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SOLUTIONS TO CHAPTER 1 

 
1.1 
In Figure 1.1(a), the restoring force is given by:  

θsinmgF −=  

By substitution of relation lx=θsin  into the above equation, we have: 

lxmgF −=  

so the stiffness is given by: 

lmgxFs =−=  

so we have the frequency given by: 

lgms ==2ω  

Since θ  is a very small angle, i.e. lx== θθ sin , or θlx = , we have the restoring force 

given by: 

θmgF −=  

Now, the equation of motion using angular displacement θ  can by derived from Newton’s 
second law: 

xmF &&=  

i.e.                                θθ &&mlmg =−  

i.e.                                0=+ θθ
l
g&&  

which shows the frequency is given by: 

lg=2ω  

 
In Figure 1.1(b), restoring couple is given by θC− , which has relation to moment of inertia I  
given by: 

θθ &&IC =−  

i.e.                                0=+ θθ
I
C&&  

which shows the frequency is given by: 

IC=2ω  
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In Figure 1.1(d), the restoring force is given by: 

lxTF 2−=  

so Newton’s second law gives: 

lTxxmF 2−== &&  

i.e.                              02 =+ lmTxx&&  

which shows the frequency is given by: 

lm
T22 =ω  

 

In Figure 1.1(e), the displacement for liquid with a height of x  has a displacement of 2x  and 

a mass of Axρ , so the stiffness is given by: 

Ag
x
Axg

x
Gs ρρ 22

2
===  

Newton’s second law gives: 
xmG &&=−  

i.e.                               xAlAxg &&ρρ =− 2  

i.e.                                02
=+ x

l
gx&&  

which show the frequency is given by: 

lg22 =ω  

 

In Figure 1.1(f), by taking logarithms of equation constant=γpV , we have: 

constantlnln =+ Vp γ  

so we have:                       0=+
V
dV

p
dp γ  

i.e.                               
V
dVpdp γ−=  

The change of volume is given by AxdV = , so we have: 

V
Axpdp γ−=  

The gas in the flask neck has a mass of Alρ , so Newton’s second law gives: 

xmAdp &&=  
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i.e.                             xAl
V

xAp &&ργ =−
2

 

i.e.                               0=+ x
Vl

pAx
ρ
γ

&&  

which show the frequency is given by: 

Vl
pA
ρ
γω =2  

 

In Figure 1.1 (g), the volume of liquid displaced is Ax , so the restoring force is gAxρ− . Then, 

Newton’s second law gives: 

xmgAxF &&=−= ρ  

i.e.                               0=+ x
m

Agx ρ
&&  

which shows the frequency is given by: 

mAgρω =2  

 
1.2 

Write solution )cos( φω += tax  in form: tatax ωφωφ sinsincoscos −=  and 

compare with equation (1.2) we find: φcosaA =  and φsinaB −= . We can also 

find, with the same analysis, that the values of A  and B  for solution 

)sin( φω −= tax  are given by: φsinaA −=  and φcosaB = , and for solution 

)cos( φω −= tax  are given by: φcosaA =  and φsinaB = . 

Try solution )cos( φω += tax  in expression xx 2ω+&& , we have: 

0)cos()cos( 222 =+++−=+ φωωφωωω tataxx&&  

Try solution )sin( φω −= tax  in expression xx 2ω+&& , we have: 

0)sin()sin( 222 =−+−−=+ φωωφωωω tataxx&&  

Try solution )cos( φω −= tax  in expression xx 2ω+&& , we have: 

0)cos()cos( 222 =−+−−=+ φωωφωωω tataxx&&  
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1.3  

(a) If the solution )sin( φω += tax  satisfies ax = at 0=t , then, aax == φsin  

i.e. 2πφ = . When the pendulum swings to the position 2ax +=  for the first 

time after release, the value of tω  is the minimum solution of equation 

2)2sin( ata +=+πω , i.e. 4πω =t . Similarly, we can find: for 2ax = , 

3πω =t  and for 0=x , 2πω =t .  

If the solution )cos( φω += tax  satisfies ax =  at 0=t , then, aax == φcos  

i.e. 0=φ . When the pendulum swings to the position 2ax +=  for the first 

time after release, the value of tω  is the minimum solution of equation 

2cos ata +=ω , i.e. 4πω =t . Similarly, we can find: for 2ax = , 3πω =t  

and for 0=x , 2πω =t . 

If the solution )sin( φω −= tax  satisfies ax =  at 0=t , then, 

aax =−= )sin( φ  i.e. 2πφ −= . When the pendulum swings to the position 

2ax +=  for the first time after release, the value of tω  is the minimum 

solution of equation 2)2sin( ata +=+πω , i.e. 4πω =t . Similarly, we can 

find: for 2ax = , 3πω =t  and for 0=x , 2πω =t . 

If the solution )cos( φω −= tax  satisfies ax =  at 0=t , then, 

aax =−= )cos( φ  i.e. 0=φ . When the pendulum swings to the position 

2ax +=  for the first time after release, the value of tω  is the minimum 

solution of equation 2cos ata +=ω , i.e. 4πω =t . Similarly, we can find: for 

2ax = , 3πω =t  and for 0=x , 2πω =t . 

(b) If the solution )sin( φω += tax  satisfies ax −=  at 0=t , then, 

aax −== φsin  i.e. 2πφ −= . When the pendulum swings to the position 
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2ax +=  for the first time after release, the value of tω  is the minimum 

solution of equation 2)2sin( ata +=−πω , i.e. 43πω =t . Similarly, we can 

find: for 2ax = , 32πω =t  and for 0=x , 2πω =t .  

If the solution )cos( φω += tax  satisfies ax −=  at 0=t , then, 

aax −== φcos  i.e. πφ = . When the pendulum swings to the position 

2ax +=  for the first time after release, the value of tω  is the minimum 

solution of equation 2)cos( ata +=+πω , i.e. 43πω =t . Similarly, we can 

find: for 2ax = , 32πω =t  and for 0=x , 2πω =t . 

If the solution )sin( φω −= tax  satisfies ax −=  at 0=t , then, 

aax −=−= )sin( φ  i.e. 2πφ = . When the pendulum swings to the position 

2ax +=  for the first time after release, the value of tω  is the minimum 

solution of equation 2)2sin( ata +=−πω , i.e. 43πω =t . Similarly, we can 

find: for 2ax = , 32πω =t  and for 0=x , 2πω =t . 

If the solution )cos( φω −= tax  satisfies ax −=  at 0=t , then, 

aax −=−= )cos( φ  i.e. πφ = . When the pendulum swings to the position 

2ax +=  for the first time after release, the value of tω  is the minimum 

solution of equation 2)cos( ata +=−πω , i.e. 43πω =t . Similarly, we can 

find: for 2ax = , 32πω =t  and for 0=x , 2πω =t . 

 
1.4 
The frequency of such a simple harmonic motion is given by: 

][105.4
101.9)1005.0(1085.84

)106.1(
4

116
313912

219

3
0

2

0
−

−−−

−

⋅×≈
×××××××

×
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mr
e

m
s

ee ππε
ω

Its radiation generates an electromagnetic wave with a wavelength λ  given by: 
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][42][102.4
105.4

10322 8
16

8

0

nmmc
=×≈

×
×××

== −π
ω
πλ  

Therefore such a radiation is found in X-ray region of electromagnetic spectrum.  
 
1.5 
(a) If the mass m  is displaced a distance of x  from its equilibrium position, either 

the upper or the lower string has an extension of 2x . So, the restoring force of 

the mass is given by: 2sxF −=  and the stiffness of the system is given by: 

2sxFs =−=′ . Hence the frequency is given by msmsa 22 =′=ω . 

(b) The frequency of the system is given by: msb =
2ω  

(c) If the mass m  is displaced a distance of x  from its equilibrium position, the 
restoring force of the mass is given by: sxsxsxF 2−=−−=  and the stiffness of 

the system is given by: sxFs 2=−=′ . Hence the frequency is given by 

msmsc 22 =′=ω . 

Therefore, we have the relation: 4:2:12::2:: 222 == msmsmscba ωωω  

 
1.6 

At time 0=t , 0xx =  gives:  

0sin xa =φ                       (1.6.1) 

0vx =&  gives:  

0cos va =φω                      (1.6.2) 

From (1.6.1) and (1.6.2), we have 

00tan vxωφ =  and 2122
0

2
0 )( ωvxa +=  

 
1.7 

The equation of this simple harmonic motion can be written as: )sin( φω += tax . 

The time spent in moving from x  to dxx +  is given by: tvdxdt = , where tv  is 

the velocity of the particle at time t  and is given by: )cos( φωω +== taxvt & . 
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Noting that the particle will appear twice between x  and dxx +  within one period 

of oscillation. We have the probability η  of finding it between x  to dxx +  given 

by: 
T
dt2

=η  where the period is given by: 
ω
π2

=T , so we have: 

222 )(sin1)cos()cos(2
22

xa
dx

ta
dx

ta
dx

ta
dx

T
dt

−
=

+−
=

+
=

+
==

πφωπφωπφωωπ
ωη  

 
1.8 

Since the displacements of the equally spaced oscillators in y  direction is a sine 

curve, the phase difference δφ  between two oscillators a distance x  apart given is 

proportional to the phase difference π2  between two oscillators a distance λ  apart 

by: λπδφ x=2 , i.e. λπδφ x2= . 

 
1.9 
The mass loses contact with the platform when the system is moving downwards and 
the acceleration of the platform equals the acceleration of gravity. The acceleration of 

a simple harmonic vibration can be written as: )sin(2 φωω += tAa , where A  is the 

amplitude, ω  is the angular frequency and φ  is the initial phase. So we have: 

gtA =+ )sin(2 φωω  

i.e.                         
)sin(2 φωω +

=
t

gA  

Therefore, the minimum amplitude, which makes the mass lose contact with the 
platform, is given by: 

][01.0
54

8.9
4 22222min m

f
ggA ≈

××
===

ππω
 

 
1.10 

The mass of the element dy  is given by: lmdym =′ . The velocity of an element 

dy of its length is proportional to its distance y  from the fixed end of the spring, and 

is given by: lyvv =′ . where v  is the velocity of the element at the other end of the 

spring, i.e. the velocity of the suspended mass M . Hence we have the kinetic energy 
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of this element given by:  
2

2

2
1

2
1

⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛=′′= v

l
ydy

l
mvmKEdy  

The total kinetic energy of the spring is given by: 

∫ ∫ ∫ ==⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛==

l l l

dyspring mvdyy
l

mvv
l
ydy

l
mdyKEKE

0 0

2

0

2
3

22

6
1

22
1  

The total kinetic energy of the system is the sum of kinetic energies of the spring and 
the suspended mass, and is given by: 

( ) 222 3
2
1

2
1

6
1 vmMMvmvKEtot +=+=  

which shows the system is equivalent to a spring with zero mass with a mass of 

3mM +  suspended at the end. Therefore, the frequency of the oscillation system is 

given by: 

3
2

mM
s
+

=ω  

 
1.11 

In Figure 1.1(a), the restoring force of the simple pendulum is θsinmg− , then, the 

stiffness is given by: lmgxmgs == θsin . So the energy is given by: 

2222

2
1

2
1

2
1

2
1 x

l
mgxmsxmvE +=+= &  

The equation of motion is by setting 0=dtdE , i.e.: 

0
2
1

2
1 22 =⎟

⎠
⎞

⎜
⎝
⎛ + x

l
mgxm

dt
d

&  

i.e.                            0=+ x
l
gx&&  

 
In Figure 1.1(b), the displacement is the rotation angle θ , the mass is replaced by the 
moment of inertia I  of the disc and the stiffness by the restoring couple C  of the 
wire. So the energy is given by: 

22

2
1

2
1 θθ CIE += &  

The equation of motion is by setting 0=dtdE , i.e.: 

 0
2
1

2
1 22 =⎟

⎠
⎞

⎜
⎝
⎛ + θθ CI

dt
d &  
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i.e.                            0=+ θθ
I
C&&  

 
In Figure 1.1(c), the energy is directly given by: 

22

2
1

2
1 sxmvE +=  

The equation of motion is by setting 0=dtdE , i.e.: 

0
2
1

2
1 22 =⎟

⎠
⎞

⎜
⎝
⎛ + sxxm

dt
d

&  

i.e.                            0=+ x
m
sx&&  

 

In Figure 1.1(c), the restoring force is given by: lTx2− , then the stiffness is given 

by: lTs 2= . So the energy is given by: 

222222

2
12

2
1

2
1

2
1

2
1 x

l
Txmx

l
TxmsxmvE +=+=+= &&  

The equation of motion is by setting 0=dtdE , i.e.: 

0
2
1 22 =⎟

⎠
⎞

⎜
⎝
⎛ + x

l
Txm

dt
d

&  

i.e.                           02
=+ x

lm
Tx&&  

 

In Figure 1.1(e), the liquid of a volume of Alρ  is displaced from equilibrium 

position by a distance of 2l , so the stiffness of the system is given by 

gAlgAls ρρ 22 == . So the energy is given by: 

222222

2
12

2
1

2
1

2
1

2
1 gAxxAlgAxxAlsxmvE ρρρρ +=+=+= &&  

The equation of motion is by setting 0=dtdE , i.e.: 

0
2
1 22 =⎟

⎠
⎞

⎜
⎝
⎛ + gAxxAl

dt
d ρρ &  

i.e.                            02
=+ x

l
gx&&  
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In Figure 1.1(f), the gas of a mass of Alρ  is displaced from equilibrium position by 

a distance of x  and causes a pressure change of VpAxdp γ−= , then, the stiffness 

of the system is given by VpAxAdps 2γ=−= . So the energy is given by: 

V
xpAxAlsxmvE

22
222

2
1

2
1

2
1

2
1 γρ +=+= &  

The equation of motion is by setting 0=dtdE , i.e.: 

0
2
1

2
1 22

2 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

V
xpAxAl

dt
d γρ &  

i.e.                            0=+ x
Vl

pAx
ρ
γ

&&  

 

In Figure 1.1(g), the restoring force of the hydrometer is gAxρ− , then the stiffness 

of the system is given by gAxgAxs ρρ == . So the energy is given by: 

2222

2
1

2
1

2
1

2
1 gAxxmsxmvE ρ+=+= &  

The equation of motion is by setting 0=dtdE , i.e.: 

0
2
1

2
1 22 =⎟

⎠
⎞

⎜
⎝
⎛ + gAxxm

dt
d ρ&  

i.e.                            0=+ x
m

gAx ρ
&&  

 
1.12 
The displacement of the simple harmonic oscillator is given by:  
                               tax ωsin=                      (1.12.1) 
so the velocity is given by:  

tax ωω cos=&                     (1.12.2) 
From (1.12.1) and (1.12.2), we can eliminate t  and get: 

1cossin 22
22

2

2

2

=+=+ tt
a

x
a
x ωω

ω
&

             (1.12.3) 

which is an ellipse equation of points ),( xx & . 

The energy of the simple harmonic oscillator is given by: 
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22

2
1

2
1 sxxmE += &                    (1.12.4) 

Write (1.12.3) in form )( 2222 xax −= ω&  and substitute into (1.12.4), then we have: 

222222

2
1)(

2
1

2
1

2
1 sxxamsxxmE +−=+= ω&  

Noting that the frequency ω  is given by: ms=2ω , we have: 

2222

2
1

2
1)(

2
1 sasxxasE =+−=  

which is a constant value. 
 
1.13 
The equations of the two simple harmonic oscillations can be written as: 

)sin(1 φω += tay  and  )sin(2 δφω ++= tay  

The resulting superposition amplitude is given by: 

)2cos()2sin(2)]sin()[sin(21 δδφωδφωφω ++=++++=+= tattayyR  

and the intensity is given by: 

)2(sin)2(cos4 2222 δφωδ ++== taRI  

i.e.                        )2(cos4 22 δaI ∝  

Noting that )2(sin2 δφω ++t  varies between 0 and 1, we have: 

)2(cos40 22 δaI ≤≤  

 
1.14 

)cos(2

)coscossin(sin2)cos(sin)cos(sin

coscos2coscossinsin2sinsin

coscossinsin

21
21

2
2

2

2
1

2

2121
21

1
2

1
2

2
2

2

2
2

2
2

2
1

2

21
21

2
2

2
1

2

1
2

2
2

2

21
21

1
2

2
2

2

2
2

2
1

2

2

2
1

1
2

2

1
2

2
1

φφ

φφφφφφφφ

φφφφφφφφ

φφφφ

−−+=

+−+++=

−++−+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

aa
xy

a
y

a
x

aa
xy

a
y

a
x

aa
xy

a
x

a
y

aa
xy

a
y

a
x

a
x

a
y

a
y

a
x

 

On the other hand, by substitution of : 

11
1

sincoscossin φωφω tt
a
x

+=  

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

https://students-hub.com


© 2008 John Wiley & Sons, Ltd  

22
2

sincoscossin φωφω tt
a
y

+=  

into expression 
2

2
1

1
2

2

1
2

2
1

coscossinsin ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− φφφφ

a
x

a
y

a
y

a
x

, we have: 

)(sin

)(sin)cos(sin

)sincossin(coscos)cossincos(sinsin

coscossinsin

12
2

12
222

2
1221

22
2112

2

2

2
1

1
2

2

1
2

2
1

φφ

φφωω

φφφφωφφφφω

φφφφ

−=

−+=

−+−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

tt

tt

a
x

a
y

a
y

a
x

 

From the above derivation, we have: 

)(sin)cos(2
12

2
21

21
2
2

2

2
1

2

φφφφ −=−−+
aa
xy

a
y

a
x

  

 
1.15 

By elimination of t  from equation tax ωsin=  and tby ωcos= , we have: 

12

2

2

2

=+
b
y

a
x  

which shows the particle follows an elliptical path. The energy at any position of x , 

y  on the ellipse is given by: 

)(
2
1

2
1

2
1

cos
2
1sin

2
1sin

2
1cos

2
1

2
1

2
1

2
1

2
1

222

2222

222222222222

2222

bam

mbma

tmbtmbtmatma

syymsxxmE

+=

+=

+++=

+++=

ω

ωω

ωωωωωωωω

&&

 

The value of the energy shows it is a constant and equal to the sum of the separate 

energies of the simple harmonic vibrations in x  direction given by 22

2
1 amω  and in 

y  direction given by 22

2
1 bmω . 

At any position of x , y  on the ellipse, the expression of )( xyyxm && −  can be 

written as: 
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ωωωωωωωω abmttabmtabtabmxyyxm −=+−=−−=− )cos(sin)cossin()( 2222&&  

which is a constant. The quantity ωabm  is the angular momentum of the particle. 
 
1.16 

All possible paths described by equation 1.3 fall within a rectangle of 12a  wide and 

22a  high, where max1 xa =  and max2 ya = , see Figure 1.8. 

When 0=x  in equation (1.3) the positive value of )sin( 122 φφ −= ay . The value of 

2max ay = . So )sin( 12max0 φφ −== yyx  which defines 12 φφ − . 

 
1.17 

In the range πφ ≤≤0 , the values of iφcos  are 1cos1 +≤≤− iφ . For n  random 

values of iφ , statistically there will be 2n  values 0cos1 ≤≤− iφ  and 2n  values 

1cos0 ≤≤ iφ . The positive and negative values will tend to cancel each other and the 

sum of the n  values: 0cos
1

→∑
≠
=

n

ji
i

iφ , similarly 0cos
1

→∑
=

n

j
jφ . i.e. 

0coscos
11

→∑∑
=

≠
=

n

j
j

n

ji
i

i φφ  

 
1.18 
The exponential form of the expression: 

])1(sin[)2sin()sin(sin δωδωδωω −+++++++ ntatatata L  

is given by: 
])1([)2()( δωδωδωω −+++ ++++ ntitititi aeaeaeae L  

From the analysis in page 28, the above expression can be rearranged as: 

2sin
2sin2

1

δ
δδω nae

nti ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

+

 

with the imaginary part: 

2sin
2sin

2
1sin

δ
δδω nnta ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

+  

which is the value of the original expression in sine term. 
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1.19 
From the analysis in page 28, the expression of z  can be rearranged as: 

2sin
2sin)1( )1(2

δ
δωδδδω naeeeeaez tiniiiti =+++= −L  

The conjugate of z  is given by: 

2sin
2sin*

δ
δω naez ti−=  

so we have: 

2sin
2sin

2sin
2sin

2sin
2sin

2

2
2*

δ
δ

δ
δ

δ
δ ωω nanaenaezz titi =⋅= −  
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SOLUTIONS TO CHAPTER 2 

 
 
2.1 
The system is released from rest, so we know its initial velocity is zero, i.e.  

                                                         0
0

=
=tdt

dx
                              

(2.1.1) 
Now, rearrange the expression for the displacement in the form: 

                                         tqptqp eGFeGFx )()(

22
−−+− −

+
+

=                          

(2.1.2) 
Then, substitute (2.1.2) into (2.1.1), we have 

                 ( ) ( ) 0
22 0

)()(

0

=⎥⎦
⎤

⎢⎣
⎡ −

−−+
+

+−=
=

−−+−

= t

tqptqp

t

eGFqpeGFqp
dt
dx

       

i.e.                         

                                                            pFqG =                             

(2.1.3) 
By substitution of the expressions of q and p into equation (2.1.3), we have the ratio given by: 

( ) 212 4msr
r

F
G

−
=  

 
2.2 
The first and second derivatives of x  are given by: 

( ) mrteBtA
m
rBx 2

2
−

⎥⎦
⎤

⎢⎣
⎡ +−=&  

        ( ) mrteBtA
m
r

m
rBx 2

2

2

4
−

⎥
⎦

⎤
⎢
⎣

⎡
++−=&&  

We can verify the solution by substitution of x , x&  and x&&  into equation: 
0=++ sxxrxm &&&  

then we have equation: 

 ( ) 0
4

2

=+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− BtA

m
rs  

which is true for all t, provided the first bracketed term of the above equation is zero, i.e. 

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

https://students-hub.com


© 2008 John Wiley & Sons, Ltd  

0
4

2

=−
m

rs  

i.e.               msmr =22 4  

 
2.3 
The initial displacement of the system is given by: 

( ) φωω cos21
2 AeCeCex titimrt =+= ′−′−  at 0=t  

So: 

                                    φcos21 ACC =+                                

(2.3.1) 
Now let the initial velocity of the system to be: 

( ) ( ) φωωω ωω sin
22

2
2

2
1 AeCi

m
reCi

m
rx timrtimr ′−=⎟

⎠
⎞

⎜
⎝
⎛ ′−−+⎟

⎠
⎞

⎜
⎝
⎛ ′+−= ′−−′+−&  at  0=t  

i.e.                                ( ) φωωφ sincos
2 21 ACCiA

m
r ′−=−′+−  

If mr  is very small or 2πφ ≈ , the first term of the above equation approximately equals zero, 

so we have: 

                                      φsin21 iACC =−                               

(2.3.2) 

From (2.3.1) and (2.3.2), 1C  and 2C are given by: 

( )

( ) φ

φ

φφ

φφ

i

i

eAiAC

eAiAC

−=
−

=

=
+

=

22
sincos

22
sincos

2

1

 

 
2.4 

Use the relation between current and charge, qI &= , and the voltage equation: 

0=+ IRCq  

we have the equation: 

0=+ CqqR &  

solve the above equation, we get: 

RCteCq −= 1  
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where 1C  is arbitrary in value. Use initial condition, we get 01 qC = , 

i.e.                           RCteqq −= 0  

which shows the relaxation time of the process is RC  s. 
 
2.5 

(a)               222
0

-622
0 410- mr==′ ωωω  => 5000 =rmω  

The condition also shows 0ωω ≈′ , so:  

5000 =≈′= rmrmQ ωω  

Use 
ω
πτ
′

=′
2

, we have: 

 
5002
ππ

ω
πτδ ==

′
=′=

Qm
r

m
r

 

(b) The stiffness of the system is given by: 

][1001010 110122
0

−− =×== Nmms ω  

and the resistive constant is given by: 

                         ][102
500

1010 17
106

0 −−
−

⋅×=
×

== smN
Q

mr ω
 

(c) At 0=t and maximum displacement, 0=x& , energy is given by: 

][10510100
2
1

2
1

2
1

2
1 342

max
22 JsxsxxmE −− ×=××==+= &  

Time for energy to decay to 1−e of initial value is given by: 

][5.0
102

10
7

10

ms
r
mt =

×
== −

−

 

(d) Use definition of Q factor: 

E
EQ
Δ−

= π2  

where, E  is energy stored in system, and EΔ−  is energy lost per cycle, so energy loss in the 

first cycle, 1EΔ− , is given by: 

][102
500
10522 5

3

1 J
Q
EEE −

−

×=
×

×==Δ−=Δ− πππ  

 
2.6 
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The frequency of a damped simple harmonic oscillation is given by: 

2

2
2
0

2

4m
r

−=′ ωω => 2

2
2
0

2

4m
r

=−′ ωω  => ( )0
2

2

0 4
-

ωω
ωωω

+′
=′=Δ

m
r

 

Use ωω ≈′  and 
r
mQ 0ω=

 
we find fractional change in the resonant frequency is given by: 

( ) 12
2
0

2

2

0

0

0

8
8

−
=≈

−′
=

Δ Q
m
r
ωω

ωω
ω
ω

 

2.7 
See page 71 of text. Analysis is the same as that in the text for the mechanical case except that 
inductance L  replaces mass m , resistance R  replaces r  and stiffness s  is replaced by 

C1 , where C  is the capacitance. A large Q  value requires a small R . 

 
2.8 
Electrons per unit area of the plasma slab is given by: 

nleq −=  

When all the electrons are displaced a distance x , giving a restoring electric field: 

0/εnexE = ，the restoring force per unit area is given by: 

0

22

ε
lexnqEF −==  

Newton’s second law gives: 

onaccelerati electrons  areaunit per  mass electrons  areaunit per  force restoring ×=   

i.e. 

xnlmlexnF e &&×=−=
0

22

ε
 

i.e.                                                   0
0

2

=+ x
m
nex
ε

&&  

From the above equation, we can see the displacement distance of electrons, x , oscillates with 
angular frequency: 

0

2
2

ε
ω

e
e m

ne
=  

2.9 

As the string is shortened work is done against: (a) gravity )cos( θmg  and (b) the centrifugal 

force )( 22 θ&mlrmv =  along the time of shortening. Assume that during shortening there are 
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many swings of constant amplitude so work done is: 

lmlmgA Δ+−= )cos( 2θθ &  

where the bar denotes the average value. For small θ , 21cos 2θθ −=  so: 

)2( 22 θθ &mlmglmgA −+Δ−=  

The term lmgΔ−  is the elevation of the equilibrium position and does not affect the energy of 

motion so the energy change is: 

lmlmgE Δ−=Δ )2( 22 θθ &  

Now the pendulum motion has energy: 

)cos1(
2

22 θθ −+= mgllmE & , 

that is, kinetic energy plus the potential energy related to the rest position, for small θ  this 
becomes: 

22

222 θθ mglmlE +=
&

 

which is that of a simple harmonic oscillation with linear amplitude 0θl . 

Taking the solution tωθθ cos0=  which gives 22
0

2 θθ =  and 22
0

22 θωθ =&  with 

lg=ω  we may write: 

22

2
0

2
0

22 θθω mglmlE ==  

and 

lmllmlmlE Δ⋅−=Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=Δ

424

2
0

22
0

22
0

2 θωθωθω
 

so: 

l
l

E
E Δ

−=
Δ

2
1

 

Now lg== πνω 2  so the frequency ν  varies with 21−l  and  

E
E

l
l Δ
=

Δ
−=

Δ
2
1

ν
ν

 

so: 

constant=
ν
E
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SOLUTIONS TO CHAPTER 3 

 
3.1 
The solution of the vector form of the equation of motion for the forced oscillator: 

tieFsrm ω
0=++ xxx &&&  

is given by: 

)sin()cos(
)(

0 φω
ω

φω
ωω

φω

−+−−==
−

t
Z
Ft

Z
iF

Z
eiF

mmm

ti

x  

Since tieF ω
0  represents its imaginary part: tF ωsin0 , the value of x is given by the 

imaginary part of the solution, i.e.:  

)cos( φω
ω

−−= t
Z
Fx

m

 

The velocity is given by: 

)sin( φω −== t
Z
Fxv

m

&  

 
3.2 

The transient term of a forced oscillator decay with mrte 2−  to ke- at time t , i.e.: 

kmrt −=− 2  

so, we have the resistance of the system given by: 

                              tmkr 2=                          (3.2.1) 

For small damping, we have 

ms0 =≈ωω                        (3.2.2) 

We also have steady state displacement given by: 

)sin(0 φω −= txx  

where the maximum displacement is: 

22
0

0
)( msmr

Fx
−+

=
ωω

                (3.2.3) 

By substitution of (3.2.1) and (3.2.2) into (3.2.3), we can find the average rate of 
growth of the oscillations given by: 
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0

00

2 ωkm
F

t
x

=  

  
 
3.3 
Write the equation of an undamped simple harmonic oscillator driven by a force of 

frequency ω  in the vector form, and use tieF ω
0  to represent its imaginary part 

tF ωsin0 , we have: 

tieFsm ω
0=+ xx&&                      (3.3.1) 

We try the steady state solution tie ωAx =  and the velocity is given by: 

xAx ωω ω iei ti ==&  

so that: 

xxx 222 ωω −== i&&  

and equation (3.3.1) becomes: 
titi eFesm ωωω 0

2 )( =+− AA  

which is true for all t  when 

0
2 Fsm =+− AAω  

i.e.                           
ms

F
2

0

ω−
=A  

i.e.                           tie
ms

F ω

ω 2
0

−
=x  

The value of x  is the imaginary part of vector x , given by: 

t
ms

Fx ω
ω

sin2
0

−
=  

i.e.                       
)(

sin
22

0

0

ωω
ω
−

=
m

tFx     where 
m
s

=2
0ω   

Hence, the amplitude of x  is given by: 

)( 22
0

0

ωω −
=

m
FA  
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and its behaviour as a function of frequency is shown in the following graph: 

By solving the equation: 
0=+ sxxm &&  

we can easily find the transient term of the equation of the motion of an undamped 
simple harmonic oscillator driven by a force of frequency ω  is given by: 

tDtCx 00 sincos ωω +=  

where, ms=0ω , C  and D  are constant. Finally, we have the general solution 

for the displacement given by the sum of steady term and transient term: 

tDtC
m

tFx 0022
0

0 sincos
)(

sin ωω
ωω
ω

++
−

=             (3.3.2) 

 
3.4 
In equation (3.3.2), 0=x  at 0=t  gives: 

0sincos
)(

sin

0
0022

0

0
0

==⎥
⎦

⎤
⎢
⎣

⎡
++

−
=

=
=

AtBtA
m

tFx
t

t
ωω

ωω
ω       (3.4.1) 

In equation (3.3.2), 0=x&  at 0=t  gives: 

0
)(

cossin
)(

cos
022

0

0

0
000022

0

0

0

=+
−

=⎥
⎦

⎤
⎢
⎣

⎡
+−

−
=

==

B
m

FtBtA
m

tF
dt
dx

tt

ω
ωω

ωωωωω
ωω
ωω  

i.e.                      
)( 22

00

0

ωωω
ω
−

−=
m

FB                       (3.4.2) 

By substitution of (3.4.1) and (3.4.2) into (3.3.2), we have: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
= tt

m
Fx 0

0
22

0

0 sinsin
)(

1 ω
ω
ωω

ωω
                 (3.4.3) 

By substitution of ωωω Δ+= 0  into (3.4.3), we have: 

2
0

0

ωm
F  

A

0ω  ω  0 
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−Δ+Δ

Δ+
−= ttttt

m
Fx 0

0
00

0

0 sincossincossin
)(

ω
ω
ωωωωω

ωωω
   (3.4.4) 

Since 10 <<Δ ωω  and 1<<Δ tω , we have: 

0ωω ≈ , tt ωω Δ≈Δsin , and 1cos ≈Δ tω  

Then, equation (3.4.4) becomes: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−Δ+

Δ
−= tttt

m
Fx 0

0
00

0

0 sincossin
2

ω
ω
ωωωω

ωω
 

i.e.                ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ+

Δ
−

Δ
−= ttt

m
Fx 00

00

0 cossin
2

ωωω
ω
ω

ωω
 

i.e.                    ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ttt

m
Fx 0

0

0

0

0 cossin
2

ω
ω
ω

ω
 

i.e.                    )cos(sin
2 0002

0

0 ttt
m
Fx ωωω
ω

−=  

The behaviour of displacement x  as a function of t0ω  is shown in the following 

graph: 
 
3.5 
The general expression of displacement of a simple damped mechanical oscillator 

driven by a force tF ωcos0  is the sum of transient term and steady state term, given 

x  

t0ω  

0

0

2 ωm
tF

 

0

0

2 ωm
tF

−  

2
0

0

2 ω
π

m
F

 

0  

2
0

0

ω
π

m
F

 

2
0

02
ω
π

m
F

 

2
0

03
ω
π

m
F

 

2
0

0

2
3
ω
π

m
F

 
2
0

0

2
5
ω
π

m
F

 
2
0

0

2
7
ω
π

m
F
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by: 

m

titi
m

rt

Z
eiFCe i

ω

φωω )(
02

−+−
−=x  

where, C  is constant, 22 )(Z ωω smrm −+= , 22 4mrmst −=ω  and 

⎟
⎠
⎞

⎜
⎝
⎛ −

= −

r
sm ωωφ 1tan , so the general expression of velocity is given by: 

)(02

2
φωω

ω −+−
+⎟

⎠
⎞

⎜
⎝
⎛ +−== ti

m

ti
m

rt

t e
Z
Fei

m
rC ixv &  

and the general expression of acceleration is given by: 

)(022
2

2

4
φωω ωωω −+−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= ti

m

ti
m

rt
t

t e
Z

Fie
m

ri
m
rC iv&  

i.e.            )(02
2

2

2
2 φωω ωω −+−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
= ti

m

ti
m

rt
t e

Z
Fie

m
ri

m
msrC iv&            (3.5.1)  

From (3.5.1), we find the amplitude of acceleration at steady state is given by: 

22
00

)( ωω
ωω

smr
F

Z
Fv
m −+
==&  

At the frequency of maximum acceleration: 0=
ωd
vd &  

i.e.                      0
)( 22

0 =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−+ ωω
ω

ω smr
F

d
d  

i.e.                          022 2

2
2 =+−

ω
smsr  

i.e.                           2

2
2

2
2

rsm
s
−

=ω  

Hence, we find the expression of the frequency of maximum acceleration given by: 

2

2

2
2

rsm
s
−

=ω  

The frequency of velocity resonance is given by: ms=ω , so if smr = , the 

acceleration amplitude at the frequency of velocity resonance is given by: 

m
F

smsmsm

Fms
smr

Fv
smr

00
22

0

)()(
=

−+
=

−+
=

= ωω
ω

&  

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

https://students-hub.com


© 2008 John Wiley & Sons, Ltd  

The limit of the acceleration amplitude at high frequencies is given by: 

m
F

smr

F
smr

Fv 0
2

22

2

0
22

0 lim
)(

limlim =

⎟
⎠
⎞

⎜
⎝
⎛ −+

=
−+

=
∞→∞→∞→

ωω
ωω

ω
ωωω

&  

So we have:  

vv
smr

&&
∞→=

=
ω
lim  

 

3.6 
The displacement amplitude of a driven mechanical oscillator is given by: 

22
0

)( ωωω smr
Fx

−+
=                

i.e.                         
2222

0

)( smr
Fx

−+
=

ωω
                (3.6.1) 

The displacement resonance frequency is given by: 

2

2

2m
r

m
s
−=ω                     (3.6.2) 

By substitution of (3.6.2) into (3.6.1), we have: 

22

2

2
2

0

22 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

m
r

m
r

m
sr

Fx  

i.e.                           

2

2
0

4m
r

m
sr

Fx
−

=  

which proves the exact amplitude at the displacement resonance of a driven 
mechanical oscillator may be written as: 

r
Fx
ω′

= 0  

where,   

2

2
2

4m
r

m
s
−=′ω  

 
3.7 
(a) The displacement amplitude is given by: 

22
0

)( ωωω smr
Fx

−+
=  

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

https://students-hub.com


© 2008 John Wiley & Sons, Ltd  

At low frequencies, we have: 

s
F

smr
F

smr
Fx 0

2222
0

022
0

00 )(
lim

)(
limlim =

−+
=

−+
=

→→→ ωωωωω ωωω
 

(b) The velocity amplitude is given by: 

22
0

)( ωω smr
Fv
−+

=  

At velocity resonance: ms=ω , so we have: 

r
F

smsmr

F
smr

Fv
ms

r
0

22

0
22

0

)()(
=

−+
=

−+
=

=ω
ωω

 

(c) From problem 3.5, we have the acceleration amplitude given by: 

22
0

)( ωω
ω

smr
Fv
−+

=&  

At high frequency, we have: 

m
F

smr
F

smr
Fv 0

2222
0

22
0

)(
lim

)(
limlim =

−+
=

−+
=

∞→∞→∞→ ωωωω
ω

ωωω
&  

From (a), (b) and (c), we find x
0

lim
→ω

, rv  and v&
∞→ω

lim  are all constants, i.e. they are all 

frequency independent. 
 
3.8 
The expression of curve (a) in Figure 3.9 is given by: 

22222
0

2

22
00

2
0

)(
)(

rm
mF

Z
XFx

m

m
a ωωω

ωω
ω +−

−
=−=             (3.8.1) 

where                           ms=0ω  

ax has either maximum or minimum value when 0=
ωd

dxa  

i.e.                       0
)(

)(
22222

0
2

22
00 =⎥

⎦

⎤
⎢
⎣

⎡
+−

−
rm

mF
d
d

ωωω
ωω

ω
 

i.e.                          0)( 22
0

222
0

2 =−− rm ωωω  

Then, we have two solutions of ω  given by: 

m
r02

01
ωωω −=                    (3.8.2) 
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and  

m
r02

02
ωωω +=                    (3.8.3) 

Since r  is very small, rearrange the expressions of 1ω  and 2ω , we have: 

m
r

m
r

m
r

m
r

242 02

22

0
02

01 −≈−⎟
⎠
⎞

⎜
⎝
⎛ −=−= ωωωωω  

m
r

m
r

m
r

m
r

242 02

22

0
02

02 +≈−⎟
⎠
⎞

⎜
⎝
⎛ +=+= ωωωωω  

The maximum and the minimum values of ax  can found by substitution of (3.8.2) 

and (3.8.3) into (3.8.1), so we have: 

when 1ωω = :             
r

F
mrr

Fxa
0

0
2

00

0

22 ωωω
≈

−
=  

which is the maximum value of ax , and 

when 2ωω = :             
r

F
mrr

Fxa
0

0
2

00

0

22 ωωω
−≈

+
−=  

which is the minimum value of ax . 

 
3.9 
The undamped oscillatory equation for a bound electron is given by:  

tmeExx ωω cos)( 0
2
0 −=+&&                   (3.9.1) 

Try solution tAx ωcos=  in equation (3.9.1), we have: 

tmeEtA ωωωω cos)(cos)( 0
2
0

2 −=+−  

which is true for all t  provided: 

meEA 0
2
0

2 )( −=+− ωω  

i.e.                           
)( 22

0

0

ωω −
−=

m
eEA  

So, we find a solution to equation (3.9.1) given by: 

t
m

eEx ω
ωω

cos
)( 22

0

0

−
−=                  (3.9.2) 

For an electron number density n , the induced polarizability per unit volume of a 
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medium is given by: 

E
nex

e
0ε

χ −=                        (3.9.3) 

By substitution of (3.9.2) and tEE ωcos0=  into (3.9.3), we have 

)( 22
00

2

0 ωωεε
χ

−
=−=

m
ne

E
nex

e  

 
3.10 
The forced mechanical oscillator equation is given by: 

tFsxxrxm ωcos0=++ &&&  

which can be written as: 

tFxmxrxm ωω cos0
2
0 =++ &&&                (3.10.1) 

where, ms=0ω . Its solution can be written as: 

t
Z
XFt

Z
rFx

m

m

m

ω
ω

ω
ω

cossin 2
0

2
0 −=              (3.10.2) 

where, ωω smX m −= , 22 )( ωω smrZm −+= , ⎟
⎠
⎞

⎜
⎝
⎛ −

= −

r
sm ωωφ 1tan  

By taking the displacement x  as the component represented by curve (a) in Figure 
3.9, i.e. by taking the second term of equation (3.10.2) as the expression of x , we 
have: 

t
rm

mFt
Z
XFx

m

m ω
ωωω

ωωω
ω

cos
)(

)(cos 22222
0

2

22
00

2
0

+−
−

=−=         (3.10.3) 

The damped oscillatory electron equation can be written as: 

                   teExmxrxm ωω cos0
2
0 −=++ &&&                 (3.10.4) 

Comparing (3.10.1) with (3.10.4), we can immediately find the displacement x  for a 

damped oscillatory electron by substituting 00 eEF −=  into (3.10.3), i.e.: 

                    t
rm

meEx ω
ωωω

ωω cos
)(

)(
22222

0
2

22
00

+−
−

−=               (3.10.5) 

By substitution of (3.10.5) into (3.9.3), we can find the expression of χ  for a 

damped oscillatory electron is given by: 

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

https://students-hub.com


© 2008 John Wiley & Sons, Ltd  

])([
)(

22222
0

2
0

22
0

2

0 rm
mne

E
nex

ωωωε
ωω

ε
χ

+−
−

=−=  

So we have: 

t
rm

mne
r ω

ωωωε
ωωχε cos

])([
)(11 22222

0
2

0

22
0

2

+−
−

+=+=  

 
3.11 
The instantaneous power dissipated is equal to the product of frictional force and the 
instantaneous velocity, i.e.: 

)(cos)( 2
2

2
0 φω −== t

Z
FrxxrP

m

&&  

The period for a given frequency ω  is given by: 

ω
π2

=T  

Therefore, the energy dissipated per cycle is given by: 

2

2
0

2

2
0

2

0 2

2
0

0

2

0

2
2

2
0

2
2

)](2cos1[
2

)(cos

m

m

m

T

m

Z
rF

Z
rF

dtt
Z

rF

dtt
Z
FrPdtE

ω
π

ω
π

φω

φω

ωπ

ωπ

=

=

−−=

−==

∫

∫ ∫

      (3.11.1) 

The displacement is given by: 

)sin(0 φω
ω

−= t
Z
Fx

m

 

so we have: 

mZ
Fx
ω

0
max =                        (3.11.2) 

By substitution of (3.11.2) into (3.11.1), we have: 
2
maxxrE ωπ=  

 
3.12 

The low frequency limit of the bandwidth of the resonance absorption curve 1ω  

satisfies the equation: 
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rsm −=− 11 ωω  

which defines the phase angle given by: 

1tan 11
1 −=

−
=

r
sm ωωφ  

The high frequency limit of the bandwidth of the resonance absorption curve 2ω  

satisfies the equation: 

rsm =− 22 ωω  

which defines the phase angle given by: 

1tan 22
2 =

−
=

r
sm ωωφ  

 
3.13 
For a LCR series circuit, the current through the circuit is given by 

tieII ω
0=  

The voltage across the inductance is given by: 

LIieLIieI
dt
dL

dt
dIL titi ωω ωω === 00  

i.e. the amplitude of voltage across the inductance is: 

0LIVL ω=                        (3.13.1) 

The voltage across the condenser is given by:  

C
iIeI

Ci
dte

C
Idt

CC
q titi

ωω
ωω −==== ∫∫ 0

111  

i.e. the amplitude of the voltage across the condenser is: 

C
IVC ω

0=                         (3.13.2) 

When an alternating voltage, amplitude 0V  is applied across LCR series circuit, 

current amplitude 0I  is given by: eZVI 00 = , where the impedance eZ  is given 

by: 
2

2 1
⎟
⎠
⎞

⎜
⎝
⎛ −+=

C
LRZm ω

ω  

At current resonance, 0I  has the maximum value: 

R
VI 0

0 =                        (3.13.3) 

and the resonant frequency 0ω  is given by: 
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01

0
0 =−

C
L

ω
ω  or 

LC
1

0 =ω               (3.13.4) 

By substitution of (3.12.3) and (3.12.4) into (3.12.1), we have: 

0
0 V
R

LVL
ω

=  

By substitution of (3.12.3) and (3.12.4) into (3.12.2), we have: 

0
000

0
0

0 V
R

L
R
V

LC
L

R
V

C
LV

RC
LC

RC
VVC

ω
ω

=====         

Noting that the quality factor of an LCR series circuit is given by: 

R
LQ 0ω=  

so we have: 

0QVVV CL ==  

 
3.14 
In a resonant LCR series circuit, the potential across the condenser is given by: 

                              
C
IVC ω

=                         (3.14.1) 

where, I  is the current through the whole LCR series circuit, and is given by: 

                              tieII ω
0=                         (3.14.2) 

The current amplitude 0I is given by: 

                              
eZ

VI 0
0 =                          (3.14.3) 

where, 0V  is the voltage amplitude applied across the whole LCR series circuit and is 

a constant. eZ  is the impedance of the whole circuit, given by: 

                         
2

2 1
⎟
⎠
⎞

⎜
⎝
⎛ −+=

C
LRZe ω

ω                 (3.14.4) 

From (3.14.1), (3.14.2), (3.14.3), and (3.14.4) we have: 

ti
C

ti
C eVe

C
LRC

VV ωω

ω
ωω

02
2

0

1
=

⎟
⎠
⎞

⎜
⎝
⎛ −+

=  

which has the maximum value when 00 =
ωd

dVC , i.e.: 
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    0
1 2

2

0 =

⎟
⎠
⎞

⎜
⎝
⎛ −+

C
LRC

V
d
d

ω
ωω

ω
 

i.e.                      011
22

22
2

2 =−+⎟
⎠
⎞

⎜
⎝
⎛ −+

C
L

C
LR

ω
ω

ω
ω  

i.e.                            022 222 =−+
C
LLR ω  

i.e.                       2
002

2

2
11

2
1 Q

L
R

LC
−=−= ωω  

where 
LC
12

0 =ω , 
R

LQ 0
0

ω
=  

 
3.15 
In a resonant LCR series circuit, the potential across the inductance is given by: 

                             LIVL ω=                         (3.15.1) 

where, I  is the current through the whole LCR series circuit, and is given by: 

                             tieII ω
0=                         (3.15.2) 

The current amplitude 0I is given by: 

                             
eZ

VI 0
0 =                          (3.15.3) 

where, 0V  is the voltage amplitude applied across the whole LCR series circuit and is 

a constant. eZ  is the impedance of the whole circuit, given by: 

                       
2

2 1
⎟
⎠
⎞

⎜
⎝
⎛ −+=

C
LRZe ω

ω                  (3.15.4) 

From (3.15.1), (3.15.2), (3.15.3), and (3.15.4) we have: 

 ti
L

ti
L eVe

C
LR

LVV ωω

ω
ω

ω
02

2

0

1
=

⎟
⎠
⎞

⎜
⎝
⎛ −+

=  

which has the maximum value when 00 =
ωd

dVL , i.e.: 
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0
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2

0 =

⎟
⎠
⎞

⎜
⎝
⎛ −+

C
LR

LV
d
d

ω
ω

ω
ω

 

i.e.                       011
22

22
2

2 =+−⎟
⎠
⎞

⎜
⎝
⎛ −+

C
L

C
LR

ω
ω

ω
ω  

i.e.                          022
22

2 =−+
C
L

C
R

ω
 

i.e.         
2
0

0

2
0

2

20222

2
11

2
1

1

2
1

11

2

1

Q
L
R

L
CRLCCRLC −

=
−

=
−

=
−

=
ω

ω

ωω  

where 
LC
12

0 =ω , 
R

LQ 0
0

ω
=  

 
3.16 
Considering an electron in an atom as a lightly damped simple harmonic oscillator, 
we know its resonance absorption bandwidth is given by: 

                               
m
r

=δω                        (3.16.1) 

On the other hand, the relation between frequency and wavelength of light is given 
by: 

                               
λ
cf =                         (3.16.2) 

where, c  is speed of light in vacuum. From (3.16.2) we find at frequency resonance: 

δλ
λ

δ 2
0

cf −=  

where 0λ  is the wavelength at frequency resonance. Then, the relation between 

angular frequency bandwidth δω  and the width of spectral line δλ  is given by: 

                         δλ
λ
πδπδω 2

0

22 cf ==                  (3.16.3) 

From (3.16.1) and (3.16.3) we have: 

Qm
r

cm
r 0

0

0
2
0

2
λ

ω
λ

π
λδλ ===  

So the width of the spectral line from such an atom is given by: 

][102.1
105
106.0 14

7

6
0 m

Q
−

−

×=
×
×

==
λδλ  
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3.17 

According to problem 3.6, the displacement resonance frequency rω and the 

corresponding displacement amplitude  maxx  are given by: 

2

2
2
0 2m

r
r −= ωω  

r
F

Z
Fx

r
m ωω

ωω
′

==
=

00
max  

where, 22 )( ωω smrZm −+= , 2

2
2
0 4m

r
−=′ ωω  , 

m
s

=0ω  

Now, at half maximum displacement: 

r
Fx

Z
F

m ωω ′
==

22
0max0  

 

i.e.                     rsmr ωωωω ′=−+ 2)( 22  

i.e.                   2
2

22
22

4
4 r

m
r

m
ssmr ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+

ω
ωω  

i.e.                 04)2(
4

4

3

2

2

2
2

2

2
4 =+−+

−
+

m
r

m
sr

m
s

m
smr ωω  

i.e.           0
4

3
22

2
2

2

2

2

22

2

2
2

2

2
4 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

m
r

m
s

m
r

m
r

m
s

m
r

m
s ωω  

i.e.                     03)(
2

2222 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′−− ωωω

m
r

r  

i.e.                        222 3 ωωω ′±=−
m

r
r                    (3.17.1) 

If 1ω  and 2ω  are the two solutions of equation (3.17.1), and 12 ωω > , then: 

                          222
2

3 ωωω ′=−
m

r
r                     (3.17.2) 

                       222
1

3 ωωω ′−=−
m

r
r                    (3.17.3) 
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Since the Q-value is high, we have: 

10 >>=
r
m

Q
ω

 

i.e.                           2

2
2
0 m

r
>>ω  

i.e.                          0ωωω ≈′≈r  

Then, from (3.17.2) and (3.17.3) we have: 

                           2
01212

32))(( ωωωωω
m

r
≈+−                    

and                             021 2ωωω ≈+  

Therefore, the width of displacement resonance curve is given by: 

m
r3

12 ≈−ωω  

 
3.18 
In Figure 3.9, curve (b) corresponds to absorption, and is given by: 

t
rm

rFt
Z
rFx
m

ω
ωωω

ωω
ω

sin
)(

sin 22222
0

2
0

2
0

+−
==  

and the velocity component corresponding to absorption is given by: 

t
rm

rFxv ω
ωωω

ω cos
)( 22222

0
2

2
0

+−
== &  

For Problem 3.10, the velocity component corresponding to absorption can be given 

by substituting 00 eEF −=  into the above equation, i.e.: 

t
rm

reExv ω
ωωω

ω cos
)( 22222

0
2

2
0

+−
−== &             (3.18.1) 

For an electron density of n , the instantaneous power supplied equal to the product 

of the instantaneous driving force tneE ωcos0−  and the instantaneous velocity, i.e.: 

t
rm

rEne

t
rm

reEtneEP

ω
ωωω

ω

ω
ωωω

ωω

2
22222

0
2

22
0

2

22222
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2
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)(
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)(

)cos(

+−
=

⎟⎟
⎠

⎞
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⎝

⎛
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−×−=
 

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

https://students-hub.com


© 2008 John Wiley & Sons, Ltd  

The average power supplied per unit volume is then given by: 

22222
0

2

22
0

2

2

0

2
22222

0
2

22
0

2

2

0

)(2

cos
)(2

2

rm
rEne

t
rm

rEne

PdtPav

ωωω
ω

ω
ωωω

ω
π
ω
π
ω

ωπ

ωπ

+−
=

+−
=

=

∫

∫

 

which is also the mean rate of energy absorption per unit volume. 
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SOLUTIONS TO CHAPTER 4 

 
4.1 
The kinetic energy of the system is the sum of the separate kinetic energy of the two 
masses, i.e.: 

222222

4
1

4
1)(

2
1)(

2
1

2
1

2
1

2
1 YmXmyxyxmymxmEk

&&&&&&&& +=⎥⎦
⎤

⎢⎣
⎡ −++=+=  

The potential energy of the system is the sum of the separate potential energy of the 
two masses, i.e.: 

22

222

222

2222

2
1

4
1
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2
1)(

2
1

2
1
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2
1
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2
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2
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⎜
⎝
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⎢⎣
⎡ −++=

−++=

−++−+=

 

Comparing the expression of kE  and pE  with the definition of XE  and YE  given 

by (4.3a) and (4.3b), we have: 

ma
2
1

= , 
l

mgb
4

= , mc
4
1

= , and s
l

mgd +=
2

 

Noting that: 

XmyxmX q

2121

2
)(

2
⎟
⎠
⎞

⎜
⎝
⎛=+⎟

⎠
⎞

⎜
⎝
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c
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⎟
⎠
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⎜
⎝
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⎠
⎞

⎜
⎝
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i.e.                  qXmX
21

2

−

⎟
⎠
⎞

⎜
⎝
⎛=  and qYmY

21

2

−

⎟
⎠
⎞

⎜
⎝
⎛=  

we  have the kinetic energy of the system given by: 
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2
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which are the expressions given by (4.4a) and (4.4b) 
 
4.2 
The total energy of Problem 4.1 can be written as: 

22222 )()(
2
1

2
1

2
1 yxsyx

l
mgymxmEEE pk −++++=+= &&  

The above equation can be rearranged as the format: 

xypotypotkinxpotkin EEEEEE )()()( ++++=  

where, 22

22
1)( xs

l
mgxmEE xpotkin ⎟

⎠
⎞

⎜
⎝
⎛ ++=+ &  , 22

22
1)( ys

l
mgymEE ypotkin ⎟

⎠
⎞

⎜
⎝
⎛ ++=+ & , 

and sxyEpot 2−=  

 
4.3 

ax 2−= , 0=y : 

 
 

0=x , ay 2−= : 

 
 
4.4 

For mass 1m , Newton’s second law gives: 

sxxm =11 &&  

For mass 2m , Newton’s second law gives: 

sxxm −=22 &&  

≡

x=0 -2a -a -a

+

-a a

Y--X

y=0

≡

-2a -a -a

+

-a a

Y+-X
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Provided x  is the extension of the spring and l  is the natural length of the spring, 
we have: 

xlxx +=− 12  

By elimination of 1x  and 2x , we have: 

xx
m
sx

m
s

&&=−−
12

 

i.e.                         0
21

21 =
+

+ sx
mm
mmx&&  

which shows the system oscillate at a frequency: 

μ
ω s

=2  

where, 

21

21

mm
mm
+

=μ  

For a sodium chloride molecule the interatomic force constant s  is given by: 

][120
1067.1)3523(

)1067.1()3523()1014.1(4)2( 1
27

22721322
2 −

−

−

≈
××+

××××××
=

+
== Nm

mm
mms

ClNa

ClNa ππνμω

 
4.5 
If the upper mass oscillate with a displacement of x  and the lower mass oscillate 

with a displacement of y , the equations of motion of the two masses are given by 

Newton’s second law as: 

)(
)(

yxsym
sxxysxm

−=
−−=

&&

&&
 

i.e.  

0)(
0)(

=−−
=−−+

yxsym
sxyxsxm

&&

&&
 

Suppose the system starts from rest and oscillates in only one of its normal modes of 
frequency ω , we may assume the solutions: 

ti

ti

Bey
Aex

ω

ω

=

=
 

where A  and B  are the displacement amplitude of x  and y  at frequency ω . 
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Using these solutions, the equations of motion become: 

0)]([
0])([

2

2

=−−−

=+−+−
ti

ti

eBAsBm
esABAsAm

ω

ω

ω

ω
 

We may, by dividing through by time ω , rewrite the above equations in matrix form 

as: 
                                             

0
2

2

2

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

−−
−−

B
A

msms
msms
ω

ω
             (4.5.1) 

which has a non-zero solution if and only if the determinant of the matrix vanishes; 
that is, if 

0))(2( 2222 =−−− msmsms ωω  

i.e.                     0)3( 2224 =+− msms ωω  

i.e.                        
m
s

2
)53(2 ±=ω  

In the slower mode, ms 2)53(2 −=ω . By substitution of the value of frequency 

into equation (4.5.1), we have: 

2
15

2

2

2
−

=
−

=
−

=
s
ms

ms
s

B
A ω

ω
 

which is the ratio of the amplitude of the upper mass to that of the lower mass. 

Similarly, in the slower mode, ms 2)53(2 +=ω . By substitution of the value of 

frequency into equation (4.5.1), we have: 

2
15
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2

2
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−=
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=
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=
s
ms

ms
s

B
A ω

ω
 

 
4.6 
The motions of the two pendulums in Figure 4.3 are given by: 

ttattay

ttattax

am

am

ωωωωωω

ωωωωωω

sinsin2
2

)(sin
2

)(sin2

coscos2
2

)(cos
2

)(cos2

2112

2112

=
+−

=

=
+−

=
 

where, the amplitude of the two masses, ta mωcos2  and ta mωsin2 , are constants 

over one cycle at the frequency aω . 

Supposing the spring is very weak, the stiffness of the spring is ignorable, i.e. 0≈s . 
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Noting that lg=2
1ω  and )2(2

2 mslg +=ω , we have: 

2
2

212
2

2
1 2 al

g ωωωωω =⎟
⎠
⎞

⎜
⎝
⎛ +

≈≈=  

Hence, the energies of the masses are given by: 

( )

( ) tmata
l

mgasE

tmata
l

mgasE

mamyyy

mamxxx

ωωω

ωωω

22222

22222

sin2sin2
2
1

2
1

cos2cos2
2
1

2
1

===

===
 

The total energy is given by: 
222222 2)sin(cos2 ammayx mattmaEEE ωωωω =+=+=  

Noting that 2)( 12 ωωω −=m , we have: 

 

])cos(1[
2

)(sin2

])cos(1[
2

)(cos2

1212
222

1212
222

tEtmaE

tEtmaE

ay

ax

ωωωωω

ωωωωω

−−=−=

−+=−=
 

which show that the constant energy E  is completed exchanged between the two 

pendulums at the beat frequency )( 12 ωω − . 

 
4.7 
By adding up the two equations of motion, we have: 

))(( 2121 lgymxmymxm +−=+ &&&&  

By multiplying the equation by )(1 21 mm +  on both sides, we have: 

21

21

21

21

mm
ymxm

l
g

mm
ymxm

+
+

−=
+
+ &&&&  

i.e.                     0
21

21

21

21 =
+
+

+
+
+

mm
ymxm

l
g

mm
ymxm &&&&  

which can be written as: 

                            02
1 =+ XX ω&&                        (4.7.1) 

where,                   

21

21

mm
ymxmX

+
+

=  and  lg=2
1ω  
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On the other hand, the equations of motion can be written as: 

)(

)(

2

1

yx
m
sy

l
gy

yx
m
sx

l
gx

−+−=

−−−=

&&

&&

 

By subtracting the above equations, we have: 
  

)()(
21

yx
m
s

m
syx

l
gyx −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−−−=− &&&&  

i.e.                 0)(11

21

=−⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++− yx

mm
s

l
gyx &&&&  

which can be written as: 

02
2 =+ YY ω&&                      (4.7.2) 

where, 

yxY −=  and  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

21

2
2

11
mm

s
l
gω  

Equations (4.7.1) and (4.7.2) take the form of linear differential equations with 
constant coefficients and each equation contains only one dependant variable, 
therefore X  and Y  are normal coordinates and their normal frequencies are given 

by 1ω  and 2ω  respectively. 

 
4.8 

Since the initial condition gives 0== yx && , we may write, in normal coordinate, the 

solutions to the equations of motion of Problem 4.7 as: 

tYY
tXX

20

10

cos
cos
ω
ω

=
=

 

i.e.  

tYyx

tX
mm

ymxm

20

10
21

21

cos

cos

ω

ω

=−

=
+
+

 

By substitution of initial conditions: 0=t , Ax =  and 0=y  into the above 

equations, we have: 

AY
AMmX

=
=

0

10 )(
 

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

https://students-hub.com


© 2008 John Wiley & Sons, Ltd  

where,                        21 mmM +=  

so the equations of motion in original coordinates x , y  are given by: 

tAyx

tA
M
m

mm
ymxm

2

1
1

21

21

cos

cos

ω

ω

=−

=
+
+

 

The solutions to the above equations are given by: 

)cos(cos

)coscos(

21
1

2211

tt
M
mAy

tmtm
M
Ax

ωω

ωω

−=

+=
 

Noting that ma ωωω −=1  and ma ωωω +=2 , where 2)( 12 ωωω −=m  and 

2)( 21 ωωω +=a , the above equations can be rearranged as: 

ttmm
M
AttA

ttmmttmm
M
A

ttttmttttm
M
A

tmtm
M
Ax

amam

amam

amamamam

mama

ωωωω

ωωωω

ωωωωωωωω

ωωωω

sinsin)(coscos

]sinsin)(coscos)[(

)]sinsincos(cos)sinsincos(cos[

])cos()cos([

21

2121

21

21

−+=

−++=

−++=

++−=

 

and  

tt
M
mA

tt
M
mAy

am

mama

ωω

ωωωω

sinsin2

])cos()[cos(

1

1

=

+−−=
 

 
4.9 

From the analysis in Problem 4.6, we know, at weak coupling conditions, tmωcos  

and tmωsin  are constants over one cycle, and the relation: lga ≈ω , so the energy 

of the mass 1m , xE , and the energy of the mass 2m , yE , are the sums of their 

separate kinetic and potential energies, i.e.: 

22
1

2
1

22
2

22
21

22
1

2
1

22
1

22
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

ymymy
l

mgymysymE

xmxmx
l

mgxmxsxmE

ayy

axx

ω

ω

+=+=+=

+=+=+=

&&&

&&&
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By substitution of the expressions of x  and y  in terms of taωcos  and taωsin  

given by Problem 4.8 into the above equations, we have: 

[ ]

[ ]

[ ]

[ ]tmmmm
M
E

tmmmm
M
Am

ttmmmm
M
Am

tmmtmm
M
Am

ttmm
M
AttAm

ttmm
M
AttAmE

ma

mma

mma

amama

amaamax

)cos(2

2cos2
2
1

)sin(cos2
2
1

sin)(cos)(
2
1

sinsin)(coscos
2
1

cossin)(sincos
2
1

1221
2
2

2
12

21
2
2

2
12

2
2

1

22
21

2
2

2
12

2
2

1

22
21

22
212

2
2

1

2

21
2

1

2

211

ωω

ωω

ωωω

ωωω

ωωωωω

ωωωωωω

−++=

++=

−++=

−++=

⎥⎦
⎤

⎢⎣
⎡ −+

+⎥⎦
⎤

⎢⎣
⎡ −+−=

 

and 

[ ]

[ ]

[ ]t
M

mmE

t
M

mmAm

t
M
Amm

ttt
M
Amm

tt
M
mAmtt

M
mAmE

ma

ma

aama

amaamay

)cos(12

2cos12
2
1

sin2

)sin(cossin2

sinsin2
2
1cossin2

2
1

122
21

2
2122

1

2
2

2
2

2
2
1

222
2

2
2

2
2
1

2
12

1

2
1

2

ωω

ωω

ωω

ωωωω

ωωωωωω

−−⎟
⎠
⎞

⎜
⎝
⎛=

−⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛=

=

+=

⎥⎦
⎤

⎢⎣
⎡+⎥⎦

⎤
⎢⎣
⎡=

 

where, 
22

12
1 AmE aω=  

 
4.10 
Add up the two equations and we have: 

tFyxryx
l

mgyxm ωcos)()()( 0=+++++ &&&&&&  

i.e.                     tFX
l

mgXrXm ωcos0=++ &&&               (4.10.1) 

Subtract the two equations and we have: 

tFyxsyxryx
l

mgyxm ωcos)(2)()()( 0=−+−+−+− &&&&&&  
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i.e.                   tFYs
l

mgYrYm ωcos2 0=⎟
⎠
⎞

⎜
⎝
⎛ +++ &&&            (4.10.2) 

Equations (4.10.1) and (4.10.2) shows that the normal coordinates X  and Y  are 

those for damped oscillators driven by a force tF ωcos0 . 

By neglecting the effect of r , equation of (4.10.1) and (4.10.2) become: 

tFYs
l

mgYm

tFX
l

mgXm

ω

ω

cos2

cos

0

0

≈⎟
⎠
⎞

⎜
⎝
⎛ ++

≈+

&&

&&

 

Suppose the above equations have solutions: tXX ωcos0=  and tYY ωcos0= , by 

substitution of the solutions to the above equations, we have: 
 

tFtYs
l

mgm

tFtX
l

mgm

ωωω

ωωω

coscos2

coscos

00
2

00
2

≈⎟
⎠
⎞

⎜
⎝
⎛ ++−

≈⎟
⎠
⎞

⎜
⎝
⎛ +−

 

These equations satisfy any t  if 

00
2

00
2

2 FYs
l

mgm

FX
l

mgm

≈⎟
⎠
⎞

⎜
⎝
⎛ ++−

≈⎟
⎠
⎞

⎜
⎝
⎛ +−

ω

ω
 

i.e.                       

)2(

)(

2
0

0

2
0

0

ω

ω

−+
≈

−
≈

mslgm
FY

lgm
FX

 

so the expressions of X  and Y are given by: 

t
mslgm

FyxY

t
lgm
FyxX

ω
ω

ω
ω

cos
)2(

cos
)(

2
0

2
0

−+
≈−=

−
≈+=

 

By solving the above equations, the expressions of x  and y  are given by: 
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⎥
⎦

⎤
⎢
⎣

⎡
−

−
−

≈

⎥
⎦

⎤
⎢
⎣

⎡
−

+
−

≈

22
2

22
1

0

22
2

22
1

0

11cos
2

11cos
2

ωωωω
ω

ωωωω
ω

t
m

Fy

t
m

Fx

 

where, 

l
g

=2
1ω   and  

m
s

l
g 22

2 +=ω  

The ratio of xy  is given by: 

22
1

2
2

2
1

2
2

22
2

22
1

22
2

22
1

22
2

22
1

0

22
2

22
1

0

211

11

11cos
2

11cos
2

ωωω
ωω

ωωωω

ωωωω

ωωωω
ω

ωωωω
ω

−+
−

=

−
−

−

−
+

−=

⎥
⎦

⎤
⎢
⎣

⎡
−

−
−

⎥
⎦

⎤
⎢
⎣

⎡
−

+
−

≈
t

m
F

t
m

F

x
y  

The behaviour of xy  as a function of frequency ω  is shown as the figure below: 

The figure shows xy  is less than 1 if 1ωω <  or 2ωω > , i.e. outside frequency 

range 12 ωω −  the motion of y  is attenuated. 

4.11 

Suppose the displacement of mass M  is x , the displacement of mass m  is y , 

and the tension of the spring is T . Equations of motion give: 

                         TtFkxxM +=+ ωcos0&&                 (4.11.1) 

                             Tym −=&&                         (4.11.2) 

                           Txys =− )(                        (4.11.3) 

2
1

2
2

2
1

2
2

ωω
ωω

+
−  

x
y

1ω ω  0 

1 

-1 

2

2
1

2
2 ωω +

2ω
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Eliminating T , we have: 

)(cos0 xystFkxxM −+=+ ω&&  

so for 0=x  at all times, we have 

0cos0 =+ sytF ω  

that is 

t
s
Fy ωcos0−=  

Equation (4.11.2) and (4.11.3) now give: 

0=+ syym &&  

with ms=2ω , so M  is stationary at ms=2ω . 

This value of ω  satisfies all equations of motion for 0=x  including 

tFT ωcos0−=  

 
4.12 

Noting the relation: CqV = , the voltage equations can be written as: 

dt
dIL

C
q

C
q

dt
dIL

C
q

C
q

b

a

=−

=−

32

21

 

so we have: 

b

a

ILCqq

ILCqq
&&&&

&&&&

=−

=−

32

21  

i.e. 

b

a

ILCqq

ILCqq
&&&&

&&&&

=−

=−

32

21  

By substitution of aIq −=1& , ba IIq −=2&  and bIq =3&  into the above equations, we 

have: 

bbba

abaa

ILCIII

ILCIII
&&

&&

=−−

=+−−
 

i.e.                        

02

02

=+−

=−+

bab

baa

IIILC

IIILC
&&

&&
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By adding up and subtracting the above equations, we have: 

0)(3)(

0)(

=−+−

=+++

baba

baba

IIIILC

IIIILC
&&&&

&&&&
 

Supposing the solutions to the above normal modes equations are given by:  

tAII ba ωcos=+  

tBII ba ωcos=−  

so we have: 

0cos)3(
0cos)(

2

2

=+−

=+−

tBLCB
tALCA
ωω

ωω
 

which are true for all t  when 

LC
12 =ω  and   0=B  

or    

LC
32 =ω  and   0=A  

which show that the normal modes of oscillation are given by: 

ba II =  at 
LC
12

1 =ω  

and   

ba II −=  at 
LC
32

2 =ω  

 
4.13 

From the given equations, we have the relation between 1I  and 2I  given by: 

1
2

2 I
LiZ

MiI
sω

ω
+

=  

so: 

1
2

2

21 I
LiZ

MLiMIiILiE
s

pp ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+=−=
ω

ωωωω  

i.e. 

s
p LiZ

MLi
I
E

ω
ωω
+

+=
2

22

1

 

which shows that 1IE , the impedance of the whole system seen by the generator, is 

the sum of the primary impedance, pLiω , and a ‘reflected impedance’ from the 
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secondary circuit of sZM 22ω , where ss LiZZ ω+= 2 . 

 
4.14 
Problem 4.13 shows the impedance seen by the generator Z  is given by: 

s
p LiZ

MLiZ
ω

ωω
+

+=
2

22

 

Noting that spLLM =  and 22
spsp nnLL = , the impedance can be written as: 

 

s

p

s

p

s

spp

LiZ
ZLi

LiZ
MMZLi

LiZ
MLLZLi

Z
ω

ω
ω

ωωω
ω

ωωω
+

=
+

+−
=

+
+−

=
2

2

2

2222
2

2

222
2  

so we have: 

22

2

2
2

2 11111

Z
n
nLiZ

L
LLiZLi

LiZ
Z

s

pp

s

ppp

s +=+==
+

=
ωωω

ω  

which shows the impedance Z  is equivalent to the primary impedance pLiω  

connected in parallel with an impedance 2
2)( Znn sp . 

 
4.15 

Suppose a generator with the internal impedance of 1Z  is connected with a load with 

an impedance of 2Z  via an ideal transformer with a primary inductance of pL  and 

the ratio of the number of primary and secondary transformer coil turns given by 

sp nn , and the whole circuit oscillate at a frequency of ω . From the analysis in 

Problem 4.13, the impedance of the load is given by: 

22

2
111

Z
n
nLiZ

s

ppL

+=
ω

 

At the maximum output power: 1ZZL = , i.e.: 

1
22

2
1111
Z

Z
n
nLiZ

s

ppL

=+=
ω

 

which is the relation used for matching a load to a generator.  
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4.16 
From the second equation, we have: 

2
2

1 I
Z
ZI

M

−=  

By substitution into the first equation, we have: 

EIZI
Z

ZZ
M

M

=+− 22
21  

i.e.                        1
21

2 I

Z
ZZZ

EI

M
M ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=  

Noting that MiZM ω=  and 2I  has the maximum value when 021 == XX , i.e. 

11 RZ =  and 22 RZ = , we have: 

1
21

1
21

1
21

1
21

2 22
I

RR
EI

M
RRM

EI

M
RRM

EI

Mi
RRMi

EI =≤
+

=
−

=

ω
ωω

ω
ω

ω
 

which shows 2I  has the maximum value of 1
212

I
RR

E , when 
M
RRM

ω
ω 21= , i.e. 

21RRM =ω  

 
4.17 

By substitution of 1=j  and 3=n  into equation (4.15), we have: 

2
0

2
0

2
0

2
1 )22(

2
212

4
cos12 ωωπωω −=⎥

⎦

⎤
⎢
⎣

⎡
−=⎥⎦

⎤
⎢⎣
⎡ −=  

By substitution of 2=j  and 3=n  into equation (4.15), we have: 

2
0

2
0

2
1 2

4
2cos12 ωπωω =⎥⎦

⎤
⎢⎣
⎡ −=  

By substitution of 3=j  and 3=n  into equation (4.15), we have: 

2
0

2
0

2
0

2
1 )22(

2
212

4
3cos12 ωωπωω +=⎥

⎦

⎤
⎢
⎣

⎡
+=⎥⎦

⎤
⎢⎣
⎡ −=  
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In equation (4.14), we have 040 == AA  when 3=n , and noting that maT=2
0ω , 

equation (4.14) gives: 

when 1=r :              02 212
0

2

0 =−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+− AAA
ω
ω  

i.e.                        02 212
0

2

=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− AA
ω
ω                  (4.17.1) 

when 2=r :             02 322
0

2

1 =−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+− AAA
ω
ω                (4.17.2) 

when 3=r :              02 432
0

2

2 =−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+− AAA
ω
ω  

i.e.                        02 32
0

2

2 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+− AA
ω
ω                 (4.17.3) 

Write the above equations in matrix format, we have: 

0
210

121
012

3

2

1

2
0

2

2
0

2

2
0

2

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−−−

−−

A
A
A

ωω
ωω

ωω
 

which has non zero solutions provided the determinant of the matrix is zero, i.e.: 

0)2(2)2( 2
0

232
0

2 =−−− ωωωω  

The solutions to the above equations are given by: 
2
0

2
1 )22( ωω −= ,` 2

0
2
2 2ωω = , and   2

0
2
1 )22( ωω +=  

 
4.18 

By substitution of 2
0

2
1 )22( ωω −=  into equation (4.17.1), we have: 

02 21 =− AA  i.e.   2:1: 21 =AA  

By substitution of 2
0

2
1 )22( ωω −=  into equation (4.17.3), we have: 

02 32 =+− AA  i.e.   1:2: 32 =AA  

Hence, when 2
0

2
1 )22( ωω −= , the relative displacements are given by: 

1:2:1:: 321 =AAA  

By substitution of 2
0

2
2 2ωω =  into equation (4.17.1), we have: 
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02 =A  

By substitution of 2
0

2
2 2ωω =  into equation (4.17.2), we have: 

031 =+− AA  i.e.   1:1: 31 −=AA  

Hence, when 2
0

2
2 2ωω = , the relative displacements are given by: 

1:0:1:: 321 −=AAA  

By substitution of 2
0

2
2 )22( ωω +=  into equation (4.17.1), we have: 

02 21 =−− AA  i.e.   2:1: 21 −=AA  

By substitution of 2
0

2
1 )22( ωω +=  into equation (4.17.3), we have: 

02 32 =−− AA  i.e.   1:2: 32 −=AA  

Hence, when 2
0

2
1 )22( ωω += , the relative displacements are given by: 

1:2:1:: 321 −=AAA  

The relative displacements of the three masses at different normal frequencies are 
shown below: 

 

 
As we can see from the above figures that tighter coupling corresponds to higher 
frequency. 
 
4.19 
Suppose the displacement of the left mass m  is x , and that of the central mass M  

is y , and that of the right mass m  is z . The equations of motion are given by: 

2
0

2 )22( ωω −=  2
0

2 2ωω = 2
0

2 )22( ωω +=  
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)(
)()(

)(

yzszm
yzsxysyM

xysxm

−−=
−+−−=

−=

&&

&&

&&

 

If the system has a normal frequency of ω , and the displacements of the three masses 
can by written as: 

ti

ti

ti

ez

ey

ex

ω

ω

ω

η

η

η

3

2

1

=

=

=

 

By substitution of the expressions of displacements into the above equations of 
motion, we have: 

titi

tititi

titi

esem

eseseM

esem

ωω

ωωω

ωω

ηηηω

ηηηηηω

ηηηω

)(

)()(

)(

233
2

23122
2

121
2

−−=−

−+−−=−

−=−

 

i.e. 

0])([

0])2([

0])[(

3
2

2

32
2

1

21
2

=−+−

=−−+−

=−−

ti

ti

ti

emss

esMss

esms

ω

ω

ω

ηωη

ηηωη

ηηω

 

which is true for all t  if 

0)(

0)2(

0)(

3
2

2

32
2

1

21
2

=−+−

=−−+−

=−−

ηωη

ηηωη

ηηω

mss

sMss

sms
 

The matrix format of these equations is given by: 

0
0

2
0

3

2

1

2

2

2

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−−−

−−

η
η
η

ω
ω

ω

mss
sMss

sms
 

which has non zero solutions if and only if the determinant of the matrix is zero, i.e.: 

0)(2)2()( 22222 =−−−− ωωω mssMsms  

i.e.               0]2)2)()[(( 2222 =−−−− sMsmsms ωωω  

i.e.               0])2()[( 242 =+−− ωωω mMsmMms  

i.e.               0)]2()[( 222 =+−− mMsmMms ωωω  

The solutions to the above equation, i.e. the frequencies of the normal modes, are 
given by: 

02
1 =ω , 

m
s

=2
2ω  and 

mM
mMs )2(2

3
+

=ω  

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

https://students-hub.com


© 2008 John Wiley & Sons, Ltd  

At the normal mode of 02 =ω , all the atoms are stationary, 321 ηηη == , i.e. all the 

masses has the same displacement; 

At the normal mode of 
m
s

=2ω , 02 =η  and 31 ηη −= , i.e. the mass M  is 

stationary, and the two masses m  have the same amplitude but are “anti-phase” with 
respect to each other;  

At the normal mode of 
mM

mMs )2(2 +
=ω , MmM :2::: 321 −=ηηη , i.e. the two 

mass m  have the same amplitude and are “in-phase” with respect to each other. 
They are both “anti-phase” with respect to the mass M . The ratio of amplitude 

between the mass m  and M  is mM 2 . 

 
4.20 
In understanding the motion of the masses it is more instructive to consider the range 

njn ≤≤2 . For each value of the frequency jω  the amplitude of the thr  mass is 

1
sin

+
=

n
rjCAr
π  where C  is a constant. For 2nj =  adjacent masses have a 2π  

phase difference, so the ratios: 1:0:1:: 11 −=+− rrr AAA , with the thr  masses 

stationary and the amplitude 1−rA  anti-phase with respect to 1+rA , so that: 

 
As nn →2 , rA  begins to move, the coupling between masses tightens and when 

j  is close to n  each mass is anti-phase with respect to its neighbour, the amplitude 

of each mass decreases until in the limit nj =  no motion is transmitted as the cut off 

frequency maTj 42 =ω  is reached. The end points are fixed and this restricts the 

motion of the masses near the end points at all frequencies except the lowest. 
 
4.21 

By expansion of the expression of 2
jω , we have: 

0→rA  

nj →  

1+rA  

1−rA  
rA  

2nj =  
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⎥
⎦

⎤
⎢
⎣

⎡
−

+
+

+
−

+
=⎟

⎠
⎞

⎜
⎝
⎛

+
−= L

!6
)1(

!4
)1(

!2
)1(2

1
cos12 642

2 njnjnj
ma

T
n
j

ma
T

j
ππππω  

If 1>>n  and nj << , 1+njπ  has a very small value, so the high order terms of 

the above equation can be neglected, so the above equation become: 
22

2

1!2
)1(2

⎟
⎠
⎞

⎜
⎝
⎛

+
=⎥

⎦

⎤
⎢
⎣

⎡ +
=

n
j

ma
Tnj

ma
T

j
ππω  

i.e.                         
ma
T

n
j

j 1+
=

πω  

which can be written as: 

ρ
πω T
l
j

j =  

where, am=ρ  and anl )1( +=  

 
4.22 
From the first equation, we have: 

C
qqIL rr

r
&&&& −

= −
−

1
1  

By substitution of rrr IIq −= −1&  and 121 −−− −= rrr IIq&  into the above equation, we 

have: 

                          
C

IIIIL rrr
r

+−
= −−

−
12

1
2&&              (4.22.1) 

If, in the normal mode, the currents oscillate at a frequency ω , we may write the 
displacements as: 

ti
rr eAI ω

22 −− = , ti
rr eAI ω

11 −− =  and ti
rr eAI ω=  

Using these values of I  in equation (4.22.1) gives: 
tirrrti

r e
C

AAAeLA ωωω +−
=− −−

−
12

1
2 2  

or                      

                     0)2( 1
2

2 =−−+− −− rrr AALCA ω            (4.22.2) 

By comparison of equation (4.22.2) with equation (4.14) in text book, we may find 

the expression of rI  is the same as that of ry  in the case of mass-loaded string, i.e. 

titi
rr e

n
rjDeAI ωω π

1
sin

+
==  

Where D  is constant, and the frequency ω  is given by: 
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⎟
⎠
⎞

⎜
⎝
⎛

+
−=

1
cos112

n
j

LCj
πω  

where, nj ...3,2,1=  

 
4.23 

By substitution of y  into 2

2

t
y

∂
∂ , we have: 

)(2
2

2

2

2

)( kxtiikxti eee
tt

y +−=
∂
∂

=
∂
∂ ωω ω  

By substitution of y  into 2

2

x
y

∂
∂ , we have: 

)(2
2

2

2

2

)( kxtiikxti ekee
xx

y +−=
∂
∂

=
∂
∂ ωω  

If ck=ω , we have: 

0)( )(222
2

2
2

2

2

=+−=
∂
∂

−
∂
∂ +kxtiekc

x
yc

t
y ωω  

i.e. 

2

2
2

2

2

x
yc

t
y

∂
∂

=
∂
∂  
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SOLUTIONS TO CHAPTER 5 

 
5.1 

Write xctu += , and try 2

2

x
y

∂
∂

 with )(2 xctfy += , we have: 

u
uf

x
y

∂
∂

=
∂
∂ )(2 , and 2

2
2

2

2 )(
u

uf
x
y

∂
∂

=
∂
∂

 

Try 2

2

2
1

t
y

c ∂
∂

 with )(2 xctfy += , we have: 

u
ufc

t
y

∂
∂

=
∂
∂ )(2 , and 2

2
2

2
2

2 )(
u

ufc
t
y

∂
∂

=
∂
∂

 

so: 

2
2

2

2
2

2
2

22

2

2
)()(11

u
uf

u
ufc

ct
y

c ∂
∂

=
∂

∂
=

∂
∂

 

Therefore: 

2

2

22

2 1
t
y

cx
y

∂
∂

=
∂
∂

 

 
5.2 

If )(1 xctfy −= , the expression for y  at a time tt Δ+  and a position xx Δ+ , where 

cxt Δ=Δ , is given by: 

xt

xxtt

yxctf
xxxctf

xxcxtcf
xxttcfy

,1

1

1

1,

][
][

)]()([
)]()([

=−=
Δ−−Δ+=

Δ+−Δ+=

Δ+−Δ+=Δ+Δ+

 

i.e. the wave profile remains unchanged. 

If )(2 xctfy += , the expression for y  at a time tt Δ+  and a position xx Δ+ , where 

cxt Δ−=Δ , is given by: 
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xt

xxtt

yxctf
xxxctf

xxcxtcf
xxttcfy

,1

1

1

1,

][
][

)]()([
)]()([

=+=
Δ++Δ−=

Δ++Δ−=

Δ++Δ+=Δ+Δ+

 

i.e. the wave profile also remains unchanged. 
 
5.3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.4 
The pulse shape before reflection is given by the graph below: 
 
 
 
 
 
 
 
 
The pulse shapes after of a length of lΔ  of the pulse being reflected are shown below: 

(a) 4ll =Δ  

 
 
 
 

y  

x
yc

t
y

∂
∂

=
∂
∂

 

x  

x  

l

l
4
3

 

l
2
1

 

1Z  ∞=2Z  
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(b) 2ll =Δ  

 
 
 
 
 
 
 

(c) 43ll =Δ  

 
 
 
 
 
 
 
 
 
(d) ll =Δ  
 
 
 
 
 
 
 
 
5.5 

The boundary condition tri yyy =+  gives: 

)(
2

)(
1

)(
1

kxtikxtikxti eAeBeA −+− =+ ωωω   

At 0=x , this equation gives: 

211 ABA =+                       (5.5.1) 

1Z  ∞=2Z  

l
4
3

 

l
2
1

 

1Z  ∞=2Z  

l

1Z  ∞=2Z  

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

https://students-hub.com


© 2008 John Wiley & Sons, Ltd  

The boundary condition )( rit yy
x

Ty
x

TMa +
∂
∂

−
∂
∂

=  gives: 

)(
1

)(
1

)(
2

kxtikxtikxti eikTBeikTAeikTAMa +−− −+−= ωωω  

At 0=x , rit yyya &&&&&& +== , so the above equation becomes: 

1122
2 B

c
TiA

c
TiA

c
TiMA ωωωω −+−=−  

i.e.                   211 A
c
TiMB

c
TiA

c
Ti ⎟

⎠
⎞

⎜
⎝
⎛ +−=− ω                    

Noting that ccT ρ= , the above equation becomes: 

( ) 211 AciMcBicAi ρωρρ +−=−               (5.5.2) 

By substitution of (5.5.1) into (5.5.2), we have: 

( ) )( 1111 BAciMcBicAi ++−=− ρωρρ  

i.e.  

iq
iq

A
B

+
−

=
11

1  

where cMq ρω 2=  

By substitution of the above equation into (5.5.1), we have:  

211 1
AA

iq
iqA =
+

−  

i.e. 

iqA
A

+
=

1
1

1

2  

 
5.6 

Writing θtan=q , we have: 

θθ
θθ

θ
θ

ie
iiiqA

A −=
+

=
+

=
+

= cos
sincos

cos
tan1
1

1
1

1

2  

and  

)2(

1

1 sin
sincos

sin
tan1
tan

1
πθθ

θθ
θ

θ
θ +−=

+
−

=
+
−

=
+
−

= ie
i

i
i
i

iq
iq

A
B

 

which show that 2A  lags 1A  by θ  and that 1B  lags 1A  by )2( θπ +  for 20 πθ <<  
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The reflected energy coefficients are given by: 

θθ πθ 22)2(
2

1

1 sinsin == +−ie
A
B

 

and the transmitted energy coefficients are given by: 

θθ θ 22
2

1

2 coscos == −ie
A
A

 

 
5.7 
Suppose T  is the tension of the string, the average rate of working by the force over one period 
of oscillation on one-wavelength-long string is given by: 

∫ ∫ ∂
∂

∂
∂

−=
ωπ

π
ω 2

0

1

02
dtdx

t
y

x
yTW

k
 

By substitution of )sin( kxtay −= ω  into the above equation, we have: 

2

12
2
1

2

2
)22cos(1

2

)(sin
2

)]sin()][sin([
2

2

222

2

0

1

0

222

2

0

1

0

2
222

2

0

1

0

Tka
k

Tak

dxdtkxtTak

dxdtkxtTak

dxdtkxtakxtkaTW

k

k

k

ω
ω
π

π
ω

ω
π

ω

ω
π

ω

ωωω
π
ω

ωπ

ωπ

ωπ

=

⋅⋅⋅=

−−
=

−=

−−−−=

∫ ∫

∫ ∫

∫ ∫

 

Noting that ck ω=  and 2cT ρ= , the above equation becomes 

22

22222 ca
c

caW ρωρω
==  

which equals the rate of energy transfer along the string. 
 
5.8 

Suppose the wave equation is given by: )sin( kxty −= ω . The maximum value of transverse 

harmonic force maxF  is given by: 

c
TATAkkxtA

x
T

x
yTF ωω ==⎥⎦

⎤
⎢⎣
⎡ −
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
maxmax

max )sin(  

i.e. 
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ππω
3.0

521.0
3.0max =
××

==
A
F

c
T

 

Noting that cTc =ρ , the rate of energy transfer along the string is given by: 

][
20
31.0)52(3.0

2
1

2
1

2
2222

22

WA
c
TAcP ππ

π
ωωρ

=××××===  

so the velocity of the wave c  is given by: 

][30
1.0)52(01.0

20322 1
2222

−=
×××

×
== ms

A
Pc

ππ
π

ρω
 

 
5.9 
 
This problem is not viable in its present form and it will be revised in the next printing. The first 
part in the zero reflected amplitude may be solved by replacing Z3 by Z1, which then equates r 

with R′ because each is a reflection at a 21ZZ  boundary. We then have the total reflected 

amplitude as: 

2
42

1
)1(

R
RtTRRRRtTR
′−
′

+=+′+′+′+ L  

Stokes’ relations show that the incident amplitude may be reconstructed by reversing the paths of 
the transmitted and reflected amplitudes. 

T  is transmitted back along the incident direction as tT  in 1Z  and is reflected as RT ′  in 

2Z . 

R  is reflected in 1Z  as 2)( RRR =  back along the incident direction and is refracted as TR  

in the RT ′  direction in 2Z . 

We therefore have 12 =+ RtT  in 1Z , i.e. 21 RtT −=  and 0)( =′+ RRT  in 2Z  giving 

RR ′−= , 22 11 RRtT ′−=−=∴  giving the total reflected amplitude in 1Z  as 0=′+ RR  

with RR ′−= . 

 
Fig Q.5.9(a)           Fig Q.5.9(b) 

1θ  1θ  

2θ  

1 R  

T  

1θ  1θ  

2θ  

tT  R  

T  
2θ  RT ′  

TR  

2R  
1Z  

2Z  

1Z  
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Note that for zero total reflection in medium Z1, the first reflection R is cancelled by the sum of all 
subsequent reflections. 
 
5.10 

The impedance of the anti-reflection coating coatZ  should have a relation to the impedance of air 

airZ  and the impedance of the lens lensZ  given by: 

lensair
lensaircoat nn

ZZZ 1
==  

So the reflective index of the coating is given by: 

22.15.11
==== lensair

coat
coat nn

Z
n  

and the thickness of the coating d  should be a quarter of light wavelength in the coating, i.e. 

][1012.1
22.14

105.5
4

7
7

m
n

d
coat

−
−

×=
×
×

==
λ

 

 
5.11 

By substitution of equation (5.10) into 
x
y
∂
∂

, we have: 

c
ttBtA

cx
y n

nnnn
n ωωωω cos)sincos( +=

∂
∂

 

so: 

y
cc

ttBtA
cx

y nn
nnnn

n
2

2

2

2

2

2

sin)sincos( ωωωωω
−=+−=

∂
∂

 

Noting that 
c

k nω= , we have: 

02

2

2

2
2

2

2

=+−=+
∂
∂ y

c
y

c
yk

x
y nn ωω

 

 
5.12 

By substitution of the expression of max
2 )( ny  into the integral, we have: 
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=

−
+=

+=

∫

∫∫

c
lclBA

dxcxBA

dx
c

xBAdxy

n

n
nnn

l
n

nnn

l
n

nnn

l

nn

ω
ω

ρω

ωρω

ωρωρω

2sin
2

)(
4
1

2
)2cos(1)(

2
1

sin)(
2
1)(

2
1

222

0

222

0

2222

0 max
22

 

Noting that 
l
cn

n
πω = , i.e. 02sin2sin == πω n

c
ln , the above equation becomes: 

)(
4
1)(

2
1 222

0 max
22

nnn

l

nn BAldxy +=∫ ωρρω  

which gives the expected result. 
 
5.13 

Expand the expression of ),( txy , we have: 

kxtrAkxtrA
kxtrAkxtrAkxtAkxtA

kxtrAkxtAtxy

sinsin)1(coscos)1(
sinsincoscossinsincoscos

)cos()cos(),(

ωω
ωωωω

ωω

−++=
−++=

++−=
 

which is the superposition of standing waves. 
 
5.14 
The wave group has a modulation envelope of: 

⎟
⎠
⎞

⎜
⎝
⎛ Δ

−
Δ

= xktAA
22

cos0
ω

 

where 21 ωωω −=Δ  is the frequency difference and 21 kkk −=Δ  is the wave number 

difference. At a certain time t , the distance between two successive zeros of the modulation 
envelope xΔ  satisfies:  

π=Δ
Δ xk
2

 

Noting that λπ2=k , for a small value of λλΔ , we have: λλπ Δ≈Δ )2( 2k , so the above 

equation becomes:  

π
λ
λπ

≈Δ
Δ x22

2
 

i.e.  

λ
λ
λ
Δ

≈Δx  

which shows that the number of wavelengths λ  contained between two successive zeros of the 

modulating envelop is λλ Δ≈  
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5.15 
The expression for group velocity is given by: 

dk
dvkvkv

dk
d

dk
dvg +=== )(ω

 

By substitution of the expression of v  into the above equation, we have: 

2
cos

2
)2sin(

2
cos

2
)2sin(

)2(
)2sin()2()2cos()4(

2
)2sin(

2
)2sin(

2
)2sin(

2

2

kac

ka
kackac

ka
kac

ka
kaakakack

ka
kac

ka
kac

dk
dk

ka
kacvg

=

−+=

−
+=

⎥
⎦

⎤
⎢
⎣

⎡
+=

 

At long wavelengths, i.e. 0→k , the limiting value of group velocity is the phase velocity c . 
 
5.16 
Noting that the group velocity of light in gas is given on page 131 as: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+=
λ
ε

ε
λ r

r
g vV

2
1  

we have: 

)2(

22
2

2

22
1

2

2
2

2
2

3
2

2

2
2

2
2

λ

λ
λ

λ
λ

λ
λ

λλ
λ

λ
λλ

λλ
λ

λ
ελεε

λ
ε

ε
λε

DAv

DBDBAv

DBDBAv

DBADBAv

vvV r
rr

r

r
rg

−=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−+⎟

⎠
⎞

⎜
⎝
⎛ −+=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−+⎟

⎠
⎞

⎜
⎝
⎛ −+=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛ −+=

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+=

 

 
5.17 

The relation 
2

2

2

1 ⎟
⎠
⎞

⎜
⎝
⎛−==
ω
ωε e

r v
c

 gives: 

22
2

22

ev
c ωωω

−=  

By substitution of kv ω= , the above equation becomes: 
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2222 kce += ωω                      (5.17.1) 

As eωω → , we have: 

11
2

2

2

<⎟
⎠
⎞

⎜
⎝
⎛−=
ω
ωe

v
c

 

i.e. cv > , which means the phase velocity exceeds that of light c .  
From equation (5.17.1), we have: 

)()( 2222 kcdd e += ωω  

i.e.                         dkkcd 222 =ωω  

which shows the group velocity gv  is given by: 

cc
v
c

v
ckc

dk
dvg <====

2
2

ω
ω

 

i.e. the group velocity is always less than c . 
 
5.18 

From equation (5.17.1), we know that only electromagnetic waves of eωω >  can propagate 

through the electron plasma media. 

For an electron number density 2010~en , the electron plasma frequency is given by: 

][1065.5
108.8101.9

10106.1 111
1231

20
19

0

−
−−

− ⋅×=
×××

××== srad
m

ne
e

e
e ε

ω  

Now consider the wavelength of the wave in the media given by: 

][103
1065.5
1032222 3

11

8

mcvv
f
v

ee

−×=
×
××

=<<==
π

ω
π

ω
π

ω
πλ  

which shows the wavelength has an upper limit of m3103 −× . 

 
5.19 

The dispersion relation 222222 hcmkc +=ω  gives 

)()( 222222 hcmkdcd +=ω  

i.e.                        kdkd
c

22
2 =ωω
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i.e.                          2c
dk
d

k
=

ωω
 

Noting that the group velocity is dkdω  and the particle (phase) velocity is kω , the above 

equation shows their product is 2c . 

 
5.20 
The series in the problem is that at the bottom of page 132. The frequency components can be 
expressed as: 

t
t

tnaR ω
ω
ω cos

2
)2sin(

⋅Δ
⋅Δ

=  

which is a symmetric function to the average frequency 0ω . It shows that at 
ω
π

Δ
=Δ

2t , 0=R , 

πω 2=Δ⋅Δ∴ t  
In k  space, we may write the series as: 

xknkaxkkaxkaky ])1(cos[)cos(cos)( 111 δδ −+++++= L  

As an analogy to the above analysis, we may replace ω  by k  and t  by x , and R  is zero at 

k
x

Δ
=Δ

π2
, i.e. π2=ΔΔ xk  

 
5.21 
The frequency of infrared absorption of NaCl is given by: 

][10608.3
1066.135

1
1066.123

1152112 113
2727

−
−− ⋅×=⎟

⎠
⎞

⎜
⎝
⎛

××
+

××
××=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= srad

mma
T

ClNa

ω

The corresponding wavelength is given by: 

][52
10608.3
10322

13

8

mc μπ
ω
πλ ≈

×
××

==  

which is close to the experimental value: mμ61  

The frequency of infrared absorption of KCl is given by: 

][1013.3
1066.135

1
1066.139

1152112 113
2727

−
−− ⋅×=⎟

⎠
⎞

⎜
⎝
⎛

××
+

××
××=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= srad

mma
T

ClK

ω

The corresponding wavelength is given by: 

][60
1013.3
10322

13

8

mc μπ
ω
πλ ≈

×
××

==  

which is close to the experimental value: mμ71  
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5.22 
Before the source passes by the observer, the source has a velocity of u , the frequency noted by 
the observer is given by: 

νν
uc

c
−

=1  

After the source passes by the observer, the source has a velocity of u− , the frequency noted by 
the observer is given by: 

νν
uc

c
+

=2  

So the change of frequency noted by the observer is given by: 

)(
2

2212 uc
cu

uc
c

uc
c

−
=⎟

⎠
⎞

⎜
⎝
⎛

+
−

−
=−=Δ

ννννν  

 
5.23 
By superimposing a velocity of v−  on the system, the observer becomes stationary and the 
source has a velocity of vu −  and the wave has a velocity of vc − . So the frequency registered 
by the observer is given by: 

νν
uc
vc

vuvc
vc

−
−

=
−−−

−
=′′′

)(
 

 
5.24 
The relation between wavelength λ  and frequency ν  of light is given by: 

λ
ν c
=  

So the Doppler Effect 
uc

c
−

=′
νν  can be written in the format of wavelength as: 

)(

2

uc
cc
−

=
′ λλ

 

i.e.                           λλ
c

uc −
=′  

Noting that wavelength shift is towards red, i.e. λλ >′ , so we have: 

                          λλλλ
c
u

−=−′=Δ  

i.e.                  ][5
106

10103 1
7

118
−

−

−

−=
×
××

−=
Δ

−= Kmscu
λ
λ

 

which shows the earth and the star are separating at a velocity of 15 −Kms . 

 
5.25 
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Suppose the aircraft is flying at a speed of u , and the signal is being transmitted from the aircraft 
at a frequency of ν  and registered at the distant point at a frequency of ν ′ . Then, the Doppler 
Effect gives: 

uc
c
−

=′ νν  

Now, let the distant point be the source, reflecting a frequency of ν ′  and the flying aircraft be the 
receiver, registering a frequency of ν ′′ . By superimposing a velocity of u−  on the flying 
aircraft, the distant point and signal waves, we bring the aircraft to rest; the distant point now has a 
velocity of u−  and signal waves a velocity of uc −− . Then, the Doppler Effect gives: 

uc
uc

c
uc

uuc
uc

−
+

=
+′=

−−−−
−−′=′′ νννν

)(
 

which gives: 

][750103
1032

1015
2

18
9

3
−=××

××
×

=
Δ+

Δ
=

+′′
−′′

= msccu
νν

ν
νν
νν

 

i.e. the aircraft is flying at a speed of sm750  

 
5.26 
Problem 5.24 shows the Doppler Effect in the format of wavelength is given by: 

λλ
c

uc −
=′  

where u  is the velocity of gas atom. So we have: 

λλλλ
c
u

=−′=Δ  

i.e.  

][101103
106
102 138

7

12
−

−

−

×=××
×
×

=
Δ

=−′= mscu
λ
λ

λλ  

The thermal energy of sodium gas is given by: 

kTumNa 2
3

2
1 2 =  

where ][1038.1 123 −−×= JKk  is Boltzmann’s constant, so the gas temperature is given by: 

][900
1038.13

10001066.123
3 23

2272

K
k
umT Na ≈

××
×××

== −

−

 

 
5.27 
A point source radiates spherical waves equally in all directions. 

⎟
⎠
⎞

⎜
⎝
⎛

′−
=′

uc
vcv : Observer is at rest with a moving source. 
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⎟
⎠
⎞

⎜
⎝
⎛ ′−

=′′
c

vcv : Source at rest with a moving observer. 

 

⎟
⎠
⎞

⎜
⎝
⎛

′−
′−

=′′′
uc
vcv : Source and observer both moving. 

 
 
5.28 
By substitution of equation (2) into (3) and eliminating x′ , we can find the expression of t′  
given by: 

⎥⎦
⎤

⎢⎣
⎡ −−
′

=′ )(1 vtxk
k
x

v
t  

Now we can eliminate x′  and t′  by substituting the above equation and the equation (2) into 
equation (1), i.e. 

2

2

2
22222 )()( ⎥⎦

⎤
⎢⎣
⎡ −−
′

−−=− vtxk
k
x

v
cvtxktcx  

i.e. 

011211 22
2

2
22

2

2
2

2

2

2
2 =⎥

⎦

⎤
⎢
⎣

⎡
−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −
′

++
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −
′

+− tc
v
cvkxtk

kv
ckkvxk

kv
ck  

which is true for all x  and t  if and only if the coefficients of all terms are zeros, so we have: 

2

2

2
2 11 ⎟

⎠
⎞

⎜
⎝
⎛

′
−=−

k
k

v
ck  

2

2

2

2

1
v
ckk

v
c

=′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−  

o′  α  

v  

s′  

u  

θ  
θcosuu =′  θcosvv =′  

s′  
o′  

θ  

u  

θcosuu =′  

o′  θ  

v  

θcosvv =′  
s′  
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2222 )( cvck =−  

The solution to the above equations gives: 

21
1
β−

=′= kk  

where, cv=β  

 
5.29 

Source at rest at 1x  in O  frame gives signals at intervals measured by O  as 12 ttt −=Δ  

where 2t  is later than 1t . O′  moving with velocity v  with respect to O  measures these 

intervals as: 

)( 212 x
c
vtkttt Δ−Δ=′Δ=′−′  with 0=Δx  

tkt Δ=′Δ∴  

)( 12 xxl −=  as seen by O , O′  sees it as )]()[()( 121212 ttvxxkxx −−−=′−′ . 

Measuring l′  puts 12 tt ′=′  or 0=′Δt  

0)( 122 =⎥⎦
⎤

⎢⎣
⎡ −−Δ=′Δ∴ xx

c
vtkt  i.e. 12122 )( ttxx

c
vt −=−=Δ  

k
xxxx

c
vxxktvxxkxxl 12

122

2

121212 )()()]()[( −
=⎥

⎦

⎤
⎢
⎣

⎡
−−−=Δ−−=′−′=′∴  

kll =′∴  

 
5.30 

Two events are simultaneous )( 21 tt =  at 1x  and 2x  in O  frame. They are not simultaneous 

in O′  frame because: 

⎟
⎠
⎞

⎜
⎝
⎛ −=′≠⎟

⎠
⎞

⎜
⎝
⎛ −=′ 22221211 x

c
vtktx

c
vtkt  i.e. 21 xx ≠  

 
5.31 
The order of cause followed by effect can never be reversed.  

2 events 11, tx  and 22 , tx  in O  frame with 12 tt >  i.e. 012 >− tt ( 2t  is later). 
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⎥⎦
⎤

⎢⎣
⎡ −−−=′−′ )()( 1221212 xx

c
vttktt  i.e. ⎥⎦

⎤
⎢⎣
⎡ Δ−Δ=′Δ x

c
vtkt 2  in O′  frame. 

t′Δ  real requires k  real that is cv < , t′Δ  is ve+  if ⎟
⎠
⎞

⎜
⎝
⎛ Δ>Δ

c
x

c
vt  where 

c
v

 is ve+  

but 1<  and 
c
xΔ

 is shortest possible time for signal to traverse xΔ . 

 

SOLUTIONS TO CHAPTER 6 

 
6.1 
Elementary kinetic theory shows that, for particles of mass m  in a gas at temperature T , the 
energy of each particle is given by: 

kTmv
2
3

2
1 2 =  

where v  is the root mean square velocity and k  is Boltzmann’s constant.  
Page 154 of the text shows that the velocity of sound c  is a gas at pressure P  is given by: 

M
NkT

M
RT

M
PVPc γγγ

ρ
γ

====2  

where V  is the molar volume, M  is the molar mass and N  is Avogadro’s number, so: 

kTkTNkTMc
3
52 ≈== αγ  

 
6.2 
The intensity of sound wave can be written as: 

cPI 0
2 ρ=  

where P  is acoustic pressure, 0ρ  is air density, and c  is sound velocity, so we have: 

][6533029.1100 PacIP ≈××== ρ  

which is 4105.6 −×  of the pressure of an atmosphere. 

 
6.3 
The intensity of sound wave can be written as: 

22
02

1 ηωρ cI =  

where η  is the displacement amplitude of an air molecule, so we have: 
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][109.6
33029.1

102
5002

12
2

1 5

0

m
c
I −×=

×
×

×
×

==
πρπν

η  

 
6.4 
The expression of displacement amplitude is given by Problem 6.3, i.e.: 

][10
33029.1

1010102
5002

1102
2

1 10
210

0

0
10

m
c

I −
−−−

≈
×

×××
×

×
=

×
=

πρπν
η  

 
6.5 
The audio output is the product of sound intensity and the cross section area of the room, i.e.: 

][103310100100 2
0 WAIIAP ≈×××=== −  

 
6.6 
The expression of acoustic pressure amplitude is given by Problem 6.2, so the ratio of the pressure 
amplitude in water and in air, at the same sound intensity, are given by: 

60
400

1045.1
)(

)(
)(

)( 6

0

0

0

0 ≈
×

===
air

water

air

water

air

water

c
c

cI
cI

p
p

ρ
ρ

ρ
ρ

 

And at the same pressure amplitudes, we have: 

4
6

0

0 103
1045.1

400
)(
)( −×≈

×
==

water

air

air

water

c
c

I
I

ρ
ρ

 

 
6.7 
If η  is the displacement of a section of a stretched spring by a disturbance, which travels along it 

in the x  direction, the force at that section is given by: 
x

YF
∂
∂

=
η

, where Y  is young’s 

modulus. 
The relation between Y  and s , the stiffness of the spring, is found by considering the force 
required to increase the length L  of the spring slowly by a small amount Ll << , the force F  
being the same at all points of the spring in equilibrium. Thus  

L
l

x
=

∂
∂η

 and l
L
YF ⎟
⎠
⎞

⎜
⎝
⎛=  

If xl =  in the stretched spring, we have:  

x
L
YsxF ⎟
⎠
⎞

⎜
⎝
⎛==  and sLY = . 

If the spring has mass m  per unit length, the equation of motion of a section of length dx  is 
given by: 
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dx
x

Ydx
x
Fdx

t
m 2

2

2

2

∂
∂

=
∂
∂

=
∂
∂ ηη

 

or                      2

2

2

2

2

2

xm
sL

xm
Y

t ∂
∂

=
∂
∂

=
∂
∂ ηηη

 

a wave equation with a phase velocity 
m
sL

 

 
6.8 
At 0=x , 

tkxB ωη sinsin=  

At Lx = ,  

x
sL

t
M

∂
∂

−=
∂
∂ ηη

2

2

 

i.e.                     kLsLkkLM cossin2 −=− ω  

(which for vk ω= , Lm=ρ  and ρsLv =  from problem 7 when Ll << ) 

becomes: 

M
m

M
L

Mv
sL

v
L

v
L

===
ρωω

2

2

tan                 (6.8.1) 

For mM >> , Lv ω>>  and writing θω =vL  where θ  is small, we have: 

...3tan 3 ++= θθθ  

and the left hand side of equation 6.8.1 becomes 

...]3)(1[)(...]31[ 2222 ++=++ vLvL ωωθθ  

Now 2121221 )()()( msLmsLsLv === ρ  and smvL ωω =  

So eq. 6.8.1 becomes: 

Mmsmsm =++ ...)31( 22 ωω  

or 

Mssm =+ )31( 22 ωω                   (6.8.2) 

Using Ms=2ω  as a second approximation in the bracket of eq. 6.8.2, we have: 
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M
s

M
m

=⎟
⎠
⎞

⎜
⎝
⎛ +

3
112ω  

i.e.                          
mM

s

3
1

2

+
=ω  

 
6.9 
The Poissons ratio 25.0=σ  gives: 

25.0
)(2
=

+ μλ
λ

 

i.e.                              μλ =  

So the ratio of the longitudinal wave velocity to the transverse wave velocity is given by: 

322
=

+
=

+
=

μ
μμ

μ
μλ

t

l

v
v

 

In the text, the longitudinal wave velocity of the earth is 18 −kms  and the transverse wave 

velocity is 145.4 −kms , so we have: 

45.4
82

=
+
μ
μλ

 

i.e.                              μλ 23.1=  

so the Poissons ratio for the earth is given by: 

276.0
)23.1(2

23.1
)(2

≈
+×

=
+

=
μμ

μ
μλ

λσ  

 
6.10 
At a plane steel water interface, the energy ratio of reflected wave is given by: 

%86
1043.1109.3
1043.1109.3

2

67

672

≈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×+×
×−×

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=
watersteel

watersteel

i

r

ZZ
ZZ

I
I

 

At a plane steel water interface, the energy ratio of transmitted wave is given by: 

%3.82
)1043.11049.3(

1043.11049.34
)(

4
266

66

2 ≈
×+×
××××

=
+

=
waterice

waterice

i

t

ZZ
ZZ

I
I

 

 
6.11 
Solution follow directly from the coefficients at top of page 165. 
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Closed end is zero displacement with 1−=
i

r

n
n

 (node). 

Open end: 1=
i

r

n
n

 (antinode, η  is a max) 

Pressure: closed end: 1=
i

r

p
p

. Pressure doubles at antinode 

Open end : 1−=
i

r

p
p

 (out of phase – cancels to give zero pressure, i.e. node) 

6.12 

(a) The boundary condition 0=
∂
∂

x
η

 at 0=x  gives:  

0sin)cossin(
0
=+−

=x
tkxBkkxAk ω  

i.e. 0=B , so we have: tkxA ωη sincos=  

The boundary condition 0=
∂
∂

x
η

 at Lx =  gives: 

0sinsin =−
=lx

tkxkA ω  

i.e.                       0sinsin =tkLkA ω  

which is true for all t  if πnkl = , i.e. π
λ
π nl =2

 or 
n
l2

=λ  

The first three harmonics are shown below: 
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(b) The boundary condition 0=
∂
∂

x
η

 at 0=x  gives:  

0sin)cossin(
0
=+−

=x
tkxBkkxAk ω  

i.e. 0=B , so we have: tkxA ωη sincos=  

The boundary condition 0=η  at Lx =  gives: 

0sinsin =
=lx

tkxA ω  

i.e.                         0sincos =tklA ω  

which is true for all t  if π⎟
⎠
⎞

⎜
⎝
⎛ +=

2
1nkl , i.e. π

λ
π

⎟
⎠
⎞

⎜
⎝
⎛ +=

2
12 nl  or 

12
4
+

=
n

lλ  

The first three harmonics are shown below: 

η

x2l  
l0 :1=n

η

x0 
6l 2l 65l l

:3=n

η

x4l   43l   
0 l

:2=n
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6.13 
The boundary condition for pressure continuity at 0=x  gives: 

0
)(

2
)(

20
)(

1
)(

1 ][][ 2211
=

−−
=

−− +=+ x
xktixkti

x
xktixkti eBeAeBeA ωωωω  

i.e.                        2211 BABA +=+                      (6.13.1) 

In acoustic wave, the pressure is given by: η&Zp = , so the continuity of particle velocity η&  at 

0=x  gives: 

02

)(
2

)(
2

01

)(
1

)(
1

2211

=

−−

=

−− +
=

+

x

xktixkti

x

xktixkti

Z
eBeA

Z
eBeA ωωωω

 

i.e.                      )()( 221112 BAZBAZ −=−                 (6.13.2) 

At lx = , the continuity of pressure gives: 

lx

xkti
lx

xktixkti eAeBeA
=

−
=

−− =+ )(
3

)(
2

)(
2

322 ][ ωωω  

i.e.                        322
22 AeBeA liklik =+−                   (6.13.3) 

The continuity of particle velocity gives: 

η

xl0 :0=n

:1=n

η

x3l
0 l

:2=n

η

x0 
5l 53l l
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lx

xkti

lx

xktixkti

Z
eA

Z
eBeA

=

−

=

−−

=
+

3

)(
3

2

)(
2

)(
2

322 ωωω

 

i.e.                     32223 )( 22 AZeBeAZ liklik =−−                (6.13.4) 

By comparison of the boundary conditions derived above with the derivation in page 121-124, we 
can easily find: 

lkrrlkr
r

A
A

Z
Z

2
22

32212
22

31

31
2

1

2
3

3

1

sin)(cos)1(
4

+++
=  

where 
1

3
31 Z

Zr = , 
1

2
21 Z

Zr = , and 
2

3
32 Z

Zr = . 

If we choose 42λ=l , 0cos 2 =lk  and 1sin 2 =lk , we have: 

1
)(

4
2

3221

31
2

1

2
3

3

1 =
+

=
rr

r
A
A

Z
Z

 

when 3221 rr = , i.e. 
2

3

1

2

Z
Z

Z
Z

=  or 31
2
2 ZZZ = . 

6.14 
The differentiation of the adiabatic condition: 

γ

δ ⎥
⎦

⎤
⎢
⎣

⎡
+

=
)1(0

0

0 V
V

P
P

 

gives: 

2

2
)1(

0 )1(
x

P
x
p

x
P

∂
∂

+−=
∂
∂

=
∂
∂ +− ηδγ γ  

since x∂∂= ηδ . 

Since 1)1)(1( =++ sδ , we may write: 

2

2
1

0 )1(
x

sP
x
p

∂
∂

+−=
∂
∂ + ηγ γ  

and from Newton’s second law we have: 

2

2

0 tx
p

∂
∂

−=
∂
∂ ηρ  

so that 

2

2
12

02

2

)1(
x

sc
t ∂

∂
+=

∂
∂ + ηη γ , where 

0

02
0 ρ

γPc =  
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which shows the sound velocity of high amplitude wave is given by 2)1(
0 )1( ++ γsc  

 
6.15 

The differentiation of equation 222 3aTke += ωω gives: 

aTk
dk
d 62 =
ωω  

i.e.                           aT
dk
d

k
3=

ωω
 

where a  represents Boltzmann constant, kω  is the phase velocity, dkdω  is the group 

velocity. 
 
6.16 
The fluid is incompressible so that during the wave motion there is no change in the volume of the 

fluid element of height h , horizontal length xΔ  and unit width. The distortion η  in the 

element xΔ  is therefore directly translated to a change in its height h  and its constant volume 
requires that: 

ηααηηα Δ+Δ+Δ+Δ=Δ+Δ+=Δ xhxhxhxh ))((  

Because h<<α  and xΔ<<Δη , the second order term ηαΔ  is ignorable, we then have 

xhxh ∂∂−=ΔΔ−= ηηα , and from now on we replace xΔ  by dx . 

We see that for ve+α  (or increase in height), we have vex −∂∂η , that is, a compression. 

On page 153 of the text, the horizontal motion of the element is shown to be due to the difference 
in forces acting on the opposing faces of the element xhΔ , that is: 

x
t

hx
x
F

Δ
∂
∂

=Δ
∂
∂

− 2

2ηρ  

where the force difference, dF  is ve−  when measured in the ve+  x  direction for a 
compression. 
Thus: 

dx
x

Phdx
t

hdx
x
F av

∂
∂

−=
∂
∂

=
∂
∂

− 2

2ηρ           (6.16.1) 

where the pressure must be averaged over the height of the element because it varies with the 
liquid depth. This average value is found from the pressure difference (to unit depth) at the liquid 
surface to between the two values of α  on the opposing faces of the element. This gives: 

αρgddPav =  
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so                         dx
dx
dgdx

dx
dPav αρ=  

and we have from eq. 6.16.1: 

dx
t

hdx
x

ghdx
dx
dghdx

x
Phdx

x
F av

2

2

2

2
2

∂
∂

=
∂
∂

=−=
∂
∂

−=
∂
∂

−
ηρηραρ  

The last two terms equate to give the wave equation. For horizontal motion as: 

2

2

2

2

x
gh

t ∂
∂

=
∂
∂ ηη

 

with phase velocity ghv = . 

The horizontal motion translates directly to the vertical displacement α  to give an equation of 
wave motion: 

2

2

2

2

x
gh

t ∂
∂

=
∂
∂ αα

 

with a similar phase velocity ghv =  

 
6.17 
(a) Since λ>>h , i.e. 1>>kh , we have: 1tanh ≈kh , therefore: 

ρρρρ
gTTk

k
gTk

k
gkhTk

k
gv 22tanh2 =⋅≥+≈⎥

⎦

⎤
⎢
⎣

⎡
+=  

i.e. the velocity has a minimum value given by: 

ρ
gTv 44 =  

when 
ρ

Tk
k
g
= , i.e. 

T
gk ρ

=2  or 
g

T
c ρ

πλ 2=  

(b) If T  is negligible, we have: 

kh
k
gv tanh2 ≈  

and when cλλ >> , 0→k , and for a shallow liquid, 0→h . Noting that when 0→hk , 

khkh→tanh , we have: 

ghkh
k
gkh

k
gv =≈= tanh  

(c) For a deep liquid, +∞→h  i.e. 1tanh →kh , the phase velocity is given by: 

k
gkh

k
gvp ≈= tanh2  i.e. 

k
gvp =  
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and the group velocity is given by: 

k
g

k
g

k
g

k
gkv

dk
kdv

vv p
p

pg 2
1

2
1

2
1

3 =−=−=+=  

(d) For the case of short ripples dominated by surface tension in a deep liquid, i.e. 
ρ

Tk
k
g
<<  

and +∞→h , we have: 

ρρ
TkkhTkv

h
p ==

+∞→
tanhlim2  i.e. 

ρ
Tkvp =  

and the group velocity is given by: 

p
p

pg vTk
k

TkTk
dk

kdv
vv

2
3

2
3

2
==+=+=

ρρρ
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SOLUTIONS TO CHAPTER 7 

 
7.1 
The equation 

rrrr V
dt
ddxCq

dt
dII 01 ==−−  

at the limit of 0→dx  becomes: 

                                                          
dt
dVC

dx
dI

0=                            

(7.1.1) 
The equation 

10 +−= rrr VVI
dt
ddxL  

at the limit of 0→dx  becomes: 

                                                          
t
IL

x
V

∂
∂

=
∂
∂

0                             

(7.1.2) 
The derivative of equation (7.1.1) on t  gives: 

                                                         2

2

0

2

t
VC

tx
I

∂
∂

=
∂∂

∂
                          

(7.1.3) 
The derivative of equation (7.1.2) on x  gives: 

                                                         
tx

IL
x
V

∂∂
∂

=
∂
∂ 2

02

2

                          

(7.1.4) 
Equation (7.1.3) and (7.1.4) give: 

2

2

002

2

t
VCL

x
V

∂
∂

=
∂
∂

 

The derivative of equation (7.1.1) on x  gives: 

                                                         
tx

VC
x
I

∂∂
∂

=
∂
∂ 2

02

2

                          

(7.1.5) 
The derivative of equation (7.1.2) on t  gives: 

                                                         2

2

0

2

t
IL

tx
V

∂
∂

=
∂∂

∂
                           

(7.1.6) 
Equation (7.1.5) and (7.1.6) give: 
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2

2

002

2

t
ICL

x
I

∂
∂

=
∂
∂

 

 
7.2 

 

Fig Q.7.2.1 
 
 
A pair of parallel wires of circular cross section and radius a  are separated at a distance d2  
between their centres. 
To find the inductance per unit length we close the circuit by joining the sides of a section of 
length l . 
The self inductance of this circuit is the magnetic flux through the circuit when a current of 1 amp 
flows around it. 

If the current is 1 amp the field outside the wire at a distance r  from the centre is rI πμ 20 , 

where 0μ  is the permeability of free space. For a clockwise current in the circuit (Fig Q.7.2.1) 

both wires contribute to the magnetic flux B  which points downwards into the page and the total 
flux through the circuit is given by: 

∫
−

⎟
⎠
⎞

⎜
⎝
⎛=

ad

a a
dlI

r
Idrl

22
00 2ln

2
2

π
μ

π
μ

 for ad >>  

Hence the self inductance per unit length is: 

⎟
⎠
⎞

⎜
⎝
⎛=

a
dL 2ln0

π
μ

 

To find the capacitance per unit length of such a pair of wires we first find the electrostatic 
potential at a distance r  from a single wire and proceed to find the potential from a pair of wires 
via the principle of electrostatic images. 
If the radius of the wire is a  and it carries a charge of λ  per unit length then the electrostatic 

flux E  per unit length of the cylindrical surface is: 0)(2 ελπ =rrE , where 0ε  is the 

permittivity of free space. Thus rrE 02)( πελ=  for ar >  and we have the potential: 

I

l
a2

d2
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⎟
⎠
⎞

⎜
⎝
⎛=+−=

r
brr ln

2
constant)ln(

2
)(

00 πε
λ

πε
λφ  for 0=φ  at br = . 

 
Fig Q.7.2.2 

 
The conducting wires are now represented in the image system of Fig Q.7.2.2. The equipotential 
surfaces will be seen to be cylindrical but not coaxial with the wires. Neither the electric field nor 
the charge density is uniform on the conducting surface. 

The surface charge is collapsed onto two line carrying charges λ±  per unit length. The y  axis 

represents an equipotential plane. 

The conducting wires, of radius a , are centred a distance d  from the origin )0( == yxο . 

The distances p±  can be chosen of the line charges so that the conducting surfaces lie on the 
equipotentials of the image charge. Choosing the potential to be zero at ∞  on the y  axis, the 
potential at point p  in the xy  plane is given by: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 2

1

2
2

02010

ln
4

1ln
2

1ln
2 r

r
rrp πε

λ
πε
λ

πε
λφ  

In Fig Q.7.2.2: 

δβγ

δαγ

+=

+=

2

2
2

1

2
2

r

r
 

where )( pd +=α ; )( pd −=β ; )cos( θγ rd +=  and )( 222 dpr −+=δ . 

If the position of the image charge is such that )( 222 adp −= , then, at ar = : 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

=
pd
pda ln

4
)(

0πε
λφ , independent of θ , and the right-hand conductor is an equipotential of 

the image charge. Symmetry requires that the potential at the surface of the other conductor is 

a  
θ

rrr

λ+λ−
o

p p

d d

p

x  

y
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)(aφ−  and the potential difference between the conductors is: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

=
pd
pdV ln

2 0πε
λ

 

Gauss’s theorem applied to one of the equipotentials surrounding each conductor proves that the 
surface charge on each conductor is equal to the image charge. 
The capacitance per unit length is now given by: 

⎟
⎠
⎞

⎜
⎝
⎛

≈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

==

a
d

pd
pdV

C
2ln

2

ln

2 00 πεπελ
 for ad >>  

and  

0Z  for the parallel wires ⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≈

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

==
a
d

ad

a
d

C
L 2ln

)2ln(
2

2ln 21

0
2

0

21

0

0

επ
μ

πε
π
μ

 

 
7.3 
The integral of magnetic energy over the last quarter wavelength is given by: 

2
0

2
00

0

4 2
0

2
0

0

0

4

2

0

0
0

0

4

2
0 42

4cos12cos2
2
1

2
1

Z
VLdxx

Z
VLdxkx

Z
VLdxIL +

−

+

−

+

−
−=

+
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∫∫∫

λλπ
λλλ

 

The integral of electric energy over the last quarter wavelength is given by: 

( )
42

4cos12sin2
2
1

2
1 2

000

4

2
00

0

4

2
00

0

4

2
0

+

− +− +−
−=

−
== ∫∫∫

VCdxxVCdxkxVCdxVC λλπ
λλλ

 

Noting that 000 CLZ = , we have: 

∫∫ −

++

−
===

0

4

2
0

2
00

2
0

2
000

4

2
0 2

1
442

1
λλ

λλ dxVCVC
Z
VLdxIL  

7.4 
The maximum of the magnetic energy is given by: 

2
002

0

2
00

max

2

0

0
0

max

2
0max 22cos2

2
1

2
1)( +

++ ==
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟

⎠
⎞

⎜
⎝
⎛= VC

Z
VLkx

Z
VLILEm  

The maximum of the electric energy is given by: 

( ) 2
00

max

2
00

max

2
0max 2sin2

2
1

2
1)( ++ =⎥⎦

⎤
⎢⎣
⎡=⎟

⎠
⎞

⎜
⎝
⎛= VCkxVCVCEe  

The instantaneous value of the two energies over the last quarter wavelength is given by: 
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2
00

22
00

22
00

22
00

2

0

0
0

2

sin2cos2

)sin2(
2
1cos2

2
1)(

+

++

+
+

=

+=

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=+

VC

kxVCkxVC

kxVCkx
Z
VLEE iem

 

So we have: 

2
00maxmax 2)()()( +=+== VCEEEE iemem  

 
7.5 

For a real transmission line with a propagation constant γ , the forward current wave +xI  at 

position x  is given by: 

xx
x AeeII γγ −−

++ == 0  

where AI =+0  is the forward current wave at position 0=x . So the forward voltage wave at 

position x  is given by: 

x
xx AeZIZV γ−
++ == 00  

The backward current wave −xI  at position x  is given by: 

xx
x BeeII γγ ++

−− == 0  

where BI =−0  is the backward current wave at position 0=x . So the backward voltage wave 

at position x  is given by: 

x
xx BeZIZV γ+
−− −=−= 00  

Therefore the impedance seen from position x  is given by: 

xx

xx

xx

xx

xx

xx
x BeAe

BeAeZ
BeAe

BeZAeZ
II
VVZ γγ

γγ

γγ

γγ

+−

+−

+−

+−

−+

−+

+
−

=
+
−

=
+
+

= 0
00  

If the line has a length l  and is terminated by a load LZ , the value of LZ  is given by: 

ll

ll

ll

ll

L

L
L BeAe

BeAeZ
II
VV

I
VZ γγ

γγ

+−

+−

−+

−+

+
−

=
+
+

== 0  

 
7.6 
The impedance of the line at 0=x  is given by: 

BA
BAZ

BeAe
BeAZZ

x
xx

xx

i +
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=
=

+−

+−

0
0

0 γγ

γγ
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Noting that: 

ll

ll

L BeAe
BeAeZZ γγ

γγ

+
−

= −

−

0  

we have: 

l
L

l
L BeZZAeZZ γγ )()( 00 +=− −  

i.e.                                                   l

L

L e
ZZ
ZZ

B
A γ2

0

0

)(
)(

−
+

=  

so we have: 

lZlZ
lZlZZ

eeZeeZ
eeZeeZZ

BA
BAZZ

L

L
ll

L
ll

ll
L

ll

i γγ
γγ

γγγγ

γγγγ

sinhcosh
coshsinh

)()(
)()(

1
1

0

0
0

0

0
00 +

+
=

−++
++−

=
+
−

= −−

−−

 

 
7.7 

If the transmission line of Problem 7.6 is short-circuited, i.e. 0=LZ , The expression of input 

impedance in Problem 7.6 gives: 

lZ
lZ
lZZZsc γ
γ
γ tanh

cosh
sinh

0
0

0
0 ==  

If the transmission line of Problem 7.6 is open-circuited, i.e. ∞=LZ , The expression of input 

impedance in Problem 7.6 gives: 

lZ
lZ
lZZZ

L

L
oc γ

γ
γ coth

sinh
cosh

00 ==  

By taking the product of these two impedances we have: 

2
0ZZZ ocsc = , i.e. ocscZZZ =0  

which shows the characteristic impedance of the line can be obtained by measuring the 
impedances of short-circuited line and open-circuited line separately and then taking the square 
root of the product of the two values. 
 
7.8 
The forward and reflected voltage waves at the end of the line are given by: 

ikl
ll eVVV −

+−+ =−= 0  

where +0V  is the forward voltage at the beginning of the line. So the reflected voltage wave at 

the beginning of the line is given by: 

kliikl
l eVeVV 2

00
−

+
−

−− −==  
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The forward and reflected current waves at the end of the line are given by: 

ikl
lll

iklikl
ll

eIZVZVI

eIZeVZVI
−

++−−

−
+

−
+++

==−=

===

000

0000  

where +0I  is the forward current at the beginning of the line. So the reflected current wave at the 

beginning of the line is given by: 

kliikl
l eIeII 2

00
−

+
−

−− ==  

Therefore the input impedance of the line is given by: 

λ
πl

C
Li

kl
kliZ

eeI
eeV

eI
eV

II
VVZ iklikl

iklikl

kli

kli

i
2tan

cos
sin

)(
)(

)1(
)1(

0

0
0

0

0
2

0

2
0

00

00 ==
+
−

=
+
−

=
+
+

= −
+

−
+

−
+

−
+

−+

−+  

  

The variation of the ratio 00 CLZi  with l  is shown in the figure below: 

 

 
7.9 

The boundary condition at mZZ0  junction gives: 

−+−+ +=+ 0000 mm VVVV  

−+−+ +=+ 0000 mm IIII  

where +0V , −0V  are the voltages of forward and backward waves on 0Z  side of mZZ0  

junction; +0I , −0I  are the currents of forward and backward waves on 0Z  side of mZZ0  

junction; +0mV , −0mV  are the voltages of forward and backward waves on mZ  side of mZZ0  

… … 

00 CL
Zi

l0 
2λ

4λ 43λ
4λ−

2λ−
43λ−

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

https://students-hub.com


© 2008 John Wiley & Sons, Ltd  

junction; +0mI , −0mI  are the currents of forward and backward waves on mZ  side of mZZ0  

junction; 
 

The boundary condition at LmZZ  junction gives: 

LmLmL VVV =+ −+  

LmLmL III =+ −+  

where +mLV , −mLV  are the voltages of forward and backward waves on mZ  side of LmZZ  

junction; +mLI , −mLI  are the currents of forward and backward waves on mZ  side of LmZZ  

junction; LV , LI  are the voltage and current across the load. 

 
If the length of the matching line is l , we have: 

ikl
mLm eVV ++ =0  

ikl
mLm eII ++ =0  

ikl
mLm eVV −

−− =0  

ikl
mLm eII −

−− =0  

In addition, we have the relations: 

L
L

L Z
I
V

=  

0
0

0 Z
I
V

=  

m
mL

mL

mL

mL

m

m

m

m Z
I
V

I
V

I
V

I
V

=−==−=
−

−

+

+

−

−

+

+

0

0

0

0  

The above conditions yield: 

ikl
mmL eVV −

++ = 0  

ikl
mmL eII −

++ = 0  

+− +
−

= mL
mL

mL
mL V

ZZ
ZZV  
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+− +
−

= mL
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ZZ
ZZI  
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m

ikl
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mLikl
mLm e

ZZ
ZZVeV

ZZ
ZZeVV 2

00
−
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−
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ZZIeI

ZZ
ZZeII 2
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==  

Impedance mating requires 00 =−V  and 00 =−I , i.e.: 

−++ += 000 mm VVV  

−++ += 000 mm III  

i.e. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

+= −
++

kli

mL

mL
m e

ZZ
ZZVV 2

00 1  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

+= −
++

kli

mL

Lm
m e

ZZ
ZZII 2

00 1  

By dividing the above equations we have: 

kliZklZ
kliZklZZ

eZZeZZ
eZZeZZZZ

mL

mL
mikl

Lm
ikl

mL

ikl
mL

ikl
mL

m cossin
sincos

)()(
)()(

0 +
+

=
−++
−++

= −

−

 

which is true if 2π=kl , or 4λ=l  and yields: 

Lm ZZZ 0
2 =  

 
7.10 
Analysis in Problem 7.8 shows the impedance of a short-circuited loss-free line has an impedance 
given by: 

λ
πliZZi

2tan0=  

so, if the length of the line is a quarter of one wavelength, we have: 

∞===
2

tan
4

2tan 00
πλ

λ
π iZiZZi  

If this line is bridged across another transmission line, due to the infinite impedance, the 
transmission of fundamental wavelength λ  will not be affected. However for the second 

harmonic wavelength 2λ , the impedance of the bridge line is given by: 
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0tan
42

2tan 00 === πλ
λ
π iZiZZi  

which shows the bridge line short circuits the second harmonic waves. 
 
7.11 

For 0Z  to act as a high pass filter with zero attenuation, the frequency 
LC2
12 >ω , where 

CLZ =0 . 

The exact physical length of 0Z  is determined by ω . Choosing the frequency 1ω  determines 

11 2 λπ=k . 

For a high frequency load LZ  and a loss- free line, we have, for the input impedance: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

=
kliZklZ
kliZklZZZ

L

L
in sincos

sincos

0

0
0  

For n  even, we have: 

1cos
2

2coscos 1

1
1 === πλ

λ
π nnlk  

For n  odd, we have: 

1cos
2

2coscos 1

1
1 −=== πλ

λ
π nnlk  

The sine terms are zero. 

So Lin ZZ =  for n  odd or even, and the high frequency circuits, input and load, are uniquely 

matched at 1ω  when the circuits are tuned to 1ω . 

 
7.12 

The phase shift per section β  should satisfy: 

2
1

2
1

2
1cos

2

2

1 LC
Ci

Li
Z
Z ω

ω
ωβ −=+=+=  

i.e.                                                   
2

cos1
2LCωβ =−  

i.e.                                                    
22

sin2
2

2 LCωβ
=  

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

https://students-hub.com


© 2008 John Wiley & Sons, Ltd  

For a small β , ββ sin≈ , so the above equation becomes: 

22
2

22 LCωβ
=⎟

⎠
⎞

⎜
⎝
⎛  

i.e.                                              kvLC === ωωβ  

where the phase velocity is given by LCv 1=  and is independent of the frequency. 

 
7.13 
The propagation constant γ  can be expanded as: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++=

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

++=

0

0

0

0
2
0

2
0

2
0

2

2
0

2

0

0

0

0
00

0

0

0

0

0

0

0

02
00

0

0

0

0
00

0000

4422

))((

C
G

L
R

C
G

L
R

C
G

L
RiCL

C
G

L
Ri

C
G

L
RiCL

i
C

Gi
L

RCL

CiGLiR

ωωωωωω
ω

ωωωω
ω

ωω
ω

ωωγ

 

Since 00 LR ω  and 00 CG ω  are both small quantities, the above equation becomes: 

ik
C

G
L

RiCL +=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= α

ωω
ωγ

0

0

0

0
00 22

 

where 
0

00

0

00

22 C
LG

L
CR

+=α , and vCLk ωω == 00  

If 0=G , we have: 

0

0

000

00

000000

00

2 R
L

LCR
CL

CLGLCR
CLk ωωω

α
==

+
=  

which is the Q value of this transmission line. 
 
7.14 

Suppose K
C
G

L
R

==
0

0

0

0 , where K  is constant, the characteristic impedance of a lossless line is 

given by: 

0

0

00

00

00

00
0 C

L
CiKC
LiKL

CiG
LiRZ =

+
+

=
+
+

=
ω
ω

ω
ω
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which is a real value. 
 
7.15 

Try solution x
meγψψ =  in wave equation: 

0)(8
2

2

2

2

=−+
∂
∂ ψπψ VE

h
m

x
 

we have: 

)(8
2

2
2 EV

h
m

−=
πγ  

For VE >  (inside the potential well), the value of γ  is given by: 

)(22 VEm
h

iin −±=
πγ  

So the ψ  has a standing wave expression given by:  

xEVm
h

ixEVm
h

i
BeAe

)(2)(2
−−−

+=
ππ

ψ  

where A , B are constants. 

For VE <  (outside the potential well), the value of γ  is given by: 

)(22 EVm
hout −±=
πγ  

So the expression of ψ  is given by:  

xEVm
h

xEVm
h BeAe

)(2)(2
−−−

+=
ππ

ψ  

where A , B are constants. i.e. the x  dependence of ψ  is xe γ± , where  

)(22 EVm
h

−=
πγ  

 
7.16 
Form the diffusion equation: 

2

21
x
H

t
H

∂
∂

=
∂
∂

μσ
 

we know the diffusivity is given by: μσ1=d . The time of decay of the field is approximately 

given by Einstein’s diffusivity relation: 

μσ
μσ

2
22

1
LL

d
Lt ===  

where L  is the extent of the medium. 
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For a copper sphere of radius m1 , the time of decay of the field is approximately given by: 

][100][73108.51026.11 7622 ssLt <≈××××== −μσ  

 
7.17 

Try solution 
2)(),( α

π
α rertf −=  in

t
tf

∂
∂ ),(α

, we have: 

2

2

22

2

)(
22

)(
22

)()(

)(

4
12

21

1)2(

),(

α

α

αα

α

π
α
π
α
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αα

π

π
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rr
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e
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r
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e
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−
=

−
=

+−=

⎥⎦

⎤
⎢⎣

⎡
∂
∂

=
∂

∂

          (A.7.17.1)

 

Try solution 
2)(),( α

π
α rertf −=  in 

x
tf

∂
∂ ),(α

, we have: 

2)(
32),( α

π
αα rer

x
tf −−=

∂
∂

 

so: 

2

2

22

)(
22

)(22
3

)(
3

)(
3

2

2

4
12

)21(2

)2(22),(

α

α

αα

π
α

α
π

α
π
α

π
α

r
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e
dttd

r

err

rrerer
x

tf

−

−

−−

−
=

−−=

−−−=
∂

∂

             

(A.7.17.2)

 

By comparing the above derivatives, A.7.17.1 and 2, we can find the solution 

2)(),( α

π
α rertf −=  

satisfies the equation: 

2

2

x
fd

t
f

∂
∂

=
∂
∂
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SOLUTIONS TO CHAPTER 8 

 
8.1 

Write the expressions of xE  and yH  as: 

)(2sin

)(2sin

0

0

ztvHH

ztvEE

H
H

y

E
E

x

−=

−=

λ
π

λ
π

 

where Eλ  and Hλ  are the wavelengths of electric and magnetic waves respectively, 

and Ev  and Hv  are the velocities of electric and magnetic waves respectively. 

By substitution of the these expressions into equation (8.1a), we have: 

)(2cos2)(2cos2
00 ztvEztvHv E

EE
H

H
H

H

−−=−−
λ
π

λ
π

λ
π

λ
πμ  

i.e.                )(2cos)(2cos 00 ztvEztvHv
E

EE
H

HH

H −=−
λ
π

λλ
π

λ
μ  

which is true for all t  and z , provided: 

0

0

H
Evv EH μ

==  

and                            EH λλ =  

so, at any t  and z , we have: 

zt
H
E

HE −==
0

0

μ
φφ  

Therefore xE  and yH  have the same wavelength and phase.  

 
8.2 

pressure
Area
ForceDistanceForce

Volume
Energy

3 ==
⋅

=
L
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Currents in W  into page. Field lines at A  cancel. Those at C  force wires together. 

Reverse current in one wire. Field lines at A  in same direction, force wires apart. 
Fig Q.8.2.a 

 

 

Field lines at C  in same direction as those from current in wire –  
in opposite direction at A . Motion to the right 

Fig Q.8.2.b 
 
8.3 

The volume of a thin shell of thickness dr  is given by: drr 24π , so the electrostatic 

energy over the spherical volume from radius a  to infinity is given 

by: ∫
+∞

a
drrE )4(

2
1 22

0 πε , which equals 2mc , i.e.: 

222
0 )4(

2
1 mcdrrE

a
=∫

+∞
πε  

By substitution of 2
04 reE πε=  into the above equation, we have: 

22
22

0

2

0 )4(
)4(2

1 mcdrr
r

e
a

=∫
∞+

π
πε

ε  

i.e.                        2
2

0

2 1
8

mcdr
r

e
a

=∫
∞+

πε
 

i.e.                           2

0

2

8
mc

a
e

=
πε

 

Then, the value of radius a  is given by: 

][1041.1
)103(101.9108.88

)106.1(
8

15
283112

219

2
0

2

m
mc

ea −
−−

−

×≈
××××××

×
==

ππε
 

Motion W  A  C  

W  W  A  C  C  
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Another approach to the problem yields the value: 

][1082.2 15 ma −×=  

 
8.4 
The magnitude of Poynting vector on the surface of the wire can be calculated by 
deriving the electric and magnetic fields respectively. 
The vector of magnetic field on the surface of the cylindrical wire points towards the 
azimuthal direction, and its magnitude is given by Ampere’s Law:  

θθθ π
eeH

r
IH

2
==  

where r  is the radius of the wire’s cross circular section, and I  is the current in the 
wire.  
Ohm’s Law, EJ σ= , shows the vector of electric field on the surface of the 
cylindrical wire points towards the current’s direction, and its magnitude equals the 
voltage drop per unit length, i.e.: 

zzzz l
IR

l
VE eeeE ===  

where, l  is the length of the wire, and the V  is the voltage drop along the whole 
length of the wire and is given by Ohm’s Law: IRV = , where R  is the resistance of 
the wire. 
Hence, the Poynting vector on the surface of the wire points towards the axis of the 
wire is given by: 

rzzz HEHE eeeHES θθθ −=×=×=  

which shows the Poynting vector on the surface of the wire points towards the axis of 
the wire, which corresponds to the flow of energy into the wire from surrounding 
space. The product of its magnitude and the surface area of the wire is given by: 

RIrl
r

I
l

IRrlHErlS z
22

2
22 ==×=× π

π
ππ θ  

which is the rate of generation of heat in the wire. 
 
8.5 
By relating Poynting vector to magnetic energy, we first need to derive the magnitude 
of Poynting vector in terms of magnetic field. 
The electric field on the inner surface of the solenoid can be derived from the integral 
format of Faraday’s Law: 

∫ ∫ ∂
∂

−= dS
t

HEdl μ  

where S  is the area of the solenoid’s cross section. E  is the electric field on the 
inner surface of the solenoid, and H  is the magnetic field inside the solenoid.  
For a long uniformly wound solenoid the electric field uniformly points towards 

azimuthal direction, i.e. θθeE E= , and the magnetic field inside the solenoid 
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uniformly points along the axis direction, i.e. zzH eH = . So the above equation 

becomes 
22 r

t
HrE z πμπθ ∂
∂

−=×  

i.e.                          
t

HrE z

∂
∂

−=
2
μ

θ  

where r  is the radius of the cross section of the solenoid. 
Hence, the Poynting vector on the inner surface of the solenoid is given by: 

r
z

zzz t
HHrHE eeeHE
∂
∂

−=×=×
2
μ

θθ  

which points towards the axis of the solenoid and corresponds to the inward energy 
flow. The product of its magnitude and the surface area of the solenoid is given by: 

t
HlHrrl

t
HHrrlS z

z
z

z ∂
∂

=×
∂
∂

=× 22
2

2 ππμπ  

where l  is the length of the solenoid. 
On the other hand, the time rate of change of magnetic energy stored in the solenoid 
of a length l  is given by: 

t
HlHrlrH

dt
d z

z ∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛ × 222

2
1 ππμ  

which equals rlS π2×  
 
8.6 

For plane polarized electromagnetic wave ),( yx HE  in free space, we have the 

relation: 

0

0

ε
μ

=
y

x

H
E  

Its Poynting vector is given by: 

2
0

2
0

00

2

0

0

00

1
xxx

x
xyx EcEEEEHES εε

εμμ
ε

εμ
=====  

where  001 εμ=c  is the velocity of light. 

Noting that: 

2
0

2

0

0
0

2
0 2

1
2
1

2
1

yyx HHE μ
ε
μεε =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=  

we have: 

2
0

2
0

2
0 2

1
2
1

xyxyx EcHEcHES εμε =⎟
⎠
⎞

⎜
⎝
⎛ +==  
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Since the intensity in such a wave is given by: 
2
max0

2
0 2

1 EcEcSI av εε ===  

we have: 
2
max

32
max

128 10327.1108.8103
2
1 EES −− ×≈×××××=  

][45.27
108.8103

22 12121
128

21

0
max

−
− ≈

×××
== VmSSS

c
E

ε
 

][103.7
104103

22 121221
7-8

21

0
max

0

0
max

−−×≈
×××

=== AmSSS
c

EH
πμμ

ε  

 
8.7 
The average intensity of the beam and is given by: 

][1053.1
10)105.2(

3.0
duration pulsearea

Energy
area

Power 28
423

−
−− ×=

×××
=

×
== WmI

π
 

Using the result in Problem 8.6, the root mean square value of  the electric field in 
the wave is given by: 

][104.2
108.8103

1053.1 15
128

8

0

2 −
− ×≈

×××
×

== Vm
c
IE
ε

 

 
8.8 
Using the result of Problem 8.6, the amplitude of the electric field at the earth’s 
surface is given by: 

][1010135045.2745.27 121
0

−≈×== VmSE  

and the amplitude of the associated magnetic field in the wave is given by: 

][7.21350103.7 12
0

−− ≈××= AmH  

The radiation pressure of the sunlight upon the earth equals the sum of the electric 
field energy density and the magnetic field energy density, i.e. 

][1098.81010108.8
2
1

2
1 62122

00
2
00

2
00 PaEHEprad

−− ×=××==+= εμε  

 
8.9 
The total radiant energy loss per second of the sun is given by: 

][1082.3)1015(413504 262102 JrSEloss ×=×××=×= ππ  

which is associated with a mass of: 

][102.4
)103(

1082.3 9
28

26
2 kgcEm loss ×=

×
×

==  
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8.10 
At a point km10  from the station, the Poynting vector is given by: 

][106.1
)1010(2

10
2

24
23

5

2 mW
r

PS −×=
×××

==
ππ

 

Using the result in Problem 8.6, the amplitude of electric field is given by: 

][346.0106.145.2745.27 421
0 mVSE =××=×= −  

The amplitude of magnetic field is given by: 

][102.9106.1103.7103.7 442212
0 mASH −−−− ×=×××=×=  

 
8.11 
The surface current in the strip is given by: 

QvI =  

where Q  is surface charge per unit area on the strip and is given by: xEQ ε= , and 

v  is the velocity of surface charges along the transmission line.  
Since the surface charges change along the transmission line at the same speed as the 

electromagnetic wave travels, i.e. 
με
1

== cv , the surface current becomes: 

xx EEQvI
μ
ε

με
ε ===

1  

Analysis in page 207 shows, for plane electromagnetic wave, xy EH εμ = , so the 

surface current is now given by: 

yy HHI ==
ε
μ

μ
ε  

On the other hand, the voltage across the two strips is given by: 

xx ELEV ==  

where 1=L  is the distance between the two strips. 
Therefore the characteristic impedance of the transmission line is given by: 

ε
μ

===
y

x

H
E

I
VZ  

 
8.12 
Write equation (8.6) in form: 
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)(2

2

xxx E
t

E
tt

E
z

σμεμ
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

=
∂
∂  

which can be dimensionally expressed as: 

time
areacurrent

length
inductance

areatime
currentnt displaceme

length
inductance

lengthlength
lengthvoltage

×+
×

×=
×

 

Multiplied by a dimension term, length, the above equation has the dimension:  

areatime
currentinductance

area
voltage

×
×=  

which is the dimensional form (per unit area) of the equation: 

dt
dILV =  

where V  is a voltage, L  is a inductance and I  is a current. 
 
8.13 
Analysis in page 210 and 211 shows, in a conducting medium, the wave number of 
electromagnetic wave is given by: 

2
ωμσ

=k  

where ω  is angular frequency of the electromagnetic wave, μ  and σ  are the 

permeability and conductivity of the conducting medium.  
Differentiation of the above equation gives: 

ω
ω
μσωμσ

ωμσ
dddk

22
1

2
2

2
1

==  

i.e.                   
kdk

d ωω
ωμσμσ

ωω 22222 ===  

which shows, when a group of electromagnetic waves of nearly equal frequencies 
propagates in a conducting medium, where the group velocity and the phase velocity 

can be treated as fixed values, the group velocity, dkdvg ω= , is twice the wave 

velocity, kvp ω= . 

 
8.14 

(a) 1007201036
5010502

1.0
2

9
3

0

>=××
×××

== π
πεπνε

σ
ωε
σ

r

 

which shows, at a frequency of kHz50 , the medium is a conductor 
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(b) 239
64

0

10106.31036
5010102

1.0
2

−− <×=××
×××

== π
πεπνε

σ
ωε
σ

r

 

which shows, at a frequency of MHz410 , the medium is a dielectric. 

 
8.15 
The Atlantic Ocean is a conductor when: 

100
2 0

>=
επνε

σ
ωε
σ

r

 

i.e.          ][101036
811002

3.4
1002

9

0

MHz
r

≈××
××

=
××

< π
πεεπ

σν  

Therefore the longest wavelength that could propagate under water is given by: 

6

maxmax

1010×===
λελ

ν
r

cv  

i.e.               ][3
101081

103
1010 6

8

6max mc

r

≈
××

×
=

××
=

ε
λ  

 
8.16 

When a plane electromagnetic wave travelling in air with an impedance of airZ  is 

reflected normally from a plane conducting surface with an impedance of cZ , the 

transmission coefficient of magnetic field is given by: 

i

t
H H

HT =  

Using the relations: tct HZE = , iairi HZE = , and 
airc

c

i

t

ZZ
Z

E
E

+
=

2 , the above equation 

becomes: 

airc

air

airc

c

c

air

ci

airt

i

t
H ZZ

Z
ZZ

Z
Z
Z

ZE
ZE

H
HT

+
=

+
===

22  

The impedance of a good conductor tends to zero, i.e. 0→cZ , so we have: 

22
=≈

air

air
H Z

ZT  or it HH 2≈  

After reflection from the air-conductor interface, standing waves are formed in the air 
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with a magnitude of ri HH +  in magnetic field and a magnitude of ri EE +  in 

electric field.  

Using the relations: tri HHH =+ , tri EEE =+ , the standing wave ratio of magnetic 

field to electric field in air is given by:  

ct

t

ri

ri

ZE
H

EE
HH 1

==
+
+  

which is a large quantity due to 0→cZ . 

As an analogy, for a short-circuited transmission line, the relation between forward 

(incident) and backward (reflected) voltages is given by: 0=+ −+ VV  or 0=+ ri VV , 

the forward (incident) current is given by: 0ZVIIi ++ == , and the backward 

(reflected) current is given by: 0ZVIIr −− −== , so the transmitted current is given 

by: 

irit I
Z
V

Z
V

Z
V

Z
V

Z
VIII 22

00000

==
−

−=−=+= +++−+  

When a plane electromagnetic wave travelling in a conductor with an impedance of 

cZ  is reflected normally from a plane conductor-air interface, the transmission 

coefficient of electric field is given by: 

airc

air

i

t
E ZZ

Z
E
ET

+
==

2  

The impedance of a good conductor tends to zero, i.e. 0→cZ , so we have: 

22
=≈

air

air
E Z

ZT  or it EE 2≈  

As an analogy, for a open-circuited transmission line, the forward (incident) voltage 

equals the backward (reflected) voltages, i.e. −+ === VVVV ri , the transmitted 

voltage is given by: 

+++ =+=+= VVVVVV rit 2  

 
8.17 

Analysis in page 215 and 216 shows, in a conductor, magnetic field yH  lags electric 
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field xE  by a phase angle of o45=φ , so we can write the electric field and magnetic 

field in a conductor as: 

tEEx ωcos0=  and )cos(0 φω −= tHH y  

so the average value of the Poynting vector is the integral of the Poynting vector 

yxHE  over one time period T  divided by the time period, i.e.: 

][45cos
2
1cos

2
1

]cos)2[cos(
2
1

)cos(cos1

1

2
00

00

0
00

00 0

0

WmHET
T
HE

dtt
T
HE

dttHtE
T

HE
T

S

T

T

T

yxav

o==

+−=

−=

=

∫

∫

∫

φ

φφω

φωω
 

Noting that the real part of impedance of the conductor is given by: 

o45coscos) ofpart  (real
0

0

0

0

H
E

H
EZc == φ  

i.e.                    ) ofpart  real(
45cos
0

0 cZHE ×=
o

 

so we have:  

])[ ofpart  real(
2
1

45cos ofpart  real
45cos2

1

45cos
2
1

22
0

2
0

00
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c
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××=

=

o

o

o

 

We know from analysis in page 216 that, at a frequency MHz3000=ν , the value of 

σωε  for copper is 9109.2 −× , hence, at of frequency of MHz1000 , the value of 

σωε  for copper is given by 109 107.93109.2 −− ×=× , and 1≈≈ rr εμ . So, the real 

part of impedance of the large copper sheet is given by: 

][102.8107.9
2
26.3766.376

2
2

2
2) ofpart  real(

310 Ω×=×××=××=

=

−−

σ
ωε

ε
μ

r

r

coppercopper ZZ
 

Noting that, at an air-conductor interface, the transmitted magnetic field in copper 

copperH  doubles the incident magnetic field 0H , i.e. 02HHcopper = , the average 
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power absorbed by the copper per square metre is the average value of transmitted 
Poynting vector, which is given by: 

][1016.1102.8
6.376

12

) ofpart  real(
6.376

2

) ofpart  real(2
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8.18 
Analysis in page 222 and 223 shows that when an electromagnetic wave is reflected 

normally from a conducting surface its reflection coefficient rI  is given by: 

σ
ωε0221−=rI  

Noting that 1=rε , the fractional loss of energy is given by: 

σ
ωε

σ
εεω

σ
ωε

σ
ωε 88822111 00 ===⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=− r

rI  

 
8.19 
Following the discussion of solution to problem 8.17, we can also find the average 
value of Poynting vector in air. 
The electric and magnetic field of plane wave in air have the same phase, so the 
Poynting vector in air is given by: 

tHEtHtEHES yxair ωωω 2
0000 coscoscos =×==  

and its average value is given by: 
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So, the ratio of transmitted Poynting vector in copper to the incident Poynting vector 
in air is given by: 

5
3

7

1081.8
1033.1
1016.1 −

−

−

×=
×
×

=
air

copper

S
S

 

which equals the fractional loss of energy rI  given by: 

510 1081.8107.988 −− ×=××==
σ
ωε

rI  

8.20 

xE  and yH  are in complex expression, we have: 
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So, the average value of the Poynting vector in the conductor is given by: 
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The mean value of the electric field vector, xE , is a constant value, which contributes 

to the same electric energy density at the same amount of time, i.e.: 

∫==
T
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Noting that: 
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we find the value of zSav ∂∂  is the product of the conductivity σ  and the square of 

the mean value of the electric field vector xE . The negative sign in the above 

equation shows the energy is decreasing with distance.  
 
8.21 
Noting that the relation between refractive index n  of a dielectric and its impedance 

dZ  is given by: 
dZ

Zn 0= , where 0Z  is the impedance in free space, so, when light 

travelling in free space is normally incident on the surface of a dielectric, the reflected 
intensity is given by: 
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and the transmitted intensity is given by: 
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8.22 

If the dielectric is a glass )5.1( =glassn , we have: 
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Problem 8.15 shows water is a conductor up to a frequency of 10MHz, i.e. water is a 
dielectric at a frequency of 100MHz and has a refractive index of: 

981 === rwatern ε  

So, the reflectivity is given by: 
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and transmittivity given by: 
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8.23 
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The loss of intensity is given by: 

211 ttloss III −=  

where 1tI  is the transmittivity from air to glass and 2tI  is the transmittivity from 

glass to air. Following the discussion in problem 8.21, we have: 
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So we have: 
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8.24 

Noting that πλωεμ 21 00 ==c , the radiating power can be written as: 
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By substitution of given parameters, the wavelength is given by: 
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So the radiation resistance and the radiated power are given by: 
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SOLUTIONS TO CHAPTER 9 

 
9.1 

Substituting the expression of z  into 2

2

2

2

y
z

x
z

∂
∂

+
∂
∂

, we have: 
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Noting that 2
2

2
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222 kkck +== ω , we have: 

z
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Substituting the expression of z  into 2

2

2
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t
z

c ∂
∂

, we have: 
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9.2 

Boundary condition 0=z  at 0=y  gives: 

0)(
2

)(
1

11 =+ −− xktixkti eAeA ωω  i.e. 21 AA −=  

so the expression of z  can be written as: 

)(
21

)(
1

)]([)]([
1

12212121 )sin(2)]([}{ xktiyikyikxktiykxktiykxkti eykiAeeeAeeAz −−−−−+− −=−=−= ωωωω  

Therefore, the real part of z  is given by: 

)sin(sin2 121 xktykAzreal −+= ω  

Using the above expression, boundary condition 0=z  at by =  gives: 

0sin2 )(
21

1 =−= − xktibekiAz ω  

which is true for any t  and x , provided: 0sin 2 =bk , i.e. 
b

nk π
=2 .  
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9.3 

As an analogy to discussion in text page 242, electric field zE  between these two planes is the 

superposition of the incident and reflected waves, which can be written as: 

])[(
2

])[(
1

tykxkitykxki
z

yxyx eEeEE ωω −+−−+ +=  

where θcoskkx =  and θsinkky =  

Boundary condition 0=zE  at 0=x  gives: 

0)( )(
21 =+ − tyki yeEE ω  

which is true for any t  and y  if 021 EEE =−= , so we have: 
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0

])[(
0

])[(
0 )( tykixikxiktykxkitykxki

z
yxxyxyx eeeEeEeEE ωωω −−−+−−+ −=−=  

Using the above equation, boundary condition 0=zE  at ax =  gives: 

0)( )(
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z
yxx eeeEE ω  

i.e.                       0sin )( =− tyki
x

yaek ω  

which is true for any t  and y  if 0sin =akx , i.e. ankx π= . 

By substitution of the expressions for cλ  and gλ  into 22
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gc λλ
+ , we have: 
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9.4 
Electric field components in zyx ,,  directions in problem 9.3 are given by: 

0== yx EE  and )(
0 )( tykixikxik

z
yxx eeeEE ω−−−=  

By substitution of these values into equation 8.1, we have: 
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which yields: 
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DeeeEkH
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where C  and D  are constants, which shows the magnetic fields in both x  and y  directions 

have non-zero values. 
 
9.5 

 

∫ =⋅ IdlB μ  bIB μ=∴  

Closed circuit formed by connecting ends of line length l  threaded by flux: 

b
IlaB μ

=  

b
aL μ=∴ length unit per   inductance  

a
bC ε length unit per   ecapacitanc =  

Ω==∴
ε
μ

b
a

C
LZ0  

 
9.6 
Text in page 208 shows the time averaged value of Poynting vector for an electromagnetic wave in 
a media with permeability of μ  and permittivity of ε  is given by: 

2
02

1 EcI ε=  

Noting that, in the waveguide of Problem 9.5, the area of cross section is given by: abA = , and 

the velocity of the electromagnetic wave is given by: με1=c , the power transmitted by a 

single positive travelling wave is given by: 

μ
εε
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ε 2

0
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2
0 2

11
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2
1 abEEababEcIAP ====  

a  B  

b  

Current into 
paper 

Current out of 
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line integral ∫ ⋅dlB  
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9.7 
The wave equation of such an electromagnetic wave is given by: 
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By substitution of the solution )cos(),( xktzyE x−= ωnE  into the above equation, we have: 
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which is true for any t  and x  if: 
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ω

 

 
9.8 
Using the result of Problem 9.7, the electric field in x  direction can be written as: 

)cos(),( zktzyFE xx −= ω  

and equation: 

),(),(),( 2
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2
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is satisfied. 

Write ),( zyF  in form: )()(),( zHyGzyF =  and substitute to the above equation, we have: 
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The solution to the above equation is given by: 

yikyik yy eCeCyG −+= 21)(  and zikzik zz eDeDzH −+= 21)(  

where 2121 ,,, DDCC  are constants and 222 kkk zy =+  
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So the electric field in x  direction is given by: 

)cos())((

)cos()()()cos(),(

2121 xkteDeDeCeC

xktzHyGxktzyFE

x
zikzikyikyik

xxx

zzyy −++=

−=−=
−− ω

ωω
      (9.8.1) 

Using boundary condition 0=xE  at 0=y  in equation (9.8.1) gives: 21 CC −= . 

Using boundary condition 0=xE  at 0=z  in equation (9.8.1) gives: 21 DD −= . 

So equation (9.8.1) becomes: 

)cos())((11 xkteeeeDCE x
zikzikyikyik

x
zzyy −−−= −− ω   

or                    )cos(sinsin xktzkykAE xzyx −= ω              (9.8.2) 

where A  is constant. 

Using boundary condition 0=xE  at ay =  in equation (9.8.2) gives: 0sin =aky , i.e. 

amky π= , where L,3,2,1=m . 

Using boundary condition 0=xE  at bz =  in equation (9.8.2) gives: 0sin =bkz , i.e. 

bnkz π= , where L,3,2,1=n . 

Finally, we have: 
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9.9 
From problem 9.7 and 9.8, we know:  
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For xk  to be real, we have: 

02

2

2

2
2222 >⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−=

b
n

a
mckx πω  
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b
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a
mc +≥ πω  

Therefore, when 1== nm , ω  has the lowest possible value (the cut-off frequency) given by: 
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22min
11
ba

c += πω  

 
9.10 
The dispersion relation of the waves of Problem 9.7 – 9.9 is given by: 
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The differentiation of this equation gives: 

ωωd
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d
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ωω

 or 2cvv gp =  

 
9.11 
Using boundary condition 0=z  at 0=x  in the displacement equation gives: 

0)()( )(
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22 =+++ +− yktiykti eAAeAA ωω  

which is true for any t  and y  if: 
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so we have: 
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 (9.11.1) 

Using boundary condition 0=z  at 0=y  in equation (9.11.1) gives: 

0)(sin2 211 =−− tieAAxki ω  

which is true for any t  and x  if: 

21 AA =  

Therefore, equation (9.11.1) becomes: 

tiyekxkAz ω
211 sinsin4−=  

and the real part of z  is given by: 

tykxkAzreal ωcossinsin4 211−=                (9.11.2) 

Using boundary condition 0=z  at ax =  in equation (9.11.2) gives: 

0sin 1 =ak , i.e. 
a

nk π1
1 = , where L,3,2,11 =n . 
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Using boundary condition 0=z  at by =  in equation (9.11.2) gives: 

0sin 2 =bk , i.e. 
b

nk π2
2 = , where L,3,2,12 =n . 

 
9.12 

Multiplying the equation of geometric progression series by kThe ν−  on both sides gives: 

][ )1(32
0

kThnkThkThkTh

n
n

kThkTh eeeeNNeNe νννννν +−−−−−− ++++== ∑ L  

so we have: 

0
)1(

0 ]lim1[ NeNNeN kThn

n

kTh =−=− +−

→∞

− νν  

i.e. 

kThe
NN ν−−

=
1

0  

The total energy over all the n  energy states is given by: 

)32( 32
0

kTnhkThkThkTh
n

n
n

n
n

n

neeeeNh

nNhnhNEE

ννννν

νν

−−−− ++++=

=== ∑∑∑
L

 

Multiplying the above equation by kThe ν−  on both sides gives: 

]32[ )1(432
0

kThnkThkThkThkTh neeeeNhEe ννννν ν +−−−−− ++++= L  

so we have: 

kTh
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−
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1
1
1
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0

)1(2
0

)1(32
0

L

L

 

i.e.                           20 )1( kTh

kTh

e
ehNE ν

νν
−

−

−
=  

Hence, the average energy per oscillator is given by: 

11
1

)1(
0

20

−
=

−
=

−

−== −

−

−

−

−

kThkTh

kTh

kTh

kTh

kTh

e
h

e
eh

e
N
e
ehN

N
E

νν

ν

ν

ν

ν

νν

ν

ε  

By expanding the denominator of the above equation for kTh <<ν , we have: 
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kT
kTh

h
kThkTh

h
=≈

−+++
=

ν
ν

νν
νε

1]2)(1[ 2 L
 

which is the classical expression of Rayleigh-Jeans for an oscillator with two degrees of freedom. 
Alternative derivation for E  and ε : 

νε nhNNE ==  where 

∑

∑
∞

=

−
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=
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−
=

−∂
∂

−=

∂
∂

−=∴ ∑

1

1
1log

)(

log
)(

1

0
1

 

2
0

)1( kTh

kTh

e
ehNnhNE ν

ννν −

−

−
==∴  

and 
1−

== − kThe
hnh ν

ννε  

 
9.13 
One solution of this Schrodinger’s time-independent equation can be written as: 

)()()( zZyYxX=ψ  

Substituting this expression into the Schrodinger’s equation and dividing ψ  on both sides of the 
equation, we have: 

E
h

m
z

zZ
zZy

yY
yYx

xX
xX 2

2

2

2

2

2

2

2 8)(
)(

1)(
)(

1)(
)(

1 π
−=

∂
∂

+
∂

∂
+

∂
∂

 

which yields: 

0)()(

0)()(

0)()(

2

2

2

2

2

2

=+
∂

∂

=+
∂

∂

=+
∂

∂

zZE
z

zZ

yYE
y

yY

xXE
x

xX

z

y

x

 

where zyx EEE ,,  are constants and satisfy: E
h

mEEE zyx 2

28π
=++  

By solving the above three equations, we have: 
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zEi
z

zEi
z

yEi
y

yEi
y

xEi
x

xEi
x

zz

yy

xx

eDeCzZ

eDeCyY

eDeCxX

−

−

−

+=

+=

+=

)(

)(
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and 

))()(( zEi
z

zEi
z

yEi
y

yEi
y

xEi
x

xEi
x

zzyyxx eDeCeDeCeDeC −−− +++=ψ  

where zzyyxx DCDCDC ,,,,,  are constants. 

Boundary condition 0=ψ  at 0=x  gives xx DC −= , boundary condition 0=ψ  at 

0=y  gives yy DC −= , boundary condition 0=ψ  at 0=z  gives zz DC −= , so we 

have: 

zEyExEA

eeeeeeCCC

zyx

zEizEiyEiyEixEixEi
zyx

zzyyxx

sinsinsin

))()((

=

−−−= −−−ψ
 

Using the above expression ψ , boundary condition 0=ψ  at xLx =  gives: 
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

x
x L

lE π
, 

boundary condition 0=ψ  at yLx =  gives: 

2

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

y
y L

rE π
, boundary condition 0=ψ  at 

zLx =  gives: 
2

⎟⎟
⎠

⎞
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⎛
=

z
z L

nE π
, where L,2,1,0,, =nrl , so we have: 

E
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L
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L
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i.e.                       ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++= 2

2

2

2

2

22

8 zyx L
n

L
r

L
l

m
hE  

When LLLL zyx === , ( )222
2

2

8
nrl

mL
hE ++= . If 0EE =  for 1=l , 0== nr , the 

next energy levels are given by: 

03EE =  for 1=== nrl . 

06EE =  for 2,1 === nrl ; 2,1 === rnl  and 2,1 === lrn , which is a three-fold 

degenerate state. 

09EE =  for 1,2 === nrl ; 1,2 === rnl  and 1,2 === lrn  which is a three-fold 
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degenerate state. 

011EE =  for 3,1 === nrl ; 3,1 === rnl  and 3,1 === lrn  which is a three-fold 

degenerate state. 

012EE =  for 2=== nrl . 

014EE =  for 3,2,1 === nrl ; 2,3,1 === rnl ; 3,1,2 === rnl ; 

1,3,2 === rnl ;  2,1,3 === rnl and 1,2,3 === rnl  which is a six-fold degenerate 

state. 
 
9.14 
Planck’s Radiation Law is given by: 

ννπνν νν d
e

h
c

dE kTh 1
8

3

2

−
=  

At low energy levels kTh <<ν , by expansion of kThe ν  in series, the above equation 

becomes: 

νπνν
ν
νπν

ν
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d
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1
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⎜
⎝
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=
L

 

which is Rayleigh-Jeans expression 
 
9.15 

Using the variable kTchx λ= , energy per unit range of wavelength can be written as: 

)1()(
)(8

)1()(
)(8

4

5

5

5

−
=

−
= xx ech

kTx
ech
kTxchE ππ

λ  

Substitute the expression of λE  into integral ∫
∞

0
λλdE  and, we have: 
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4
33

45

4

3

4

0 3

34

0 4

5

0

15
8

15)(
)(8

)1()(
)(8
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i.e.  

4

0
aTdE =∫

∞
λλ

 

where 33

45

15
8

hc
ka π

=  

 
9.16 

Using the expression of λE  in Problem 9.15, the wavelength mλ  at which λE  is maximum 

should satisfy the equation: 

0=λE
dx
d

 

which yields: 

0
)1(

5

=
−xe

x
dx
d

 

i.e.                        0
)1(

)1(5
2

54

=
−

−−
x

xx

e
xeex

 

i.e.                          1
5

1 =⎟
⎠
⎞

⎜
⎝
⎛ − xex

 

where 
kT
chx
λ

=  

 
9.17 
The most sensitive wavelength to the human eye can be given by substituting the sun’s 

temperature ][6000 KT =  into equation kTch m 5=λ , i.e.: 

][107.4
60001038.15

1063.6103
5

7
23

348

m
kT
ch

m
−

−

−

×≈
×××
×××

==λ  

which is in the green region of the visible spectrum. 
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9.18 

Substituting the tungsten’s temperature ][2000 KT =  into equation kTch m 5=λ , i.e.: 

][1014
20001038.15

1063.6103
5

7
23

348

m
kT
ch

m
−

−

−

×≈
×××
×××

==λ  

which is well into infrared. 
 
9.19 
As an analogy to the derivation of number of points in ν  state shown in text page 250, 251, the 
number of points in k  space between k  and dkk +  is given by: 

32

8
4

cell of volume
shell) spherical of (volume

8
1

⎟
⎠
⎞

⎜
⎝
⎛⋅=
π

π Ldkk
 

Noting that for each value of k  there are two allowed states, the total number of states in k  
space between  k  and dkk +  is given by: 

32

8
42)( ⎟

⎠
⎞

⎜
⎝
⎛⋅⋅=
π

π LdkkkP  

From 2*2 )2( kmE h= , we have Emk )2( 2* h= . By substitution into the above equation, 

we get the number of states dEES )(  in the energy interval dE  given by: 

dEEmLdE
E

EmL

LEEdmdEES

2

232*3

2

232*3

3232*

2
)2(

2
)2(

8
)2(42)(

ππ

π
π
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⎟
⎠
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⎜
⎝
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Provided *mm ≈  and 3LA = , we have: 

EmAES
23
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2

2
)( ⎟

⎠
⎞

⎜
⎝
⎛=
hπ

 

Since Fermi energy level satisfies the equation: 

NdEESfE
=∫0 )(  

By substitution of the expression of )(ES , we have: 

NdEEmAfE
=⎟

⎠
⎞

⎜
⎝
⎛∫0

23

22
2

2 hπ
 

i.e.  
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N
EmA f =⎟

⎠
⎞

⎜
⎝
⎛

23
2

2

2323

22 hπ
 

which gives: 
322

*

2 3
2 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

A
N

m
E f

πh
 

provided *mm ≈  
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SOLUTIONS TO CHAPTER 10 

 
10.1 
The wave form in the upper figure has an average value of zero and is an odd function 
of time, so its Fourier series has a constant of zero and only sine terms. Since the 

wave form is constant over its half period, the Fourier coefficient nb  will be zero if 

n  is even, i.e. there are only odd harmonics and the harmonics range from 1,3,5 to 
infinity. 
The wave form in the lower figure has a positive average value and is a even function 
of time, so its Fourier series has a constant of positive value and only cosine terms. 

Since 21≠Tτ , there are both odd and even harmonics. The harmonics range from 

1,2,3 to infinity. 
 
10.2 

Such a periodic waveform should satisfy: )2()( Txfxf −−= , where T  is the 

period of the waveform. Its Fourier coefficient of cosine terms can be written as: 

⎥⎦
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⎥⎦
⎤

⎢⎣
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T
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T
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T
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2
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2

2

0

0

)2(2cos)2(2cos)(2

2cos)(2cos)(2

2cos)(2

ππ

ππ

π

 

If n  is even, we have  

T
nxn

T
nx

T
Txn ππππ 2cos2cos)2(2cos =⎟

⎠
⎞

⎜
⎝
⎛ −=

−  

Hence, by substituting into na  and using 2Txu −= , we have: 

02cos)(2cos)(2 2

0

2

0
=⎥⎦

⎤
⎢⎣
⎡ −= ∫∫

TT

n du
T
nuufdx

T
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T
a ππ  

Similarly, the coefficient of sine terms is given by: 

⎥⎦
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⎢⎣
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If n  is even, using 2Txu −= , we have: 

02sin)(2sin)(2 2

0

2

0
=⎥⎦

⎤
⎢⎣
⎡ −= ∫∫

TT

n du
T
nuufdx

T
nxxf

T
b ππ  

Therefore, if n  is even, the Fourier coefficients of both cosine and sine terms are 
zero, i.e. there are no even order frequency components. 
 
10.3 
The constant term of the Fourier series is given by: 

πππ
ππ hxdxhydxa === ∫∫ 0

2

00 sin
2
1

2
1

2
1  

The Fourier coefficient of cosine term is given by: 

∫∫ ==
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ππ 0

2

0
cossincos1 nxdxxhnxdxyan  

when 1=n , we have: 
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when 1>n , we have: 
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which gives: 
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π
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−=
π
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2
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−=
π
ha , … 

The Fourier coefficient of sine term is given by: 

∫∫ ==
ππ

ππ 0

2

0
sinsinsin1 nxdxxhnxdxybn  

when 1=n , we have: 

2
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hxdxhxdxxhb === ∫∫

ππ

ππ
 

when 1>n , we have: 
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1
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Overall, the Fourier series is given by: 
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10.4 
Such a wave form is a even function with a period of π . Hence, there are only 
constant term and cosine terms.  
The constant term is given by: 

ππ
π hxdxha 2sin1

2
1

00 == ∫  

which doubles the constant shown in Problem 10.3 
The coefficient of cosine term is given by: 

2
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which gives: 
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π
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2
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π
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π
ha , … 

Therefore the Fourier series is given by: 
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Compared with Problem 10.3, the modulating ripple of the first harmonic xh sin
2

 

disappears. 
 
10.5 

)(xf  is even function in the interval π± , so its Fourier series has a constant term 

given by: 

32
1)(

2
1

2
1 2

2
0

π
ππ

π

π

π

π
=== ∫∫ −−

dxxdxxfa  
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The coefficient of cosine term is given by: 
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Therefore the Fourier series is given by: 

∑∑
∞∞
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0 cos4)1(
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n
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10.6 

The square wave function of unit height )(xf  has a constant value of 1 over its first 

half period ],0[ π , so we have: 

1)2( =πf  

By substitution into its Fourier series, we have: 

1
2

5sin
5
1

2
3sin

3
1

2
sin4)2( =⎟

⎠
⎞

⎜
⎝
⎛ ++≈

πππ
π

πf  

i.e. 

47
1

5
1

3
11 π

=−+−  

 
10.7 

It is obvious that the pulse train satisfies )()( tftf −= , i.e. it is an even function. The 

cosine coefficients of its Fourier series are given by:  

τπ
π

π
π

π τ
τ

n
TnT

nx
n

T
T

dx
T
nx

T
an

2sin22sin
2

42cos4
0

0
=⋅== ∫  

 
10.8 

As τ  becomes very small, τπτπ n
T

n
T

22sin → , so we have: 

T
n

Tn
n

Tn
an

ττπ
π

τπ
π

4222sin2
=⋅≈=  

We can see as 0→τ , 0→na , which shows as the energy representation in time 
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domain 0→ , the energy representation in frequency domain 0→  as well. 
 
10.9 
The constant term of the Fourier series is given by: 

T
dt

T
dt
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1 2
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The coefficient of cosine term is given by: 
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As 0→τ , we have: 
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Now we have the Fourier series given by: 
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10.10 
Following the derivation in the problem, we have: 
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Using the fact that for T  very large: 

πω
ω

ω
ω

ωω −== ∫∫
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i
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i

TiTti 11 )(  

we have: 
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2
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10.11 
Following the derivation in the problem, we have: 
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which shows the relative energy distribution in the spectrum given by: 

2
0

0
2

2
0

2

])([
])([sin)()(

τννπ
τννπτν

−
−

= fF  

follows the intensity distribution curve in a single slit diffraction pattern given by: 

2

2

0 )sin(
)sin(sin

λθπ
λθπ

d
dII =  

 
10.12 
The energy spectrum has a maximum when: 

1
])([

])([sin
2

0max

0max
2

=
−
−
τννπ
τννπ  

i.e.                 0)( 0min =− τννπ  or 0min νν =  

The frequencies for the minima of the energy spectrum are given by: 

0
])([

])([sin)()( 2
0min

0min
2

2
0min =

−
−

=
τννπ
τννπτν fF  

i.e.                 πτννπ nn =− )( 0min  or 
τ

νν nn =− 0min  

where +∞−−−−∞= ,,3,2,1,1,2,3,, LLn  

Hence, the total width of the first maximum of the energy spectrum is given by: 

τ
ννν 22 1

min
1

min =−=Δ −+  or 
τ

ν 1
=Δ  

Using the differentiation of the relation 
λ

ν c
= : 

λ
λ

ν Δ=Δ 2
c  

we have  
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τ
λ

λ
1

2 =Δ
c  or 

λ
λτ
Δ

=
2

c  

which is the coherence length l  of Problem 10.11. 
 
10.13 

Use the relation νλλ Δ=Δ
c

2
0 , we have: 

][106.110
103

)10936.6( 174
8

27

m−
−

×≈×
×
×

=Δλ  

Then, using the result in Problem 10.12, the coherence length is given by: 

][103
106.1

)10936.6( 4
17

272
0 ml ×=

×
×

=
Δ

= −

−

λ
λ  

 
10.14 
Referring to pages 46 and 47 of the text, and in particular to the example of the 
radiating atom, we see that the energy of the damped simple harmonic motion: 

1
00

0 −− == eEeEE Qtω  where tQ =0ω , the period for which the atom radiates 

before cut off at 1−e . 

The length of the wave train radiated by the atom is ctl =  where c  is the velocity 

of light and l  is the coherence length which contains Q  radians. 

Since the coherence length is finite the radiation cannot be represented by a single 

angular frequency 0ω  but by a bandwidth ωΔ  centred about 0ω . 

Now ωω Δ= 0Q  so ωω Δ== 10 tQ . Writing tt Δ=  we have 1=ΔΔ tω  or 

πν 21=ΔΔ t . 

The bandwidth effect on the spectral line is increased in a gas of radiating atoms at 
temperature T . Collisions between the atoms shorten the coherence length and the 
Doppler effect from atomic thermal velocities adds to νΔ . 
 
10.15 

The Fourier transform of )(tf  gives: 

∫∫∫
+∞

∞−

−−+∞

∞−

−−+∞

∞−

− === dtefdteeefdtetfF titittiti ]1)(2[
0

22
0

2 00)()( τννππντπνπνν  

Noting that 0≥t  for )(tf , we have: 
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Hence, the energy distribution of frequencies in the region 0νν −  is given by: 
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10.16 
In the text of Chapter 3, the resonance power curve is given by the expression: 

])([22
cos

2 22

2
0

2

2
0

2
0

ωω
φ

smr
rF

Z
rF

Z
FP

mm
av −+

===  

In the vicinity of ms=0ω , we have 0ωω ≈ , so the above equation becomes: 

2
2

0
2

2
0

2
0

22

2
0

22

2
0 )(

)()1(])([2])([2
ν

ωωτωωωω
Ff

mr
rF

smr
rFPav =

−+
=

−+
=

−+
≈  

where 2

2
02

0 2m
rFf =  and 

r
m

=τ  

The frequency at half the maximum value of 2)(νF is given by: 

2
)(

)()1(
)(

2

2
0

2

2
02 τ

ωωτ
ν offF =

−+
=  

i.e.                          τωω 10 ±=−  

so the frequency width at half maximum is given by: 

                     τω 2=Δ  or πτν 1=Δ  

In Problem 10.12 the spectrum width is given by: 

τν 1=′Δ  

so we have the relation between the two respectively defined frequency spectrum 
widths given by: 

π
νν
′Δ

=Δ  
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Noting that νλλ Δ=Δ
c

2
0  and νλλ ′Δ=′Δ

c

2
0 , we have: 

π
λλ
′Δ

=Δ  

where λΔ  and λ′Δ  are the wavelength spectrum widths defined here and in 
Problem 10.12, respectively.  

If the spectrum line has a value m9103 −×=Δλ  in Problem 10.12, the coherence 

length is given by: 

][1032
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9

272
0

2
0 ml −

−

−

×≈
××

×
=

Δ
=

′Δ
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πλπ
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λ  

 
10.17 
The double slit function (upper figure) and its self convolution (lower figure) are 
shown below: 

 
Fig. A.10.17 

 
10.18 
The convolution of the two functions is shown in Fig. A.10.18.1. 

 
Fig. A.10.18.1 

τ  

d  

τ  

τ−d  τ−d  τ2  τ2  τ2  

⊗  =  
d  d  d  d  
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The respective Fourier transforms of the two functions are shown in Fig. A.10.18.2. 

 
Fig. A.10.18.2 

Hence, the Fourier transform of the convolution of the two functions is the product of 
the Fourier transform of the individual function, which is shown in Fig. A.10.18.3 

d  

(F  )  =  

d1  

d2  

(F  )  =  
d  

d1  

d2  
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Fig. A.10.18.3 

 
10.19 
The area of the overlap is given by: 

)cossin22(

cossin2
2
12

2
12

2 θθθ

θθθ

−=

⎟
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⎜
⎝
⎛ ⋅⋅−⋅=

r

rrrA
 

where 
r

R
2

cos =θ  and 2

2

4
1sin

r
R

−=θ  

Hence the convolution is given by: 
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⎥
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d2  

d1  

×  
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=  

d1  

d2  
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The convolution )(RO  in the region ]2,0[ r  is sketched below: 

 
Fig. A.10.19 

r2  R  0  

)(RO  
2rπ  
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SOLUTIONS TO CHAPTER 11 

 
11.1 

 
Fig A.11.1 

In a bi-convex lens, as shown in Fig A.11.1, the time taken by the wavefront to travel 
through path AB  is the same as through path BA ′′ , so we have: 
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which yields: 
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−−==

21

11)1(1
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n
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11.2 

 
Fig A.11.2 

As shown in Fig A.11.2, the time taken by the wavefront to travel through path AB  

A′  

f  

1

2

2R
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r

 r  
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is the same as through path BA ′′ , so we have: 

c
z

c
drn

c
dn

+
−

=
)( 2

00 α  

which yields: 

drz 2α=  

i.e.                            
d

f
α2
1

=  

 
11.3 

Choosing the distance 2λ=PF  then, for the path difference FBBF ′− , the phase 

difference is π  radians. 
Similarly for the path difference AFFA −′  the phase difference is π  radians. 
Thus for the path difference FBFA ′−′  the phase difference is π2  radians and the 
resulting amplitude of the secondary waves is zero. 

Writing 2xFF =′ , we then have in the triangle FPF ′ : 
2

sin
2

λθ =
x , so the width of 

the focal spot is 
θ

λ
sin

=x . 

 
11.4 
If a man’s near point is 40cm from his eye, his eye has a range of accommodation of: 

dioptres][5.2
4.0

1
=  

Noting that a healthy eye has a range of accommodation of 4 dioptres, he needs 
spectacles of power: 

dioptres][5.15.24 =−=P  

If anther man is unable to focus at distance greater than 2m, his eye’s minimum 
accommodation is: 

dioptres][5.0
2
1
=  

Therefore, he needs diverging spectacles with a power of -0.5 dioptres for clear image 
of infinite distance. 
 
11.5 

Noting that 
l
l

y
y ′
=

′
, we have the transverse magnification given by: 

l
lMT
′

= . The 

angular magnification is given by: 
l

d
dy
lyM 0

0

===
γ
β

α . Using the thin lens power 
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equation: 
ll

P
−

−
′−

=
11 , we have 

l
P

l ′
+=

11 , i.e. 1)1( 00 +=′+= PdlPdMα  

 
11.6 
The power of the whole two-lens telescope system is zero, so we have: 

02121 =−+= PLPPPP  

where L  is the separation of the two lenses. Noting that 
0

1
1
f

P =  and 
ef

P 1
2 = , we 

have: 

01111

0

=−+
eoe ff

L
ff

 

which gives: effL += 0  

Suppose the image height at point I  is h , we have: 

ofhLd == 2α  and efhLD ==′ 2α  

which yields: 

d
D

f
fM

e

o ==
′

=
α
α

α  

 
11.7 
As shown from Figure 11.20, the magnification of objective lens is given by: 

o
o f

xM
′
′

−= . Suppose the objective lens is a thin lens, we have: 
o

o f
P

′
=

1  i.e. 

xPM oo ′−= . 

Similarly, the magnification of eye lens is given by: 
e

o
e f

dM
′

= . Suppose the eye lens 

is a thin lens, we have: 
e

e f
P

′
=

1  i.e. oeo dPM = .  

So we have the total magnification given by: 

xdPPMMM oeoeo ′−==  
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11.8 

 
Fig.A.11.8(a) 

 
As shown in Fig.A.11.8(a), Snell’s law gives:  

IPCOPCn ∠==∠ sinsinsin α  
In triangle OCP , we have: 
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∠
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R
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R
∠

=
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i.e.                            POCIPC ∠=∠  
i.e.                     Δ ’s OPC  and PIC  are similar 

i.e.                            
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=  

i.e.                        nR
nR

R
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IC ===
22

 

Alternative proof using Fermat’s Principle: 
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Fig.A.11.8(b) 

Equate optical paths 222 OPnIP = . Let kIC = , lCB =  and dPB = , then: 

⎥
⎥
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i.e.                )(22 2222222 dlnnRlRdlklk +++=+++  

i.e.                   22222 22 RnnRlRRklk ++=++  

that is                       nRICk ==  

 
11.9 
(a) The powers of the two spherical surfaces are given by: 

5.0
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15.1
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−
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2 =

∞
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nnP  

Suppose a parallel incident ray )0( 1 =α  strikes the front surface of the system at a 

height of 1y . By using matrix method, we can find the ray angle 2α ′  and height 2y′  

at the back surface of the system given by: 
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So the focal length is given by: 
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The principal plane is located at a distance d  to the left side of the right-end surface 
of the system, which is given by: 
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(b) The powers of the four spherical surfaces are given by: 
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05.11
4 =
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nnP  

Suppose a parallel incident ray )0( 1 =α  strikes the front surface of the system at a 

height of 1y . By using matrix method, we can find the ray angle 4α ′  and height 4y′  

at the back surface of the system given by: 
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So the focal length is given by: 
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The principal plane is located at a distance d  to the left side of the right-end surface 
of the system, which is given by: 
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(c) The powers of the four spherical surfaces are given by: 
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Suppose a parallel incident ray )0( 1 =α  strikes the front surface of the system at a 

height of 1y . By using matrix method, we can find the ray angle 4α ′  and height 4y′  

at the back surface of the system given by: 
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So the focal length is given by: 

][71.0
4.1 1

1

4

1 m
y

yyf ==
′

=
α

 

The principal plane is located at a distance d  to the left side of the right-end surface 
of the system, which is given by: 

][58.0
4.1

19.0

1

11

4

14 m
y

yyyy
d =

−
=

′
−′

=
α
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SOLUTIONS TO CHAPTER 12 

 
12.1 

 
Fig.A.12.1 

 
As shown in Fig.A.12.1, the air gap thickness t  is given by: 

1

2

2

2

12 22 R
r

R
rttt −=−=  

Noting that there is a π  rad of phase shift upon the reflection at the lower surface of 
the air gap, the thickness of air gap at dark rings should satisfy: 

λnt =2  

i.e.                           λn
R
r

R
r

=−
1

2

2

2

 

which yields the radius nr  of the thn  dark ring given by: 

21

212

RR
nRRrn −

=
λ  

 
12.2 
The matrix relating reflection coefficient r  and transmission coefficient t  for the 

4λ  film is given by: 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

0
0

cossin
sincos

2

2

2

2

in
ni

in
ni

M
δδ
δδ

 

where the phase change 2πδ =  for the 4λ  film. 

Following the analysis in text page 352, we can find the coefficient A  and B  are 
given by: 

231312111 )( nninnMMnA =+=  

2R  
1R  

2t  t  
1t  

r  
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232221 )( innMMB =+=  

A perfect anti-reflector requires: 

0
2231

2231 =
+
−

=
+
−

=
innnin
innnin

BA
BAR  

which gives: 

31
2
2 nnn =  

 
12.3 
As shown in page 357 of the text, the intensity distribution of the interference pattern 
is given by: 

2
cos4 22 δaI =  

where δ  is the phase difference between the two waves transmitted from the two 
radio masts to a point P  and is given by: 

θπθπθ
λ
πθδ sin4sin400

101500103
2sin2sin 38 =××

××
=== fkf  

so we have: 

)]sin4cos(1[2
2
sin4cos4 0

22 θπθπ
+== IaI  

where 2
0 aI =  represents the radiated intensity of each mast. 

The intensity distribution is shown in the polar diagram below: 

 
Fig.A.12.3 

 

o210=θ  

o0=θ  

o30=θ  o150=θ  

o180=θ  

o90=θ  

o270=θ  

o330=θ  

0max 4II =  

I  

θ  
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12.4 
(a)  
Analysis is the same as Problem 12.3 except: 

θππθλ
λ
ππθδδ sinsin

2
2sin0 +=⋅+=+= kf  

Hence, the intensity distribution is given by: 

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛ +

=⎟
⎠
⎞

⎜
⎝
⎛=

2
sinsin4

2
sincos4

2
cos4 22222 θπθππδ

sIaaI  

where 2aIs =  is the intensity of each source. 

The polar diagram for I  versus θ  is shown below: 

 
Fig.A.12.4(a) 

 
 

(b) 
In this case, the phase difference is given by: 

2
sinsin

4
2

2
sin0

θππθλ
λ
ππθδδ +

=⋅+=+= kf  

Hence, the intensity distribution is given by: 

⎥⎦
⎤

⎢⎣
⎡ +=

+
== )sin1(

4
cos4

4
sincos4

2
cos4 22222 θπθππδ

sIaaI  

where 2aIs =  is the intensity of each source.  

The polar diagram for I  versus θ  is shown below: 
 

o0=θ  o180=θ  

o90=θ  

o270=θ  

sII 4max =  

I  

θ  
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Fig.A.12.4(b) 

 
12.5 
(a) 

 

Fig.A.12.5(a) 
Fig.A.12.5(a) shows elements of a vertical column and a horizontal row of radiators in 
a rectangular lattice with unit square cells of side d . Rays leave each lattice point at 
an angle θ  to reach a distant point P . If P  is simultaneously the location of the 

thm  spectral order of interference from the column radiation and the thn  spectral 
order of interference from the row radiation, we have from pages 364/5 the relations: 

λθ md =sin  and λθ nd =cos  
Thus  

n
m

== θ
θ
θ tan

cos
sin  

where m  and n  are integers. 
 
(b) 

o0=θ  o180=θ  

o90=θ  

o270=θ  

sII 4max =  

I  

θ  sII 2=  sII 2=  

θ  

θ  θ  

d  

d  
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Fig.A.12.5(b) 
Waves scattered elastically (without change of λ ) by successive planes separated by 
a distance d  in a crystal reinforce to give maxima on reflection when the path 
difference λθ nd =sin2 . In Fig.A.12.5(b), the path difference ABC between the 
incident and the reflected rays θsin2d= . 
 
12.6 
Using the Principal Maximum condition: 

λθ nf =sin  

at 
2
πθ ±= , we have: λnf = , which shows the minimum separation of equal 

sources is given by: λ=f . 

When 4=N , the intensity distribution as a function of θ  is given by: 

)sin(sin
)sin4(sin

2

2

θπ
θπ

sII =  

The 31 =−N  points of zero intensity occur when: 

4
3,

2
,

4
sin λλλθ =f  

i.e.                          
4
3,

2
1,

4
1sin =θ              

The position of the 22 =−N  points of secondary intensity maxima should occur 
between the zero intensity points and should satisfy: 

0=
θd

dI  

i.e.                   0
)sin(sin
)sin4(sin

2

2

=⎥
⎦

⎤
⎢
⎣

⎡
=

θπ
θπ

θθ sI
d
d

d
dI  

i.e.                        01)sin(cos6 2 =−θπ  

θ  θ  

A  C  

B  

d  

θsind  
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which yields: ⎟
⎠
⎞

⎜
⎝
⎛±=

6
1arccos1sin

π
θ   

i.e. secondary intensity maxima occur when o5.21=θ  and o3.39=θ . 

The angular distribution of the intensity is shown below: 

 
12.7 
The angular width of the central maximum δθ  is the angular difference between +1 
and -1 order zero intensity position and should satisfy: 

310875.1
732
21.022sin −×=

×
×

==
Nf
λδθ  or 6′=δθ  

The angular separation between successive principal maxima θΔ  is given by: 

03.0
7
21.0sin ===Δ

f
λθ  or 241 ′=Δ oθ  

 
 
 
 
 
 
 
 
 
 
 
 

o210=θ  

o0=θ  

o30=θ  o150=θ  

o180=θ  

o90=θ  

o270=θ  

o330=θ  

sII 16max =  

I  

θ  
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12.8 

 

 
Fig.A.12.8 

The above polar diagrams show the traces of the tip of the intensity of diffracted light 
I  for monochromatic light normally incident on a single slit when the ratio of slit 

width to the wavelength λd  changes from 1 to 4. It is evidently shown that the 

polar diagram becomes concentrated along the direction 0=θ  as λd  becomes 

larger. 
 
12.9 
It is evident that 0=α  satisfies the condition: αα tan= . 

By substitution of δπα −= 23  into the condition: αα tan=  we have: 

)23tan(23 δπδπ −=−  

o30

o210

o60

o240
o270
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o330

o0o180

o90

4=λd  
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o90  

o180 o0
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o270

o300

o3303=λd  

2=λd  1=λd  
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i.e.                      δδπ cot23 =−  

i.e.                      δδδπ cossin)23( =−  

when δ  is small, we have: 

2
1)23(

2δδδπ −=−  

The solution to the above equation is given by: πδ 7.0= . 

Using the similar analysis for δπα −= 25  and δπα −= 27 , we can find 

πδ 041.0=  and πδ 029.0=  respectively. Therefore the real solutions for α  are 

etc,471.3,459.2,43.1,0 πππα ±±= .  

 
12.10 
If only interference effects are considered the intensity of this grating is given by: 

β
β

2

2

0 sin
3sinII =  

The intensity of the principal maximum is given by: 0max 9II =  when 0=β . 

The β  for the secondary maximum should satisfy: 

0
sin
sin

2

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ 3
β
β

βd
d  

i.e.                           1sin2 =β  

i.e.                   
2

)12(maxsec_
πβ += n , where n  is integer 

Hence, at the secondary maximum: 

max0
maxsec_

2
maxsec_

2

0maxsec_ 9
1

sin
3sin

IIII ===
β
β

 

 
12.11 

Suppose a monochromatic light incident on a grating, the phase change βd  required 

to move the diffracted light from the principal maximum to the first minimum is given 
by: 

NNf
fdffdd πλ
λ
πθ

λ
π

λ
θπβ =⋅==⎟
⎠
⎞

⎜
⎝
⎛= )(sinsin  
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Since N  is a very large number, we have: 

0≈=
N

d πβ  

Then, suppose a non-monochromatic light, i.e. λ  is not constant, incident on the 

same grating, the phase change βd  required to move the diffracted light from the 

principal maximum to the first minimum should be the same value as given above, so 
we have: 

0sincos

1sin)(sinsin

2 ≈=−=

⎟
⎠
⎞

⎜
⎝
⎛+=⎟

⎠
⎞

⎜
⎝
⎛=

N
dfdf

dfdffdd

πλ
λ

θπθθ
λ
π

λ
θπθ

λ
π

λ
θπβ

 

which gives: 
1)cot( −= θθ nNd  

 
12.12 
(a) 
The derivative of the equation: 

λθ nf =sin  

gives: 

λθθ nddf =cos  

when θ  is a small angle we have: 

                               
f
n

d
d

=
λ
θ  

When the diffracted light from the grating is projected by a lens of focal length F  
on the screen, the relation between linear spacing on the screen l  and the diffraction 
angle θ  is given by: 

θFl =  
Its derivative over λ  gives: 

f
nF

d
dF

d
dl

==
λ
θ

λ
 

 
(b) 
Using the result given above, the change in linear separation per unit increase in 
spectral order is given by: 

][102
102

)105102.5(2 2
6

77

m
f

Fd
n
dl −

−

−−

×=
×

×−××
==

λ  
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12.13 
(a) 
Using the resolving power equation: 

nN
d

=
λ
λ  

we have: 

328
)1089.510896.5(3

2)10896.51089.5(
77

77

≈
×−××

×+×
== −−

−−

λ
λ

nd
N  

(b) 
Using the resolving power equation: 

nN
d

=
λ
λ  

we have: 

][104.2
1093

105.6 12
4

7

m
nN

d −
−

×=
××
×

==
λλ  

 
12.14 
When the objects O  and O′  are just resolved at I  and I ′  the principal 
maximum of O  and the first minimum of O′  are located at I . Rayleigh’s criterion 
thus defines the path difference: 

λ22.1=′−′=′−′ AOBOAIOBIO  )( AIBI =  

Also OAOB =  giving 

λ22.1)()( =′−+−′ AOOAOBBO  

Fig.Q.12.14 shows OA  parallel to AO′  and OB  parallel to BO′ , so: 
isiOOCOAOOA sinsin =′=′=′−  

and 
isiOOCOOBBO sinsin =′=′′=−′  

We therefore write: 

i
s

sin2
22.1 λ

≈  or 
i

s
sin2
22.1 λ

=  if o45=i  

 

i  i  

O′  C′  C  

O  
i  

A  

B  
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Fig.A.12.14 

SOLUTIONS TO CHAPTER 13 

 
13.1 

For such an electron, the uncertainty of momentum pΔ  roughly equals the magnitude of 

momentum p , and the uncertainty of radius rΔ  roughly equals the magnitude of radius r . So 

we have: 

rr
pp hh

≈
Δ

=Δ≈  

By substitution of the above equation into the expression of electron energy, we have: 

                                            
r

e
m
r

r
e

m
pE

0

222

0

22

4242 πεπε
−=−=

h
                

(13.1.1) 

The minimum energy occurs when 0=drdE , i.e.: 

0
42 0

222

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

r
e

m
r

dr
d

πε
h

 

i.e.                                                0
4 2

0

2

3

2

=+−
r

e
mr πε
h

 

which yields the minimum Bohr radius given by: 

2

2
0

2

2
04

me
h

me
r

π
επε

==
h

 

By substitution into equation 13.1.1, we find the electron’s ground state energy given by: 

22
0

4

2
0

2

0

22

2
0

22

0 842 h
me

h
mee

h
me

m
E

εε
π

πεε
π −

=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=
h

 

 
13.2 

Use the uncertainty relation hxp ≈ΔΔ  we have: 

p
h

p
hx ≥
Δ

≈Δ  

Photons’ energy converted from mass m  is given by: 

2mcpcE ==  
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So, the momentum of these photons is given by: 
mcp =  

Therefore, these photons’ spatial uncertainty should satisfy: 

mc
hx ≥Δ  

which shows the short wavelength limit on length measurement, i.e. the Compton wavelength, is 
given by: 

mc
h

=λ  

By substitution of electron mass: ][101.9 31 kgme
−×=  into the above equation, we have the 

Compton wavelength for an electron given by: 

][1042.2
103101.9

1063.6 12
831

34

m
cm

h

e

−
−

−

×≈
×××

×
==λ  

 
13.3 
The energy of a simple harmonic oscillation at frequency ω  should satisfy: 

22
2

22
2

2
1

22
1

2
xm

m
pxm

m
pE Δ+

Δ
≥+= ωω  

The relation: 
4

))((
2

22 h
≈ΔΔ px  gives: 

2

2
2

4 x
p

Δ
≈Δ

h
, by substitution into the above equation, 

we have: 

νω

ωωω

h

xm
xm

xm
xm

xm
m
pE

2
1

2
1

2
1

8
2

2
1

82
1

2
22

2

2
22

2

2
22

2

==

⎟
⎠
⎞

⎜
⎝
⎛ Δ

Δ
≥Δ+

Δ
=Δ+

Δ
≥

h

hh

 

i.e. the simple harmonic oscillation has a minimum energy of νh
2
1

. 

 
13.4 
When an electron passes through a slit of width xΔ , the intensity distribution of diffraction 
pattern is given by: 

2

2

0
sin
α
αII = , where θ

λ
πα sinxΔ=  

The first minimum of the intensity pattern occurs when πα = , 

i.e.                                                πθ
λ
πα =Δ= sinx  

Noting that ph=λ , we have: 
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πθπα =Δ= sinxp
h

 

i.e.                                                       hpx =ΔΔ  

where θsinpp =Δ  is the change of the electron’s momentum in the direction parallel to the 

plane of the slit. This relation is in accordance with Heisenberg’s uncertainty principle. 
 
13.5 
The angular spread due to diffraction can be seen as the half angular width of the principal 
maximum θΔ  of the diffraction pattern. Use the same analysis as Problem 13.4, we have: 

πθ
λ
πθ

λ
πα =Δ≈= dd sin  

i.e.                                         4451.0
10
10

4

5

′≈===Δ −

−
o

d
λθ  

 
13.6 
The energy of the electron after acceleration across a potential difference V  is given by: 

eVE = , so its momentum is given by: eVmEmp ee 22 == , therefore its de Broglie 

wavelength is given by: 

][1023.1
106.1101.92

1063.6
2

219

1931

34

mV
VeVm

h
p
h

e

−−

−−

−

×=
××××

×
===λ  

 
13.7 
From problem 13.6 we have: 

1.4
103

1023.11023.1
10

99
21 =

×
×

=
×

= −

−−

λ
V  

]V[81.16=∴V  

 
13.8 

The energy per unit volume of electromagnetic wave is given by: 2
002

1 EE ε= , where 0E  is the 

electric field amplitude. For photons of zero rest mass, the energy is given by: pcmcE == 2 , 

where p  is the average momentum per unit volume associated with this electromagnetic wave. 
So we have: 

pcE =
1 2

002
ε  
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i.e.                                                     cEp 2
002

1 ε=  

The dimension the above equation is given by: 

1-1-
31-

-22

1-

-2

1-

-2

1-

-22

smkg
Assm
mmkgsA

Asm
mWC

sm
mVC

sm
mVF

⋅⋅=
⋅⋅⋅
⋅⋅⋅⋅

=
⋅⋅
⋅⋅

=
⋅
⋅⋅

=
⋅
⋅⋅

 

which is the dimension of momentum. 
 
13.9 
When the wave is normally incident on a perfect absorber, all the photons’ velocity changes from 
c  to 0, the radiation pressure should equal the energy density of the incident wave, i.e.: 

2
002

10 EcpcpP ε==−=  

When the wave is normally incident on a perfect reflector, all the photons’ velocity changes to the 
opposite directing but keeps the same value, hence, the radiation pressure is given by: 

2
002)( EcpcpcpP ε==−−=  

 
13.10 
Using the result of Problem 13.9, we have the radiation pressure from the sun incident upon the 
perfectly absorbing surface of the earth given by: 

]atm[10]Pa[105.1
103
104.1

3
1

3
1

2
1

3
1 116

8

3
2
00

−− ≈×=
×
×

×=×=×=
c
IEP ε  

 
13.11 
Using the result of Problem 13.3, we have the minimum energy, i.e. the zero point energy, of such 
an oscillation given by: 

eV][1033.1]J[1013.21043.61063.6
2
1

2
1 3221134 −−− ×=×=××××=νh  

 
13.12 
The probability of finding the mass in the box is given by the integral: 

96.0
320
2

12
22

644
11

8
11)(

42

4

44

2

22

2

2

22
2

≈+−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

∫

∫∫

−

−−

ππ

ππ

πψ

dx
a
x

a
x

a

dx
a
x

a
dxx

a

a

a

a

a

a

 

The general expression of the wave function is given by: ikxikx DeCe −+=ψ , where BA,  are 

constants. Using boundary condition at ax =  and ax −= , we have: 
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0)(
0)(
=+=−

=+=
−

−

ikaika

ikaika

DeCea
DeCea

ψ

ψ
 

which gives: DC = , so we have: 

kxACeCe ikxikx cos=+= −ψ  

where CA 2= . 

Boundary condition: 0=ψ  at  ax =  gives: 0cos =ka , i.e.: 

a
nk π

⎟
⎠
⎞

⎜
⎝
⎛ +=

2
1

, where L,3,2,1,0=n  

Hence, the ground state equation is given by letting 0=n , i.e.: 

⎟
⎠
⎞

⎜
⎝
⎛=

a
xA

2
cos πψ  

By normalization of the wave function, we have: 

∫
+∞

∞−
= 1)( 2 dxxψ  

i.e.                                                ∫
∞+

∞−
=⎟

⎠
⎞

⎜
⎝
⎛ 1

2
cos22 dx

a
xA π

 

i.e.                                                ∫
+

−
=

+a

a
dxaxA 1

2
)cos(12 π

 

i.e.                                                      aA 1=  

Therefore the normalized ground state wave function is: 

)2cos()1()( axax πψ =  

which can be expanded as: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−≈

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛−= 2

222

8
11

22
111)(

a
x

aa
x

a
x ππψ L  

 
13.13 

At ground state, i.e. at the bottom of the deep potential well, 1321 === nnn . 

By normalization of the wave function at ground state, we have: 
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1
222

2cos
2
1

2
12cos

2
1

2
12cos

2
1

2
1

sinsinsin

sinsinsin)(

2

000

2

0

2

0

2

0

2
2

0 0 0

2
2

=⋅⋅⋅=

⎟
⎠
⎞

⎜
⎝
⎛ −⋅⎟

⎠
⎞

⎜
⎝
⎛ −⋅⎟

⎠
⎞

⎜
⎝
⎛ −=

⎟
⎠
⎞

⎜
⎝
⎛⋅⎟

⎠
⎞

⎜
⎝
⎛⋅⎟

⎠
⎞

⎜
⎝
⎛=

=

∫∫∫

∫∫∫

∫ ∫ ∫∫∫∫

cbaA

dz
c

zdy
b

ydx
a

xA

dz
c
zdy

b
ydx

a
xA

dxdydz
c
z

b
y

a
xAdVxyz

cba

aaa

c b a

πππ

πππ

πππψ

 

i.e.                                                      abcA 8=  

 
13.14 
Text in page 426 shows number of electrons per unit volume in energy interval dE  is given by: 

dE
h

Emdn 3

21213 )2(42 π×
=  

and the total number of electrons given by: 

3

23213

3
)2(16

h
EmN Feπ

=  

so we have the total energy of these electrons given by: 

F
F

E

E

NE
h

Em

dE
h

Em

dE
dE
dnEEdnU

f

f

5
3

5
)2(16

)2(42

3

25213

0 3

23213

0

==

×
=

==

∫

∫ ∫

π

π
 

 
13.15 
Noting that Copper has one conduction electron per atom and one atom has a mass of 

kg1066.1 27
0

−×=m , the number of free electrons per unit volume in Copper is given by: 

]m[108
1066.164

109
64

-328
27

3

0
0 ×≈

××
×

== −m
n ρ

 

Using the expression of number of electrons per unit volume in text of page 426, we have the 
Fermi energy level of Copper given by: 

7[eV]J][1008.1
)101.9(216

)1063.6(3108
216

3 18

32

331

33428
32

3

3
0 =×≈

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

×××

××××
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ ⋅
= −

−

−

ππ e

F
m

hnE  
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13.16 

By substitution of  values of x , EV − , and m  into the expression xe α2− , we have: 

For an electron: 

[ ] ( )
1.005.210221063.6106.1101.922)(222

10341931

≈=== −××⎥⎦
⎤

⎢⎣
⎡ ×××××−−−−

−−−−

eeee xEVmx e
πα h  

For a proton: 

[ ] ( ) 384.8710221063.6106.11067.122)(222 10
10341927

−−××⎥⎦
⎤

⎢⎣
⎡ ×××××−−−− ≈===

−−−−

eeee xEVmx p
πα h

 

 
13.17 
Text in page 432-434 shows the amplitude reflection and transmission coefficients for such a 
particle are given by: 

21

21

kk
kk

A
Br

+
−

==  and 
21

12
kk

k
A
Ct

+
==  

where, 

h

mEk 2
1 =  and 

h

)(2
2

VEm
k

−
=  

If V is a very large negative value at 0>x , we have the amplitude reflection coefficient given 
by: 

1
)(22
)(22

lim −=
−+
−−

=
−∞→ VEmmE

VEmmE
r

V
 

and the amplitude transmission coefficient given by: 

0
)(22

22lim =
−+

=
−∞→ VEmmE

mEt
V

 

i.e. the amplitude of reflected wave tends to unity and that of transmitted wave to zero. 
 
13.18 
The potential energy of one dimensional simple harmonic oscillator of frequency ω  is given by: 

22

2
1 xmV ω=  

By substitution into Schrödinger’s equation, we have: 

                                               0
2
12 22

22

2

=⎥⎦
⎤

⎢⎣
⎡ −+ ψωψ xmEm

dx
d

h
                   

(13.18.1) 

Try 222

)( xaeax −= πψ  in dxdψ : 
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22
22xa

eaxa
dx
d −

−=
π

ψ
 

so: 

222422422
2

2 222222

)(
xaxaxa

eaaxaeaxaeaa
dx
d −−−

−=+−=
πππ

ψ
 

In order to satisfy the Schrödinger’s equation (13.18.1), we should have: 

2
2 2

h

mEa =  and 4
2

22

am
=

h

ω
 

which yields: 

ωhh

2
1

2

22

0 ==
m
aE  

Try 222

22)( xaaxeax −= πψ  in dxdψ : 

2232232

222222

2
)22(

2
2

2
2

xaxaxa

eaxaaeaxaeaa
dx
d −−−

−=−=
πππ

ψ
 

so: 

2335233523
2

2 222222

2
)62(

2
)22(

2
4

xaxaxa

eaxaxaeaxaxaeaxa
dx
d −−−

−=−+−=
πππ

ψ
 

In order to satisfy the Schrödinger’s equation (13.18.1), we should have: 

2
2 23

h

mEa =  and 4
2

22

am
=

h

ω
 

which yields: 

ωhh

2
3

2
3 22

1 ==
m
aE  

 
13.19 
When 0=n : 

ππ aaN == 21021
0 )!02(  

1)1()(
22220

0 =−= − xaxa eeaxH  

Hence: 

22
000

2222

)( xaxa eaeaxHN −− == πψ  

When 1=n : 

ππ 2)!12( 21121
1 aaN ==  
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axaxeee
axd
deaxH xaxaxaxa 2)2(

)(
)1()(

222222221
1 =−⋅⋅−=−= −−  

Hence: 

22
111

2222

22)( xaxa axeaeaxHN −− == πψ  

When 2=n : 

2
2

8)!22( 21221
2

π
ππ

a
aaN ===  

22
2

2
2

2 42
)(

)1()(
2222

xae
axd
deaxH xaxa +−=−= −  

Hence: 

2222
222

2222

)12(2)( xaxa exaaeaxHN −− −== πψ  

When 3=n : 

4
3

48)!32( 21321
3

π
ππ

a
aaN ===  

axxae
axd
deaxH xaxa 128

)(
)1()( 33

3

3
3

3
2222

−=−= −  

Hence: 

2332
333

2222

)32(3)( xaxa eaxxaaeaxHN −− −== πψ  

 
13.20 

The reflection angle rθ  and reflection wavelength dλ  should satisfy Bragg condition: 

rra λθ =sin2  

where a  is separation of the atomic plane of the nickel crystal. Hence the reflected electron 

momentum rp  should satisfy: 

rr
r a

hhp
θλ sin2

==  

Hence, the reflected electron energy is given by: 
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55.5[eV]J][1088.8
65sin)1091.0(101.98

)1063.6(

sin82

19

221031

234

22

22

=×=

×××××
×

=

==

−

−−

−

o

ree

r
r am

h
m
pE

θ

 

The difference between the incident and scattered kinetic energies is given by: 

%9.3%8.2%100
54

545.55
<=×

−
=

−

i

ir

E
EE

 

 
13.21 

For kasin=ψ : 

Since V,, *ψψ  are all periodic functions with a period of a , we have: 

∑
∫

∑
∫

∑
∫

∫

∑
∫

∫
∫
∫

∞

=

∞

=

∞

=

∞

=

⎥⎦
⎤

⎢⎣
⎡ −

+
+

=

⋅−
−=

−

−

−=

−==Δ

1

0

1

0

1
0

0

1
0

2

0

2

*

*

)(2cos)(2cos
2
1

2

2cos2cos
2
1

2
)2(cos1

2cos
2

)2(cos1

sin

2cossin

m

a

m

m

a

m

m
a

a

m

m
a

a

m

a

dx
a

xnm
a

xnm

V

a

dx
a
mx

a
nx

V

dxanx

dx
a
mxanx

V

kxdx

dx
a
mxkxV

dx

dxV
E

ππ

ππ

π

ππ

π

ψψ

ψψ

 

The above equation has non-zero term only when nm = , so we have: 

nn

a

n V
a

aV
a

dx
a
nx

VE
2
1

22

14cos
0

==
⎟
⎠
⎞

⎜
⎝
⎛ +

=Δ
∫

π

 

 

For kacos=ψ : 
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∑
∫

∑
∫

∑
∫

∫

∑
∫

∫
∫
∫

∞

=

∞

=

∞

=

∞

=

⎥⎦
⎤

⎢⎣
⎡ −

+
+

−=

⋅
−=

+

+

−=

−==Δ

1

0

1

0

1
0

0

1
0

2

0

2

*

*

)(2cos)(2cos
2
1

2

2cos2cos
2
1

2
)2(cos1

2cos
2

)2(cos1

cos

2coscos

m

a

m

m

a

m

m
a

a

m

m
a

a

m

a

dx
a

xnm
a

xnm

V

a

dx
a
mx

a
nx

V

dxanx

dx
a
mxanx

V

kxdx

dx
a
mxkxV

dx

dxV
E

ππ

ππ

π

ππ

π

ψψ

ψψ

 

The above equation has non-zero term only when nm = , so we have: 

nn

a

n V
a

aV
a

dx
a
nx

VE
2
1

22

14cos
0

−=−=
⎟
⎠
⎞

⎜
⎝
⎛ +

−=Δ
∫

π
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SOLUTIONS TO CHAPTER 14 

 

 
14.1 

For o300 <θ , we have: 

0
2

0 017.1
2

30sin
4
11 TTT =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+<

o

 

i.e.                        %2%7.1
0

0 <=
−
T

TT  

For o900 =θ , we have: 

0
2

0 125.1
2

90sin
4
11 TTT =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

o

 

i.e.                          %5.12
0

0 =
−
T

TT  

 
14.2 

Multiplying the equation of motion by dtdx2  and integrating with respect to t  

gives: 

∫−=⎟
⎠
⎞

⎜
⎝
⎛ x

dxxfA
dt
dxm

0

2

)(2  

where A  is the constant of integration. The velocity 
dt
dx  is zero at the maximum 

displacement 0xx = , giving ∫= 0

0
)(2

x
dxxfA .  

i.e.          )(2)(2)(2)(2 000

2
0 xFxFdxxfdxxf

dt
dxm

xx
−=−=⎟

⎠
⎞

⎜
⎝
⎛ ∫∫  

i.e.                      )]()([2
0 xFxF

mdt
dx

−=  

Upon integration of the above equation, we have: 
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)()(2 0 xFxF
dxmt
−

= ∫  

If 0=x  at time 0=t  and 0τ  is the period of oscillation, then 0xx =  at 40τ=t , 

so we have: 

∫ −
= 0

0
0

0 )()(2
4

x

xFxF
dxmτ  

 
14.3 
By substitution of the solution into x&& : 

∑
∞

=
⎥
⎦

⎤
⎢
⎣

⎡
−−=

1

22

3
sin

93
cos

9n
nn

nnbnnax φφ&&  

Since 13 ss << , we have xsxs 1)( ≈ , so: 

tFnnsbnnsaxsx
n

nn ωφφ cos
3

sin
93

cos
9

)( 0
1

2

1

2

1 =⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=+ ∑

∞

=

&&  

i.e.          φφφ cos
3

sin
93

cos
9 0

1

2

1

2

1 Fnnsbnnsa
n

nn =⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−∑

∞

=

 

i.e.           

The above equation is true only if 0=nb  and the even numbered cosine terms are 

zero. By neglecting the zero terms, we have: 

φφφ cos3cos)9(cos)1( 01913 Fsasa =+−+− L  

i.e.           φφφφ cos)cos3cos4)(9(cos)1( 0
3

1913 Fsasa =+−−+− L  

i.e.         φφφ coscos)9(4cos)]9(3)1([ 0
3

191913 Fsasasa =+−+−−− L  

As we can see, only 3a  and 9a  are the main coefficients in the solution, i.e. the 

fundamental frequency term and its third harmonic term are the significant terms in 
the solution. 
 
14.4 

Since 0VV =  at 0rr = , by expanding V  at 0r , we have: 

L+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎟

⎠
⎞

⎜
⎝
⎛+= 2

02

2

00 )()(
00

rr
dr

Vdrr
dr
dVVV

rr
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Noting that: 

012 13
0

12
0

7
0

6
0

0
0

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟

⎠
⎞

⎜
⎝
⎛

r
r

r
rV

dr
dV

r

 

2
0

0
8

0

6
0

14
0

12
0

02

2

7271312
0

r
V

r
r

r
rV

dr
Vd

r

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
 

We have:  

L+−+= 2
02

0

0
0 )(72 rr

r
VVV  

The expression of potential energy for harmonic oscillation is given by: 

2
0 2

1 sxVV += , hence 2
0

072
r
Vs = , and the oscillation frequency is given by: 

2
0

02 72
mr

V
m
s
==ω  

 
14.5 
The restoring force of this oscillator is given by: 

2)()( axkx
dx

xdVxF +−=−=  

Hence, the equation of motion is given by: 

)(xFxm =&&  

i.e.                          02 =−+ x
m
ax

m
kx&&  

At mk== 22
0 ωω , using ma=α , the equation of motion becomes: 

022
0 =−+ xxx αω&&  

try the solution 100 2sincos xtBtAx ++= ωω  in the above equation with 2
0

2

1 2ω
Ax =  

and 
36

1
2
0

2 xAB α
ω
α

−=−= , we have: 

tBtAxx 00001 2cos2sin ωωωω +−= &&  

txtAxtBtAxx 01
2
00

2
010

2
00

2
01 2sin

3
4cos2sin4cos ωαωωωωωωω −−=−−= &&&&&&    (a) 

100000
22

0
222

1
2 )2sincos(22sincos22sincos xtBtAttABtBtAxx ωωωωωω +++++=  
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100

000
22

0
222

1
2

)2sincos(2
2sincos22sincos

xtBtA
ttABtBtAxx

ωωα
ωωαωαωααα

+−
−−−−=−

 

where  

                     txtA 0
2

1
2
00

22 cos2cos ωαωωα −=−             (b) 

                    txtB 0
22

1

2

0
22 2sin

9
2sin ωαωα −=−              (e) 

             100
2

00 2sincos
3
22sincos2 xttAttAB ⎟

⎠
⎞

⎜
⎝
⎛=− ωωαωωα        (c) 

            tAxtBxtAx 010101 cos22sin2cos2 ωαωαωα −=−−           (d)  

                                             tx 0
2
1

2 2sin
3
2 ωα+          (f) 

Using (a)(b)(c)(d) the coefficients of 1x  are: 

  tAttAtt 000
2

0
22

00
2
0

2
0 cos22sincos2cos22sin

3
4 ωαωωαωαωωαωω −−−−  

which with 2
0ωα <<  leaves 1

2
0 xω  as the only significant term. 

Similarly using (e) and (f) the coefficients of 2
1x  are: 

tt 0
2

0

2

2sin
3
22sin

9
ωαωαα +−−  

with 2
1xα−  the dominant term. (Note 4

0

2
1

1
ω

∝x ). 

We therefore have 02
11

2
01 =−+ xxx αω&&  as a good approximation to the original 

equation. 
 
14.6 

Extending the chain rule at the bottom of page 472 and noting that the fixed point 0x  

is the origin of the cycle: *
2

*
1

*
2

*
1 xxxx →→→  which are fixed points for 2f  when 

4
3

>λ  and also noting that )( *
2

*
1 xfx =  and )( *

1
*
2 xfx = , we have: 

)()()( *
2

*
1

*
2

'2 xfxfxf ′′=  and )()()( *
1

*
2

*
1

'2 xfxfxf ′′=  

So the slopes of 2f  at *
1x  and *

2x  are equal. 
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14.7 
The fractal dimension of the Koch Snowflake is: 

262.1
3log
4log
==d  

The Hausdorff–Besicovitch definition uses a scaling process for both integral and 
fractal dimensions to produce the relation: 

dac =  

where c  is the number of copies(including the original) produced when a shape of 
dimensions d  has its side length increased by a factor a . 
Thus, for 2=a  
(i) a line 1=d  has 2=c  
(ii) a square 2=d  has 4=c  
(iii) a cube 3=d  has 8=c  
(iv) an equilateral triangle with a horizontal base produces 3 copies to give 

5849.1
2log
3log
==d  (a fractal) 
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SOLUTIONS TO CHAPTER 15 

 

 
15.1 
In the energy conservation equation the internal energy: 

ργ
pTce V 1

1
−

==  

so the two terms: 

ργ
γ

ρ
ppe

1−
=+  

In the reservoir there is no flow energy, so its total energy is internal 2
0

0

0

1
1

1
cp

−
=

−
=

γργ
γ

, 

where 0c  is the velocity of sound in the reservoir. 

When the diaphragm where is flow along the tube of velocity u  and energy 221 u  so the total 

energy of flow along the tube is: 

2*2*2*
*

*
2

1
1

2
1

1
1

2
1

12
1 cccpu ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

+=
−

+=
−

+
γγργ

γ
 

where *cu = , *

*
2*2

ρ
γpcu == . 

Hence, 

2*2*2
0 )1(2

1
)1(2
)1(2

1
1 ccc

−
+

=
−
−+

=
− γ

γ
γ
γ

γ
 

If the wavefront flows at a velocity 1u  with a local velocity of sound 1c , the energy 

conservation condition gives: 

2*2
1

2
1 )1(2

1
1

1
2
1 ccu

−
+

=
−

+
γ
γ

γ
 

i.e.                                    
2

1

*2

1

1

)1(2
1

1
1

2
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
u
c

u
c

γ
γ

γ
 

i.e.                                        2*2 )1(2
1

)1(
1

2
1

MM s −

+
=

−
+

γ
γ

γ
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i.e.                                                 
2)1(

)1(
2

2
2*

+−
+

=
s

s

M
MM

γ
γ

 

 
15.2 
Energy conservation gives 

2*2
2

2
2

2
1

2
1 )1(2

1
2
1

1
1

2
1

1
1 cucuc

−
+

=+
−

=+
− γ

γ
γγ

       from Problem 15.1 

So 

                                     2*2
2

2
2

2
1

2
1 2

1
2

1
2

1 cucuc +
=

−
+=

−
+

γγγ
                         

(A) 
Momentum conservation gives 

                                    )()( 2
2

2
2

2

12
2

2
2

1

22
1

2
1 uc

u
uucuc γγ

ρ
ργ +=+=+                          

(B) 

Combine equations A and B to eliminate 2
1c  and 2

2c  and rearrange terms to give 

⎥⎦
⎤

⎢⎣
⎡ +

−
−

+
=+

−
−

+ 2
2

2
2

2*

2

12
1

2
1

2*

2
1

2
1

2
1

2
1 uuc

u
uuuc γγγγγγ

 

i.e.                                   )(
2

1)(
2

1 2
2

2*

2

12
1

2* uc
u
uuc +⎟

⎠
⎞

⎜
⎝
⎛ +

=+
+ γγ

 

i.e.                               )()()( 2121
2
21

2
12

2*
21 uuuuuuuucuu −=−=−  

i.e.                                                       21
2* uuc =  

 
15.3 
The three conservation equations are given by: 

                                                        2211 uu ρρ =                               

(15.3.1) 

                                                2
222

2
111 upup ρρ +=+                              

(15.3.2) 

                                          
2

2
2

2
2

1

1
1

2
1 2

1
2
1

ρρ
peupeu ++=++                           

(15.3.3) 

Using equation 15.3.1 and 15.3.2 to eliminate 1u  gives: 
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                                               12
2
2

1

21
2
2 ppu −=
−
ρ

ρρρ
                             

(15.3.4) 
Using equation 15.3.1 and 15.3.3 and the relation 

ργ
pTce V 1

1
−

==  

to eliminate 1u  gives: 

                                               ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

−

1

1

2

22
22

1

2
1

2
2

12 ρργ
γ

ρ
ρρ ppu                        

(15.3.5) 

Then, using equation 15.3.4 and 15.3.5 to eliminate 2u , we have: 

( )
12

1221
12 1

12 pp
pp

−
−

−
=

+ ρρ
γ
γρρ

 

i.e.                                   
112

1

12

121212

−
−

−
=

+
pp

pp ρρ
γ
γρρ

     

i.e.                  γβγρργγρρ 2)1)(1(]2)1)(1[( 121212 −−+=−−+ pp     

i.e.                           )1()1()]1()1([ 12 +−−=+−− γβγγγβ pp  

which yields: 

βα
αβ

−
−

=
11

2

p
p

 

where )1()1( +−= γγα   and 12 ρρβ = . 

 
15.4 
Using the result of Problems 15.1 and 15.2, we have: 

                                    
2)1(

)1(
2

2

2

1

21

2
1

2

*
12*

+−
+

===⎟
⎠
⎞

⎜
⎝
⎛=

s

s

M
M

u
u

uu
u

c
uM

γ
γ

                 

(15.4.1) 

Using equation 15.3.1 and 15.3.2 to eliminate 1ρ  gives: 

                                                    
2

1
2
22

21 1
u
u

u
pp

−=
−

ρ
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(15.4.2) 

Using equation 15.3.1 and 15.3.3 to eliminate 1ρ  gives: 

                                    ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− 21

2

1
2
22

2
2

2
1

1
11

2
1 pp

u
u

uu
u

γ
γ

ρ
                          

(15.4.3) 

Using equation 15.4.2 and 15.4.3 to eliminate 2ρ  gives: 

                                                  11

2

1 +=⎟
⎠
⎞

⎜
⎝
⎛ +

αα
y

u
uy                              

(15.4.4) 

where 12 ppy =  and )1()1( +−= γγα . 

Then, using equation 15.4.1 and 15.4.4 to eliminate 21 uu  we have: 

                                                  
α
α

+
+

==
11

1 y
c
uM s                              

(15.4.5) 
Frome equation 15.4.4 and 15.4.5 we have: 

                                                  
αα

α
++

+
=

y
y

c
u

1
1

1

2                             

(15.4.6) 
Hence, from equations 15.4.5 and 15.4.6 we have the flow velocity behind the shock give by: 

))(1(1
)1)(1(1

21 αα
α

++
−−

=−=
y
ycuuu  

 
15.5 

In the case of reflected shock wave, as shown in Fig.(b), the shock strength is 23 pp  and the 

velocity of sound ahead of the shock front is 2c . Hence, using the result of Problem 15.4, we 

have the flow velocity ru  behind the reflected wave given by: 

                                           
))(1(

)1)(1(

23

23

2 αα
α

++
−−

=
pp
pp

c
ur                         

(15.5.1) 
In Fig.(a) the flow velocity u  behind of the incident shock front is given by: 
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))(1(

)1)(1(

1 αα
α

++
−−

=
y
y

c
u

                         

(15.5.2) 

Using equation 15.5.1 and 15.5.2 together with the relation 0=+ ruu , 21
2112 )( TTcc =  and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

=
y
yy

T
T

α
α1

1

2 , where 12 ppy = , we have: 

)1(
)1(

)()1(
2
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2
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ppy αα
+=

−
+−

 

which yields: 

1
)12(

2
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+
−+

=
y

y
p
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α
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15.6 

1
1

11
1

1
2323

21

2123

12

13

−
−

=
−
−

=
−
−

=
−
−

y
ppy

y
ypp

pp
pppp

pp
pp

 

By substitution of 12 ppy =  and 
1

)12(

2

3

+
−+

=
y

y
p
p

α
αα

 into the above equation, we have: 

)1)(1(
12)12(

1

1
1

)12(
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2

12

13

+−
−−+

=
−

−
+

−+

=
−
−
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y
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pp
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α
ααα
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In the limit of very strong shock, i.e. 1>>y , we have: 

αα
α 12)12(

2

2

12

13 +=
+

≈
−
−

y
y

pp
pp

 

 
15.7 

ftuuu tt ′+−= )(  

i.e.                                                     
ft

fuut ′+
′

−=
1

 

From equation 15.9 in the text, we have: 

ft
fux ′+
′

=
1

 

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

https://students-hub.com


© 2008 John Wiley & Sons, Ltd  

so we have: 

0
11

=
′+
′

+
′+
′

−=+
ft

fu
ft

fuuuu xt  

 
15.8 

Using  ψψν xu 2−= , we have: 

22
ψ

ψψψψν xtxt
tu −

−=  

2

2

2
ψ

ψψψν xxx
xu −

−=  

⎥
⎦

⎤
⎢
⎣

⎡
+−−= 3

3

2
232
ψ
ψ

ψ
ψψ

ψ
ψν xxxxxxx

xxu  

By substitution of the above expression into Burger’s equation, we have: 

023242 3

3

2
2

3

3
2

2 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+

−
+

−
−

ψ
ψ

ψ
ψψ

ψ
ψν

ψ
ψψψψν

ψ
ψψψψν xxxxxxxxxxxxtxt  

i.e.                                          22 ψ
ψψψψν

ψ
ψψψψ xxxxxxxtxt −

=
−

 

i.e.                                                     
x

xx

x

t
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ψ
ψν

ψ
ψ

 

which yields: 

xxt νψψ =  

 
15.9 
Using the relation tanh′φ ≡ sech2φ and sech′φ = sechφtanhφ, where φ = α(x – ct), we have the 
derivatives: 

ut = 4α3 c sech2φ tanhφ = 2αuc tanhφ 

ux = –4α3 sech2φ tanhφ = –2αu tanhφ 

uxx = 8α4 sech2φ tanh2φ – 4α4 sech4φ = 4α2u tanh2φ – u2 

uxx = –16α5 sech2φ tanhφ + 48α5 sech4φ tanhφ = –8α3u tanhφ + 12αu2 tanhφ 

Then, using the relation 24α=c  we have: 
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0
tanh12tanh8tanh12tanh2

6
232

=
+−−=

++

φαφαφαφα uuuuc

uuuu xxxxt

 

 
15.10 

At the peak of Figure 15.5(a), 0)(2 =−= ctxαφ , and near the base of Figure 15.5(a), 

0)(2 >>−= ctxαφ , i.e. 0≈−φe . Hence, the solution of the KdV equation can be written as: 

)(22)(2
2

2
)(2

2

2

82]1log[2),( ctxctxctx ee
x

e
x

txu −−−−−− =
∂
∂

≈+
∂
∂

= ααα α  

Then, we have the derivatives, 

)(2316 ctx
t ceu −−= αα  

)(2564 ctx
xxx eu −−−= αα  

Therefore, if 24α=c ,  

0=+ xxxt uu  

 
15.11 
Using the substitution ctxz −=  and the relation tanh′φ ≡ sech2φ and sech′φ ≡ –sechφtanhφ, 

where )( 0zz −= αφ , we have the derivatives: 

ut = –4α3c sech2φ tanhφ = 2αuc tanhφ 

ux = –4α3 sech2φ tanhφ = –2αu tanhφ 

uxx = 4α4 sech4φ + 4α2u tanh2φ = 4α2u tanh2φ + u2 

uxx = –16α5 sech2φ tanhφ + 48α5 sech4φ tanhφ = –8α3u tanhφ – 12αu2 tanhφ 

Then, using the relation 24α=c , we have: 

0
tanh8tanh8

tanh12tanh8tanh12tanh2

6

33

232

=
+−=

−++=

+−

φαφα

φαφαφαφα

uu
uuuuc

uuuu xxxxt

 

 
15.12 

If uvv x =+2 , then: 
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xxxx vvvu += 2  

xxxxxxxx vvvvu ++= )(2 2  

xxxxxxxxxxxxxxxxxxxxxxxxxx vvvvvvvvvvvvu ++=+++= 26)2(2  

xttt vvvu += 2  

The left side terms of equation mark in equation 15.13 give: 

xxxxxxxxxxxtxt

xxxxtxxxxxxxxt

xxxxt

vvvvvvvvvvvv

vvvvvvvvvvv

vvvvv
x

++−−+−=

+−+++−=

+−⎟
⎠
⎞

⎜
⎝
⎛ +
∂
∂

2612122

)6(2)2(6

)6(2

223

222

2

 

The right side terms of equation mark in equation 15.13 give: 

xxxxxxxxxxxtxt

xxxxxxxxxxxxxxxtt

xxxxt

vvvvvvvvvvvv

vvvvvvvvvvvvv

uuuu

++−−+−=

+++++−+=

+−

2612122

26)2)((62

6

223

2  

So we have: 

xxxxtxxxxt uuuuvvvvv
x

+−=+−⎟
⎠
⎞

⎜
⎝
⎛ +
∂
∂ 6)6(2 2  

 
15.13 

By substitution of ψψ xv =  into 2)( vvxu x += , we have: 

ψ
ψ

ψ
ψ

ψ
ψψψ xxxxxx

x vvxu =+
−

=+= 2

2

2

2
2)(  

hence, 

0)( =−=−
ψ
ψψψψψ xx

xxxx xu  

 
15.14 

 

ψx = –αA sechα (x – x0) tanhα (x – x0) 

ψxx = α2A sechα(x – x0) – 2α2A sech3α (x – x0) 

 
Using the soliton solution 

u = –2α2 sech2α (x – x0) 
we have: 
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ψxx + (λ – u(x))ψ 

= α2A sechα(x – x0) – 2α2A sech3α (x – x0) + [–α2 sech2α (x – x0)]A sechα (x – x0) 

= 0 

 
15.15 

Using transformation λ−→ *uu  and txx λ6* +→ , where *u  and *x  are the variables 

before transformation, we have: λ+= uu*  and txx λ6* −= , hence: 

** )( ttt uuu =−= λ  

**
**)( xxxx uxuu =−= ∗λ  

***
**** xxxxxxx uxuu ==  

∗∗ == ******
*

xxxxxxxxxx uxuu  

Using the above relations, equation 06 =++ xxxxt uuuu  is transformed to its original form: 

06 ****
**** =++ xxxxt uuuu  

 
15.16 

 
Fig.A.15.16 

 
In Fig.A.15.16, A  is the peak and B  is the base point of the leading edge of the right going 

wave: xay πsin= . The phase velocity of any point on the leading edge is given by: 

⎟
⎠
⎞

⎜
⎝
⎛ +=⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

+=⎟
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⎞

⎜
⎝
⎛

∂
∂

+= xac
x
yac

x
yacv ππεεε cos

2
11

2
111 00

21

0  

xay πsin=  

A  

B  D  
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 -1)cosx(cos      
2
11:at  velocity phase and

0
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coscos     :at  velocity phase
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