the addressof operator must be applied in
the same way that we would pass output arguments of the standard types char , int , and double.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ Figure 10.4 (1)
➢ In order to use scanf to store a value in one component of the structure whose address is in plnp

, we must carry out the following steps (in order):

1. Follow the pointer in plnp to the structure.
2. Select the component of interest.
3. Unless this component is an array (e.g., component name in Fig. 10.4), get its address to pass

to scanf .

➢ When we check our precedence chart (see Table 10.1), we find that this reference
&*plnp.diameter would attempt step 2 before step 1.

➢ For this reason, the function in Fig. 10.4 overrides the default operator precedence by

parenthesizing the application of the indirect referencing (pointer-following) operator, the unary
*.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

Figure 10.5

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

status = scan_planet(¤t_planet);

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ indirect component selection operator (->) (1)

➢ If we rewrite the scan_planet function of Fig. 10.4 using the -> operator, the assignment to
result will be

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

(*structp).component structp->component=

result = scanf("%s%lf%d%lf%lf", plnp->name,

&plnp->diameter,

&plnp->moons,

&plnp->orbit_time,

&plnp->rotation_time);

➢ A function that computes a structured result can be modeled on a function computing a simple
result.

➢ A local variable of the structure type can be allocated, filled with the desired data, and returned

as the function result.

➢ The function does not return the address of the structure as it would with an array result; rather it
returns the values of all components.

➢ EXAMPLE 10.4, Fig. 10.6

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

current_planet = get_planet(); status = scan_planet(¤t_planet);
(1)

● EXAMPLE 10.5, Fig. 10.7 (1)
➢ Assuming a 24-hour clock, the structure type time_t is defined as follows:

➢ If time_now were 21:58:32 and secs had the value 97, the result returned by the call
new_time(time_now, secs) would be 22:00:09 (2)

➢ If the intent is to update time_now , an assignment statement is used:

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

typedef struct {

 int hour, minute, second;

} time_t;

time_now = new_time(time_now, secs);

Figure 10.8

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

● Parallel Arrays: (1)

➢ Arrays id and gpa are called parallel arrays because the data items with the same
subscript (for example, i) pertain to the same student (the ith student).

➢ Similarly, the ith elements of arrays x and y are the coordinates of one point.

➢ A better way to organize data collections like these is shown next.

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

● Declaring an Array of Structures:

➢ A more natural and convenient
organization of student data or polygon
points is to group the information
pertaining to one student or to one point in
a structure whose type we define. (1)

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

➢ The data for the first student are
stored in the structure stulist[0] .

➢ The individual data items are

stulist[0].id and stulist[0].gpa .
➢ stulist[0].gpa is 2.71 .

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

Figure 10.11

for (i = 0; i < MAX_STU; ++i) (1)

scan_student(&stulist[i]);

for (i = 0; i < MAX_STU; ++i) (2)

printf("%d\n", stulist[i].id);

CASE STUDY (Homework)
P. 594 – 602

Universal Measurement Conversion

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ When using the direct selection operator (.), always be aware of the type of the
component selected, and use the value in a manner consistent with its type. (1)

➢ For example, if the component selected is an array, passing it to a function as an

output argument does not require application of the address-of operator.

➢ If a structure type output parameter is used in a function, one can avoid the operator
precedence problems associated with combining the indirection (*) and direct
component selection (.) operators by using the indirect component selection operator
(->).

10.7 COMMON PROGRAMMING ERRORS

➢ C allows the use of structure type values in assignment statements as function
arguments and as function results, so one can easily forget that expressions of these
types cannot be operands of equality comparators or arguments of printf and scanf .

➢ You can select simple components from a structure to use in these contexts, or you

can write your own type-specific equality and I/O functions.

10.7 COMMON PROGRAMMING ERRORS

Loading…

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 10

Structure

Loading…

Chapter Objectives:

1. Declare a struct data type which consists of several data fields, each with its own name
and data type.

2. Use a struct to store data for a structured object or record.

3. Use dot notation to process individual fields of a structured object

4. Use structs as function parameters and to return function results

5. Understand the relationship between parallel arrays and arrays of structured objects.

And More…

➢ Unlike an array, a structure can have individual components that contain data
of different types.

➢ A single variable of a composite type designed for a textbook can store a book’s

author, title, publisher and year

➢ Each of these data items is stored in a separate component of the structure
and can be referenced by using the component name.

STRUCTU
RE

textbook => structure

author, title, publisher, year => components

Loading…

● Structure Type Definition:
● Before a structured data object can be created or saved, the format of its components

must be defined. (1)

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct { (2)

 char author[100];

 char title[100];

 char publisher[50];

 int year;

} textbook_t;

textbook_t book;

● EXAMPLE 10.1

● A single variable of a composite type designed for planets can store a planet’s
1. name
2. diameter
3. number of moons
4. the number of years to complete one solar orbit
5. the number of hours to make one rotation on its axis.

10.1 USER-DEFINED STRUCTURE TYPES

➢ This type definition is a template that describes the format of a planet structure and the name and
type of each component.

➢ A name chosen for a component of one structure may be the same as the name of a component

of another structure or the same as the name of a variable. (1)

➢ The typedef statement itself allocates no memory. A variable declaration is required to allocate
storage space for a structured data object.

 (2)

10.1 USER-DEFINED STRUCTURE TYPES

➢ The structured variables current_planet , previous_planet , and blank_planet all have the
format specified in the definition of type planet_t.

➢ Thus, the memory allocated for each consists of storage space for five distinct values.

 (1)

10.1 USER-DEFINED STRUCTURE TYPES

➢ A user-defined type like textbook_t can be used to declare both simple and array variables and
to declare components in other structure types.

➢ A structure containing components that are data structures (arrays or structs) is sometimes called

a hierarchical structure .

➢ The following definition of a structure type includes a component that is an array of textbooks.

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct {

 char author[100];

 int year;

 textbook_t books[10];

} all_textbooks_t;

➢ We can reference a component of a structure by using the direct component selection operator
, which is a period.

➢ The period is preceded by the name of a structure type variable and is followed by the name of

a component.

● Once data are stored in a record, they can be manipulated in the same way as other data in
memory.

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s was published in %d.\n",

book.title, book.year);
MyBook was published in 2000

strcpy(book.name, “MyBook”);

book.year = 2000;

Loading…

● EXAMPLE 10.2

Figure 10.1

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s's diameter is %.1f km.\n",

current_planet.name, current_planet.diameter);

Jupiter's diameter is 142800.0 km.

➢ See Table 10.1 p.572

● Manipulating Whole Structures
➢ The name of a structure type variable used with no component selection operator refers to the

entire structure.
➢ A new copy of a structure’s value can be made by simply assigning one structure to another as in

the following statement:

● Program Style: (1)
➢ To help reduce confusion, in this chapter we choose user-defined type names that use lowercase

letters and end in the suffix_t (2)

REVIEW OF OPERATOR PRECEDENCE

previous_planet = current_planet;

➢ When a structured variable is passed as an input argument to a function, all of its component
values are copied into the components of the function’s corresponding formal parameter.

➢ EXAMPLE 10.3, Figure 10.2 (1)

➢ To display the value of our structure current_planet , we would use the call statement:

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

print_planet(current_planet);

➢ Another function that would help us think of a planet as a data object is a function that would
perform an equality comparison of two planets.

➢ Although C permits copying of a structure using the assignment operator, the equality and

inequality operators CANNOT BE applied to a structured type as a unit.

➢ Figure 10.3 (1)

● Structures as output arguments:

➢ When such a variable is used as an output argument, the addressof operator must be applied in
the same way that we would pass output arguments of the standard types char , int , and double.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ Figure 10.4 (1)
➢ In order to use scanf to store a value in one component of the structure whose address is in plnp

, we must carry out the following steps (in order):

1. Follow the pointer in plnp to the structure.
2. Select the component of interest.
3. Unless this component is an array (e.g., component name in Fig. 10.4), get its address to pass

to scanf .

➢ When we check our precedence chart (see Table 10.1), we find that this reference
&*plnp.diameter would attempt step 2 before step 1.

➢ For this reason, the function in Fig. 10.4 overrides the default operator precedence by

parenthesizing the application of the indirect referencing (pointer-following) operator, the unary
*.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

Figure 10.5

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

status = scan_planet(¤t_planet);

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ indirect component selection operator (->) (1)

➢ If we rewrite the scan_planet function of Fig. 10.4 using the -> operator, the assignment to
result will be

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

(*structp).component structp->component=

result = scanf("%s%lf%d%lf%lf", plnp->name,

&plnp->diameter,

&plnp->moons,

&plnp->orbit_time,

&plnp->rotation_time);

➢ A function that computes a structured result can be modeled on a function computing a simple
result.

➢ A local variable of the structure type can be allocated, filled with the desired data, and returned

as the function result.

➢ The function does not return the address of the structure as it would with an array result; rather it
returns the values of all components.

➢ EXAMPLE 10.4, Fig. 10.6

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

current_planet = get_planet(); status = scan_planet(¤t_planet);
(1)

● EXAMPLE 10.5, Fig. 10.7 (1)
➢ Assuming a 24-hour clock, the structure type time_t is defined as follows:

➢ If time_now were 21:58:32 and secs had the value 97, the result returned by the call
new_time(time_now, secs) would be 22:00:09 (2)

➢ If the intent is to update time_now , an assignment statement is used:

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

typedef struct {

 int hour, minute, second;

} time_t;

time_now = new_time(time_now, secs);

Figure 10.8

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

● Parallel Arrays: (1)

➢ Arrays id and gpa are called parallel arrays because the data items with the same
subscript (for example, i) pertain to the same student (the ith student).

➢ Similarly, the ith elements of arrays x and y are the coordinates of one point.

➢ A better way to organize data collections like these is shown next.

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

● Declaring an Array of Structures:

➢ A more natural and convenient
organization of student data or polygon
points is to group the information
pertaining to one student or to one point in
a structure whose type we define. (1)

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

➢ The data for the first student are
stored in the structure stulist[0] .

➢ The individual data items are

stulist[0].id and stulist[0].gpa .
➢ stulist[0].gpa is 2.71 .

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

Figure 10.11

for (i = 0; i < MAX_STU; ++i) (1)

scan_student(&stulist[i]);

for (i = 0; i < MAX_STU; ++i) (2)

printf("%d\n", stulist[i].id);

CASE STUDY (Homework)
P. 594 – 602

Universal Measurement Conversion

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ When using the direct selection operator (.), always be aware of the type of the
component selected, and use the value in a manner consistent with its type. (1)

➢ For example, if the component selected is an array, passing it to a function as an

output argument does not require application of the address-of operator.

➢ If a structure type output parameter is used in a function, one can avoid the operator
precedence problems associated with combining the indirection (*) and direct
component selection (.) operators by using the indirect component selection operator
(->).

10.7 COMMON PROGRAMMING ERRORS

➢ C allows the use of structure type values in assignment statements as function
arguments and as function results, so one can easily forget that expressions of these
types cannot be operands of equality comparators or arguments of printf and scanf .

➢ You can select simple components from a structure to use in these contexts, or you

can write your own type-specific equality and I/O functions.

10.7 COMMON PROGRAMMING ERRORS

Loading…

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 10

Structure

Loading…

Chapter Objectives:

1. Declare a struct data type which consists of several data fields, each with its own name
and data type.

2. Use a struct to store data for a structured object or record.

3. Use dot notation to process individual fields of a structured object

4. Use structs as function parameters and to return function results

5. Understand the relationship between parallel arrays and arrays of structured objects.

And More…

➢ Unlike an array, a structure can have individual components that contain data
of different types.

➢ A single variable of a composite type designed for a textbook can store a book’s

author, title, publisher and year

➢ Each of these data items is stored in a separate component of the structure
and can be referenced by using the component name.

STRUCTU
RE

textbook => structure

author, title, publisher, year => components

Loading…

● Structure Type Definition:
● Before a structured data object can be created or saved, the format of its components

must be defined. (1)

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct { (2)

 char author[100];

 char title[100];

 char publisher[50];

 int year;

} textbook_t;

textbook_t book;

● EXAMPLE 10.1

● A single variable of a composite type designed for planets can store a planet’s
1. name
2. diameter
3. number of moons
4. the number of years to complete one solar orbit
5. the number of hours to make one rotation on its axis.

10.1 USER-DEFINED STRUCTURE TYPES

➢ This type definition is a template that describes the format of a planet structure and the name and
type of each component.

➢ A name chosen for a component of one structure may be the same as the name of a component

of another structure or the same as the name of a variable. (1)

➢ The typedef statement itself allocates no memory. A variable declaration is required to allocate
storage space for a structured data object.

 (2)

10.1 USER-DEFINED STRUCTURE TYPES

➢ The structured variables current_planet , previous_planet , and blank_planet all have the
format specified in the definition of type planet_t.

➢ Thus, the memory allocated for each consists of storage space for five distinct values.

 (1)

10.1 USER-DEFINED STRUCTURE TYPES

➢ A user-defined type like textbook_t can be used to declare both simple and array variables and
to declare components in other structure types.

➢ A structure containing components that are data structures (arrays or structs) is sometimes called

a hierarchical structure .

➢ The following definition of a structure type includes a component that is an array of textbooks.

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct {

 char author[100];

 int year;

 textbook_t books[10];

} all_textbooks_t;

➢ We can reference a component of a structure by using the direct component selection operator
, which is a period.

➢ The period is preceded by the name of a structure type variable and is followed by the name of

a component.

● Once data are stored in a record, they can be manipulated in the same way as other data in
memory.

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s was published in %d.\n",

book.title, book.year);
MyBook was published in 2000

strcpy(book.name, “MyBook”);

book.year = 2000;

Loading…

● EXAMPLE 10.2

Figure 10.1

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s's diameter is %.1f km.\n",

current_planet.name, current_planet.diameter);

Jupiter's diameter is 142800.0 km.

➢ See Table 10.1 p.572

● Manipulating Whole Structures
➢ The name of a structure type variable used with no component selection operator refers to the

entire structure.
➢ A new copy of a structure’s value can be made by simply assigning one structure to another as in

the following statement:

● Program Style: (1)
➢ To help reduce confusion, in this chapter we choose user-defined type names that use lowercase

letters and end in the suffix_t (2)

REVIEW OF OPERATOR PRECEDENCE

previous_planet = current_planet;

➢ When a structured variable is passed as an input argument to a function, all of its component
values are copied into the components of the function’s corresponding formal parameter.

➢ EXAMPLE 10.3, Figure 10.2 (1)

➢ To display the value of our structure current_planet , we would use the call statement:

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

print_planet(current_planet);

➢ Another function that would help us think of a planet as a data object is a function that would
perform an equality comparison of two planets.

➢ Although C permits copying of a structure using the assignment operator, the equality and

inequality operators CANNOT BE applied to a structured type as a unit.

➢ Figure 10.3 (1)

● Structures as output arguments:

➢ When such a variable is used as an output argument, the addressof operator must be applied in
the same way that we would pass output arguments of the standard types char , int , and double.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ Figure 10.4 (1)
➢ In order to use scanf to store a value in one component of the structure whose address is in plnp

, we must carry out the following steps (in order):

1. Follow the pointer in plnp to the structure.
2. Select the component of interest.
3. Unless this component is an array (e.g., component name in Fig. 10.4), get its address to pass

to scanf .

➢ When we check our precedence chart (see Table 10.1), we find that this reference
&*plnp.diameter would attempt step 2 before step 1.

➢ For this reason, the function in Fig. 10.4 overrides the default operator precedence by

parenthesizing the application of the indirect referencing (pointer-following) operator, the unary
*.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

Figure 10.5

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

status = scan_planet(¤t_planet);

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ indirect component selection operator (->) (1)

➢ If we rewrite the scan_planet function of Fig. 10.4 using the -> operator, the assignment to
result will be

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

(*structp).component structp->component=

result = scanf("%s%lf%d%lf%lf", plnp->name,

&plnp->diameter,

&plnp->moons,

&plnp->orbit_time,

&plnp->rotation_time);

➢ A function that computes a structured result can be modeled on a function computing a simple
result.

➢ A local variable of the structure type can be allocated, filled with the desired data, and returned

as the function result.

➢ The function does not return the address of the structure as it would with an array result; rather it
returns the values of all components.

➢ EXAMPLE 10.4, Fig. 10.6

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

current_planet = get_planet(); status = scan_planet(¤t_planet);
(1)

● EXAMPLE 10.5, Fig. 10.7 (1)
➢ Assuming a 24-hour clock, the structure type time_t is defined as follows:

➢ If time_now were 21:58:32 and secs had the value 97, the result returned by the call
new_time(time_now, secs) would be 22:00:09 (2)

➢ If the intent is to update time_now , an assignment statement is used:

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

typedef struct {

 int hour, minute, second;

} time_t;

time_now = new_time(time_now, secs);

Figure 10.8

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

● Parallel Arrays: (1)

➢ Arrays id and gpa are called parallel arrays because the data items with the same
subscript (for example, i) pertain to the same student (the ith student).

➢ Similarly, the ith elements of arrays x and y are the coordinates of one point.

➢ A better way to organize data collections like these is shown next.

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

● Declaring an Array of Structures:

➢ A more natural and convenient
organization of student data or polygon
points is to group the information
pertaining to one student or to one point in
a structure whose type we define. (1)

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

➢ The data for the first student are
stored in the structure stulist[0] .

➢ The individual data items are

stulist[0].id and stulist[0].gpa .
➢ stulist[0].gpa is 2.71 .

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

Figure 10.11

for (i = 0; i < MAX_STU; ++i) (1)

scan_student(&stulist[i]);

for (i = 0; i < MAX_STU; ++i) (2)

printf("%d\n", stulist[i].id);

CASE STUDY (Homework)
P. 594 – 602

Universal Measurement Conversion

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ When using the direct selection operator (.), always be aware of the type of the
component selected, and use the value in a manner consistent with its type. (1)

➢ For example, if the component selected is an array, passing it to a function as an

output argument does not require application of the address-of operator.

➢ If a structure type output parameter is used in a function, one can avoid the operator
precedence problems associated with combining the indirection (*) and direct
component selection (.) operators by using the indirect component selection operator
(->).

10.7 COMMON PROGRAMMING ERRORS

➢ C allows the use of structure type values in assignment statements as function
arguments and as function results, so one can easily forget that expressions of these
types cannot be operands of equality comparators or arguments of printf and scanf .

➢ You can select simple components from a structure to use in these contexts, or you

can write your own type-specific equality and I/O functions.

10.7 COMMON PROGRAMMING ERRORS

Loading…

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 10

Structure

Loading…

Chapter Objectives:

1. Declare a struct data type which consists of several data fields, each with its own name
and data type.

2. Use a struct to store data for a structured object or record.

3. Use dot notation to process individual fields of a structured object

4. Use structs as function parameters and to return function results

5. Understand the relationship between parallel arrays and arrays of structured objects.

And More…

➢ Unlike an array, a structure can have individual components that contain data
of different types.

➢ A single variable of a composite type designed for a textbook can store a book’s

author, title, publisher and year

➢ Each of these data items is stored in a separate component of the structure
and can be referenced by using the component name.

STRUCTU
RE

textbook => structure

author, title, publisher, year => components

Loading…

● Structure Type Definition:
● Before a structured data object can be created or saved, the format of its components

must be defined. (1)

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct { (2)

 char author[100];

 char title[100];

 char publisher[50];

 int year;

} textbook_t;

textbook_t book;

● EXAMPLE 10.1

● A single variable of a composite type designed for planets can store a planet’s
1. name
2. diameter
3. number of moons
4. the number of years to complete one solar orbit
5. the number of hours to make one rotation on its axis.

10.1 USER-DEFINED STRUCTURE TYPES

➢ This type definition is a template that describes the format of a planet structure and the name and
type of each component.

➢ A name chosen for a component of one structure may be the same as the name of a component

of another structure or the same as the name of a variable. (1)

➢ The typedef statement itself allocates no memory. A variable declaration is required to allocate
storage space for a structured data object.

 (2)

10.1 USER-DEFINED STRUCTURE TYPES

➢ The structured variables current_planet , previous_planet , and blank_planet all have the
format specified in the definition of type planet_t.

➢ Thus, the memory allocated for each consists of storage space for five distinct values.

 (1)

10.1 USER-DEFINED STRUCTURE TYPES

➢ A user-defined type like textbook_t can be used to declare both simple and array variables and
to declare components in other structure types.

➢ A structure containing components that are data structures (arrays or structs) is sometimes called

a hierarchical structure .

➢ The following definition of a structure type includes a component that is an array of textbooks.

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct {

 char author[100];

 int year;

 textbook_t books[10];

} all_textbooks_t;

➢ We can reference a component of a structure by using the direct component selection operator
, which is a period.

➢ The period is preceded by the name of a structure type variable and is followed by the name of

a component.

● Once data are stored in a record, they can be manipulated in the same way as other data in
memory.

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s was published in %d.\n",

book.title, book.year);
MyBook was published in 2000

strcpy(book.name, “MyBook”);

book.year = 2000;

Loading…

● EXAMPLE 10.2

Figure 10.1

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s's diameter is %.1f km.\n",

current_planet.name, current_planet.diameter);

Jupiter's diameter is 142800.0 km.

➢ See Table 10.1 p.572

● Manipulating Whole Structures
➢ The name of a structure type variable used with no component selection operator refers to the

entire structure.
➢ A new copy of a structure’s value can be made by simply assigning one structure to another as in

the following statement:

● Program Style: (1)
➢ To help reduce confusion, in this chapter we choose user-defined type names that use lowercase

letters and end in the suffix_t (2)

REVIEW OF OPERATOR PRECEDENCE

previous_planet = current_planet;

➢ When a structured variable is passed as an input argument to a function, all of its component
values are copied into the components of the function’s corresponding formal parameter.

➢ EXAMPLE 10.3, Figure 10.2 (1)

➢ To display the value of our structure current_planet , we would use the call statement:

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

print_planet(current_planet);

➢ Another function that would help us think of a planet as a data object is a function that would
perform an equality comparison of two planets.

➢ Although C permits copying of a structure using the assignment operator, the equality and

inequality operators CANNOT BE applied to a structured type as a unit.

➢ Figure 10.3 (1)

● Structures as output arguments:

➢ When such a variable is used as an output argument, the addressof operator must be applied in
the same way that we would pass output arguments of the standard types char , int , and double.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ Figure 10.4 (1)
➢ In order to use scanf to store a value in one component of the structure whose address is in plnp

, we must carry out the following steps (in order):

1. Follow the pointer in plnp to the structure.
2. Select the component of interest.
3. Unless this component is an array (e.g., component name in Fig. 10.4), get its address to pass

to scanf .

➢ When we check our precedence chart (see Table 10.1), we find that this reference
&*plnp.diameter would attempt step 2 before step 1.

➢ For this reason, the function in Fig. 10.4 overrides the default operator precedence by

parenthesizing the application of the indirect referencing (pointer-following) operator, the unary
*.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

Figure 10.5

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

status = scan_planet(¤t_planet);

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ indirect component selection operator (->) (1)

➢ If we rewrite the scan_planet function of Fig. 10.4 using the -> operator, the assignment to
result will be

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

(*structp).component structp->component=

result = scanf("%s%lf%d%lf%lf", plnp->name,

&plnp->diameter,

&plnp->moons,

&plnp->orbit_time,

&plnp->rotation_time);

➢ A function that computes a structured result can be modeled on a function computing a simple
result.

➢ A local variable of the structure type can be allocated, filled with the desired data, and returned

as the function result.

➢ The function does not return the address of the structure as it would with an array result; rather it
returns the values of all components.

➢ EXAMPLE 10.4, Fig. 10.6

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

current_planet = get_planet(); status = scan_planet(¤t_planet);
(1)

● EXAMPLE 10.5, Fig. 10.7 (1)
➢ Assuming a 24-hour clock, the structure type time_t is defined as follows:

➢ If time_now were 21:58:32 and secs had the value 97, the result returned by the call
new_time(time_now, secs) would be 22:00:09 (2)

➢ If the intent is to update time_now , an assignment statement is used:

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

typedef struct {

 int hour, minute, second;

} time_t;

time_now = new_time(time_now, secs);

Figure 10.8

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

● Parallel Arrays: (1)

➢ Arrays id and gpa are called parallel arrays because the data items with the same
subscript (for example, i) pertain to the same student (the ith student).

➢ Similarly, the ith elements of arrays x and y are the coordinates of one point.

➢ A better way to organize data collections like these is shown next.

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

● Declaring an Array of Structures:

➢ A more natural and convenient
organization of student data or polygon
points is to group the information
pertaining to one student or to one point in
a structure whose type we define. (1)

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

➢ The data for the first student are
stored in the structure stulist[0] .

➢ The individual data items are

stulist[0].id and stulist[0].gpa .
➢ stulist[0].gpa is 2.71 .

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

Figure 10.11

for (i = 0; i < MAX_STU; ++i) (1)

scan_student(&stulist[i]);

for (i = 0; i < MAX_STU; ++i) (2)

printf("%d\n", stulist[i].id);

CASE STUDY (Homework)
P. 594 – 602

Universal Measurement Conversion

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ When using the direct selection operator (.), always be aware of the type of the
component selected, and use the value in a manner consistent with its type. (1)

➢ For example, if the component selected is an array, passing it to a function as an

output argument does not require application of the address-of operator.

➢ If a structure type output parameter is used in a function, one can avoid the operator
precedence problems associated with combining the indirection (*) and direct
component selection (.) operators by using the indirect component selection operator
(->).

10.7 COMMON PROGRAMMING ERRORS

➢ C allows the use of structure type values in assignment statements as function
arguments and as function results, so one can easily forget that expressions of these
types cannot be operands of equality comparators or arguments of printf and scanf .

➢ You can select simple components from a structure to use in these contexts, or you

can write your own type-specific equality and I/O functions.

10.7 COMMON PROGRAMMING ERRORS

Loading…

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 10

Structure

Loading…

Chapter Objectives:

1. Declare a struct data type which consists of several data fields, each with its own name
and data type.

2. Use a struct to store data for a structured object or record.

3. Use dot notation to process individual fields of a structured object

4. Use structs as function parameters and to return function results

5. Understand the relationship between parallel arrays and arrays of structured objects.

And More…

➢ Unlike an array, a structure can have individual components that contain data
of different types.

➢ A single variable of a composite type designed for a textbook can store a book’s

author, title, publisher and year

➢ Each of these data items is stored in a separate component of the structure
and can be referenced by using the component name.

STRUCTU
RE

textbook => structure

author, title, publisher, year => components

Loading…

● Structure Type Definition:
● Before a structured data object can be created or saved, the format of its components

must be defined. (1)

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct { (2)

 char author[100];

 char title[100];

 char publisher[50];

 int year;

} textbook_t;

textbook_t book;

● EXAMPLE 10.1

● A single variable of a composite type designed for planets can store a planet’s
1. name
2. diameter
3. number of moons
4. the number of years to complete one solar orbit
5. the number of hours to make one rotation on its axis.

10.1 USER-DEFINED STRUCTURE TYPES

➢ This type definition is a template that describes the format of a planet structure and the name and
type of each component.

➢ A name chosen for a component of one structure may be the same as the name of a component

of another structure or the same as the name of a variable. (1)

➢ The typedef statement itself allocates no memory. A variable declaration is required to allocate
storage space for a structured data object.

 (2)

10.1 USER-DEFINED STRUCTURE TYPES

➢ The structured variables current_planet , previous_planet , and blank_planet all have the
format specified in the definition of type planet_t.

➢ Thus, the memory allocated for each consists of storage space for five distinct values.

 (1)

10.1 USER-DEFINED STRUCTURE TYPES

➢ A user-defined type like textbook_t can be used to declare both simple and array variables and
to declare components in other structure types.

➢ A structure containing components that are data structures (arrays or structs) is sometimes called

a hierarchical structure .

➢ The following definition of a structure type includes a component that is an array of textbooks.

10.1 USER-DEFINED STRUCTURE TYPES

typedef struct {

 char author[100];

 int year;

 textbook_t books[10];

} all_textbooks_t;

➢ We can reference a component of a structure by using the direct component selection operator
, which is a period.

➢ The period is preceded by the name of a structure type variable and is followed by the name of

a component.

● Once data are stored in a record, they can be manipulated in the same way as other data in
memory.

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s was published in %d.\n",

book.title, book.year);
MyBook was published in 2000

strcpy(book.name, “MyBook”);

book.year = 2000;

Loading…

● EXAMPLE 10.2

Figure 10.1

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

MANIPULATING INDIVIDUAL COMPONENTS OF A STRUCTURED DATA OBJECT

printf("%s's diameter is %.1f km.\n",

current_planet.name, current_planet.diameter);

Jupiter's diameter is 142800.0 km.

➢ See Table 10.1 p.572

● Manipulating Whole Structures
➢ The name of a structure type variable used with no component selection operator refers to the

entire structure.
➢ A new copy of a structure’s value can be made by simply assigning one structure to another as in

the following statement:

● Program Style: (1)
➢ To help reduce confusion, in this chapter we choose user-defined type names that use lowercase

letters and end in the suffix_t (2)

REVIEW OF OPERATOR PRECEDENCE

previous_planet = current_planet;

➢ When a structured variable is passed as an input argument to a function, all of its component
values are copied into the components of the function’s corresponding formal parameter.

➢ EXAMPLE 10.3, Figure 10.2 (1)

➢ To display the value of our structure current_planet , we would use the call statement:

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

print_planet(current_planet);

➢ Another function that would help us think of a planet as a data object is a function that would
perform an equality comparison of two planets.

➢ Although C permits copying of a structure using the assignment operator, the equality and

inequality operators CANNOT BE applied to a structured type as a unit.

➢ Figure 10.3 (1)

● Structures as output arguments:

➢ When such a variable is used as an output argument, the addressof operator must be applied in
the same way that we would pass output arguments of the standard types char , int , and double.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ Figure 10.4 (1)
➢ In order to use scanf to store a value in one component of the structure whose address is in plnp

, we must carry out the following steps (in order):

1. Follow the pointer in plnp to the structure.
2. Select the component of interest.
3. Unless this component is an array (e.g., component name in Fig. 10.4), get its address to pass

to scanf .

➢ When we check our precedence chart (see Table 10.1), we find that this reference
&*plnp.diameter would attempt step 2 before step 1.

➢ For this reason, the function in Fig. 10.4 overrides the default operator precedence by

parenthesizing the application of the indirect referencing (pointer-following) operator, the unary
*.

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

Figure 10.5

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

status = scan_planet(¤t_planet);

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

➢ indirect component selection operator (->) (1)

➢ If we rewrite the scan_planet function of Fig. 10.4 using the -> operator, the assignment to
result will be

10.2 STRUCTURE TYPE DATA AS INPUT AND OUTPUT PARAMETERS

(*structp).component structp->component=

result = scanf("%s%lf%d%lf%lf", plnp->name,

&plnp->diameter,

&plnp->moons,

&plnp->orbit_time,

&plnp->rotation_time);

➢ A function that computes a structured result can be modeled on a function computing a simple
result.

➢ A local variable of the structure type can be allocated, filled with the desired data, and returned

as the function result.

➢ The function does not return the address of the structure as it would with an array result; rather it
returns the values of all components.

➢ EXAMPLE 10.4, Fig. 10.6

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

current_planet = get_planet(); status = scan_planet(¤t_planet);
(1)

● EXAMPLE 10.5, Fig. 10.7 (1)
➢ Assuming a 24-hour clock, the structure type time_t is defined as follows:

➢ If time_now were 21:58:32 and secs had the value 97, the result returned by the call
new_time(time_now, secs) would be 22:00:09 (2)

➢ If the intent is to update time_now , an assignment statement is used:

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

typedef struct {

 int hour, minute, second;

} time_t;

time_now = new_time(time_now, secs);

Figure 10.8

10.3 FUNCTIONS WHOSE RESULT VALUES ARE STRUCTURED

● Parallel Arrays: (1)

➢ Arrays id and gpa are called parallel arrays because the data items with the same
subscript (for example, i) pertain to the same student (the ith student).

➢ Similarly, the ith elements of arrays x and y are the coordinates of one point.

➢ A better way to organize data collections like these is shown next.

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

● Declaring an Array of Structures:

➢ A more natural and convenient
organization of student data or polygon
points is to group the information
pertaining to one student or to one point in
a structure whose type we define. (1)

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

➢ The data for the first student are
stored in the structure stulist[0] .

➢ The individual data items are

stulist[0].id and stulist[0].gpa .
➢ stulist[0].gpa is 2.71 .

10.5 PARALLEL ARRAYS AND ARRAYS OF STRUCTURES

Figure 10.11

for (i = 0; i < MAX_STU; ++i) (1)

scan_student(&stulist[i]);

for (i = 0; i < MAX_STU; ++i) (2)

printf("%d\n", stulist[i].id);

CASE STUDY (Homework)
P. 594 – 602

Universal Measurement Conversion

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ When using the direct selection operator (.), always be aware of the type of the
component selected, and use the value in a manner consistent with its type. (1)

➢ For example, if the component selected is an array, passing it to a function as an

output argument does not require application of the address-of operator.

➢ If a structure type output parameter is used in a function, one can avoid the operator
precedence problems associated with combining the indirection (*) and direct
component selection (.) operators by using the indirect component selection operator
(->).

10.7 COMMON PROGRAMMING ERRORS

➢ C allows the use of structure type values in assignment statements as function
arguments and as function results, so one can easily forget that expressions of these
types cannot be operands of equality comparators or arguments of printf and scanf .

➢ You can select simple components from a structure to use in these contexts, or you

can write your own type-specific equality and I/O functions.

10.7 COMMON PROGRAMMING ERRORS

Loading…

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

