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SOLUTIONS TO CHAPTER 1

11
In Figure 1.1(a), the restoring force is given by:

F =-mgsiné

By substitution of relation Sin& = x/I into the above equation, we have:

F =-mgx/Il
so the stiffness is given by:
s=—F/x=mg/l
so we have the frequency given by:
o =s/m=g/I

Since @ is a very small angle, ie. @=sin@=x/l, or x=16, we have the restoring force

given by:

F=-mgd
Now, the equation of motion using angular displacement & can by derived from Newton’s
second law:

F =mX

. -mgé=mlo
ie. é+%9=o
which shows the frequency is given by:

o’ =g/l

In Figure 1.1(b), restoring couple is given by —C@, which has relation to moment of inertia |

given by:

~CO=16
ie. é+%9=o
which shows the frequency is given by:

w’ =C/I

© 2008 John Wiley & Sons, Ltd

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

In Figure 1.1(d), the restoring force is given by:

F=-2T x/l
so Newton’s second law gives:
F =mx=-2Tx/l
i.e. X+2Tx/Im=0
which shows the frequency is given by:
w? =21
Im

In Figure 1.1(e), the displacement for liquid with a height of X has a displacement of X/2 and

amass of pAX, so the stiffness is given by:

X/2 X
Newton’s second law gives:
-G =mX
ie. —2pAXg = pAlX
i.e. X+ 2|—g x=0
which show the frequency is given by:
o’ =29/l

In Figure 1.1(f), by taking logarithms of equation pV” = constant, we have:
In p+yInV = constant

dp, v _

so we have:

i.e. dp=-9w—
p=- v
The change of volume is given by dV = AX, so we have:
AX
dp=—-mw—
p=- v
The gas in the flask neck has a mass of pAl, so Newton’s second law gives:
Adp = mX
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A?X

ie. — = pAlX
» Y P
i.e. X'+£Ax:0
oV

which show the frequency is given by:

2 _ IPA

W =
oV

In Figure 1.1 (g), the volume of liquid displaced is AX, so the restoring force is — pgAX . Then,

Newton’s second law gives:

F = —pgAx = mx
i.e. X+MX=O
m

which shows the frequency is given by:

® = gpA/m
1.2
Write solution x =acos(awt +¢) inform: x=acosgcoswt—asingsinwt and

compare with equation (1.2) we find: A=acos¢ and B =-asing.We can also

find, with the same analysis, that the values of A and B for solution

x =asin(wt—¢) are given by: A=-asing and B =acos¢, and for solution
X =acos(at —¢) are givenby: A=acos¢ and B=asing.
Try solution x = acos(wt +¢) inexpression X+ °x, we have:
X+ w°X = —aw’ cos(at + @) + w*acos(at + ¢) =0
Try solution x = asin(wt —¢) in expression X+ @’x, we have:
X+ 0°X = —aw’ sin(ot — @) + w*asin(wt —¢) =0
Try solution x = acos(awt—¢) inexpression X+ °x, we have:

X+ w’x = —a0’ cos(wt — @) + w*acos(wt —¢) = 0

© 2008 John Wiley & Sons, Ltd

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

1.3

(@) If the solution x =asin(at+¢) satisfies x=aat t=0, then, x=asing=a

i.e. ¢ =/2. When the pendulum swings to the position x=+a/\/§ for the first
time after release, the value of wt is the minimum solution of equation

asin(wt+7/2)=+a/2, ie. ot=z/4. Similarly, we can find: for x=a/2,
ot =r/3 andfor x=0, wt=7x/2.
If the solution x =acos(wt +¢) satisfies x=a at t=0, then, x=acosg=a

i.e. ¢=0. When the pendulum swings to the position x = +a/x/§ for the first
time after release, the value of ot is the minimum solution of equation

acosat =+a//2, i.e. wt=r/4. Similarly, we can find: for x=a/2, ot =7r/3
and for x=0, wt=7/2.
If the solution x=asin(wt—¢) satisfies x=a at t=0 , then,
x=asin(-g)=a i.e. ¢=—x/2. When the pendulum swings to the position
x:+a/\/§ for the first time after release, the value of «t is the minimum
solution of equation asin(awt + 7/2) =+a/\/§, i.e. wt=rx/4. Similarly, we can
find: for x=a/2, wt=7/3 andfor x=0, wt=7x/2.
If the solution x=acos(wt—¢) satisfies x=a at t=0 , then,
x=acos(—¢)=a i.e. ¢=0. When the pendulum swings to the position
x:+a/\/§ for the first time after release, the value of «t is the minimum
solution of equation acoswt =+ a/\/E, i.e. wt=x/4.Similarly, we can find: for
x=a/2, wt=7x/3 andfor x=0, wt=7x/2.

(b) If the solution x=asin(wt+¢) satisfies x=-a at t=0 , then,

x=asing=-a ie. ¢=-x/2. When the pendulum swings to the position

© 2008 John Wiley & Sons, Ltd

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

x:+a/\/§ for the first time after release, the value of wt is the minimum
solution of equation asin(wt — z/2) :+a/\/§, i.e. ot=3z/4. Similarly, we can
find: for x=a/2, wt=27/3 andfor x=0, wt=7x/2.

If the solution x=acos(wt+¢) satisfies x=-a at t=0 , then,
X=acosg=-a i.e. ¢=x . When the pendulum swings to the position
x:+a/\/§ for the first time after release, the value of «t is the minimum
solution of equation acos(a)t+7z):+a/\/§, i.e. wt=3z/4. Similarly, we can
find: for x=a/2, wt=27/3 andfor x=0, wt=7x/2.

If the solution x=asin(wt—¢) satisfies x=-a at t=0 , then,
x=asin(-¢g)=-a ie. ¢=x/2. When the pendulum swings to the position
x:+a/\/§ for the first time after release, the value of «t is the minimum
solution of equation asin(wt —7/2) =+ a/\/E, i.e. ot=3z/4. Similarly, we can
find: for x=a/2, wt=27/3 andfor x=0, wt=7x/2.

If the solution x=acos(awt—¢) satisfies x=-a at t=0 , then,
Xx=acos(-gp)=—-a i.e. ¢=x. When the pendulum swings to the position
x:+a/\/§ for the first time after release, the value of «t is the minimum

solution of equation acos(a)t—zz):+a/\/§, i.e. ot=3z/4. Similarly, we can

find: for x=a/2, wt=27/3 andfor x=0, wt=7x/2.

14
The frequency of such a simple harmonic motion is given by:
2 -19y2
o= |- |—& = 136x107)" L ~45x10°[rad -5]
m, Are,rm, 4x 71 x8.85x107° x(0.05x107)° x9.1x10

Its radiation generates an electromagnetic wave with a wavelength A given by:
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21t 2x7wx3x10°
@, 4.5%10"

A ~ 4.2x10°°[m] = 42[nm]
Therefore such a radiation is found in X-ray region of electromagnetic spectrum.

15
(@) If the mass m is displaced a distance of x from its equilibrium position, either

the upper or the lower string has an extension of x/2. So, the restoring force of
the mass is given by: F =-sx/2 and the stiffness of the system is given by:
s'=—F/x=s/2. Hence the frequency is given by @’ =s'/m=s/2m.

(b) The frequency of the system is given by: @ =s/m

(c) If the mass m is displaced a distance of x from its equilibrium position, the
restoring force of the mass is given by: F =—sx—sx=-2sx and the stiffness of

the system is given by: s'=—F/x=2s. Hence the frequency is given by
w? =s'/m=2s/m.
Therefore, we have the relation: @? : @} : @’ =s/2m:s/m:2s/m=1:2:4
1.6
Attime t=0, x=Xx, gives:
asing = x, (1.6.1)
X =V, gives:

amwcosg =V, (1.6.2)

From (1.6.1) and (1.6.2), we have

tang = wx, /v, and a=(xZ +VvZ/w*)"?

1.7
The equation of this simple harmonic motion can be written as: x = asin(wt + ¢) .

The time spent in moving from x to x+dx is given by: dt =dx/|v,|, where v, is

the velocity of the particle at time t and is given by: v, = X=awcos(at+¢) .
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Noting that the particle will appear twice between x and x+dx within one period
of oscillation. We have the probability 7 of finding it between x to x+dx given
by: n= Z?dt where the period is given by: T = 2—”, so we have:

w

2dt 20X B dx 3 dx o dx
T  2mawocos(wt+¢) macos(@t+¢) zal-sin*(wt+¢) maz—x

77:

1.8

Since the displacements of the equally spaced oscillators in y direction is a sine

curve, the phase difference o¢ between two oscillators a distance x apart given is

proportional to the phase difference 27 between two oscillators a distance A apart

by: 8¢/27=x/A,i.e. S¢=2mx/A.

1.9
The mass loses contact with the platform when the system is moving downwards and
the acceleration of the platform equals the acceleration of gravity. The acceleration of

a simple harmonic vibration can be written as: a = Aw’sin(at +¢), where A is the

amplitude, o is the angular frequency and ¢ is the initial phase. So we have:

Ao’ sin(ot +¢) = g
®° sin(wt + @)

Therefore, the minimum amplitude, which makes the mass lose contact with the
platform, is given by:

9.8
A‘nin = % = 9 T OO].[m]

47°F2  Axrix5
1.10
The mass of the element dy is given by: m’=mdy/l. The velocity of an element
dy of its length is proportional to its distance y from the fixed end of the spring, and

is given by: v'=yv/l.where v is the velocity of the element at the other end of the

spring, i.e. the velocity of the suspended mass M . Hence we have the kinetic energy

© 2008 John Wiley & Sons, Ltd

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

of this element given by:

The total kinetic energy of the spring is given by:

o Cei(m Yy Y m
KEspring - J.O KEdydy - LE(TdyJ(TVJ - 2|3

The total kinetic energy of the system is the sum of kinetic energies of the spring and
the suspended mass, and is given by:

KE,, = %mvz +% Mv? = %(M +m/3)?

P S
J'Oy dy—gmv

which shows the system is equivalent to a spring with zero mass with a mass of
M +m/3 suspended at the end. Therefore, the frequency of the oscillation system is
given by:

2 S
o =
M +m/3

111

In Figure 1.1(a), the restoring force of the simple pendulum is —mgsiné, then, the

stiffness is given by: s =mgsind/x =mg/l . So the energy is given by:

E =1mv2 +£sx2 =1m>'<2 +£mx2
2 2 2 2 |

The equation of motion is by setting dE/dt =0, i.e.:

In Figure 1.1(b), the displacement is the rotation angle &, the mass is replaced by the
moment of inertia | of the disc and the stiffness by the restoring couple C of the
wire. So the energy is given by:
e-tigilce
2 2

The equation of motion is by setting dE/dt =0, i.e.:

i(ﬁézﬁcezj:o
dt{ 2 2
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ie. é+%9:0

In Figure 1.1(c), the energy is directly given by:
E=tmv+le
2 2

The equation of motion is by setting dE/dt =0, i.e.:

9l sloe)zo
dt\ 2 2

. ., S
le. X+—x=0
m

In Figure 1.1(c), the restoring force is given by: —2Tx/I, then the stiffness is given

by: s=2T/l. So the energy is given by:

E :lmszrisx2 :£m>'<2+12—-rx2 =lm>'<2+1x2
2 2 2 2 | 2 |

The equation of motion is by setting dE/dt =0, i.e.:

In Figure 1.1(e), the liquid of a volume of pAl is displaced from equilibrium
position by a distance of 1/2, so the stiffness of the system is given by
s =2pgAl/l =2pgA. So the energy is given by:
1 2 1 2 1 .2 1 2 1 52 2
E ==mv” +=5sx" == pAIX" + =2 pgAx" = = pAlX + pgAx
R R T S AP Yt
The equation of motion is by setting dE/dt =0, i.e.:

d(1
—| = pAIX* + pgAx® |=0
dt(Z = j

ie. >'<'+2|—gx=0
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In Figure 1.1(f), the gas of a mass of Al is displaced from equilibrium position by
a distance of x and causes a pressure change of dp =—jpAx/V , then, the stiffness
of the system is given by s=— Adp/x = 7pA2/V . So the energy is given by:

2,2
E-imilee :lpAb'(2 L LA
2 2 2

The equation of motion is by setting dE/dt =0, i.e.:

2,2
G e LA
dt\ 2 2V

ie. X+Mx=0

oV

In Figure 1.1(g), the restoring force of the hydrometer is — pgAx, then the stiffness
of the system is given by s = pgAx/x = pgA. So the energy is given by:
E=imviloc=lme +lpgAX2
2 2 2 2

The equation of motion is by setting dE/dt =0, i.e.:

df1_., 1 )
—| —=mx* +—pgAx- |=0
dt (2 2 J
Ie. >‘<‘+A—pgx =0
m
1.12
The displacement of the simple harmonic oscillator is given by:
X = asin ot (1.12.1)
so the velocity is given by:
X = amCos wt (1.12.2)
From (1.12.1) and (1.12.2), we can eliminate t and get:
X2 2
—+—— =sin‘at+cos’ at =1 (1.12.3)
a° a‘w

which is an ellipse equation of points (X, X) .

The energy of the simple harmonic oscillator is given by:
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E=imeesls (1.12.4)
2 2
Write (1.12.3) in form %* = @*(a*—x*) and substitute into (1.12.4), then we have:
E-imesloe - 1ma)z(a2 —x%) P
2 2 2 2

Noting that the frequency « is given by: @” =s/m, we have:

_1

E==s(a’ _X2)+13X2 Ep
2 2 2

which is a constant value.

#rf equations of the two simple harmonic oscillations can be written as:
y, = asin(wt + ¢) and y, = asin(aot+¢+9)
The resulting superposition amplitude is given by:
R=vy, +Y, =a[sin(et + @) +sin(wt + ¢ + 5)] = 2asin(wt + ¢ + 5/2) cos(5/2)
and the intensity is given by:

| = R? = 4a’cos?(5/2)sin?(wt + ¢+ 5/2)
i.e. | oc 4a%cos’(5/2)
Noting that sin®(et+¢+6/2) varies between 0 and 1, we have:

0< 1 <4a*cos’(5/2)

1.14
X y "y X i
—sing, ——sin +| ——C0S¢ ——CO0S
ansYons| [ Lemnoms )
2 2 2 2
:X—zsinzqﬁ2 +y—25in2¢1— 2% sin ,sin @, +§cos2 ¢1+X—ZCOSZ @, — 2Xy COS ¢, COS ¢,
2 2 2 2
2 2
=%(Sin2¢2 +cos’ ¢2)+§(Sin2¢l+cosz 4)— 2%y (sing sin g, +cos @, cosg,)
2 2
x> y? 2x
:_2+y_2_ yCOS(¢1—¢2)
a a ad

On the other hand, by substitution of :

X . .
— =Sin @t cos¢, +coswtsin ¢
&
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Y sinat COS @, +Cos wtsin ¢,
a

2

2 2
into expression (isin ¢2—lsin ¢1J +[lcos¢l—icos¢2j , we have:
& a a 8

2 2

2 2
(%sin &, —alsin ¢1j +(alcos¢l —%cos;ﬁzJ

= sin’ wt(sin ¢, COS ¢, —Sin @ cos@,)* +cos” wt(Cos ¢, sin @, — oS @, sin ¢, )
= (sin® @t + cos” at)sin® (4, — 4,)
=sin’(¢, ~4)

From the above derivation, we have:

+ Y2229 cos(g, — g,) = sin’ (4, — )
a’ aa

2

X2
al
1.15

By elimination of t from equation x =asinwt and y=Dbcoswt, we have:

X2 y2
?4_?:1

which shows the particle follows an elliptical path. The energy at any position of x,

y on the ellipse is given by:
E=lmxesise +lmy2 +£sy2
2 2 2 2
= %maza)2 cos” wt + % ma’w®sin® wt +%mb2a)2 sin® ot + = mb’e? cos? ot
zlmaza)z +1mbza)2
2 2
_ 1 20,2 2
= oMo’ (@ +b7)

The value of the energy shows it is a constant and equal to the sum of the separate

energies of the simple harmonic vibrations in x direction given by %ma)za2 and in
- - - l 2 2
y direction given by Ema) b*.

At any position of x, y on the ellipse, the expression of m(xy—yx) can be

written as:
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m(xy — yx) = m(—abwsin® ot — abwcos® wt) = —abma(sin® wt + cos® wt) = —abmae

which is a constant. The quantity abme is the angular momentum of the particle.

1.16
All possible paths described by equation 1.3 fall within a rectangle of 2a, wide and

2a, high, where a, =x,, and a, =Y, ,see Figure 1.8.
When x=0 in equation (1.3) the positive value of y=a,sin(¢, —¢). The value of

Yimax = 85+ So yx=0/ymax = Sin(¢2 _¢1) which defines ¢2 _¢1'

1.17

In the range 0<¢ <7, the values of cosg are —1<cosg <+1. For n random
values of ¢, statistically there will be n/2 values —1<cos¢ <0 and n/2 values

0 <cos¢ <1. The positive and negative values will tend to cancel each other and the

n n
sumofthe n values: ) cosg — 0, similarly > cosg, —0.i.e.
i=L =L

i#]

n n
D cosg > cosg; —0
i1 =
i#]
1.18
The exponential form of the expression:
asin ot +asin(at + o) + asin(awt + 20) +---+ asin[at + (N —-1)0]
IS given by:
aeia)t n aei(a}t+5) " aei(wt+25) I aei[a}t+(n—1)§]
From the analysis in page 28, the above expression can be rearranged as:
. -1 .
ae'[””[n?H sinng/2
sing/2

with the imaginary part:

asin a)t+{n _1]5 Sl né/2
2 sing/2

which is the value of the original expression in sine term.
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1.19
From the analysis in page 28, the expression of z can be rearranged as:
it SINNS/2

7 = el (1+ei5 AR +'”ei(n—1)5) —ae :
sing/2

The conjugate of z is given by:

“ _ g sinng/2

z
sing/2

so we have:

“ _ gt SN ns/2 et SN ns/2 __,sin’ng/2

2z -
sing/2 sing/2 sin®6/2
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SOLUTIONS TO CHAPTER 2

2.1
The system is released from rest, so we know its initial velocity is zero, i.e.

dx

2 =0

dt,,
(2.1.1)
Now, rearrange the expression for the displacement in the form:

X = F+Ge( p+q)t F- Ge( p-q)t
2 2

(2.1.2)

Then, substitute (2.1.2) into (2.1.1), we have

& [( p+a)- Ge‘ (- pog) et qq =0
dt], 2 t=0
i.e.
qG = pF
(2.1.3)
By substitution of the expressions of g and p into equation (2.1.3), we have the ratio given by:
G___r
F (r2 —4ms)1/2
2.2

The first and second derivatives of X are given by:

= [B ~ L (a+ Bt)}e-“/2m

2m

2
X = {_E+ ' ~(A+ Bt)}en/zm
m 4m

We can verify the solution by substitution of X, X and X into equation:
mX+rx+sx=0
then we have equation:

[s—r—zJ(m Bt)=0

dm

which is true for all t, provided the first bracketed term of the above equation is zero, i.e.
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2
s—r—:O
4m

ie. r?/4m? =s/m

2.3
The initial displacement of the system is given by:

x=e"?"(C,e" +C,e" )= Acosg at t=0
So:
C,+C, = Acos¢
2.3.1)

Now let the initial velocity of the system to be:

% = —L+ia)’ Cle(—r/2m+iru’)t + _L_ia)f Cze(—l’/zm—ia”)I — _a)’Asin¢ at t=0
2m 2m

ie. —ZLAcos¢+iw'(cl—cz)= —wAsing
m

If r/m is very small or ¢ = 7z/2 , the first term of the above equation approximately equals zero,
S0 we have:
C,-C, =iAsing
(2.3.2)

From (2.3.1) and (2.3.2), C, and C,are given by:

_ Alcosg +ising) A s

“ 2 2
c, - Alcosg—ising) _ Ao
2 2
2.4
Use the relation between current and charge, | =, and the voltage equation:
q/C+IR=0
we have the equation:
RG+q/C=0
solve the above equation, we get:
q=Ce "
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where C, is arbitrary in value. Use initial condition, we get C, =,

—t/RC

ie. q=0,e

which shows the relaxation time of the process is RC s.

2.5

€) @} - @* =10°w =r*/4m* => @ym/r =500
The condition also shows @' = @y, so:

Q =aw'm/r =aw,m/r =500

(b) The stiffness of the system is given by:
S= a)ém =10" %107 =100[Nm™]
and the resistive constant is given by:

(o @M _ 10°x107*°

=2x107"[N -sm™]
Q 500

(c) At t =0 and maximum displacement, X =0, energy is given by:

E-tmesloc=Lleoe —Li100x10+ =5x10"°[J]
2 2 2 2

max
Time for energy to decay to e of initial value is given by:

m 107
t=—= =0.5[ms
r 2x1077 [ms]

(d) Use definition of Q factor:
E
=21——
Q - AE

where, E is energy stored in system, and — AE is energy lost per cycle, so energy loss in the

first cycle, —AE,, is given by:

-3
—AE, =-AE :27ZE227ZX >x10

5 =27x10°[J]

2.6
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The frequency of a damped simple harmonic oscillation is given by:

2 r2 r2
0’ =wf - > => 0’ -} = > => Ao=0-0y=—7———
4m 4m dm (o' + o
0
@M

Use @'~ and Q =

we find fractional change in the resonant frequency is given by:

Ao _o'~aw, 1° :(SQZ)—l

~ 2 2
@, @, 8m°w;

2.7
See page 71 of text. Analysis is the same as that in the text for the mechanical case except that
inductance L replaces mass m, resistance R replaces r and stiffness S is replaced by

1/C, where C is the capacitance. Alarge Q value requires asmall R.

2.8
Electrons per unit area of the plasma slab is given by:

g=-nle
When all the electrons are displaced a distance X , giving a restoring electric field:

E =nex/¢g,, the restoring force per unit area is given by:

Newton’s second law gives:

restoring force per unit area = electrons mass per unit area x electrons acceleration

ne?

me,

i.e. X+ x=0

From the above equation, we can see the displacement distance of electrons, X, oscillates with
angular frequency:

2

, ne
Ct)e =
m.&,

2.9

As the string is shortened work is done against: (a) gravity (mgcosé) and (b) the centrifugal

force (mvz/r = mléz) along the time of shortening. Assume that during shortening there are
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many swings of constant amplitude so work done is:

A =—(mgcosd+mlG?)Al
where the bar denotes the average value. For small &, cos=1-6°/2 so:
A =-mgAl +(mg E/Z— mlﬁ)

The term —mgAl is the elevation of the equilibrium position and does not affect the energy of
motion so the energy change is:

AE = (mg 62/2-mlI&?)Al
Now the pendulum motion has energy:

E= %Izé2 +mgl(1-cosd),

that is, kinetic energy plus the potential energy related to the rest position, for small @ this
becomes:
ml20* mgl&?
= +
2 2

E

which is that of a simple harmonic oscillation with linear amplitude 16 .
Taking the solution 6 =6,coswt which gives 67 =62/2 and 6’ =@’ 62/2 with

®=,/g/l we may write:

2 202 2
_ml’0°g; _ mglo,

E
2 2
and
22 202 22
AE = mlo™d;  mlog, AI:—meHO-AI
4 2
so:
AE_ 14l
E 2 1

Now @ =27zv =,/g/l sothefrequency v varies with 172 and
(A -

v 2 1 E
s0:

E = constant
|4
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SOLUTIONS TO CHAPTER 3

3.1
The solution of the vector form of the equation of motion for the forced oscillator:

ot

mX +rx+sx = Fe

IS given by:
iFe iF F o
X=-—"2 =— cos(wt — @) + ——sin(wt —
ol ol ( 2 ol ( 2
Since F,e' represents its imaginary part: F,sinat, the value of x is given by the

imaginary part of the solution, i.e.:

X = —Lcos(a)t - @)
wl

m

The velocity is given by:

V=X= Zisin(a)t — )

m

3.2

The transient term of a forced oscillator decay with e ™?™ to e™*attime t,i.e.:

—rt/2m = -k
S0, we have the resistance of the system given by:
r =2mk/t (3.2.1)
For small damping, we have
= @, = Js/m (3.2.2)

We also have steady state displacement given by:

X = X, Sin(wt — @)
where the maximum displacement is:
I:0

o= a)\/r2 + (wm—s/m)?

(3.2.3)

By substitution of (3.2.1) and (3.2.2) into (3.2.3), we can find the average rate of
growth of the oscillations given by:
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3.3
Write the equation of an undamped simple harmonic oscillator driven by a force of

frequency @ in the vector form, and use F,e'* to represent its imaginary part
F,sin @t , we have:

mX + sx = F,e"! (3.3.1)
We try the steady state solution x = Ae'* and the velocity is given by:

X = iwAe'™ = iwx
so that:

X =i2w*X = -’

X
and equation (3.3.1) becomes:
(-Aw’m+As)e'™ = Fe'
which is true for all t when
~Aow’m+As =F,

I:O

i.e. A= 5
S—om

Fo2 ei(ut
S—w'm
The value of x is the imaginary part of vector X, given by:

i.e. X =

F .
X =——=2—sin ot
s—o'm

_ Fysinat

ie. =
m(w? — @)

S
where @ =—
m

Hence, the amplitude of x is given by:

F
A:m( s
Wy —0°)
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and its behaviour as a function of frequency is shown in the following graph:

Al
Fy |
me; i
0 a’oi o
By solving the equation:
mX+sx =0

we can easily find the transient term of the equation of the motion of an undamped
simple harmonic oscillator driven by a force of frequency o is given by:

X = C cos w,t + Dsin a,t

where, @, =+/s/m, C and D are constant. Finally, we have the general solution

for the displacement given by the sum of steady term and transient term:

_ Fysinat

= +C cosaw,t + Dsin a,t 3.3.2
o o) : : (332)
3.4
In equation (3.3.2), x=0 at t=0 gives:
X, = [M+ Acos @t + Bsin a)ot} = A=0 (3.4.1)
- m(a)O - ) t=0

In equation (3.3.2), x=0 at t=0 gives:

o = w—a)oAsina)otjta)oBCOSa)ot =%+%B=O
dtl, | M(e —) t=0 m(w; —@°)
ie. B=— o (3.4.2)
Ma, (v, — o)
By substitution of (3.4.1) and (3.4.2) into (3.3.2), we have:
X :i% sin ot ——-sin et (3.4.3)
m (@, — ") Wy

By substitution of » = @, +Aw into (3.4.3), we have:
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X= R Sin w,t Cos At +sin Awt cos w,t ~ % sin pt (3.4.4)
m(w, + w)Aw @,

Since Aw/w, <<1 and Awt <<1, we have:

o=, SiNAwt=Aawt,and cosAat ~1

Then, equation (3.4.4) becomes:

F
X=—r— Slna)ot+Aa)tCOSa)0t——Slna)ot
2mw,Aw @,

. F Aw .
i.e. X=- 2 ~2%in oot + At cos ot
2mo,Aw\ o,
i.e. x= o M—tcoswot
2mw, | @,
i.e. X = Sin wyt — aw,t cos w,t
2ma)0 ( 0 0 0 )

The behaviour of displacement x as a function of @yt is shown in the following

TR,
Sk,z meg
AX
3F7Z' 2ma)0
2ma; \ Rt
2ma)0 2ma)0
0 ot
\\ [ Rt
For T\ 2Ma,
mw;  2Fx ~u
Mma? 3k,
ma?
graph:
3.5

The general expression of displacement of a simple damped mechanical oscillator

driven by a force F,coswt is the sum of transient term and steady state term, given
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Mot jF.el @9
= Ce2m e
wl

m

where, C isconstant, Z, =4/r’+(em—s/m)?, @, =+/s/m-r?/4m* and

¢= tan‘l(a)rn%s’/w) so the general expression of velocity is given by:

o
V=X:C —L+|a) e_ﬂﬂwlt_'_ie'(‘m_?j)
2m 7

m

and the general expression of acceleration is given by:

2 H . -
\,I _ C[ r _0)2 _ Ia)tr]e—mﬂw.t n |a)F0 ei(wt_¢)
Z

4m*> ' m .
2 i —r—t+ia)I i .

ie. y=c| FLo2ms _1ar gyt 10Fy gieo (3.5.1)
2m m Z,

From (3.5.1), we find the amplitude of acceleration at steady state is given by:
ok, ok,

' Z, :\/r2+(a)m—s/a))2

At the frequency of maximum acceleration: S—V =0

[0
i.e. 4 o =0
do \/r2+(a)m—s/a))2
2
ie. r2—2ms+2i2:0
(0]
. ) 252
ie. ' =—
2sm—r

Hence, we find the expression of the frequency of maximum acceleration given by:

2s°
2sm—r?

The frequency of velocity resonance is given by: @=./s/m, so if r=+/sm, the
acceleration amplitude at the frequency of velocity resonance is given by:

ok, s/mF,

=t (em—sjo)’ :JS”H(M_M) :

Vl

3 |om
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The limit of the acceleration amplitude at high frequencies is given by:

limv = lim ok — lim R _F
—>® waoo\/r2+(a)rn_s/a))2 a)eoo\/rZ ( S jz m
P RLry
@ [
So we have:
Vo =limv
3.6
The displacement amplitude of a driven mechanical oscillator is given by:
X = Fo
co\/r2 + (wm - s/ w)°
ie. X = Ky (3.6.1)
\/a)zrz +(0’m—s)?
The displacement resonance frequency is given by:
s r’
®=,—- 3.6.2
m 2m’ (36.2)
By substitution of (3.6.2) into (3.6.1), we have:
X = Ko
s 1’ 2 Y
- — 5 _l_ R
m 2m 2m
ie X= Ry
SR
m 4m?

which proves the exact amplitude at the displacement resonance of a driven
mechanical oscillator may be written as:

where,

3.7
(a) The displacement amplitude is given by:

_ FO
B a)\/r2 + (oM —s/w)’

X
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At low frequencies, we have:

) ] F
limx =1lim 0

FO

=lim
w—0 w—0 0)\/r2+(0)m—3/0))2 wﬁO\/Q)ZrZ_i_(a)Zm_S)

(b) The velocity amplitude is given by:
V= Fo
\/rz + (M —s/w)*

At velocity resonance: @ =,/s/m, so we have:

F | F

2

[7,) |O'I'I

F

_ 0 _ 0
i \/rz + (M —s/w)* ‘wzm \/rz +(\/s_m—

—_0
r

\Jsm)?

(c) From problem 3.5, we have the acceleration amplitude given by:

. ok,
V =
\/rz + (M —s/w)*

At high frequency, we have:

limv = lim oF,s R

I:O

= lim g =2
o oor 12 (@m—s/w)? 7 \rPef +(m-s/w?)? M

From (a), (b) and (c), we find Iingx, v, and limv are all constants, i.e. they are all

D—>0

frequency independent.

3.8
The expression of curve (a) in Figure 3.9 is given by:
F X Fm(o? - o?)
X, =——2-M = L= 3.8.1
: wZ:  m () -o’) +o'r? ( )
where @y =+/S/M
X, has either maximum or minimum value when 3)(6‘ =0
[
2 2
ie. i 2 Fozn(a)oz 260 )2 7|=0
do| m“ (o, —o°) +o°r
i.e. m?(wf - ®°)* —wir’ =0
Then, we have two solutions of @ given by:
R P (3.8.2)
m
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and

0, = | +%°r (3.8.3)

Since r isvery small, rearrange the expressions of @, and ,, we have:

2
| ar r rr r
AN T TV om) T am? T om

2
2 @f r r? r
W, =y +t—— = |yt ——| ——5 ey +_—
m 2m 4m 2m

The maximum and the minimum values of x, can found by substitution of (3.8.2)

and (3.8.3) into (3.8.1), so we have:

Fy . _Fo

when o=, X = ~
. 20,F —o,r*/m - 2w

a

which is the maximum value of x,, and

when o=w,: X, =— Fo ~— R
2 T 2w+t /m o 2ar

which is the minimum value of x,.

3.9
The undamped oscillatory equation for a bound electron is given by:

X+ o X = (— eE, /m)cos wt (3.9.1)
Try solution x = Acoswt in equation (3.9.1), we have:
(—@® + w})Acosat = (—eE,/m)cos wt
which is true for all t provided:

(—&® +wf)A=—eE,/m

ek,

i.e. A=——12
M(w? — )

So, we find a solution to equation (3.9.1) given by:

LCOSM (3.9.2)

X=—
m(w? — @)

For an electron number density n, the induced polarizability per unit volume of a
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medium is given by:

Ze= (39.3)
&E

By substitution of (3.9.2) and E = E,cosat into (3.9.3), we have

_nex ne’
&E  gM(w) - o)

Xe =

3.10
The forced mechanical oscillator equation is given by:

mX + rx + sx = F, cos wt
which can be written as:

MX + X + mel X = F, cos ot (3.10.1)

where, @, =+/s/m . Its solution can be written as:

F0r2 sin ot — FOXZ”‘ cos wt (3.10.2)
wl (YA

m m

X =

Where’ sza)m_s/a), Zm:\/l’2+(0)m—s/a))2, ¢:tan_1(a)m+s/a)j

By taking the displacement x as the component represented by curve (a) in Figure
3.9, i.e. by taking the second term of equation (3.10.2) as the expression of x, we
have:

F,X F,m(a} — o
X=-—"Tcosat =——% ( L )2
ol m*(wy — @) +o°r

5 CoS ot (3.10.3)

The damped oscillatory electron equation can be written as:

MX + X + Ma; X = —eE, cos wt (3.10.4)
Comparing (3.10.1) with (3.10.4), we can immediately find the displacement x for a
damped oscillatory electron by substituting F, =—eE, into (3.10.3), i.e.:

B eE,m(w? — ®)
m? (@ — »*)? + o’r

5 COS ot (3.10.5)

By substitution of (3.10.5) into (3.9.3), we can find the expression of y for a

damped oscillatory electron is given by:
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nex ne’m(e; — »*)

r= _80E g [mP (@ - 0°)? + 0r?]
So we have:
2 2 2
g =1+ y=1+ ?e r2r1(a)02 zw) ~—=C0s ot
gIm (o —0°) + o]
3.11

The instantaneous power dissipated is equal to the product of frictional force and the
instantaneous velocity, i.e.:

2
P=(r{)x= r%cosz(a)t — )
The period for a given frequency o is given by:
ro2
w
Therefore, the energy dissipated per cycle is given by:

E=j0TPdt=j02”/

o FE?
rZ—OZCOSZ(a)t—gﬁ)dt

27/ T}
o 27
2z rFO2
T w 272
_ ﬂrFOZ
- wZ?

>-[1—cos2(wt — ¢)]dt
8 (3.11.1)

The displacement is given by:

X = R sin(wt — @)
ol
S0 we have:
x_=_Fo (3.11.2)
ol

By substitution of (3.11.2) into (3.11.1), we have:

E = mrax?

max

3.12
The low frequency limit of the bandwidth of the resonance absorption curve o

satisfies the equation:
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om-s/wo, =-r
which defines the phase angle given by:
om—5s/m,
r

tang, = =-1

The high frequency limit of the bandwidth of the resonance absorption curve w,
satisfies the equation:

o,m-s/w, =1
which defines the phase angle given by:

®,M—S/w,

tang, =
r

=1

3.13
For a LCR series circuit, the current through the circuit is given by

ot

I =1,

The voltage across the inductance is given by:

LA |_i|0e"”t =ioLl " =ioLl
dt dt
i.e. the amplitude of voltage across the inductance is:

V, =all, (3.13.1)

The voltage across the condenser is given by:

9_1 Idtzije‘”‘dt:—_ 1 Ioe“"t:—L
C C C ioC @C
i.e. the amplitude of the voltage across the condenser is:
v, = o (3.13.2)

When an alternating voltage, amplitude V, is applied across LCR series circuit,

current amplitude 1, is given by: 1,=V,/Z,, where the impedance Z, is given

2
2= oo L
wC

At current resonance, 1, has the maximum value:

by:

Y (3.13.3)

and the resonant frequency «, is given by:
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a)OL—i=O or w, =

1
®,C JLC

(3.13.4)

By substitution of (3.12.3) and (3.12.4) into (3.12.1), we have:

w,L
V, = ;’{ V,
By substitution of (3.12.3) and (3.12.4) into (3.12.2), we have:
voe Yo _NLC, _JLVo_ L Vo _al
“ @oRC RC ° V\CR JLCR R "’

Noting that the quality factor of an LCR series circuit is given by:

_ oyl

Q R
S0 we have:
Ve =Ve =QV,

3.14

In a resonant LCR series circuit, the potential across the condenser is given by:

Voo

(3.14.1)

(3.14.2)

(3.14.3)

@C
where, 1 isthe current through the whole LCR series circuit, and is given by:
| =1,
The current amplitude 1, is given by:
.
° z

where, V, is the voltage amplitude applied across the whole LCR series circuit and is

aconstant. Z_ is the impedance of the whole circuit, given by:

2
7. oo L)
aC

From (3.14.1), (3.14.2), (3.14.3), and (3.14.4) we have:

VC — VO e iot

2
Ca)\/R2 +(a)L —1j
oC

which has the maximum value when d;/CO =0,i.e.:
(4]
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d V,

el =0
do 1 2
Cwo R2+(wL—j
@C
2
ie. R%[aﬂ.-ij +o’L* - 21 ~=0
wC wC
: 2,5 212 oL
l.e. R°+20°L"-2—=0
C
i.e a)—wfi—R—z—a)wfl—in
- Lc 212 °\V 27
1 w,L
where @) =—, Q, =—2
%=1 @R
3.15
In a resonant LCR series circuit, the potential across the inductance is given by:
V, =wll (3.15.1)
where, 1 isthe current through the whole LCR series circuit, and is given by:
| =1, (3.15.2)
The current amplitude 1, is given by:
V,
l, == 3.15.3
0= (3.15.3)

where, V, is the voltage amplitude applied across the whole LCR series circuit and is

aconstant. Z, is the impedance of the whole circuit, given by:

2
Z, = \/RZ +[a>L—ij (3.15.4)
aC
From (3.15.1), (3.15.2), (3.15.3), and (3.15.4) we have:
VL — a)LVO eia)t :VLOeiwt
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- =0
do 2
R2+(a)L—]
? 1
i.e R2+[a)L——j o’ +——=0
o°C
i.e R? + 222 2- o
oC C
1 1 1 1 Wy
Ie a)_ 2 2: —_— 2 = o 2 ]
Lc_R¢C LC, RC R \/ 1.,
2L 2V 2 °°
1 w,L
where @? =—, =0
%=1c' Y=g

3.16
Considering an electron in an atom as a lightly damped simple harmonic oscillator,
we know its resonance absorption bandwidth is given by:

Sw=— (3.16.1)

On the other hand, the relation between frequency and wavelength of light is given
by:

f=— (3.16.2)
where, ¢ isspeed of light in vacuum. From (3.16.2) we find at frequency resonance:

i =—%5z

where 4, is the wavelength at frequency resonance. Then, the relation between

angular frequency bandwidth 6w and the width of spectral line 64 is given by:

60| = 2716 | = %CM (3.16.3)
From (3.16.1) and (3.16.3) we have:
|51|__’1t2>r :ﬂ:ﬁ

S 27em om  Q
So the width of the spectral line from such an atom is given by:

A _ 0.6x107°

2] = :
Q 5x10

=1.2x10™[m]
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3.17

According to problem 3.6, the displacement resonance frequency o, and the

corresponding displacement amplitude  x,,, are given by:
o, = .|} r
r 0 2m2
X = FO = —FO
max !
ol o'r

=0,

2
2 2 i 2 r S
where, Zm:\/r +(om-s/w)’, o :W/w°_4m2 , wo:\/a

Now, at half maximum displacement:

o 2 2

m

i.e. e e B -0
e S (I G VI L O S
m 2m? m 2m? m’{m 4m?

\/§ 2
i.e. (a)z—a)f)z—(—ra)'zj =0

m
ie o’ - = iﬁw’z (3.17.1)

m

If @ and @, arethe two solutions of equation (3.17.1), and @, > @, then:

0} — ! = ﬁa)’2 (3.17.2)
m
0! — ! = —ﬁa)'z (3.17.3)

m
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Since the Q-value is high, we have:

@,M
Q="2->1
r
. , _r?
1.e. (O >>—2
m
ie. 0, =o'~ ao,

Then, from (3.17.2) and (3.17.3) we have:

24/3r 9
[0

m 0

(0, - o), + @) =

and o, + 0, = 20,
Therefore, the width of displacement resonance curve is given by:

3r
@, — z?

3.18
In Figure 3.9, curve (b) corresponds to absorption, and is given by:

F,or

sin wt
m?(w? — 0*)? + 0’r’

2
m

X = R sinwt =
)
and the velocity component corresponding to absorption is given by:

; F,0°r
V=X=—"— 22 2
m*(oy —0°) +o°r

- COS ot

For Problem 3.10, the velocity component corresponding to absorption can be given
by substituting F, = —eE, into the above equation, i.e.:

eE,0°r

V=X=-
m?(wf — 0*)? + &°r

> Cos ot (3.18.1)

For an electron density of n, the instantaneous power supplied equal to the product

of the instantaneous driving force —neE,coswt and the instantaneous velocity, i.e.:

eE,0’r
m? (@ — 0*)? + o’r

P = (—neE, cos a)t)x(— 5 costh

B ne’E;w’r
m* (& — 0*)* + @

2
772 008" ot
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The average power supplied per unit volume is then given by:
P =2 [ pat
270

o o ne’E¢w’r
270 m* (& - 0°)* + 0’r

~-cos” ot

_ ne’E] w’r
2 m(a&f -o°) +o’r?

which is also the mean rate of energy absorption per unit volume.
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SOLUTIONS TO CHAPTER 4

4.1
The Kkinetic energy of the system is the sum of the separate kinetic energy of the two
masses, i.e.:
1 1 1 |1 1 1 . 1 .
E =—mx®+=my’==-m = (X+y)’+=(Xx-y)° |==mX?*+=mY?
<=3 2yz[z(y)z(y)}4 2

The potential energy of the system is the sum of the separate potential energy of the
two masses, i.e.:

1 mg 1 mg 1
EpZEI—X +ES(y—X)2+EI—y2+ES(X—y)2
1m
= SR £y +s(x-y)’
1m 1

- 2T o e S (xmy) stx- vy
zl—gX +(lmg+sjY2
4 | 2 |

Comparing the expression of E, and E, with the definitionof E, and E, given

by (4.3a) and (4.3b), we have:

azim b=m c:im,and d=m+s
2 41 2l
Noting that:
12 12
m m
X,=|—=| X+y)=—1| X
‘* (zj ) (2]
12 12
m m
and Y =|—] (x=y)=|—] Y
(3] w3
-2 -12
ie. xz(mj X andY:(m) Y
2 q 2 q

we have the kinetic energy of the system given by:

2 2
Ek:aX2+cY'2:1m EXq +£m \/ZY'q :Ex;+iy'q2
4 m 4 m 2 2
2. T 2 T 1 2
E, =bx?+dy?="9 \/:x +(m+sj Ly :—gx2+(g+_sjvz
4 |\m ¢ 2 m ¢ 21 | m)¢
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which are the expressions given by (4.4a) and (4.4b)

4.2
The total energy of Problem 4.1 can be written as:
E=E +E, =%m>‘<2 +%my2 +%$(x2 +y9) +s(x—y)?

The above equation can be rearranged as the format:
E = (Ekin + Epot)x + (Ekin + Epot)y + (Epot)xy

where, (Eg, +E o), = %mx2 +(%+ ijz v (B +Epo)y = %my2 +(%+s)y2 :

and E,, =-2sxy

4.3
x=-2a, y=0:
-X + Y
E Zvv\/ +
> 05 « v=0 > g ¢ > 45 ¢ > 5 < >, <
x=0, y=-2a:
-X - \%
L/ E ZV\/\/ +
x=0%» -2a < > ¢ > 5« > 4> 5 <
4.4

For mass m,, Newton’s second law gives:
m X, = SX
For mass m,, Newton’s second law gives:
m,X, = —SX

© 2008 John Wiley & Sons, Ltd
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Provided X is the extension of the spring and | is the natural length of the spring,
we have:

X, =% =1+X

By elimination of x, and X,, we have:

- X——Xx=X
m2 ml
) . m+m
i.e. X+—2—25x=0
mlmZ

which shows the system oscillate at a frequency:

2
a =

S
U
where,
U= m,m,
m, +m,
For a sodium chloride molecule the interatomic force constant s is given by:

S=aiy= (2zv)*my,mg, _ A% x (1.14x10%)% x (23x 35) x (1.67 x107%")? ~120[Nm™]
My, + Mg (23+35)x1.67x107

4.5
If the upper mass oscillate with a displacement of x and the lower mass oscillate

with a displacement of vy, the equations of motion of the two masses are given by
Newton’s second law as:

mX = s(y — X) —sx

my = s(x—y)

mX+s(x—y)—sx=0
my—s(x-y)=0

Suppose the system starts from rest and oscillates in only one of its normal modes of
frequency @, we may assume the solutions:

X = Ae'

y — Beia)t

where A and B are the displacement amplitude of x and y at frequency w.

© 2008 John Wiley & Sons, Ltd
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Using these solutions, the equations of motion become:
[-ma’A+s(A-B)+sAle =0
[-mw’B-s(A-B)le* =0

We may, by dividing through by me'*, rewrite the above equations in matrix form

as:
—w: - A
2s/m-w s/m 2 0 (45.1)
-s/m  s/m-o°|B
which has a non-zero solution if and only if the determinant of the matrix vanishes;
that is, if
(2s/m-w?)(s/m—w?)—s*/m? =0
ie. o' —(3s/m)w® +s*/m* =0
ie. @ = (3++/5) >
2m

In the slower mode, @* = (3—\/3) s/2m. By substitution of the value of frequency
into equation (4.5.1), we have:

A S s—mw® 5-1

B 2s-ma® s 2

which is the ratio of the amplitude of the upper mass to that of the lower mass.
Similarly, in the slower mode, @® = (3+\/§)s/2m. By substitution of the value of

frequency into equation (4.5.1), we have:

A s s-me’  5+1

B 25-ma? s 2

4.6
The motions of the two pendulums in Figure 4.3 are given by:

X = 2a.c0s (@, — )t cos (2, + o))t

= 2acosw,tcosw,t

(0, — o)t sin (0 + @)t

y = 2asin = 2asinw,tsin ,t
where, the amplitude of the two masses, 2acosw,t and 2asinw,t, are constants

over one cycle at the frequency w,.

Supposing the spring is very weak, the stiffness of the spring is ignorable, i.e. s~0.

© 2008 John Wiley & Sons, Ltd
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Noting that @/ =g/l and @’ =(g/l +2s/m), we have:

g_ o 2
T—a)l =W, =

2
a)1+a)2j o
2 ) T%

Hence, the energies of the masses are given by:

E, = %sxax2 = %@(Za cosm, t) = 2ma’w? cos® w, t
E, = lsyai - lm(zasin w,t) = 2ma’w’sin® ,t
2 2 1

The total energy is given by:

E =E, +E, = 2ma’w; (cos’ a,t +sin’ w,t) = 2ma’w;

Noting that @, = (v, —@,)/2, we have:

E, = 2ma’w’ cos’(w, — o)t = %[1+ cos(w, — w))t]

E, = 2ma’w; sin’(w, — )t = %[1—008((02 —o)t]
which show that the constant energy E is completed exchanged between the two

pendulums at the beat frequency (@, —®,).

4.7
By adding up the two equations of motion, we have:

le+ mzy = —(le+ mzy)(g/l)
By multiplying the equation by 1/(m, +m,) on both sides, we have:

mX+m,y _ g mx+m,y
m, +m, I m+m,

i o m1>'<'+m2y+gm1x+m2y=0

m+m, | m+m,
which can be written as:
X+o’X =0 (4.7.1)
where,
X = X MY - ang ol =g/l
m, +m,
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On the other hand, the equations of motion can be written as:

k=—Jx-—(x-y)
| m,

" S
y=—%y+—(x—y)
m2

By subtracting the above equations, we have:

x—y=—%(x—y)—(i+ij(x—y)

1 m2

e X—V+P+s(i+iﬂ(x—y)=o
I m, m,

which can be written as:
Y+a?Y =0 (4.7.2)

where,

Y=x-y and w§=g+s(i+i]
| m m,

Equations (4.7.1) and (4.7.2) take the form of linear differential equations with
constant coefficients and each equation contains only one dependant variable,
therefore X and Y are normal coordinates and their normal frequencies are given

by @ and @, respectively.

4.8

Since the initial condition gives x =y =0, we may write, in normal coordinate, the

solutions to the equations of motion of Problem 4.7 as:

X =X, cosat
Y =Y, cosm,t
ie.
mX+m

2 _ X, cosat
m, +m,

X—Yy =Y, Cosw,t
By substitution of initial conditions: t=0, x=A and y=0 into the above

equations, we have:
= (ml/M )A

XO
Y, =A
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where, M=m +m,
so the equations of motion in original coordinates x, y are given by:

mX+m,y m;

Acosat
m, +m,

X—Yy = Acos w,t
The solutions to the above equations are given by:

X = MA(ml cos w;t + m, cos w,t)
ml
y = Aﬁ(cos @t —CoS m,t)
Noting that o =w,-w, and o,=w,+o, , where «,=(w,-w)/2 and

o, = (o, + w,)/2, the above equations can be rearranged as:

X = ﬁ[m1 cos(w, — m,, )t +m, cos(w, + o, )t]
A . . . .
= V[ml(cos @, tcosw,t +sinw, tsin w,t) + m,(cosw,tcosm,t —sin , tsin w,t)]
A . .
= V[(ml +m,)cosw,tcosm,t+(m —m,)sinw,tsin w,t]

A . .
= Acosw, t cosm,t +ﬁ(ml —m,)sinw,tsinw,t

and

m
y= Aﬁl[cos(a)a — @, )t —cos(m, + o, )t]
= ZA%sin o,tsinw,t
4.9
From the analysis in Problem 4.6, we know, at weak coupling conditions, cosa,t
and sinw,t are constants over one cycle, and the relation: @, ~ g/I, so the energy

of the mass m;, E,, and the energy of the mass m,, E , are the sums of their

separate Kinetic and potential energies, i.e.:

E, :lmlx2 Jrlsxx2 =1ml>'<2 L1mg =1m1>'<2 +£m1a)§x2
2 2 2 2 | 2 2
1,1 1, 1m 1,1

B, = Smuy’ 428, y" = o myy’ +§Tgy2 =5 my+ o may’

© 2008 John Wiley & Sons, Ltd
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By substitution of the expressions of x and y in terms of cosw,t and sinw,t
given by Problem 4.8 into the above equations, we have:

2
E, = %m{— Aw, cosm, tsin w,t Jrﬁa)a(m1 —m,)sin o, tcos a)at} +

2
mlcoj{Acos @, tcosw,t JrVA(ml —m,)sina,tsin a)at}
2
; m e’ %[(ml +m,)? cos® @, t+(m, —m,)?sin’? a)mt]
1 A? :
=3 m,@? W[mf +mZ +2mm,(cos’ m,t —sin? a)mt)]
1
—Maw;, —[m +m; +2m,m, cos 2 t]
2 M?

= —2[m12 +m? +2m;m, cos(w, — a)l)t]

and
1 mo * 1 ?
E =-m|2A—2aw,sino tcosat | +=maw’ 2A—sma)tsma>t
Y2 M 2 M
A2
=2m/m, @’ W[sinz o, t(cos’ w,t +sin’ a)at)]
2
= 2m’m,w? %sin2 w,t
=(£mleAzj(2mm j[l cos2a,t]
2 M?
2mm,
_E( vE j[l cos(w, — a)t]
where,
1 202
E=Emla)aA
4.10

Add up the two equations and we have:

m(X+ y)+$(x+ y)+r(x+y)=F,cosat

ie. mX +rX +Tgx F, cosat (4.10.1)
Subtract the two equations and we have:

M(X =)+ 2 (x =)+ 7%= 9) + 25(¢ - y) = Fy cos
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i.e. myY +rY + ($+ ZSJY = F, cosat (4.10.2)

Equations (4.10.1) and (4.10.2) shows that the normal coordinates X and Y are

those for damped oscillators driven by a force F,cosat .

By neglecting the effect of r, equation of (4.10.1) and (4.10.2) become:

mX +$X ~ F, cosawt
mY +($+ ZS)Y ~ F, cos ot
Suppose the above equations have solutions: X = X,coswt and Y =Y,cosawt, by

substitution of the solutions to the above equations, we have:

(—mco2 +$jxo cosawt ~ F, cos mt

(— Mo’ +$ + Zson cosawt ~ F, cos mt
These equations satisfy any t if
(—ma)z +$jxo ~F,
(— Mma* +$+ Zson ~ F,

F
Xgr—20
° o om(g/l-0’)
Y, = B
® " m(g/l+2s/m-w?)

so the expressions of X and Y are given by:

X =X+Yy cos mt

~ 0
m(g/1 - @°)
Fo

~ cos ot
m(g/l +2s/m— ) @

Y=x-Yy

By solving the above equations, the expressions of x and y are given by:

© 2008 John Wiley & Sons, Ltd
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F, 1 1
X ® —-C0S wt| —; =+ — 5
2m o] - W, — 0" |
1 1
y ~ —2-cos ot R —
m | 0] —® W, —®" |
where,
23
a)f:g and w§=g+—
| I m

The ratio of y/x is given by:

Focosa)t{ 21 + 1 2} 21 + 1

2 2 2 2 2

lzZm O -0 00| o -0 -0 0,0
2 2 2
X F 1 1 1 1 @+ -2
—9 cos ot —~ - 2
2 2 2 2 2 a)Z_a)Z a)Z_a)Z
m o -0 0,—-0 1 2
wzz_wlz
a)22+a)12\

v

The behaviour of y/x as a function of frequency @ is shown as the figure below:
The figure shows |y/x| is less than 1 if w<w@, or > w,, i.e. outside frequency

range @, —@, the motionof y is attenuated.

411

Suppose the displacement of mass M is x, the displacement of mass m is vy,

and the tension of the spring is T . Equations of motion give:

MX +kx = Fycosat +T (4.11.1)
my =T (4.11.2)
s(y—=x)=T (4.11.3)
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Eliminating T, we have:
MX +kx = F, cosat + S(y — X)
so for x=0 atall times, we have
F,cosat+sy =0
that is
y= —iCOSa)t
S
Equation (4.11.2) and (4.11.3) now give:
my+sy =0

with @® =s/m,so M isstationary at @* =s/m.
This value of o satisfies all equations of motion for x=0 including

T =-F,cosawt

412

Noting the relation: V =q/C , the voltage equations can be written as:

a_g_, d,
C C dt
o g _ d
cC C dt
so we have:
ql_QZ = LCi‘a
Q2_q3 = LCi.b
i.e.
Ch_qz = LCi‘a
Q2 _qs = LCi.b

By substitution of ¢, =-1,, ¢, =1,—1, and g, =1, into the above equations, we
have:

~1, -1, +1,=LCI,

I,—1,—1,=LCi,

LCi, +21,-1,=0
LCI, -1, +2I,=0
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By adding up and subtracting the above equations, we have:
LC(i, +1,)+1,+1,=0
LC(i, —1,)+3(1,-1,)=0
Supposing the solutions to the above normal modes equations are given by:

I,+1, = Acosamt

I, -1, =Bcosat

S0 we have:
(~A®’LC + A)cosat =0
(-B@?LC +3B)cosat =0

which are true for all t when

o =— and B=0
LC
or
a)zzi and A=0
LC

which show that the normal modes of oscillation are given by:
1
l,=1, at &’ =—
a b 1 LC
and

4.13

From the given equations, we have the relation between 1, and I, given by:

ioM
Iz =—-Il
Z,+lal

SO:
o*M
E=ioL |, -ioMl, =] ioL, + —— |1,
Z, +iol

i.e.

E . ®*M?

—=lol, +————

I, Z,+iol,

which shows that E/I,, the impedance of the whole system seen by the generator, is

the sum of the primary impedance, iwL_ , and a ‘reflected impedance’ from the

p?
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secondary circuit of w?M?/Z_, where Z . =Z, +ial,.

4.14
Problem 4.13 shows the impedance seen by the generator Z is given by:
2 2
Z ziol, + -2 M
Z,+lal,

Noting that M = /L L, and Lp/LS = nf)/nf , the impedance can be written as:

oL Z, —0’L L. + o°M? oL Z, — 0*M? +o*M? oL Z
7 = pT2 p—s - p—2 _ p=2
Z, +iol Z,+iol Z, +iol
S0 we have:
1 Z,+iol 1 1 1 1
— = == - + L = - —+ 5
Z ol Z, lol, Sz lol, n—gZZ
s n,

which shows the impedance Z is equivalent to the primary impedance iwl,

connected in parallel with an impedance (np/ns)zz2 .

4.15

Suppose a generator with the internal impedance of Z, is connected with a load with

an impedance of Z, via an ideal transformer with a primary inductance of L, and

the ratio of the number of primary and secondary transformer coil turns given by

np/ns, and the whole circuit oscillate at a frequency of . From the analysis in

Problem 4.13, the impedance of the load is given by:
1 1 1

H 2

Z, oL, &Z
2 72

nS

At the maximum output power: Z, =Z,,i.e.

1 1 1 1

_=—+ =

Z, iel, n_ Z,

which is the relation used for matching a load to a generator.
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4.16
From the second equation, we have:

By substitution into the first equation, we have:
ZlZZ

M

l,+Z,1,=E
E
—Il
ZM

Noting that Z,, =iwM and 1, has the maximum value when X, =X, =0, i.e.

ie. I, =

Z, =R, and Z,=R,, we have:

E E E E
||1|S ||1|:

||1|:
oM - BBl g LR G RR T 2(RR,

||2|:

L]

J, when oM = RR, , i.e.

E
i
2JRR, | oM

which shows |I,| has the maximum value of
oM = RR,

4.17

By substitution of j=1 and n=3 into equation (4.15), we have:

! = Zw(f[l—cosg} = 2@{1—%} = (2-2)w?
By substitution of j=2 and n=3 into equation (4.15), we have:

= Zw(f[l—coszf} =2,

By substitution of j=3 and n=3 into equation (4.15), we have:

! = Za)(f[l— COSST”} = 2%{“%} = 2+2)?
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In equation (4.14), we have A, =A, =0 when n=3, and noting that w; =T/ma,

equation (4.14) gives:

2
when r=1: —A0+[2—w—2in—A2:0
@
0)2
i.e. [2——2}0‘1—A2 =0 (4.17.1)
Wy
0)2
when r=2: —A1+(2——2]A2—A3 =0 (4.17.2)
@,
602
when r=3: —A2+(2——2JA3—A4:0
@,
CUZ
i.e. —AZJF[Z——ZJA3 =0 (4.17.3)
;
Write the above equations in matrix format, we have:
2- o’/ -1 0 A
-1 2—-0?/af -1 A |=0
0 -1 2—a)2/a)02 A,

which has non zero solutions provided the determinant of the matrix is zero, i.e.:
2-0?/af) -22-0*/wf) =0
The solutions to the above equations are given by:

ot =2-2)a}, @ =20%, and @?=Q2+2)a?
4.18
By substitution of 2 =(2—~/2)a? into equation (4.17.1), we have:
V2A-A =0 Qe A:A =142
By substitution of 2 =(2—~/2)e? into equation (4.17.3), we have:
A +2A,=0ie A A =+2:1
Hence, when o] = (2 - ﬁ)wj, the relative displacements are given by:
A:A A =1:42:1
By substitution of @ = 2@ into equation (4.17.1), we have:
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A, =0
By substitution of @; = 2@/ into equation (4.17.2), we have:
-A+A=0 ie. A:A=1:-1
Hence, when @’ = 2w?, the relative displacements are given by:
AA:A=1:0:-1

By substitution of ? = (2+~/2)@? into equation (4.17.1), we have:
—V2A-A, =0 ie. A:A=1:—2

By substitution of ? = (2+~/2)e? into equation (4.17.3), we have:
—A-2A,=0ie  A:A=—V2:1

Hence, when @] = (2+x/§)a)02 , the relative displacements are given by:

A:A A =1:-2:1

The relative displacements of the three masses at different normal frequencies are
shown below:

% = (2 =22 ®* =2w? 0? = (2+2)?

As we can see from the above figures that tighter coupling corresponds to higher
frequency.

4.19
Suppose the displacement of the left mass m is x, and that of the central mass M

IS vy, and that of the right mass m is z. The equations of motion are given by:
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mX = s(y —x)
My =—s(y—x)+s(z—Y)
mZ =-s(z—vy)
If the system has a normal frequency of @, and the displacements of the three masses
can by written as:
X = nleia)t
y= ﬂzem
7 = nseia)t
By substitution of the expressions of displacements into the above equations of
motion, we have:

iwt — 5(772 _nl)eizut
- Ma)zﬂzem)t =-s(n, _ﬂl)elwt + S(773 —1,)e

= —s(17, —17,)e""

—mao’ne

ot

—Mmao’n.e

[(s—ma®)n, ~sn,]e =0
[-sm, + (25— Ma)2)772 - S'773]eiwt =0
[-s7, + (s—m®)n]e =0
which is true for all t if
(s—mw®)np, —sm, =0
—s1,+(25=Ma®*), =877, =0
—s17, +(s—mw*)n, =0
The matrix format of these equations is given by:

s—mo* -5 0 7
-s  2s-Me&® -s |n,|=0
0 -5 s—ma’ |\ 7,

which has non zero solutions if and only if the determinant of the matrix is zero, i.e.:

(s—mw®)*(2s—Ma?) - 2s*(s—maw?) =0

ie. (s—ma*)[(s—-mw®)(2s—Mw®)-2s*]=0
ie. (s—mao*)[MMe* —s(M +2m)w*] =0
i.e. o’ (s—mao*)[MMa@* —s(M +2m)] =0

The solutions to the above equation, i.e. the frequencies of the normal modes, are
given by:

m mM
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At the normal mode of @’ =0, all the atoms are stationary, 7, =7, =17, i.e. all the
masses has the same displacement;

At the normal mode of a)zzi, n,=0 and 7, =-n,, i.e. the mass M s
m

stationary, and the two masses m have the same amplitude but are “anti-phase” with
respect to each other;

At the normal mode of :S(M—I/lzm), nin,in,=M:-2m:M, ie. the two
m

mass m have the same amplitude and are “in-phase” with respect to each other.
They are both “anti-phase” with respect to the mass M . The ratio of amplitude

between the mass m and M is M/2m.

4.20
In understanding the motion of the masses it is more instructive to consider the range

n/2< j<n. For each value of the frequency o, the amplitude of the r'™ mass is

A = CsinLﬂ1 where C is a constant. For j=n/2 adjacent masses have a /2
n+
phase difference, so the ratios: A :A :A,=-1:0:1, with the r" masses

stationary and the amplitude A, , anti-phase with respectto A,,,, so that:

+1 Ar - O
M AR
A

=2 o

As n/2—>n, A begins to move, the coupling between masses tightens and when
j isclose to n each mass is anti-phase with respect to its neighbour, the amplitude
of each mass decreases until in the limit j =n no motion is transmitted as the cut off

frequency cof =4T/ma is reached. The end points are fixed and this restricts the

motion of the masses near the end points at all frequencies except the lowest.

4.21

By expansion of the expression of cof we have:
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, 2T (1_Cosj_7rj:2_T{(j7z/n+l)2_(j;z/n+1)4+(j7z/n+1)6_“}

] =—
' ma n+l) ma 21 41 6!

If n>>1 and j<<n, jz/n+1 has a very small value, so the high order terms of

the above equation can be neglected, so the above equation become:

o2 2T [ (z/n+1y? _L( jnjz
' ma 2! maln+1

. jz | T
I.e. a)] = —— —_
n+1\Vma
which can be written as:
o, =37 T
I Vo
where, p=m/a and |=(n+1)a
4.22
From the first equation, we have:
Li‘r_l — 0.0
C

By substitution of g, =1,,—-1, and ¢,,=1,,—-1,, into the above equation, we

r

have:
. l,-21_,+1
Llr_l — r-2 CI’ 1 r
If, in the normal mode, the currents oscillate at a frequency @, we may write the
displacements as:

(4.22.1)

Ir—2 = Ar—zeiwt’ Ir—l = Ar—leiwt and Ir = Areiwt
Using these values of | inequation (4.22.1) gives:

—COZLAr_leia)t — A.q _2?1"' Ar giet

or
~A,+(2-LCo’)A ,—A =0 (4.22.2)
By comparison of equation (4.22.2) with equation (4.14) in text book, we may find

the expression of |, is the same as that of y, in the case of mass-loaded string, i.e.

ia H rjﬂ. iwt
|, = Ae'* =Dsin——e
=h n+1
Where D is constant, and the frequency  is given by:
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]

where, j=123...n

@° = i(l— oS
LC

Az

n+1

J

4.23
- 0%y
By substitution of y into el we have:
2 2
% :%(eiwteikX) _ _ i)
- 0%y
By substitution of y into —-, we have:
X
2 2
%:%(eimew) _ _K2pi(et+k0)
If @=ck, we have:
2 2
%_02% _ (—a)2 +C2k2)ei(wt+kx) ~0
ie.
o’y _ 0%
2 - 7
ot OX
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SOLUTIONS TO CHAPTER 5

5.1

2
Write U =Ct+ X, and try % with 'y = f,(ct+Xx), we have:
X

oy _ of,(u) o’y 9% f,(u)
— = , and =
X ou ox? ou’

Try 1oy with 'y = f,(Ct+X), we have:
c” ot

y_ LW Py LathW

— =C —_
ot ou ot? ou?
SO:
107y _ 1,0 _0°f,)
¢’ at? ¢ ou? ou?
Therefore:
’y_10%y
ox>  c? ot?
5.2

If y=f(ct—x), the expression for y at a time t+At and a position X+ AX, where

At = Ax/c, is given by:

Yeatneax = TalC(t+At) — (X + AX)]
= f,[c(t+ Ax/c) — (x + AX)]
= f,[ct+ AX—x—AX]
= filct—x] =y,
i.e. the wave profile remains unchanged.

If y=f,(ct+x), the expression for y at a time t+At and a position X+ AX, where

At = —Ax/c, is given by:
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Yerateax = f[C(t+A) + (X + AX)]
= f,[c(t — Ax/c) + (x + AX)]
= f,[ct — Ax+ x + AX]
= flct+x]=vy,,

i.e. the wave profile also remains unchanged.

5.3

v

5.4

The pulse shape before reflection is given by the graph below:

The pulse shapes after of a length of Al of the pulse being reflected are shown below:

@ Al=1/4
1 1 1
> | -
L2
3
© 2008 John Wiley & Sons, Ltd « 4 >
z, | z,=
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(b) Al=1/2

Z | Z,=o
c) Al=3l/4
Z | Z,=o
3
<« —| »
4
BT
> —l -
2 '
d Al=1
Z | Z,=o
«— | —>»
55

The boundary condition Yy, +Yy, =Y, gives:

Aiei(a)t—kx) n Blei(wt+kx) _ Azei(a)t—kx)
At x =0, this equation gives:

A+B =A (5.5.1)
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The boundary condition Ma =T 9 y,—T i(yi +Y,) gives:
OX OX

Ma = —ikTA "™ 1+ ikTAe! ™ —ikTB,e!(“**

At x=0, a=Y, =V, +YV,, so the above equation becomes:

T T T
—w*MA =—iw—A +io—A —iwv—B
Ay =l A tio A -io B,
T T LT
i.e. I—A —-1—B, =| —-oM +1—
LAt B[ -om il |a

Noting that T/C = pC, the above equation becomes:

ipcA —ipeB, = (M +ipc)A, (5.5.2)
By substitution of (5.5.1) into (5.5.2), we have:

ipcA —ipeB, = (- oM +ipc)(A +B))

B, _ —iq

A 1+iq
where q=wM /2C
By substitution of the above equation into (5.5.1), we have:

iq

AT 1+iq A=A
i.e.
A_ 1
A 1+iq
5.6
Writing q =tané, we have:
% - 1+liq B 1+i:anz9 - cosgfigsin 0 cos e
and
B, -ig ~—itand  —isind _ sin g @/

E:1+iq_1+itan6?_c050+isin6
which show that A, lags A by @ andthat B, lags A by (z/2+86) for 0< 0 < x/2
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The reflected energy coefficients are given by:
2

TP B
—L :‘smaa 0+ /2)‘ =sin%@

and the transmitted energy coefficients are given by:

X
A

12
:‘cosee""‘ =c0s’ @

5.7
Suppose T is the tension of the string, the average rate of working by the force over one period
of oscillation on one-wavelength-long string is given by:

L e = % aydxdt
By substitution of 'y = asin(mt —kx) into the above equation, we have:
W = 2 e j —T[-kasin(et — kx)][@asin(et — kx)]dxdt
T

2
“)k—asz”/“’j sin? (et — kx)dxdt

2
_ 22 aTJ-Z/ J-J/kl cos(2amt — 2kx)d dt

2
a)kzazT 1 27 1
27 2 o K
_ wka’T
2

Noting that k = a)/c and T = ,0(:2 , the above equation becomes

. 2,2 2 2,2
W:a)apc _w'a’pe
2C 2

which equals the rate of energy transfer along the string.

5.8

Suppose the wave equation is given by: Yy = sin(awt —kx) . The maximum value of transverse

harmonic force F_, isgiven by:

I:max :T(@j :T|:£ ASin(CUt—kX)j| =TAk :TA_C()
X max OX max C
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T F, 03 0.3

¢ Ao 01x27zx5

Noting that pC = T/C, the rate of energy transfer along the string is given by:

2 52
P:MZEI@ZA2 zlxﬁx(Zﬁx@ZxO.f :3—”[\N]
2 2¢C 2 20

so the velocity of the wave C is given by:

2P 2x37/20 30,
= 252 2 7 =—[ms™]
po A 0.01x(27x5)*x0.1° 7«

C

5.9

This problem is not viable in its present form and it will be revised in the next printing. The first
part in the zero reflected amplitude may be solved by replacing Z; by Z;, which then equates r

with R’ because each is a reflection at a Z,Z, boundary. We then have the total reflected

amplitude as:
tTR’
1-R"”
Stokes’ relations show that the incident amplitude may be reconstructed by reversing the paths of
the transmitted and reflected amplitudes.

R+tTR'(1+R?*+R“+--) =R+

T is transmitted back along the incident direction as tT in Z, and is reflected as TR in
Z,.

R isreflected in Z, as (R)R =R’ back along the incident direction and is refracted as TR
inthe TR directionin Z,.

We therefore have tT +R* =1 in Z,, ie. tT =1-R* and T(R+R’)=0 in Z, giving

R=-R’, ..tT =1-R?=1-R'® giving the total reflected amplitude in Z, as R+R'=0

with R=-R’.
: R? :
1 \{591/ R tT\aliV R Z,
k TR'/0,10) Z,
T TR~
Zl
Fig Q.5.9(a) Fig Q.5.9(b)
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Note that for zero total reflection in medium Z;, the first reflection R is cancelled by the sum of all
subsequent reflections.
5.10

The impedance of the anti-reflection coating Z should have a relation to the impedance of air

coat

Z ., and the impedance of the lens Z.. given by:

= / 1
Zcoat = Zairzlens = n.n
air ' 'lens

So the reflective index of the coating is given by:

ncoat =ZL = \/nairnlens = V15 =122

coat

air

and the thickness of the coating d should be a quarter of light wavelength in the coating, i.e.

-7

d=—t 5510 45 107 m]

AN, . 4x1.22
511
By substitution of equation (5.10) into ? , We have:
X

oy o, . .t

— =—(A, cosw,t+B_sinw,t)cos—

— = (A cosot+Bsina)
SO:

2 2 2
% = —%(An cosw,t+ B, sinw,t)sin az‘t = —% y

1)
Noting that kK = —", we have:
C

5.12

By substitution of the expression of (yﬁ) into the integral, we have:

max

© 2008 John Wiley & Sons, Ltd

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

1 ¢, 1 5, 0 2\ [ i 2 DX
Epa)nj-o(yn)maxdx_zpwn (A’\ +Bn)J’ sin —dX

:%pa) (A2+B )rl cos(2a) x/c)d

1 L, o c . 2wl
=— po, +B f
2 PO A n)( >

; C

ol . .
- =sin2nxz = 0, the above equation becomes:
C

. nzc .
Noting that @, =T, i.e.

1 ¢, 1 2/ p2 2
> PO ()X = 5 Pl (A7 +B)

which gives the expected result.

5.13
Expand the expression of y(X,t), we have:
y(x,t) = Acos(awt — kx) + rAcos(wt + kx)

= Acos wt coskx + Asin wtsin kx + rAcos wt coskx — rAsin wt sin kx
= A(l+r)coswt coskx + A(L—r)sin wtsin kx

which is the superposition of standing waves.

5.14
The wave group has a modulation envelope of:
Ao, AK
A=A cos| —t——
A ( 2 2 j

where Aw =@, —w, is the frequency difference and Ak =k, —k, is the wave number

difference. At a certain time t, the distance between two successive zeros of the modulation

envelope AX satisfies:

A—kAX /4
2

Noting that k = 27/, for a small value of AA/A,we have: Ak x (277/4*)AA, so the above

equation becomes:
27TAA

> AX =~ 71
24
i.e.
AX ziﬂ
AL

which shows that the number of wavelengths A contained between two successive zeros of the

modulating envelop is ~ A/AA
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5.15
The expression for group velocity is given by:
d d dv
V= =2 = = (kv) =V+k—
dk dk dk
By substitution of the expression of Vv into the above equation, we have:

—CSin(ka/Z)—i—ki{C sin(ka/Z)}

‘ ka/2 dk ka/2
e sin(ka/2) ok (ka?/4) cos(ka/2) — (a/2)sin(ka/2)
7 ka/2 (ka/2)?
e sin(ka/2) N ccos@ e sin(ka/2)
ka/2 2 ka/2

ka
=CCOS—

2

At long wavelengths, i.e. kK — 0, the limiting value of group velocity is the phase velocity C.

5.16
Noting that the group velocity of light in gas is given on page 131 as:

Vg = V(l-l-iang

2¢, OA
we have:
Vyé, =V 1 G & :V(3r+iang
2¢, 20
=V A+E2—Dﬂu2 A0 A—i—EZ—D/l2
i 2 04 A
=V (A+EZ—D22 +£(—£—2Dﬁ,j
i A 2\ A
=V (A+E2—D/12 +(—E2—Dlzﬂ
=v(A-2DX%)
5.17
c’ o,
The relation &, :—2:1—(—") gives:
v 1)
wzfz L _a)ez
v

By substitution of v = aJ/ k , the above equation becomes:
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o® = o] +c’k’ (5.17.1)
As o — o, , we have:
2 2
C
—2:1—(&j <1
v @

i.e. V> C, which means the phase velocity exceeds that of light C.
From equation (5.17.1), we have:

d(w®) =d (a)e2 +c%k?)
ie. 2adw = 2ke*dk
which shows the group velocity Vv is given by:

,k ¢ ¢
c2i—==-=Zc<c
® VvV Vv

y = do_
o dk

i.e. the group velocity is always less than C.

5.18

From equation (5.17.1), we know that only electromagnetic waves of @ > @, can propagate
through the electron plasma media.

For an electron number density n, ~ 10%, the electron plasma frequency is given by:

1020

0.1x1073"x8.8x107™*2 = 5.65><1011[rad .S—l]

w, =€ e :1.6><10‘19><\/
mego

Now consider the wavelength of the wave in the media given by:

vV 2w 2w 2ac 27 x3x10°
= < < =

A= = =3x107*[m
f o o o  565x10" <107 ml

which shows the wavelength has an upper limit of 3x107°m.

5.19
The dispersion relation @?/c? = k?+m?c?/h? gives
d(w?/c?) = d(k? + m*c?/h?)

e. 29 44 = 2kdk
C

© 2008 John Wiley & Sons, Ltd

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

STUDENTS-HUB.com

) wdo
i.e. —— =
k dk

Noting that the group velocity is de/dk and the particle (phase) velocity is @/k , the above

equation shows their product is c?.

5.20
The series in the problem is that at the bottom of page 132. The frequency components can be
expressed as:

sin(Aw-t/2) c

R=na
Aw-t/2

0s wt

2
which is a symmetric function to the average frequency @, . It shows thatat At = —ﬂ, R=0,

Aw
LAC-Aw =27
In K space, we may write the series as:

y(k) = acosk,x+acos(k, + K)x+---+acos[k, + (n—1)k]x
As an analogy to the above analysis, we may replace @ by k and t by X,and R iszeroat

Ax =27 e AKAX =27
AK

5.21
The frequency of infrared absorption of NaCl is given by:

o= a1 2><15><( L —+ L _27j:3.608><1013[rad-s‘1]
almg, m, 23x1.66x10™"  35x1.66x10

The corresponding wavelength is given by:

_2nC 27 x3x108

= ~ 52
o  3.608x10" L]

which is close to the experimental value: 61zm

The frequency of infrared absorption of KCl is given by:

o= CAN S 2x15x( L -+ 1 _27]=3.13><1013[rad-s‘1]
alm, mg 39x1.66x10™7  35x1.66x10

The corresponding wavelength is given by:

27¢ 27w x3x10°
" e 313x10° ~ o0Hml

which is close to the experimental value: 71zm
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5.22
Before the source passes by the observer, the source has a velocity of U, the frequency noted by
the observer is given by:
C
c—u
After the source passes by the observer, the source has a velocity of —u, the frequency noted by
the observer is given by:

v, = 1%

C

c+u
So the change of frequency noted by the observer is given by:

c c 2vcu
Av=v,-v, = - V=
C—u c+u (c®—u?)

v, = 1%

5.23

By superimposing a velocity of —Vv on the system, the observer becomes stationary and the
source has a velocity of U—V and the wave has a velocity of C—V. So the frequency registered
by the observer is given by:

w c—V _Cc-V
c-v—-(u-v) c-u

v

5.24
The relation between wavelength A4 and frequency v of light is given by:
C
V=—
A
So the Doppler Effect v' = can be written in the format of wavelength as:
c—u
c__ ¢
A" A(c—u)
c—u
i.e. A=—=21
C

Noting that wavelength shift is towards red, i.e. A’ > 4, so we have:

M=2—-2=-2
C

8 -11
A 6x10

which shows the earth and the star are separating at a velocity of 5Kms™.

5.25
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Suppose the aircraft is flying at a speed of U, and the signal is being transmitted from the aircraft
at a frequency of v and registered at the distant point at a frequency of v'. Then, the Doppler
Effect gives:
, C
vV =v
c—u

Now, let the distant point be the source, reflecting a frequency of v' and the flying aircraft be the
receiver, registering a frequency of v". By superimposing a velocity of —u on the flying
aircraft, the distant point and signal waves, we bring the aircraft to rest; the distant point now has a
velocity of —u and signal waves a velocity of —C —U . Then, the Doppler Effect gives:

, , —C-u ,C+U c+u
VvV = =V =
—c—-u—(-u) c c—u

which gives:

V' —v Av 15x10°
= C (o

u= = =
v'+v 2v+Av 2x3x10°

x3x10% = 750[ms ]
i.e. the aircraft is flying at a speed of 750m/s

5.26
Problem 5.24 shows the Doppler Effect in the format of wavelength is given by:

/’L’zﬂi
C

where U is the velocity of gas atom. So we have:

s = ar- 2=

A2l 2x107%
Cc=

L e R T

x3x10% =1x10°[ms™]

The thermal energy of sodium gas is given by:

imNau2 _3kr
2 2

where k =1.38x1072[JK™] is Boltzmann’s constant, so the gas temperature is given by:

2 27 2
T Myl _ 23x1.66x10 >f213000 ~ 900[K]
3k 3x1.38x10

5.27
A point source radiates spherical waves equally in all directions.

, vC . . .
vV = - | Observer is at rest with a moving source.
c—u
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s’ 9
u'=ucosd 0
, (c=V . .
V" =| —— |: Source at rest with a moving observer.
c
v
s’ X\ (o}
V' =vcosé
m__ C _V’ . .
V" =| —— |: Source and observer both moving.
c—u
u
v
s A0 'b\ o'
u'=ucosé V' =vcosé

5.28
By substitution of equation (2) into (3) and eliminating X', we can find the expression of t’

given by:
t :E{i,—k(x—vt)}
vk

Now we can eliminate X' and t" by substituting the above equation and the equation (2) into
equation (1), i.e.

c?[ x ’
x2 —c’t? = k?(x—vt)? ——Z[P—k(x—vt)}
v

2 2 2 2
{1— k2 +C—2(%—kj }XZ + 2kv[k +C—2(%—kﬂxtj{kz\ﬂ[%_lj—cﬂtz =0
Vv Vv \'}

which is true forall x and t if and only if the coefficients of all terms are zeros, so we have:
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kZ(CZ _V2) — C2

The solution to the above equations gives:

where, S =v/c

5.29

Source at rest at X, in O frame gives signals at intervals measured by O as At=t, -t

where t, is later than t,. O" moving with velocity v with respect to O measures these
intervals as:
t;-t;:m':k(m-cizAx) with Ax=0
- AL = kAt

I =(x,—x%) asseenby O, O" seesitas (X;—X;)=K[(X,—x)—-Vv(t,—t)].

Measuring I" puts t, =t/ or At'=0

S A= k[m—iz(x2 —xi)} =0 Qe At=—(X,—X)=t,—t,
C C

=X =X = K[(x, — X,) —V(At)] = k[(x2 —X,) —\(;—Z(X2 - XJ} _% ;Xl

S =1/k

5.30
Two events are simultaneous (t, =t,) at X, and X, in O frame. They are not simultaneous

in O' frame because:
v Y
t = k(t1 ——lej #t, = k(t2 ——zxzj e, X, # X,
c c

531
The order of cause followed by effect can never be reversed.

2events X,t and X,,t, in O framewith t, >t ie t,—t >0(t, islater).
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t;—tl’zk{(tz—tl)—ciz(xz—xi)} ie. At':k[At—CizAx} in O frame.

v( AX Vv
At" real requires K real that is v<c, At' is +ve if At>—[—j where — is +Vve
cl c C

AX . I .
but <1 and — is shortest possible time for signal to traverse AX.
C

SOLUTIONS TO CHAPTER 6

6.1
Elementary kinetic theory shows that, for particles of mass M in a gas at temperature T , the

energy of each particle is given by:

Lo =3
2 2

where V is the root mean square velocity and K is Boltzmann’s constant.
Page 154 of the text shows that the velocity of sound C is a gas at pressure P is given by:

» PPV RT NKT
p MMM

C

where V is the molar volume, M is the molar mass and N is Avogadro’s number, so:

Mc? = NKT = kT zng

6.2
The intensity of sound wave can be written as:

I = Pz/poc

where P is acoustic pressure, p, isair density, and C is sound velocity, so we have:

P = /19, =+10x1.29x330 ~ 65[Pa]

whichis 6.5x10™* of the pressure of an atmosphere.

6.3
The intensity of sound wave can be written as:

1 2 2
| ==p.cw
2/30 n

where 7 is the displacement amplitude of an air molecule, so we have:
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n= 1 /2t __ 1 x| 2x10 = 6.9x10°°[m]
2nv\ p,¢  27x500 V1.29x330
6.4

The expression of displacement amplitude is given by Problem 6.3, i.e.:
- 1 [2x10™1, 1 ><\/2x10><10-10 %1072 10°[m]
2mv PoC 27 %500 1.29x330
6.5

The audio output is the product of sound intensity and the cross section area of the room, i.e.:

P=1A=1001,A=100x107 x3x 3 ~ 10[W]

6.6
The expression of acoustic pressure amplitude is given by Problem 6.2, so the ratio of the pressure
amplitude in water and in air, at the same sound intensity, are given by:

pwater _ VI(pOC)Water — (,OOC)Water _ 145><106 ~60
\ 400

pair \/I (poc)air (poc)air
And at the same pressure amplitudes, we have:

water

I i (pOC)Water 145 )(106

air

(pOC) air 400 ~ 3x 10—4

6.7

If » is the displacement of a section of a stretched spring by a disturbance, which travels along it
in the X direction, the force at that section is given by: F :Ya—n, where Y is young’s
modulus.

The relation between Y and S, the stiffness of the spring, is found by considering the force
required to increase the length L of the spring slowly by a small amount | << L, the force F
being the same at all points of the spring in equilibrium. Thus

8—T7=L and F = 1I
ox L L

If | =X inthe stretched spring, we have:
Y
F=sx=|—|x and Y =sL.
L
If the spring has mass M per unit length, the equation of motion of a section of length dX is

given by:

© 2008 John Wiley & Sons, Ltd

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

o°n oF o’

M—-dx=—dx =Y —-dx
ot OX OX
o’n Y 'y sLo'n
or 2 T A2 Ay
ot m Ox m ox
. . . sL
a wave equation with a phase velocity ,|—
m
6.8
At x=0,
n = Bsinkxsin ot
At X=1L,
2
M 8_727 = _SLa_U
ot OX
ie. —~Ma?®sinkL = —sLk cos kL

(which for kK =@/v, p=m/L and v=,/sL/p from problem7when | <<L)

becomes:

oL, oL s®* pL m
—tfan—=—5=""=—
v v Mv M M

(6.8.1)

For M >>m, v>>wlL andwriting a)L/V =@ where @ issmall, we have:

tand=60+6/3+...
and the left hand side of equation 6.8.1 becomes

01+ 6% /3+..] = (wL/V)*[1+ (wlL/V)?/3+...]

Now V = (sL/p)"? = (sL2/m)*? = L(s/m)*? and wL/Vv = w/m/s
So eq. 6.8.1 becomes:

o’m/s (L+w’m/3s+...) = m/M
or

o’ (1+ w’m/3s) = s/M (6.8.2)

Using o’ = S/M as a second approximation in the bracket of eq. 6.8.2, we have:
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2 S
i.e W = 1
M +—m
3
6.9
The Poissons ratio o =0.25 gives:
A =0.25
2(1+ p)
i.e. A=u

So the ratio of the longitudinal wave velocity to the transverse wave velocity is given by:

lz\/l+2,u =\/,quZ,u _3
Ve \/; H

In the text, the longitudinal wave velocity of the earth is 8kms™ and the transverse wave

velocity is 4.45kms™, so we have:

A+2u 8
Ju 445
Le. A=1.23u

so the Poissons ratio for the earth is given by:

A 1.23u

o= = ~0.276
2+ 1)  2x(1.23u+ u)

6.10
At a plane steel water interface, the energy ratio of reflected wave is given by:

Vo (Za = Zom | _[39x107-143x10°Y
I, \Zyw +2 3.9x10" +1.43x10°

steel water

At a plane steel water interface, the energy ratio of transmitted wave is given by:

[ 47,2 _ 4x3.49x10°x1.43x10°

ice —water —
(Zie + Zyer)”  (3.49x10° +1.43x10°)?

= 82.3%

_t
I i

water

6.11
Solution follow directly from the coefficients at top of page 165.
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. . . n
Closed end is zero displacement with — = —1 (node).
n.

n . .
Openend: —— =1 (antinode, 7 isamax)
n

Pressure: closed end: P =1. Pressure doubles at antinode

Pi
Openend : P —1 (out of phase — cancels to give zero pressure, i.e. node)
i
6.12
.. 0n o
(@) The boundary condition 8_ =0 at x=0 gives:
X

(—Aksinkx+ Bk coskx)sinat| =0
i.e. B=0,sowehave: 17 =Acoskxsinat

The boundary condition 68—77 =0 at Xx=L gives:
X

—kAsinkxsinat| =0
i.e. kAsinkLsinat =0
which is true forall t if kl=nz ie. 27”I=n7r o 122
! n

The first three harmonics are shown below:
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" ° /2 I X
' 1 |
. ’ /4 31/ ' X
n A
" | Ae |/MN' X
an

(b) The boundary condition & =0 at Xx=0 gives:
(—Aksinkx+ Bk coskx)sinat| =0

i.e. B=0,sowehave: 7= Acoskxsin ot

The boundary condition 7 =0 at X=L gives:

Asinkxsinat| =0

i.e. Acosklsinat =0

which is true forall t if kl = n+1 T e 2—7ZI= n+1 T oor A= Al
2) A 2 2n+1

The first three harmonics are shown below:
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n=0: >
0 | X
n A
n=1: 0 >
1/3 I x
,7 A
L 0 /\ :
/5 31/5 box
6.13
The boundary condition for pressure continuity at X =0 gives:
[Alei(wt—klx) + Blei(wt_kl)o]xzo — [Azei(a)t—kzx) + Bzei(wt—kzx)]X:O
i.e. A+B =A+B, (6.13.1)

In acoustic wave, the pressure is given by: p = Z7, so the continuity of particle velocity 7 at

X=0 gives:
Aiei(a)t—klx) n Blei(rut—klx) ~ Azei(rut—kzx) " Bzei(rut—kzx)
Zl x=0 ZZ x=0

i.e. Z,(A-B)=2,(A,-B,) (6.13.2)
At X =1, the continuity of pressure gives:

[Azei(a)t—kzx) n Bzei(a)t—kzx)]x=l _ ASei(a)t—ksx) |

X=|

ie. Ae +Be" = A (6.13.3)

The continuity of particle velocity gives:
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Azei(wt—kzx) n Bzei(mt—kzx) _ Asei(wt—k3x)
ZZ x=l Z3 x=I
ie. Z,(Ae™ —B,e")=Z,A, (6.13.4)

By comparison of the boundary conditions derived above with the derivation in page 121-124, we
can easily find:

é A32 — 4r3l
Z, A> (r, +1)%cos’ K| +(r, +1,)°sin® k|

Z3 ZZ ZS
where I, = r,=—=,and I, =—.
1

iy
N

If we choose | =4,/4, cosk,l =0 and sink,l =1, we have:

A A
23 Aiz (r21+r32)2
. Z, 7
when I, =1, ie —2==2or Z2=27,.
1 2

6.14
The differentiation of the adiabatic condition:

Pl v |
B, |V,(1+9)
gives:

P op o O
= K _ 1+0) D 2L
X OX Fll+o) Ox?

since & =0n/oX.

Since (1+0)(1+5s) =1, we may write:

ap +1 8277
— =—PA+s)"—
8X j/PO( ) 8X2

and from Newton’s second law we have:

op 6277
ox . P

so that

2 2
8—727 =ci(L+ s)”la—?z, where ¢. = via3
ot OX Lo
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which shows the sound velocity of high amplitude wave is given by ¢,(1+ s)(”l)/2

6.15
The differentiation of equation @” = w? +3aTk? gives:

2092 _ gaTk
dk

ie. odo 41
Kk dk

where a represents Boltzmann constant, @/K is the phase velocity, dw/dk is the group
velocity.

6.16

The fluid is incompressible so that during the wave motion there is no change in the volume of the

fluid element of height h, horizontal length AX and unit width. The distortion 7 in the

element AX is therefore directly translated to a change in its height h and its constant volume
requires that:

hAX = (h+ a)(AX+ An) = hAX+ hAn + aAx + aAn
Because « <<h and An << AX, the second order term aAn is ignorable, we then have
a =-hAn/Ax=-hdn/ox, and from now on we replace AX by dx.

We see that for « +Vve (or increase in height), we have 877/6X —Ve, that is, a compression.

On page 153 of the text, the horizontal motion of the element is shown to be due to the difference
in forces acting on the opposing faces of the element hAX , that is:
oF o’n

~ % Ax=ph

ox E

where the force difference, dF is —ve when measured in the +ve X direction for a
compression.
Thus:

oF o’n oP,
——dx = ph—Fdx =-h—2dx 6.16.1
oX Ph ot? oX ( )

where the pressure must be averaged over the height of the element because it varies with the
liquid depth. This average value is found from the pressure difference (to unit depth) at the liquid
surface to between the two values of « on the opposing faces of the element. This gives:

dP,, = pgda
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dP da

Ll dx = pg —dx
SO dx pg dx
and we have from eq. 6.16.1:
_OF iy = hagav dx_—hpg?j—ad x=h pg8 Tdx = ph ’7dx
X

OX
The last two terms equate to give the wave equation. For horizontal motion as:
@ = gh@
ot? Ox?
with phase velocity v =./gh.

The horizontal motion translates directly to the vertical displacement « to give an equation of
wave motion:

o’a o’a

Erd

with a similar phase velocity v =,/gh

6.17
(@) Since h>> A, i.e. kh>>1, we have: tanhkh ~1, therefore:

vzz{g+l}anhkh~g+l>2\/g Tk \/E
k p k p k p p

i.e. the velocity has a minimum value given by:

vt = 39T
0

when 9 _Tk e k2=92 o A =2 /L
k p T 9

(b) If T isnegligible, we have:
~ 9 tanh kh
k

and when A >> 4., kK—0, and for a shallow liquid, h— 0. Noting that when hk — 0,

tanhkh — kh, we have:

:J%tanh kh z\/%kh —Joh

(c) Foradeep liquid, h — 400 i.e. tanhkh — 1, the phase velocity is given by:

v2=9tanhkh~ 2 e, v, = 9
p k k k
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and the group velocity is given by:

kd / / / /
Vg:Vp+ Vp :Vp—ik %: g_i gzi g
dk 2 Vk k 2Vk 2\Vk

(d) For the case of short ripples dominated by surface tension in a deep liquid, i.e. E << —

and h — 400, we have:

v2 = lim K tanhkh = K e v = |TK

h—+w0 2 P 1%

and the group velocity is given by:

kdv, [Tk k [T _3 [Tk 3
V=V + = |—+= | —== ==y
¢ dk p 2\pk 2\p 2°

© 2008 John Wiley & Sons, Ltd
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SOLUTIONS TO CHAPTER 7

7.1
The equation
d d
| . -1 =—g =C,dx—V
r-1 r dt ql‘ 0 dt r
at the limit of dX — 0 becomes:
d_o av
dx dt
(7.1.1)
The equation
Lodxilr =V, -V,
dt
at the limit of dX — 0 becomes:
oV ol
ox L ot
(7.1.2)
The derivative of equation (7.1.1) on t gives:
*l_o NV
oxot ° ot
(7.1.3)
The derivative of equation (7.1.2) on X gives:
o ol
— = L,
OX oxot
(7.1.4)
Equation (7.1.3) and (7.1.4) give:
ﬁ = LG, ﬂ
OX ot
The derivative of equation (7.1.1) on X gives:
ol o
—= Co——r
OX oxot
(7.1.5)
The derivative of equation (7.1.2) on t gives:
o o2
—=l, —
oxot ot

(7.1.6)
Equation (7.1.5) and (7.1.6) give:

© 2008 John Wiley & Sons, Ltd

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

@

x o
7.2
! v
A 2a
—
I
4—
v
Fig Q.7.2.1

A pair of parallel wires of circular cross section and radius a are separated at a distance 2d
between their centres.

To find the inductance per unit length we close the circuit by joining the sides of a section of
length |.

The self inductance of this circuit is the magnetic flux through the circuit when a current of 1 amp
flows around it.

If the current is 1 amp the field outside the wire at a distance r from the centre is g1 /27r,

where g, is the permeability of free space. For a clockwise current in the circuit (Fig Q.7.2.1)

both wires contribute to the magnetic flux B which points downwards into the page and the total
flux through the circuit is given by:

. 2d—2aﬂ: ol |n(ﬁj for d >>a
s 27r r a

Hence the self inductance per unit length is:

L :ﬂln(ﬁj
p/a a

To find the capacitance per unit length of such a pair of wires we first find the electrostatic
potential at a distance r from a single wire and proceed to find the potential from a pair of wires
via the principle of electrostatic images.

If the radius of the wire is a and it carries a charge of A per unit length then the electrostatic

flux E per unit length of the cylindrical surface is: 2arE(r) = A/g,, where &, is the

permittivity of free space. Thus E(r)=A4/2zg,r for r>a and we have the potential:
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gzﬁ(r):—z/1 In(r) + constant = A In(gj for =0 at r=b.

&, 27e,

Fig Q.7.2.2

The conducting wires are now represented in the image system of Fig Q.7.2.2. The equipotential
surfaces will be seen to be cylindrical but not coaxial with the wires. Neither the electric field nor
the charge density is uniform on the conducting surface.

The surface charge is collapsed onto two line carrying charges = A per unit length. The y axis
represents an equipotential plane.
The conducting wires, of radius @, are centred a distance d from the origin o(x =y =0).

The distances = p can be chosen of the line charges so that the conducting surfaces lie on the
equipotentials of the image charge. Choosing the potential to be zero at oo on the Yy axis, the
potential at point p inthe Xy plane is given by:

A 1 A 1 A r;
¢, = In| = |- Inf = |= In| =
2re, \N) 2mgy \V,) A4mg, \ N

17 =2ay+0
2 =2py+6

In Fig Q.7.2.2:

where o =(d+p); B=(d-p); y=(d+rcosd) and &= (r>+p°-d?).

If the position of the image charge is such that p® = (d®—a®), then,at r=a:

+
¢(a) = 41 In[g pj, independent of @, and the right-hand conductor is an equipotential of
&,

the image charge. Symmetry requires that the potential at the surface of the other conductor is
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—¢(a) and the potential difference between the conductors is:

+
V = A In d+p
2ng, \d—p
Gauss’s theorem applied to one of the equipotentials surrounding each conductor proves that the

surface charge on each conductor is equal to the image charge.
The capacitance per unit length is now given by:

A 2me,  _ 27me,

v In(mpj m(Zdj
d-p a

C= for d>>a

and
L ﬂo'n(Zdj 2 2d
Z, forthe parallel wires = \/: =| = a ~ ’1210 In(—j
C 27[80 &, a
In(2d/a)
7.3
The integral of magnetic energy over the last quarter wavelength is given by:
2 2
I LI _[ Vo coskx dx j 2L, Vog 1+cos 4/ A dx:—’“‘ovz0
7y 1/42 Z; 2 47Z;
The integral of electric energy over the last quarter wavelength is given by:
2
'[O 1COV2 dx = I C,(2V,, sinkx)*dx = J‘ chozwdx:—M
/4 2 + + 4

Noting that Z, = ,/L,/C, , we have:

j° 1L0|2dx=|’“‘ Vo,
/42 \

7.4
The maximum of the magnetic energy is given by:

2 2
(B max = (E L 2) -|2 =1, Mo coskx = 2bVo. _5c VAR
2 max 2 Zo ZO

max

The maximum of the electric energy is given by:

1

(Ee)max = (_

5C 2) = Eco(zvO+ sin kx)z} =2C VS

max

The instantaneous value of the two energies over the last quarter wavelength is given by:
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2
(E, +E,), :%L{%coskxj +%C0(2V02+ sinkx)?

0
= 2C,V,. cos® kx + 2C V> sin® kx
= 2CoV02+
So we have:

(Em)max = (Ee)max = (Em + Ee)i = 2C0V02+

7.5
For a real transmission line with a propagation constant y, the forward current wave |,, at
position X is given by:

I, =1,e"=Ae"

X+

where 1,, = A is the forward current wave at position X =0. So the forward voltage wave at
position X is given by:

V,, =271, =Z,Ac”

X+ =0 x+

The backward current wave |, at position X is given by:

I, =1,e” =Be™”

X—

where |, =B is the backward current wave at position X = 0. So the backward voltage wave
at position X is given by:
V, =-2Z,,=-Z,Be™
Therefore the impedance seen from position X is given by:
7 V., +V,_ _ Z,Ae"—Z,Be™ _ Ae” —Be™
S Ae ™ + Be*” ® Ae ™ +Be™

If the line has a length | and is terminated by a load Z, , the value of Z, is given by:

+V,_ Ae” —Be"”
- ZO A +7
+1, Ae™” +Be

7.6
The impedance of the lineat X =0 is given by:

- +X _
Z, = ZOA_—Be - zoﬂ
Ae+Be™ ) | A+B
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Noting that:

-A _pat
2, =2, Ae_ Be

Ae + Be”

we have:
(Z,-Z)Ae ™ =(Z,+Z,)Be"
i.e. é — Mez}’l
B (Zo _ZL)

so we have:

2 _7 NB—lzZ Zo(e;‘—e"‘)+ZL(e;‘+e‘7'):Z Z,sinh A +Z, cosh /A
TOAB+1 T Z (e’ +eM+2Z (e" —e) °Z,coshy+Z sinhy

7.7
If the transmission line of Problem 7.6 is short-circuited, i.e. Z, =0, The expression of input
impedance in Problem 7.6 gives:

7 _7 Z,sinh

20777 _ 7 tanh
® T%z,coshp  ° /

If the transmission line of Problem 7.6 is open-circuited, i.e. Z, = o0, The expression of input
impedance in Problem 7.6 gives:

7. =7, 200 _ 7 othy
Z, sinh
By taking the product of these two impedances we have:

VA =Zoz,i.e. Z,=42.2Z

sc—oc sc™—oc

which shows the characteristic impedance of the line can be obtained by measuring the
impedances of short-circuited line and open-circuited line separately and then taking the square
root of the product of the two values.

7.8
The forward and reflected voltage waves at the end of the line are given by:

VI+ = _VI— =VO+e_ikI

where V,, is the forward voltage at the beginning of the line. So the reflected voltage wave at
the beginning of the line is given by:

V07 =V|7e_ik| — _V0+e_i2k|
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The forward and reflected current waves at the end of the line are given by:
. =V, /Z, =Vo+('*rikI /Zo = |0+eiikI
I =-V\/Z, =V, /2, = |0+e_ikl

where 1, is the forward current at the beginning of the line. So the reflected current wave at the

beginning of the line is given by:

—ikl —i2kl

l.=1,e" =1,¢

Therefore the input impedance of the line is given by:

Vo, +V,  V, @-e) v (e"-e™) . sinkl . [L,,. 24
AT T e ™) 1 (@ e ™ skl e, 4
0+ 0- 0+ 0+ 0

The variation of the ratio Zi/1/ L,/C, with | isshown in the figure below:

Z

Al Lﬂ }Cﬁ

A

2/4

22/4

—27/4 —2/A

219

Y !

7.9
The boundary conditionat Z,Z,, junction gives:

Vo. +Voo = Voo, +Vino-

Lo, + 1o = oo, + 1o
where V,,, V, are the voltages of forward and backward waves on Z, side of Z,Z
junction; I,,, I, are the currents of forward and backward waves on Z, side of Z,Z
junction; V Vv

are the voltages of forward and backward waves on Z_ side of Z,Z

mo+ ? mo0—
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junction; I, ,

junction;

The boundary conditionat Z_Z, junction gives:

VmL+ +VmL— :VL

Lo+ Lo =10
where V., V,, are the voltages of forward and backward waves on Z_ side of Z Z,
junction; I,,, I, _ are the currents of forward and backward waves on Z_ side of Z Z

junction; V_, I are the voltage and current across the load.

If the length of the matching line is |, we have:

Vm0+ =VmLJrelkl
Im0+ = ImL+eikl
Vino- = VmLfe_ikI
ImO— - ImL—e_ikI
In addition, we have the relations:
V
L=z
IL
V
0-7
IO
Vm0+ — _VmO— — VmL+ — _VmL— — Z
m
Im0+ ImO— ImL+ ImL—
The above conditions yield:
—ikl
VmL+ =Vm0+e

© 2008 John Wiley & Sons, Ltd
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L

Uploaded By: Jibreel Bornat


https://students-hub.com

m

_Z _ZLl
mL— Zm+Z|_ mL+

Vo, =V e™"= ;L_—vamue_ikl =Vmo+ﬁe‘i2k'
L + Zm ZL + Zm

lo =1, :% | o™= |mo+ﬁe‘i2k'
L + Zm ZL + Zm

Impedance mating requires V, =0 and |, =0,ie.:

Vor = Vo +Vino-

|o+ = |m0+ + Imof

V,, :vm0+[1+—ZL —Zn e-‘“‘]

Z +Z,
|0+ = Im0+ 1+ Zm _ZL e_i2kl
Z +Z,
By dividing the above equations we have:
; _5 (@ +Z,)e" +(Z, -2,)e™ 5 Z coskl+iZ,,sinkl
0 =

T2z, +Z2)eM +(Z, -Z,)e™ "z sinkl+iZ_coskl
which is true if kl =7/2,0r | =21/4 andyields:

Zn21 =Zoz|_

7.10
Analysis in Problem 7.8 shows the impedance of a short-circuited loss-free line has an impedance
given by:
. 2
Z, =1Z, tan—7Z|
A
so, if the length of the line is a quarter of one wavelength, we have:
2w A

Z, =iZ,tan——=1iZ, tanZ = oo
A4 2

If this line is bridged across another transmission line, due to the infinite impedance, the
transmission of fundamental wavelength A will not be affected. However for the second

harmonic wavelength /1/2 , the impedance of the bridge line is given by:
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Z =iz, tanz—”i =iZ,tanz =0

A2 4

which shows the bridge line short circuits the second harmonic waves.

7.11

1
For Z, to act as a high pass filter with zero attenuation, the frequency o° > E where

Z, =4/L/C.

The exact physical length of Z, is determined by . Choosing the frequency @, determines

k,=27/4 .

For a high frequency load Z, and a loss- free line, we have, for the input impedance:

7 _7 Z, coskl +iZ,sinkl
" 7O z,coskl+iz sinkl

For n even, we have:

n4

2
cosk| = cos—7 =cosnrz =1

For n odd, we have:

nA, 1

2
cosk| = cos—7 =CosNz =—

The sine terms are zero.

So Z,,=Z, for n odd or even, and the high frequency circuits, input and load, are uniquely
matched at @, when the circuits are tuned to @, .

7.12

The phase shift per section £ should satisfy:

Z, il ’LC
27, 2/iaC 2

cosp =1+

@*LC

i.e. 1-cosp =

Zs,inzﬁz—wzl'C
2 2
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Forasmall £, S =~sin 3, so the above equation becomes:

i.e. B =awJLC =w/v=k

where the phase velocity is given by v = 1/«/ LC and is independent of the frequency.

7.13
The propagation constant » can be expanded as:

7 = (R, +i0Ly) (G, +i0C,)

D

= w\L,C, . [i* + R+ G iR G
oL, aC, oL, oC,

2 2 2
=,/ L,Cy .|| T+ R°+G° - RSZJF G02+R0 G,
20, 2aC, do'ly 4aC; oL, oC,

Since R,/wl, and G,/@C, are both small quantities, the above equation becomes:

y =y LCyl i+ =+ S0 | — gtk
20, 2aC,

where a:& &+& i,and k = w,/L,C, = o/v
2\L,  21\cC,

If G=0, we have:
ko w4/ L,C, _ oLC,  aly
2a RO\/CO/LO +G0\/LO/CO RO\/CO/LO RO

which is the Q value of this transmission line.

7.14
R, G, . . L
Suppose L_ = C_ =K, where K is constant, the characteristic impedance of a lossless line is
0 0
given by:

, _ |[Retial, _ |[KLy+iely _ [y
° VG, +iwC, \|KC,+iaC, \C,
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which is a real value.

7.15

Try solution w =/, €™ inwave equation:

0’ v 87z m
8x2

—= (E-V)y =0

we have:

2 87Z'm

—=(V-E)

For E >V (inside the potential well), the value of » is given by:

’ =ii2%1/2m(E !

Sothe y hasa standing wave expression given by:

27
|— m(V-E)x —i—/m(V-E)x
w=~Ae" +Be "

where A, B are constants.

For E <V (outside the potential well), the value of y is given by:

2
Yout =—T Zm(v E)

So the expression of i is given by:

—m(V-E)x 2z m(V-E)x

l//Ah +Be "

where A, B areconstants. i.e. the X dependence of y is e*”  where
2
r=- —y2m(V - E)

7.16
Form the diffusion equation:

oH 1 o°H

ot uo ox’

we know the diffusivity is given by: d = ]/,ua. The time of decay of the field is approximately

given by Einstein’s diffusivity relation:

where L is the extent of the medium.
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For a copper sphere of radius 1m, the time of decay of the field is approximately given by:

t = 2uo =12 x1.26x10° x5.8x107 ~ 73[s] <100[s]

7.17
r
Try solution f(a,t) =—¢
y ( ) \/;
of (a,t)  ©
ot

r
Try solution f(a,t) =—
NP

SO.

_ 2r2a2 _1e,(ra)2

4t dt

~(ray’ inM , we have:

_[L e(raf}
ot N

r ~(ra)? d
=—¢ =2r —+
Jr (Fraja dt  +/z dt

ro1dr

T

_1-2r'" e dr

Jr dt

(A.7.17.1)

e’ in M,we have:

OX

of (a’t) __ 2r30( e—(ro:)2

OX Jr

2 3 3
6 f(a,t) __ 2r e_(ra)Z _ 2r a e_(ra)z (—2ra)r

Ox?

(A.7.17.2)

Vz Nz

2r®

=L (@1-2r2g?)e ™

~

_ 2I’2a2 —1 e,(,—a)z
4td+/ 7dt

By comparing the above derivatives, A.7.17.1 and 2, we can find the solution

satisfies the equation:
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SOLUTIONS TO CHAPTER 8

8.1

Write the expressions of E, and H, as:

E, = Eosinj—”(VEt—z)

E

.21
H, = H05|n7(th—z)

H

where A. and A, are the wavelengths of electric and magnetic waves respectively,

and v and v, are the velocities of electric and magnetic waves respectively.

By substitution of the these expressions into equation (8.1a), we have:

2r 2 2r 2
- ﬂ/l_VH H, cosT(th -17)= N E, cosﬂ—(vg -1)

H H E E

i.e. yvlﬂcosz—ﬁ(v,*t—z) :Ecosz—ﬁ(vEt—z)

H H E E

which is true forall t and z, provided:

and Ay =
so,atany t and z, we have:
— EO

=g, =—2t-z
o= =t

Therefore E, and H, have the same wavelength and phase.

8.2
Energy _ Force-Distance _ Force

Volume L3 ~ Area

= pressure
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c A C

Currents in W into page. Field lines at A cancel. Those at C force wires together.
Reverse current in one wire. Field lines at A in same direction, force wires apart.

FigQ.8.2.a
A A A A A A A A A
TN
e ° ® ° —_
C W A Motion
Nl

Field lines at C in same direction as those from current in wire —
in opposite direction at A. Motion to the right
Fig Q.8.2.b
8.3
The volume of a thin shell of thickness dr is given by: 4zr®dr, so the electrostatic
energy over the spherical volume from radius a to infinity is given

by: .Ew%goEz(Mrz)dr , Which equals mc?, i.e.:

ﬂw%goEz(Mrz)dr =mc?

2

By substitution of E = e/ 4re,r= into the above equation, we have:

+001 eZ 2 2
[ Ze 7 (@mr?)dr =mc
a 2 " (4reyr)
2
. +oo ]
i.e. ° [ dr=mc’
8, v
2
ie. € —me?
8me,a

Then, the value of radius a is given by:

e (1.6x107°)?

a— _ ~1.41x10"°[m
8rg,mc® 8z x8.8x107°x9.1x107* x (3x10°%)* m]
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Another approach to the problem yields the value:

a=2.82x10"°[m]

8.4
The magnitude of Poynting vector on the surface of the wire can be calculated by
deriving the electric and magnetic fields respectively.
The vector of magnetic field on the surface of the cylindrical wire points towards the
azimuthal direction, and its magnitude is given by Ampere’s Law:

H=Hyz, = iee
where r is the radius of the wire’s cross circular section, and | is the current in the
wire.
Ohm’s Law, J=oE, shows the vector of electric field on the surface of the
cylindrical wire points towards the current’s direction, and its magnitude equals the
voltage drop per unit length, i.e.:

E=Ep, =V|—eZ :$eZ

where, | is the length of the wire, and the V is the voltage drop along the whole
length of the wire and is given by Ohm’s Law: V = IR, where R is the resistance of
the wire.
Hence, the Poynting vector on the surface of the wire points towards the axis of the
wire is given by:

S=ExH=E,,xH,e, =—-E,H_ze,

which shows the Poynting vector on the surface of the wire points towards the axis of
the wire, which corresponds to the flow of energy into the wire from surrounding
space. The product of its magnitude and the surface area of the wire is given by:

IR I

Sx2arl =E,H,x2arl = ——2nrl = I°R
| 27

which is the rate of generation of heat in the wire.

8.5
By relating Poynting vector to magnetic energy, we first need to derive the magnitude
of Poynting vector in terms of magnetic field.
The electric field on the inner surface of the solenoid can be derived from the integral
format of Faraday’s Law:
oH

§EdI = —,U§Ed8
where S is the area of the solenoid’s cross section. E is the electric field on the
inner surface of the solenoid, and H is the magnetic field inside the solenoid.
For a long uniformly wound solenoid the electric field uniformly points towards

azimuthal direction, i.e. E=E,,, and the magnetic field inside the solenoid
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uniformly points along the axis direction, i.e. H=H,e,. So the above equation

becomes
oH,
E, x2a =— Lar
0 H ot
i.e. E, = _pr aH,
2 ot

where r is the radius of the cross section of the solenoid.
Hence, the Poynting vector on the inner surface of the solenoid is given by:
ExH=Eee,xH,, = _,u_I’HZ%er
2 ot
which points towards the axis of the solenoid and corresponds to the inward energy
flow. The product of its magnitude and the surface area of the solenoid is given by:

sx2arl =1 Moo = grn e
2 at ot

where | is the length of the solenoid.
On the other hand, the time rate of change of magnetic energy stored in the solenoid
of alength | is given by:

d Elquxn’rzl :m.lezaHz
dt\ 2 ot

which equals S x 2zrl
8.6
For plane polarized electromagnetic wave (E,,H,) in free space, we have the

relation:

Its Poynting vector is given by:

EEZZ 1

=EH, =E &5 .
o X\/ﬂo/go Ho \ Ho&o

where c= ]/1/;1050 is the velocity of light.
Noting that:

S &E =cgyE]

2
1 _, 1 y7; 1 2
EEOEX :Ego[ _OHyJ :E/uoHy

we have:
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Since the intensity in such a wave is given by:

| =S, =cg,E2 = %CEOEz

max

we have:

S = l><3><1o8 x8.8x10™xE2 ~1.327x10°E?

max max

2

2 sy 2 qy2 Y2 /-t
Enox =.—S" = 5 57" = 274557 [Vm™]

ce, 3x10°x8.8x10

Hmax = iEmalx = : 8_1/2 :\/ 8 2 7 S_]/Z ~ 7.3X10728_1/2[Am71]
o CL, 3x10° x 47 x10
8.7

The average intensity of the beam and is given by:

Power Energy B 0.3

I = = =
area  areax pulseduration 7 x(2.5x107°)*x10™*

=1.53x10°[Wm™]

Using the result in Problem 8.6, the root mean square value of the electric field in
the wave is given by:

— ] 1.53x10°
E2 — :\/ ~ 2.4x10°[Vm™
\/c 3x10°x8.8x107™" ]

8.8
Using the result of Problem 8.6, the amplitude of the electric field at the earth’s
surface is given by:

E, = 27.455"2 = 27.45x /1350 ~1010[Vm ]
and the amplitude of the associated magnetic field in the wave is given by:
H, = 7.3x107% x+/1350 ~ 2.7[Am ']

The radiation pressure of the sunlight upon the earth equals the sum of the electric
field energy density and the magnetic field energy density, i.e.

Prag = %EOEOZ +%%H§ = ¢,E. =8.8x107? x1010° = 8.98x10°[Pa]

8.9
The total radiant energy loss per second of the sun is given by:

E..=Sx4m?=1350x 47 x (15x10™°)? =3.82x10%[J]

loss

which is associated with a mass of:

3.82x10%
m= E|OSS/C2 = W = 42X109[kg]
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8.10
At a point 10km from the station, the Poynting vector is given by:

P 10°
2ar? 2x 7w x (10x10%)?

=1.6x107*[W/m?]

Using the result in Problem 8.6, the amplitude of electric field is given by:

E, = 27.45x SY? = 27.45x /1.6 x10™* = 0.346[V/m]
The amplitude of magnetic field is given by:

H, = 7.3x107%S%* = 7.3x10? x1.6x10™* =9.2x10“[A/m]

8.11
The surface current in the strip is given by:

| =Qv

where Q is surface charge per unit area on the strip and is given by: Q =¢E,, and

v is the velocity of surface charges along the transmission line.
Since the surface charges change along the transmission line at the same speed as the

1
Tz
1 &
I =Qv =¢E, = |—E,
s

Analysis in page 207 shows, for plane electromagnetic wave, \/;Hy = \/EEX, so the
surface current is now given by:

_ & [Hy _
[ [,

On the other hand, the voltage across the two strips is given by:
V=EL=E,

electromagnetic wave travels, i.e. v=c= , the surface current becomes:

where L =1 is the distance between the two strips.
Therefore the characteristic impedance of the transmission line is given by:

T H, Ve

8.12
Write equation (8.6) in form:
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0° (0 )
—E, =u—| —¢. |+u—(cE
822 X ﬂat(at x] ﬂ@t( x)

which can be dimensionally expressed as:

voltage/length  inductance y displacement current N inductance N current/area
length x length length timexarea length time

Multiplied by a dimension term, length, the above equation has the dimension:

voltage . current
= inductance x ————
area time x area
which is the dimensional form (per unit area) of the equation:
v=r9
dt

where V isavoltage, L isainductanceand | isa current.

8.13
Analysis in page 210 and 211 shows, in a conducting medium, the wave number of

electromagnetic wave is given by:
K = [0)1]e}
\ 2

where @ is angular frequency of the electromagnetic wave, ¢ and o are the

permeability and conductivity of the conducting medium.
Differentiation of the above equation gives:

gkt [ 2 poy 1 49 40
2\ ouoc 2 2\ 2w

ie. do_, 20 _,| 2 , 52
dk Uo ouc k

which shows, when a group of electromagnetic waves of nearly equal frequencies
propagates in a conducting medium, where the group velocity and the phase velocity

can be treated as fixed values, the group velocity, v, = dw/dk, is twice the wave

velocity, v, =a/k .

8.14

(a) o __ o 0.1

= ———x367x10° = 720 > 100
we 2nve g, 2mx50x10° x50

which shows, at a frequency of 50kHz , the medium is a conductor
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(b) o __ o 0.1

= s x367x10° =3.6x107° <107
we 2rnve g, 2mx10"x10°x50

which shows, at a frequency of 10*MHz , the medium is a dielectric.

8.15
The Atlantic Ocean is a conductor when:

9 _-_ 9% 100

we  2mVE &,

o 4.3

< = x 367 x10° ~ 10[MHz]
27rx100x¢,6, 27x100x81

i.e.

Therefore the longest wavelength that could propagate under water is given by:

\Y C

y=—t = =10x10°
ﬂ’max \/g_rﬂ’max
8
o A= c - 3x10 — ~3[m]
Je, x10x10°  /81x10x10
8.16

When a plane electromagnetic wave travelling in air with an impedance of Z_, is

reflected normally from a plane conducting surface with an impedance of Z_, the

transmission coefficient of magnetic field is given by:

H
T, =—*
H Hi
. I E, 27 ,
Using the relations: E, =Z_H,, E,;=Z,H,,and == ¢ —, the above equation
Ei Zc + Zair
becomes:
H, EZ VA 27 27

air __ “air c _ air

" F - Eizc Zc Zc + Zair - Zc + Zair

The impedance of a good conductor tends to zero, i.e. Z, — 0, so we have:

T, z—zzza" =2 or H,=2H,

air

After reflection from the air-conductor interface, standing waves are formed in the air
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with a magnitude of H,+H, in magnetic field and a magnitude of E,+E, in
electric field.
Using the relations: H,+H, =H,, E, +E, =E,, the standing wave ratio of magnetic
field to electric field in air is given by:

H+H, H, 1

E+E E Z

which is a large quantity dueto Z_ — 0.

As an analogy, for a short-circuited transmission line, the relation between forward

(incident) and backward (reflected) voltages is given by: V. +V_=0 or V,+V, =0,

the forward (incident) current is given by: I, =1, =V, /Z,, and the backward
(reflected) current is given by: 1, =1_=-V_/Z, so the transmitted current is given
by:

=1 +1 VLV W =2V—+=2|i
ZO ZO ZO Z0 Z0

When a plane electromagnetic wave travelling in a conductor with an impedance of

Z. is reflected normally from a plane conductor-air interface, the transmission

coefficient of electric field is given by:
E 27

_ _t __ air
Te=—t=

Ei Zc +Zair

The impedance of a good conductor tends to zero, i.e. Z, — 0, so we have:

TE ~ 22air

=2 or E ~2E

air
As an analogy, for a open-circuited transmission line, the forward (incident) voltage

equals the backward (reflected) voltages, i.e. V, =V, =V, =V _, the transmitted
voltage is given by:
V,=V.+V, =V _+V, =2V,

8.17

Analysis in page 215 and 216 shows, in a conductor, magnetic field H, lags electric
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field E, by aphase angle of ¢ =45", so we can write the electric field and magnetic
field in a conductor as:

E,=E,cosmt and H, =H,cos(wt-g¢)

so the average value of the Poynting vector is the integral of the Poynting vector
E,H, overonetime period T divided by the time period, i.e.:

savz%jOTEXHy

1,
- J' E, cos wtH,, cos(wt — @)dt

ETH —[cos(Za)t @) + cos g]dt

; ETHOTcos¢——E H, cos45° [Wm?]

Noting that the real part of impedance of the conductor is given by:

(real partof Z,) = % CoS¢ = E cos45°

0 0

i.e.

H
E, = 0 __x(real part of Z
0 COS45O ( p c)
so we have:

S, = 1 E,H,cos45
2

1 H .
== - x real part of Z_ xcos45
2 cos45

- % HZ x (real part of Z_)[Wm?]

We know from analysis in page 216 that, at a frequency v =3000MHz , the value of

we/o for copper is 2.9x107°, hence, at of frequency of 1000MHz, the value of

we/o for copper is given by 2.9x10°/3=9.7x10", and x, ~ &, ~1. So, the real

part of impedance of the large copper sheet is given by:

(real part of Z Q

copper) =

z

copper

:—><3766 / ,/“"9 3766x—><\/97><1010 8.2x107°[Q)]

Noting that, at an air-conductor interface, the transmitted magnetic field in copper
H

copper doUDIEs the incident magnetic field H,, i.e. H.,.. =2H;, the average
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power absorbed by the copper per square metre is the average value of transmitted
Poynting vector, which is given by:

S :EH2 x (real part of Z

copper 2 copper copper)

)? x (real part of Z

copper copper )

1
== (2H
5

=2HZ2 _ x(real partof Z

copper copper )

2
= 2x(37Eé’ 6) x (real part of Z

copper)

2
:2{ ljx&bmszmﬂoWw

376.6
8.18
Analysis in page 222 and 223 shows that when an electromagnetic wave is reflected
normally from a conducting surface its reflection coefficient 1, is given by:
| =12 2w¢,
(o2

Noting that &, =1, the fractional loss of energy is given by:

-1, :1_{1_2\/2a)€0]:\/8wgo :\/Ba)e;"/gr :\/Sa)g
o o o o
8.19

Following the discussion of solution to problem 8.17, we can also find the average
value of Poynting vector in air.

The electric and magnetic field of plane wave in air have the same phase, so the
Poynting vector in air is given by:

Su = E(H, =Ejcosatx Hcosat = EjH, cos® wt
and its average value is given by:
1

Sair = ?J-OT ExHy

17
=7 L E, cos wtH , cos mtdt

CEH, 1
==L L E[1+cos(2cot)]dt
2
_L1BHo _lp i S 1 g33ca0%wm
2 T 2 2 376.6 2x376.6
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So, the ratio of transmitted Poynting vector in copper to the incident Poynting vector
in air is given by:

Scopper _ 1.16x1077
S 1.33x10°

air

=8.81x10"°

which equals the fractional loss of energy 1, given by:

| = 82 _ /8x9.7x10" =8.81x10°

Vo -
8.20

E, and H, areincomplex expression, we have:

1 1 N
E H; _ _Aekzei(wtkz)A(ij o Kg-ilet-ka)gin/4
2 2

o

12

:lAZ i e—2kzei7r/4
2 ou

So, the average value of the Poynting vector in the conductor is given by:

)
S,, = real part of (l EXH;j _Llpf g | g Wm?]
2 2 20u

The mean value of the electric field vector, E,, is a constant value, which contributes

to the same electric energy density at the same amount of time, i.e.:

(average electric energy density):%gE_X2 =% OT%gEfdt
i.e.
E_2 — AZe—ZkZ lJ.T COSZ a)tdt — AZe—Zkz lJ.T 1+ Cosza)t dt _ Aze_2kz
' T %0 Th 2 2
or: E, = ﬂ Ae
2
Noting that:
12
aSav =2k XEAZ o e—2kz
0z 2 201
12 12
- _AZ(%j O | g
2 20u
__ AZO- e_zkz _ O_E—Z
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we find the value of 8S,,/6z is the product of the conductivity o and the square of

the mean value of the electric field vector E_X The negative sign in the above
equation shows the energy is decreasing with distance.

8.21
Noting that the relation between refractive index n of a dielectric and its impedance

Z, is given by: n :%, where Z, is the impedance in free space, so, when light
d

travelling in free space is normally incident on the surface of a dielectric, the reflected
intensity is given by:

2 2 2 2
(B _(2s-2) _[(1-2y/2, :(l—nj
= Z,+Z, 1+2,/Z, 1+n

and the transmitted intensity is given by:

C_ZE_Z( 2z, Yz 2 Y _ (2 Y_ 4n
‘oz, oz \z,+z,) z,\1+Z,/Z, 1+n)  (@+n)?

8.22

If the dielectric isa glass (n,... =1.5), we have:

glass

2
1-n _15
Ir glass = Qless :[1 lSj =4%
B 1+ Ngjass 1+15
| _ 4'nglass _ 4X15 _
SO 4n, )2 (1+1.5)°

96%

glass

Problem 8.15 shows water is a conductor up to a frequency of 10MHz, i.e. water is a
dielectric at a frequency of 100MHz and has a refractive index of:

So, the reflectivity is given by:
2 2
Ir water — 1- nwater = (1__ 9) =64%
- 1+, 1+9

and transmittivity given by:

4 nwater

4x9
It_Water = =
(@+n

) (@1+9)°

=36%

water

8.23

© 2008 John Wiley & Sons, Ltd

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

The loss of intensity is given by:

o =1-1414,

loss

where |,, is the transmittivity from air to glass and 1., is the transmittivity from

glass to air. Following the discussion in problem 8.21, we have:

L _ZE_7( 2z, Y _zo( 2 Y _1if 2 Y _ an
?ZED Z,\Z,+2, z,\1+2,/Z,) n\1+¥n) (@+n)?*

So we have:

e =1— 12 =1-0.962 = 7.84%

8.24
Noting that ¢ = ]/ N g, = Aw/ 27 , the radiating power can be written as:
_dE _ do'x;
dt 127e,c°

2,2
o°X

2
=——w
127rgoc el

222

Ao, ,—
127&90/12 7V ool
1 2r (XOJ |2
27 3\ gla) "
ie. R=2% (XOJ _787( ][Q]
3 g\ A

By substitution of given parameters, the wavelength is given by:

v 3x10°
A=—=""""_—600[m = 30[m
c 5x10° [m]>>% [m]

So the radiation resistance and the radiated power are given by:
2
R=787x| X0 | —787x[ 30 _1.97[Q]
A 600

P =%RI§ =%><1.97><2o2 ~ 400[W]
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SOLUTIONS TO CHAPTER 9

9.1

2 2
Substituting the expression of z into — +——, we have:
oxX° oy

0’z 0%z 2 1,2 i[t—(krk 2,2
—— +—— = —(kZ + k) AeTr el = _(k? + k2)z
8X2 ayz 1 2 1

Noting that k? = @?/c? =k + k2, we have:

0’z 01 &

WJray2 c?

- . . 1 0%z
Substituting the expression of z into —ﬁ,we have:

CZ
2 2 2
107 @ | (ao(ocky) _ @
S - he ==
c” ot c c
So we have:
0’1 +azz _10%2
ox* oy c? ot
9.2

Boundary condition z=0 at y=0 gives:

Aiei(a)t—klx) n Azei(azt—klx) 0 ie A1 _ _A2
so the expression of z can be written as:
7= Ai{ei[(ut—(leJrkzy)] _ ei[a)t—(klx—kzy)]} — Ai[ei(a)t—klx) (e—ikzy _ eikzy)] — —2|Al Sin(k y)ei(a)t—klx)
2
Therefore, the real part of z is given by:

= +2A sink,ysin(at —k,x)

Zreal
Using the above expression, boundary condition z=0 at y=Db gives:
z = -2iA sink,be' ") =0

which is true forany t and X, provided: sink,b=0,ie. k, =n?ﬂ.
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9.3
As an analogy to discussion in text page 242, electric field E, between these two planes is the

superposition of the incident and reflected waves, which can be written as:

Ez _ Elei[(kxx+kyy)—wt] n Ezei[(—kxx+kyy)—wt]
where k, =kcos® and k, =ksinéd
Boundary condition E, =0 at x=0 gives:
(E,+E,)e'™" ™ =0

which is true forany t and y if E, =-E, =E,, sowe have:

E, = Eoei[(kxx+kyy)fwt] _ Eoei[(kamkyy)fwt] —E, (e - g )giy-on
Using the above equation, boundary condition E, =0 at x=a gives:

E, =E, (eikxa _e—ikxa)ei(ky)’*w{) -0

ie. sink ae'"“" =0

whichistrue forany t and y if sink,a=0,ie. k,=nz/a.

- . . 1 1
By substitution of the expressions for A, and /1g into —-+—-, we have:
c ¢

i) (B e -
Tt o Yo T T =
A A4 2 2w (27) (27) 27C A

9.4
Electric field components in X, Y,z directions in problem 9.3 are given by:

E,=E, =0 and E, = Eo(e"‘xX —e’ikxx)ei(kyyﬂ)

By substitution of these values into equation 8.1, we have:

_ILIQHX = EEZ = ikyEO (eikxx _e_ikxx)ei(kyy*wt)

ot oy

0 0 i ikyx ik X\ o (Ky Y-
_ﬂaHy :—&EZ :_IkXEO(ekx P ) (k,y-at)

which yields:
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k,E

Hx —_y 0 (eikxx _e—ikxx)ei(kyyfa)t) e
MO
Hy —_ kx Eo (eikxx +e—ikxx)ei(kyy—wt) D
MO

where C and D are constants, which shows the magnetic fields in both X and Yy directions

have non-zero values.

9.5

line integral §B -dl
] e 2
Current into

paper .<______________________-----.T.--J

a

Current out of ¢
—>

paper

§B-d|=yl S B=ul/b

Closed circuit formed by connecting ends of line length | threaded by flux:

B=,ulla
b

.. inductance L per unit length = ,u%

capacitance C per unit length = 59
a
"2, = \/E - EJZQ
C blVe
9.6

Text in page 208 shows the time averaged value of Poynting vector for an electromagnetic wave in
a media with permeability of 4 and permittivity of & is given by:
1
| = =ceE?
2
Noting that, in the waveguide of Problem 9.5, the area of cross section is given by: A=ab, and
the velocity of the electromagnetic wave is given by: C =1/ v HE , the power transmitted by a

single positive travelling wave is given by:

P=IA= 1c<sE§ab = labigEo2 = labE(f £
2 2 2 P

Tz
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9.7
The wave equation of such an electromagnetic wave is given by:

2
C ot
, 0°E O°E O0°E 1 O°E
le. P e R
ox* ey’ arr ot ot

By substitution of the solution E = E(y, z)ncos(at —k, X) into the above equation, we have:

2 2 2 2
{— K’E(y,z)+ 0 Eai/)zl 2) + 0 Ea(z)zl Z)}cos(a)t -k, x) = —ac)—% E(y, z)cos(mt — K, X)

2

which is true forany t and X if:

CE2)  TEOD (2 @ gy o
oy* oz’ toc |

82E(y,z)+82E(y,z) _

oy’ oz’ KE(.2)

or:

®
where k? =——k?
C

9.8
Using the result of Problem 9.7, the electric field in X direction can be written as:

E, = F(y,z)cos(at -k, z)

and equation:

2 2
0 F()2/,2)+8 F()Z/,z) — _K?F(y.2)
oy 0z
is satisfied.

Write F(y,z) inform: F(y,z) =G(y)H(z) and substitute to the above equation, we have:

1 0%G(y), 1 °H@D)_ .
G(y) &° H(z») o

The solution to the above equation is given by:

G(y)=Ce"’ +C,e™ and H(z)=De"* +D,e™"

where C,,C,,D;,D, areconstantsand k; +k; = k*
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So the electric field in X direction is given by:
E, = F(y,z)cos(at -k, x) = G(y)H (z) cos(ewt — Kk, X)

ik,y —ik,y ik, 2 “ik,z (9.8.1)
=(Ce™ +C,e " )(De™ +D,e ") cos(at —k,Xx)
Using boundary condition E, =0 at y=0 inequation (9.8.1) gives: C, =-C,.

Using boundary condition E, =0 at z=0 inequation (9.8.1) gives: D, =-D,.
So equation (9.8.1) becomes:

E, =C,D,(e" —e™)(e™* —e™™*) cos(wt —k,X)
or E, = Asink, ysink,z cos(at -k, X) (9.8.2)

where A is constant.

Using boundary condition E, =0 at y=a in equation (9.8.2) gives: sSin kya:O, i.e.
k, =mz/a, where m=123,---.
Using boundary condition E, =0 at z=Db in equation (9.8.2) gives: sink,b=0, i.e.

k, =nz/b,where n=123,--.

Finally, we have:

E .= AsinMsin%cos(a)t—kxx)
a b

where

2 2
m° n
k? =kZ+k’ =7°| —+—
y z a2 b2
9.9

From problem 9.7 and 9.8, we know:
2

2

For K, to be real, we have:

m? n?
kf = C()Z/C2 —72'2[?4‘?} >0

2 2

m’ n
a’ b?

Therefore, when m=n=1, @ has the lowest possible value (the cut-off frequency) given by:

i.e. w > 7iC
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Oy = 7|t
min az bz

9.10
The dispersion relation of the waves of Problem 9.7 — 9.9 is given by:

2 2
m n
kf = Cz)Z/C2 —72'2(—2 +—2]
a

b

The differentiation of this equation gives:

2k dk, =£2coda)
C
. wdo )
l.e. ——=C" or V.V, =C
k, dk, Pe

9.11
Using boundary condition z=0 at X =0 in the displacement equation gives:

(A1+ A4)ei(a)t—k2y) +(A2 + Ag)ei(wt+kzy) - 0
which is true forany t and y if:
A=-A and A =-A

S0 we have:
7= Ai{ei[wtf(klﬂkzy)] _ ei[wt*(*klx+k2y)]}+ Az{ei[wt—(klx—kzy)] . ei[“’t*(*klekzy)]

= —2Aisinkxe" ™ £ 2 Aisink xe' (") (9.11.1)

= —2i S|n le[Aiei(wt_kzy) _ Azei(wt+k2y)]

Using boundary condition z=0 at y =0 inequation (9.11.1) gives:

—2isinkx(A - A)e™ =0
which is true forany t and X if:
A=A
Therefore, equation (9.11.1) becomes:
z = —4A sink xsink,ye"
and the real part of z is given by:

Z.. =—4A ssink xsink,ycos ot (9.11.2)

real

Using boundary condition z=0 at X=a inequation (9.11.2) gives:

. n
sinka=0,ie Kk =1—7T,Where n=123,--.
a
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Using boundary condition z=0 at y =D inequation (9.11.2) gives:

sink,b=0,ie. Kk, =nzTﬂ,Where n, =123,

9.12

—hv/kT

Multiplying the equation of geometric progression series by e on both sides gives:

e—hv/kTN — e—hv/szNn — No[e—hv/kT +e—2hv/kT +e—3hv/kT +“.+e—(n+1)hv/kT]
n

S0 we have:
N _efhv/kTN — No[l_!]i_[gef(rwl)hv/kT] — NO
i.e.
_ NO
1_e—hv/kT

The total energy over all the N energy states is given by:
E=)E,=> Npnhv=hvD> Nn
n n n
— h Vf\lo(e_hv/kT + 2e—2hv/kT + 3e—3hv/kT et ne—nhv/kT )

—hv/kT

Multiplying the above equation by € on both sides gives:

Ee—hv/kT — h‘NO[e—Zhv/kT +2e73hv/kT +3e—4hv/kT +_”+ne—(n+l)hv/kT]

so we have:

E— Ee—hv/kT —h Vf\lo I!]Lrg[e_hV/kT +e—2hv/kT +e—3hv/kT e +e—nhv/kT _ ne—(n+1)hv/kT]

— thoe—hv/kT Iim[1+e—hV/kT +e—2hV/kT +__'+e—(n—l)hv/kT _ ne—nhv/kT]
n—o0

) 1_e—nhv/kT n
=hNe ™" Ilm( -~

N300 1_e—hv/kT enhv/kT

1

1- e—hv/kT

— h Vf\loe—hv/kT

h Ve_h v/KT

i.e. E= o Q_e )

Hence, the average energy per oscillator is given by:

hve—hv/kT
E 0 (1_ efhv/kT)Z efhv/kT hy
E = —= = h 1% — =
N N0 1—e hv/KT ehv/kT -1
1_e—hv/kT

By expanding the denominator of the above equation for hv << KT , we have:
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hv _ hv
[L+hv/KT +(hv/kT)?/2+--]-1 hv/kT

g =

which is the classical expression of Rayleigh-Jeans for an oscillator with two degrees of freedom.
Alternative derivation for E and & :

i(nh Ve—nhv/kT)
E =N& =Nnhv where nhy =20

ie—nh v/KT

n=0
m —_ IO ~ e—nhv/kT
3092,
S log :
A(kT)™ T1-e™M
hVefhv/kT
- 1_g AT
- —hv/kT
~E=N nhV = (T()hev—e;hv/kT)Z
—_— hv
and £ =nhv =
efhv/kT _1

9.13
One solution of this Schrodinger’s time-independent equation can be written as:

y =X(X)Y(y)Z(2)

Substituting this expression into the Schrodinger’s equation and dividing ¥ on both sides of the

equation, we have:

2 2 2 2
1 X, 1 (), 1 8°2(2)_ 8x'm_

X(x) ox* Y(y) oy* Z(z) ozf h?
which yields:
*X (x)
+E X(x)=0
W K (X)

o (y) +E)Y(y)=0

2

8%Z(2)

0z°

+E,Z(2) =0

, 87°m
where E,,E ,E, areconstants and satisfy: E, + E +E, = " E

By solving the above three equations, we have:
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X (x) = C,e"&* 4 D g e

Y(y) = Cyeiﬁyy + Dye_iﬁyy

Z(z) =C,eN& 4 D,eVE
and

_ iJE,x —iJEx iJEyy -i[Eyy iJE,z -iJE,z
yv=(Ce ™" +D,e )Ce¥ +De Y7)Ce " +D,e )
where CX,DX,Cy,Dy,CZ,DZ are constants.
Boundary condition v =0 at x=0 gives C, =—D,, boundary condition =0 at

y=0 gives C,=-D,, boundary condition v =0 at z=0 gives C,=-D,, so we

have:

V= CXCyCz(ei\/ETX —eii\/ETX)(ei‘/ETy —e_i\/'?yy)(ei\/'?lZ —e"ix/'?ﬂ)
= Asin.JE, xsin \/Eiyysin JE,z

2
Using the above expression y/, boundary condition y =0 at Xx=1L, gives: E, = (—j ,

X

2
boundary condition ¥ =0 at X = Ly gives: Ey =U_—ﬂj , boundary condition w =0 at
y

2
X=L, gives: E, :(T_—HJ ,where I,r,n=012,---, so we have:

2 2 2 2
Iz rr Nz 87°m
— | +|—|+|—| =—5FE
L, L, L, h

hZ IZ rZ r]2
gm| L2 L2 L2
h2
When L, =L, =L, =L, E=——(12+r?+n?). if E=E, for =1, r=n=0, the
8mL

next energy levels are given by:

E=3E, for I=r=n=1.

E=6E, for I=r=1,n=2; l=n=Lr=2 and n=r=11=2, which is a three-fold
degenerate state.

E=9E, for I=r=2,n=1; =n=2,r=1 and n=r=2,1 =1 which is a three-fold
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degenerate state.
E=11E, for I=r=1Ln=3; l=n=L4r=3 and n=r=11=3 which is a three-fold
degenerate state.

E=12E, for |=r=n=2.

E=14E, for I=1r=2n=3 ; I|=14n=3r=2 ; |=2n=Lr=3
I1=2,n=3r=1; I=3n=1r=2and | =3,n=2,r =1 which is a six-fold degenerate
state.
9.14
Planck’s Radiation Law is given by:
8zv?  hv
Edv=———r-——dv
4 C3 ehv/kT -1
At low energy levels hv << KT , by expansion of e"¥ in series, the above equation
becomes:
2
h
Edv= 87[;/ " f‘l/ 5 dv
C
1+ 7‘/ + 1 7‘/ +...—-1
KT 2\ kT

87v? hv 8712 KT
S S Ty— dv = 3
c> hv/kT C

which is Rayleigh-Jeans expression

dv

9.15

Using the variable X = Ch//ikT , energy per unit range of wavelength can be written as:

_ 8ach(kTx)® 8 (KTx)®
Ych)’(e -1 (ch)*(e*-1)

Substitute the expression of E; into integral I: E,dA and, we have:
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I _I 87(KTx)®
(ch)*(e* 1) ka

:ro 8ﬂ(l(TZ4 X dx

o (ch)’(e”-1)

8 (kT)"

~(ch? 15

_ 8r°%k*

~15¢%h°

[Edi=aT?

8r7°k*

where a=———
15¢%h®

9.16

Using the expression of E, in Problem 9.15, the wavelength A, at which E, is maximum

should satisfy the equation:

d
—E, =0
dx *
which yields:
d_x _
dx (e* -1)
40aX 1) _ aXy5
o 5x"(e” —1)—e’x 0

(e"-1)°

ie. (1—5jex —1
5

C
where X=——
AKT

9.17
The most sensitive wavelength to the human eye can be given by substituting the sun’s

temperature T =6000[K] into equation ch/A, =5KT ,i.e.:

s ch 3x10%x6.63x107*
™ BKT 5x1.38x107%x 6000

which is in the green region of the visible spectrum.

~4.7x107[m]
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9.18

Substituting the tungsten’s temperature T = 2000[K] into equation ch/A, =5KT ,i.e.:

s ch 3x10%x6.63x107*
™ BKT 5x1.38x107%°x 2000

which is well into infrared.

~14x107[m]

9.19
As an analogy to the derivation of number of points in v state shown in text page 250, 251, the
number of points in k space between k and k +dk is given by:

1 (volume of spherical shell)
8 volume of cell
4zkdk (LY

s H

T

Noting that for each value of Kk there are two allowed states, the total number of states in k
space between Kk and k +dk is given by:

P(k) = 2-

47k*dk _(ng

From E = (h%/2m")k?, we have k =/(2m"/h?)E . By substitution into the above equation,

we get the number of states S(E)dE in the energy interval dE given by:

S(E)dE =2-

4z(2m*/n?)?EdVE ( LT
8
_1¥(em’/n?)¥E o L3(2m*/h2)3/2\/EdE
- 2 - 2
2 \/E 27

T

Provided m~m" and A= L3, we have:

3/2
S(E) =2—22(2mj JE

ra
Since Fermi energy level satisfies the equation:

['s(E)E=N

By substitution of the expression of S(E), we have:

3/2
) i(z—mj JEdE =N

o 272\ K?
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A (2m\¥? E¥?
AfAm)E
2;r2(h2j 32

2 28 \23
3 h (37[ Nj

which gives:

“om L A

provided m~m’
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SOLUTIONS TO CHAPTER 10

10.1
The wave form in the upper figure has an average value of zero and is an odd function
of time, so its Fourier series has a constant of zero and only sine terms. Since the

wave form is constant over its half period, the Fourier coefficient b, will be zero if

n is even, i.e. there are only odd harmonics and the harmonics range from 1,3,5 to
infinity.

The wave form in the lower figure has a positive average value and is a even function
of time, so its Fourier series has a constant of positive value and only cosine terms.

Since 7/T #1/2, there are both odd and even harmonics. The harmonics range from

1,2,3 to infinity.

10.2
Such a periodic waveform should satisfy: f(x)=-f(x—T/2), where T is the

period of the waveform. Its Fourier coefficient of cosine terms can be written as:

:—.[ f(x)cos@dx

2 T 27X
= ?[.[O f(x) cos?dx + .L/z f(x) cos? dx}

2| (1/2 27X T 27X
:?[jo f(x)cosTdXJrL/Z— f(x=T/2) cosTd(x—T/Z)}

If n iseven, we have

2m(x-T/2) (Zﬂnx j 27X
08 === =008 ——— —N7 | = C0S———

Hence, by substituting into a, and using u=x-T/2, we have:

an:_%“ f(x)cos@dxj f(u)coszm—udu}:o

Similarly, the coefficient of sine terms is given by:

= I f(x)sm@dx

= TEUO f (x)sin?dx+.|; f(x)sin @dx}

2 27X }
=

—wzf(x)sin@dHL - F(-T/2)sin 24 (-T)2)
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If n iseven, using u=x-T/2, we have:

bn:12_U F(x)s |n—dx [ f(u)sm@du} 0

Therefore, if n is even, the Fourier coefficients of both cosine and sine terms are
zero, i.e. there are no even order frequency components.
10.3
The constant term of the Fourier series is given by:
1 1 or 1 ¢z, . h
—a,=— dx=—| hsinxdx =—
20 272-[0 y 27["10 T
The Fourier coefficient of cosine term is given by:
27 T
a,= ij y cos nxdx = ﬂ.[ sin x cos nxdx
7T 0 7T 0
when n =1, we have:
h T, h T,
a = ;jo sin xcos xdx = EIO sin2xdx =0

when n>1, we have:

her .
a, :—J' sin x cos nxdx
T Y0

h = . :
:510 sin(1+ n)x +sin(1—n)xdx

:—L Lcos(l+ n)x+icos(1 n)x
2 | 1+ 1-n 0
which gives:
a —_Ei =0 a —_Ei a —0 a —_ﬂi
2 7[13, a3 ) 4 7[35; 5 ’ 6 72_57,

The Fourier coefficient of sine term is given by:
1 27 . h T, .
b, = ;L ysinnxdx = ;.[0 sin xsin nxdx
when n=1, we have:
b = Ersin xsin xdx = EJ‘”sin2 xdx = 1
T Vi 2
when n>1, we have:

b, zﬂrsin Xsin nxdx

7 ¥
_h ”cos(l—n)x—cos(1+n)xdx
“onh

L[ism(l n)x+ism(1+ n)x}
27| 1- 1+n 0

=0
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Overall, the Fourier series is given by:

1 < - .
y:EaO+Zan cosnx + »_b, sinnx
1 1

:E 1+isin x—icoszx—icos4x—ic056x-~-
T 1.2 1.3 3.5 5.7

10.4
Such a wave form is a even function with a period of 7. Hence, there are only
constant term and cosine terms.
The constant term is given by:
laO = lJ'”hsin xdx = 2h
2 790 Vs
which doubles the constant shown in Problem 10.3

The coefficient of cosine term is given by:

4h (/2 . 27X
a, :—J' sin xcos ——dx
w0 V4

= 4—h.|.”/zsin X €0S 2nxdx
V4 0

- 2—hj”/z[s,in(1+ 2n)x + sin(1— 2n)x]dx
7Z' O

/2

:_Z_h 1 cos(1+2n)x+ L cos(l—2n)x
7 |1+2n 1-2

— n 0
which gives:
__h2 __h2 ___h2
RN 35" ¢ 5.7
Therefore the Fourier series is given by:
1 = 27X
y=—a,+ ) a,c0s——
2 1 V4
:E 1—i0032x—icos4x—10056x--~
T 1.3 3-5 5.7

Compared with Problem 10.3, the modulating ripple of the first harmonic gsinx

disappears.

10.5

f (x) is even function in the interval +, so its Fourier series has a constant term
given by:

1 1 = 1 ¢= ?
Za,=—| f(x)dx=—| xPdx="
2° 2;er () 27er 3
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The coefficient of cosine term is given by:

=—J' f(x)cos@dx
:—I x? cosnxdx:—rxzd sin nx
0 0
2 [x smnx‘ J' sin nxdx }:4 " xd cos nx
n7r Nz
4 . oF 4 4
=z [xcosnx|0 —J'O cosnxdx} =Fcosn7r =(-1 ro

Therefore the Fourier series is given by:
1 i 2mx 1 d 4
f(x)==a,+> a . cos——==72+Y (-1)"—-cosnx
()2();” o 3 Zl:()n2

10.6

The square wave function of unit height f(x) has a constant value of 1 over its first
half period [0, 7], so we have:

f(/2) =1

By substitution into its Fourier series, we have:

f(;z/Z)z— S|n—+1sm3—7[+1sm5—” =1
2 3 2 5 2

1-—

+

gl
~N| -

r
4

Wl

10.7
It is obvious that the pulse train satisfies f(t) = f(-t), i.e. it is an even function. The
cosine coefficients of its Fourier series are given by:

4r27znx 4T L 2mx[ 2 . 27
an:—j cos——adx ——Sin—— =—sin—nr7
T% T 2m T | nz T
10.8
. 27 2 )
As 7 becomes very small, sm?nr—)?nr,sowe have:

2 . 2r 2 27r 47
a,=—sin—nr~— - ——nr=—
nz T nrz T T

We can see as 7 —> 0, a, — 0, which shows as the energy representation in time
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domain — 0, the energy representation in frequency domain — 0 as well.

10.9
The constant term of the Fourier series is given by:
1 1T/21OI 1Tidt—1

270 Tl T2 T
The coefficient of cosine term is given by:

T

1 . 2mr
= SIn

" T2 T T2 2m T |, nwr T

41 2mt 4 1 T . 2mt
= 0S— = sin
As 7 — 0, we have:
1 . 2mr 1 2mz 2
a,= sin ~ . =—
Nzt T nzr T T
Now we have the Fourier series given by:

f(t)=£a0+ ancos@=£+£zc 2t
2 ) T T T4 T

10.10
Following the derivation in the problem, we have:

(t) = % [“Flo)e“do

1 =1 i \piat
—Zj_ —@-e"")edw

A 10)
:i +w'i(1_ein)eia)tda)
271w
:i +w[ieiax_ieiw(t—T)j|dw
27| iw 17)

Using the fact that for T very large:

rwiei“’“‘”da) = J-Mie‘i“’Tda) =

=17 - i@
we have:
(1) =2+ [ Ledo
2 2r'>*lw
10.11

Following the derivation in the problem, we have:
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F(v) = j:f (t")e 2™ dt’

+7/2 22 (vt
— foe 127 (v—vy)t dtl
-7/2

fo 72 ida(v-vo)t 41
=—20 | eV [-i2x(v —vy )t
—i2z(v-v,) J-*1/2 [F127(r=vo)t]
_ fO e—iZ/z'(v—Vo)r/Z _eiZﬂ'(v—vo)r/Z)
—i2z(v-v,)
Tsin[iz(v—vo)z']
(v —v,)T

= f,

which shows the relative energy distribution in the spectrum given by:
, Sin’[z(v—v,)r]
[7(v =vo)e]*
follows the intensity distribution curve in a single slit diffraction pattern given by:
_ sin®(zdsing/ 1)
® (mdsing/2)?

IFO)[ = (fo7)

10.12
The energy spectrum has a maximum when:

Sinz[ﬂ-(vma)( — VO)T] _

[”(Vmax - VO)Z-]2 -

ie. Wi —Vo)T=0 0or v .. =V,

The frequencies for the minima of the energy spectrum are given by:
2 Sinz[72-(‘/min _VO)T] —

[ﬂ(vmin - VO)T]Z

|F (Vmin )| = ( fOT)

n
min

n
min

. n
I.e. (v Vo)T =Nz OF Vg, —V,=—
T

where n=-ow,---,-3,-2,-11,2,3,--,+©

Hence, the total width of the first maximum of the energy spectrum is given by:

2Av =yt =g or Av=1
T

min min r
Using the differentiation of the relation v = %:

Ay = %A/l
we have
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2
%Aﬂzl or CTZZ—
A T AL

which is the coherence length | of Problem 10.11.
10.13

2
Use the relation AA = ﬁAv, we have:
c

_ (6.936x10°7)’

AL .
3x10

x10* ~1.6x107[m]

Then, using the result in Problem 10.12, the coherence length is given by:

2 (6.936x107)?

IV REET T

10.14
Referring to pages 46 and 47 of the text, and in particular to the example of the
radiating atom, we see that the energy of the damped simple harmonic motion:

E=Ee™?=Ee" where Q/w,=t, the period for which the atom radiates

before cut offat e™.
The length of the wave train radiated by the atom is | =ct where c is the velocity

of light and | is the coherence length which contains Q radians.

Since the coherence length is finite the radiation cannot be represented by a single

angular frequency @, but by a bandwidth A® centred about w,.
Now Q=w,/Aw so Q/w,=t=1/Aw. Writing t=At we have AwAt=1 or

AVAt =127 .

The bandwidth effect on the spectral line is increased in a gas of radiating atoms at
temperature T . Collisions between the atoms shorten the coherence length and the
Doppler effect from atomic thermal velocities addsto Av.

10.15

The Fourier transform of f(t) gives:
F(V) _ faof (t)e_izmdt _ J’jw foeiZﬂvote—t/re—iZm/tdt _ foo foe[iZﬂ(VD—V)—l/T]tdt
Noting that t>0 for f(t), we have:
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F(V) — J.(:oo foe[i27r(v0—v)—1/r]tdt

— 1:o {e[izn(vov)m]t too }
i2z(v,—v)-1z 0

_ fo _ fo
i2z(v,—v)-Yr Yr+i2z(v-v,)

Hence, the energy distribution of frequencies in the region v —v, is given by:

2 2 2 2
Fof _| f, Ff f _ f,
We+izz(v-vy) 7 W) +[2n(v-v) Wo) +(0-a,)
10.16
In the text of Chapter 3, the resonance power curve is given by the expression:
2 2 2
I:)av: FO COS¢: FO'; = 2 FOr 2
27, 2Z,  2r"+(om-s/w)]

In the vicinity of @, =,/s/m, we have o ~ @,, so the above equation becomes:

N For B For B f}
YA +(wm-s/w)’]  2Ar* +m*(w-@,)’] W)+ (0- o,

2

)2 = |F(V)|

2

Fr m
where fi=—2> and r=—
m r

The frequency at half the maximum value of |F(v)|2 is given by:

2 _ f02 _ (‘I:oz—)2
Fe) = W) +(w-aw,)* 2

i.e. w-w, =117
so the frequency width at half maximum is given by:
Aw=2/t or Av=1xzr
In Problem 10.12 the spectrum width is given by:
AV =Yz

so we have the relation between the two respectively defined frequency spectrum
widths given by:

© 2008 John Wiley & Sons, Ltd

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

- 2 5

Noting that AZZ?AV and A/1'=?Av’,we have:
T

where A4 and AA' are the wavelength spectrum widths defined here and in

Problem 10.12, respectively.

If the spectrum line has a value A4 =3x10°m in Problem 10.12, the coherence

length is given by:

2 2 -7\2
1=t _ A (BA6XI0T) o 106 [m]

CAL Adr 3x107%xrx

10.17
The double slit function (upper figure) and its self convolution (lower figure) are
shown below:

«—d —

VA /\ A

—> 27 «— d-7 — 2t «— d-7 — 27 <«—

Fig. A.10.17

10.18
The convolution of the two functions is shown in Fig. A.10.18.1.

B S B

«—d — «— 4 — «— d —><«—d —

Fig. A.10.18.1
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The respective Fourier transforms of the two functions are shown in Fig. A.10.18.2.

2/d
J \J:“

2/d
. T AT AW
«— d — 2\/

Fig. A.10.18.2
Hence, the Fourier transform of the convolution of the two functions is the product of
the Fourier transform of the individual function, which is shown in Fig. A.10.18.3

F( )

«— d —»
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F(— — ® I)

«—d —» «— d —»
v
= R ) x F( I )
«— 4 —
«—d— v

2/d
_ /\TA
1/d

Fig. A.10.18.3

10.19
The area of the overlap is given by:

A= Zgr-ze—%-erine-rcosej

=r?(20-2sinHcosH)

R . R?
where cosd=— and singd=,/1-—
2r 4r

Hence the convolution is given by:

1
R? )2 R
2r

O(R)=r? 20051 R 2 1-—
2r 4r
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The convolution O(R) in the region [0,2r] is sketched below:

+O(R)

v

Fig. A.10.19
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SOLUTIONS TO CHAPTER 11

11.1

Fig A.11.1
In a bi-convex lens, as shown in Fig A.11.1, the time taken by the wavefront to travel
through path AB is the same as through path A'B’, so we have:

nd r? 1 (nj r’er? (1) r?
—+ === d+ —— |+ = 2+ ==
c 2R, ¢ (c 2R, 2R, c 2R,

which yields:
2
z=(n-1 i_i r
R, R,)2
i.e. pzlz(n_l) 11
f R R
11.2
- A Z B
r
g A B 0

Fig A.11.2
As shown in Fig A.11.2, the time taken by the wavefront to travel through path AB

© 2008 John Wiley & Sons, Ltd

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

is the same as through path A'B’, so we have:

nd _ (0, —er®)d 2

c Cc c
which yields:
z=ar’d
i.e f = i
2ad
11.3

Choosing the distance PF = /2 then, for the path difference BF —BF’, the phase

difference is z radians.

Similarly for the path difference AF’— AF the phase difference is z radians.

Thus for the path difference AF'—BF’ the phase difference is 2z radians and the
resulting amplitude of the secondary waves is zero.

Writing F'F = x/2, we then have in the triangle F'FP: gsine = % so the width of

the focal spotis x = L
sing

114
If a man’s near point is 40cm from his eye, his eye has a range of accommodation of:

1 :

— = 2.5[dioptres

0.4~ 2oldioptres]
Noting that a healthy eye has a range of accommodation of 4 dioptres, he needs
spectacles of power:

P =4-25=15[dioptres]

If anther man is unable to focus at distance greater than 2m, his eye’s minimum
accommodation is:

%: 0.5[dioptres]

Therefore, he needs diverging spectacles with a power of -0.5 dioptres for clear image
of infinite distance.

11.5
Noting that ¥ :IT' we have the transverse magnification given by: M, =IT. The
y
angular magnification is given by: M, :ﬁ = );/dl :%. Using the thin lens power
Vo Y/G,

© 2008 John Wiley & Sons, Ltd

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

equation: P:%—il,we have %=P+%,i.e. M, =d,(P+Y1I'")=Pd, +1

11.6
The power of the whole two-lens telescope system is zero, so we have:

P=P+P,-LPP,=0

where L is the separation of the two lenses. Noting that P, :fi and P, :fi, we
0 e
have:
1.1t
fO fe fo fe

which gives: L= f,+ f,

Suppose the image height at point 1 is h, we have:

la|=d/2L=h/|f,| and |a'|=D/2L=h/|f|

which yields:

M, =|%]-%/ D

al |f| d

11.7
As shown from Figure 11.20, the magnification of objective lens is given by:
MO:—%. Suppose the objective lens is a thin lens, we have: Poz% i.e.
M, =-PX

Similarly, the magnification of eye lens is given by: M, = % Suppose the eye lens

e

is a thin lens, we have: P, :% ie. M, =Pd,.

So we have the total magnification given by:
M=MM,=-PPdx
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11.8

Fig.A.11.8(a)

As shown in Fig.A.11.8(a), Snell’s law gives:
nsin ZOPC =sina =sin ZIPC
In triangle OCP , we have:

oc|  |PC|
sin Z/OPC  sin ZPOC
ie R = R
- nsin Z/OPC  sin Z/POC
ie R___ R
" sinZIPC  sin Z/POC
i.e. /IPC = ZPOC
i.e. A’s OPC and PIC are similar
. oc| |PC|
i.e. T
PC| |IC|
2 2
i.e. |IC|:&:R—:n
OC| R/n

Alternative proof using Fermat’s Principle:
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Fig.A.11.8(b)
Equate optical paths |IP|2 = n2|OP|2. Let |IC|=k, [CB|=I and |PB|=d, then:

IP[* = (k +¢)? +d? =n*(OP)? = n{(%ﬂ] +d2}

i.e. k*+ 2kl +17 +d? = R*+ 2nRl +n?*(1* +d?)
i.e. k*+ 2kl + R? = R? + 2nRI + n°R?
that is k=|IC|=nR
11.9
(a) The powers of the two spherical surfaces are given by:
p- n—n :1.5—1:_0_5 and P, = n—n :1—1.5:0
R -1 R 00

Suppose a parallel incident ray (e, =0) strikes the front surface of the system at a

height of y,. By using matrix method, we can find the ray angle «, and height vy,

at the back surface of the system given by:

el 3 L L
o eos il S0 ooer]

So the focal length is given by:

;] 0.5y,

The principal plane is located at a distance d to the left side of the right-end surface

of the system, which is given by:

S A B
;| 0.5y,

=0.3[m]

(b) The powers of the four spherical surfaces are given by:
n—-n 15-1

P, = = = -0
o0
P_n—n’_1—1.5_1
* R -05
P3=”F;”=i11=—0.5
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Suppose a parallel incident ray (e, =0) strikes the front surface of the system at a

height of y,. By using matrix method, we can find the ray angle «; and height vy,

at the back surface of the system given by:

Z, &
y! = R4T34 Rststle R, y

4 1

R T P e e P )
o aloss 2ls Vo6 36 2leais 3o 2L

[ 06y,
071y,

So the focal length is given by:

f=dt- N _167[m]
|a4| 0.6y,

The principal plane is located at a distance d to the left side of the right-end surface
of the system, which is given by:

g 2 e= vl _ 0.1y -y
A 0.6y,

= 0.48[m]

(c) The powers of the four spherical surfaces are given by:
nN—-n 15-1

P, = =0
R 0

P, - n-n :1—1.5:
R -0.5

PS:n —n:1.5—1:1
R 0.5

P, - n—-n :1—1.5:O
R 0

Suppose a parallel incident ray (e, =0) strikes the front surface of the system at a

height of y,. By using matrix method, we can find the ray angle «; and height vy,

at the back surface of the system given by:
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a, A
y; = R4T34 R3T23 R2T12 Rl y

R B R R P A
BT T T Lo o T

[ 14y,
- 10.19y,

So the focal length is given by:

Y1 Y1
f=L= =0.7]m
e A Hm

The principal plane is located at a distance d to the left side of the right-end surface
of the system, which is given by:

Yo=Y _ 019y, -y,
;| L4y,

d =

— 0.58[m]
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SOLUTIONS TO CHAPTER 12

121

Fig.A.12.1

As shown in Fig.A.12.1, the air gap thickness t is given by:

rZ

T2R, 2R

t=t,—t,

Noting that there isa = rad of phase shift upon the reflection at the lower surface of
the air gap, the thickness of air gap at dark rings should satisfy:
2t=nAi

2 2

12.2
The matrix relating reflection coefficient r and transmission coefficient t for the

A/4 filmis given by:

M:{cmé iﬁn&m}:[o Vm}

in,sind  cosd in, O

where the phase change & = z/2 forthe A/4 film.

Following the analysis in text page 352, we can find the coefficient A and B are
given by:

A=n(My +Mpn,) = in1n3/n2

© 2008 John Wiley & Sons, Ltd

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

B= (M21 + Mzzna) = inz
A perfect anti-reflector requires:

_A-B _inn,/n,—in, _
A+B inn,/n,+in,

which gives:
n =nn,
12.3
As shown in page 357 of the text, the intensity distribution of the interference pattern
IS given by:
2 2 5
| =4a°cos”—
2

where & is the phase difference between the two waves transmitted from the two
radio masts to a point P and is given by:

S=ksing=""fsing=— 27 . 400xsing=4zsing
y) 3x10%/1500%10
S0 we have:
| = 4% cos? ZSIN0 _ 21,[1+ cos(4xsin 0)]

2

where 1, =a" represents the radiated intensity of each mast.

The intensity distribution is shown in the polar diagram below:

Fig.A.12.3
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12.4
(a)

Analysis is the same as Problem 12.3 except:
0=0,+kfsing = 7z+27”%sin¢9 =rm+7zsing

Hence, the intensity distribution is given by:

| =4a? COSZ(éj=4az COSz(ﬂ'-l-ﬂ'—Sinej:Arl SinZ(”Sin 9]
2 2 s 5

where |, =a® is the intensity of each source.

The polar diagram for | versus & is shown below:

0 =180"

0=270
Fig.A.12.4(a)
(b)
In this case, the phase difference is given by:

0 =0, +kf sin9=£+2—ﬂ~isin9=7z+ﬂ—sma
2 A1 4 2

Hence, the intensity distribution is given by:

2 T+ mSING

| = 4a’cos’ g = 4a’ cos 4I{cos2 %(1+ sin 9)}

where |, =a® is the intensity of each source.

The polar diagram for | versus & is shown below:
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0=180":

125
(@)

0=

270°

Fig.A.12.4(b)

Fig.A.12.5(a)

Fig.A.12.5(a) shows elements of a vertical column and a horizontal row of radiators in

a rectangular lattice with unit square cells of side d . Rays leave each lattice point at

an angle @ to reach a distant point P. If P is simultaneously the location of the

mth spectral order of interference from the column radiation and the nth spectral

order of interference from the row radiation, we have from pages 364/5 the relations:
dsind=mA and dcosd=nA

Thus

sing

cosd

where m and n are integers.

(b)
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Fig.A.12.5(b)
Waves scattered elastically (without change of A1) by successive planes separated by
a distance d in a crystal reinforce to give maxima on reflection when the path
difference 2dsind=nA. In Fig.A.12.5(b), the path difference ABC between the
incident and the reflected rays =2dsin@.

12.6
Using the Principal Maximum condition:

fsind=nAi
at Hzi%, we have: f =nA, which shows the minimum separation of equal

sourcesisgivenby: f =A1.
When N =4, the intensity distribution as a function of & is given by:

sin’(4zsin 6)

I = - 2 -
sin“(zsin9)

S

The N —-1=3 points of zero intensity occur when:

fsinH:i,i,%

4 2 4

i.e. s.inezi,l,E
4 2 4

The position of the N —-2=2 points of secondary intensity maxima should occur
between the zero intensity points and should satisfy:

ar_,

do
i o da _d | sin®(4zsin ) _
o do dé| ° sin?(zsind)
i.e. 6cos’(rsin@)-1=0
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] ) ) 1 1
which yields: sin@ =-—arccos| + —
Y ( @j

T

i.e. secondary intensity maxima occur when 6 =215 and 6 =239.3".

The angular distribution of the intensity is shown below:

12.7
The angular width of the central maximum &6 is the angular difference between +1

and -1 order zero intensity position and should satisfy:

sinsy - 24 _2x0.21

= =1.875x10"°% or 66 =6
Nf  32x7

The angular separation between successive principal maxima A€ is given by:

sinA@ = % = % =0.03 or AG =142
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12.8

90° 90°
120 - 60° 1200 60°
150;,/
180°
210"
270° 270°

90°

1 5 O O 1 5 0 O/ /

180°

180°
210 210
240 300 2000 300
270° 270"
Fig.A.12.8

The above polar diagrams show the traces of the tip of the intensity of diffracted light
| for monochromatic light normally incident on a single slit when the ratio of slit

width to the wavelength d/A changes from 1 to 4. It is evidently shown that the

polar diagram becomes concentrated along the direction =0 as d/A becomes

larger.

12.9
Itis evident that « =0 satisfies the condition: « =tanc.

By substitution of & =37/2-6 into the condition: « =tana we have:

37/2-6 =tan(37/2-5)
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i.e. 3z/2-6 =cots

i.e. (37/2—-5)sinSs =coss
when ¢ issmall, we have:

2
(37/2-5)5 :1—%

The solution to the above equation is given by: 6 =0.7x.
Using the similar analysis for «=57z/2-6 and a=7z/2-6, we can find
0=0.041r and 6 =0.029z respectively. Therefore the real solutions for « are

o =0,£1.437,+2.4597,3.471r,etc.

12.10
If only interference effects are considered the intensity of this grating is given by:
sin’34
I =1,—
sin® g
The intensity of the principal maximum is given by: 1 _. =91, when g=0.
The g for the secondary maximum should satisfy:
d (sin’38) 0
dg | sin® g
i.e. sin® =1
i.e. Beee max = (20 +1)%, where n is integer
Hence, at the secondary maximum:
Sinz 3ﬂsec max
Isec max — 0 2 o IO :_Imax
B sin /Bsec_max 9

12.11

Suppose a monochromatic light incident on a grating, the phase change dg required
to move the diffracted light from the principal maximum to the first minimum is given
by:

af sing
A

A A
2

_ A 4(sing) = z
d,B—d( j—;td(sm@)— NN
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Since N isa very large number, we have:
T
dg=—=~0
b N
Then, suppose a non-monochromatic light, i.e. A4 is not constant, incident on the
same grating, the phase change dg required to move the diffracted light from the

principal maximum to the first minimum should be the same value as given above, so

we have:
da = d(ﬂf S'”‘gj _ A 4(sing)+ 4 sin m(lj
A A A
:icosade— i 5|2n6’d/1 -2 ~0
A A N
which gives:
déd = (nNcotd)™
12.12
(a)
The derivative of the equation:
fsind=nAi
gives:
f cos@d@ =ndA
when & is asmall angle we have:
o _n
di f

When the diffracted light from the grating is projected by a lens of focal length F
on the screen, the relation between linear spacing on the screen | and the diffraction
angle @ isgiven by:

I=F&8
Its derivative over A gives:
di _-do_nF
di  da  f

(b)
Using the result given above, the change in linear separation per unit increase in
spectral order is given by:

dl _ Fdi _ 2x(5.2x107 -5x107)

N f 2%10°° = 2x107[m]
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12.13
(@)

Using the resolving power equation:

i:nN
dA
we have:
A (5.89%x107 +5.896x107)/2 ~308
ndA 3x(5.896x107" —5.89x107")
(b)
Using the resolving power equation:
i:nN
dA
we have:
-7
diete 285X ) e
NN 3x9x10
12.14
When the objects O and O’ are just resolved at | and 1’ the principal

maximum of O and the first minimum of O’ are located at | . Rayleigh’s criterion
thus defines the path difference:

OBI-O'Al =0'B-0'A=1.224 (Bl =Al)
Also OB =O0A giving
(O'B-0OB)+(0A-0'A)=1.222

Fig.Q.12.14 shows OA parallelto O'A and OB parallelto O'B, so:

OA-O'A=0'C =00'sini =ssini
and

O'B-0OB =0'C'=00'sini = ssini
We therefore write:

S zl'ZM or s :1'22/? if i =45

2sini 2sini
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Fig.A.12.14
SOLUTIONS TO CHAPTER 13

13.1

For such an electron, the uncertainty of momentum Ap roughly equals the magnitude of

momentum P, and the uncertainty of radius Ar roughly equals the magnitude of radius r. So

we have:

h h
~Ap=—~~—
P P Ar r

By substitution of the above equation into the expression of electron energy, we have:

_p_z_ g2 _hZ/rz_ g2
2m  Arzeyr 2m o Axgr

(13.1.1)

The minimum energy occurs when dE/dr =0, i.e.:

i(ﬁ_ e’ Jzo

dr\ 2m  dzgr

R e?

3t 7 =0
mr’  4rzeyr

which yields the minimum Bohr radius given by:

_dagh® | gh’

- ~ me?

me’
By substitution into equation 13.1.1, we find the electron’s ground state energy given by:
2
_ R [ ame? e’ ame’  —me
° 2ml gh? drg, g’ 8Bglh?

13.2

Use the uncertainty relation APAX ~ h we have:

szlzﬂ

Ap p

Photons’ energy converted from mass m is given by:

E = pc = mc?
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So, the momentum of these photons is given by:

p=mc
Therefore, these photons’ spatial uncertainty should satisfy:
h
AX > —
mc
which shows the short wavelength limit on length measurement, i.e. the Compton wavelength, is
given by:
h
A=—
mc

By substitution of electron mass: m, = 9.1><10*31[kg] into the above equation, we have the

Compton wavelength for an electron given by:

-34
A= 6'63_;10 —~ 2.42x107[m]
mc 9.1x107x3x10

e

133
The energy of a simple harmonic oscillation at frequency @ should satisfy:

2 ) -
E :p—+1ma)2X2 > AL+£ma)2AX2
2m 2 2m 2

- 2 _ 2
The relation: (Ax?)(Ap?) z% gives: Ap® =~

——, by substitution into the above equation,
4AX?

we have:

N . 2 _ 2 _
Ap +£ma)2AX2 = h_+1mszXz > 2\/ h_(ima)zszj
2m 2 8mAXx? 8mAx?\ 2

=lhw=£hv
2 2

E>

i.e. the simple harmonic oscillation has a minimum energy of Eh V.

13.4
When an electron passes through a slit of width AX, the intensity distribution of diffraction
pattern is given by:

H Y]
SIN“ T .
| =1,———,where o =—AXxsind
a A

The first minimum of the intensity pattern occurs when « =,

i.e. a:ZAxsinezn
A

Noting that A =h/p, we have:
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a :%Axpsine =7
i.e. AXAp =h

where Ap = psin@ is the change of the electron’s momentum in the direction parallel to the

plane of the slit. This relation is in accordance with Heisenberg’s uncertainty principle.

135
The angular spread due to diffraction can be seen as the half angular width of the principal
maximum A& of the diffraction pattern. Use the same analysis as Problem 13.4, we have:

a="dsingd~2dA0 =1
A A

= =0.1= 544

i.e. AG = = =
10

A_10°
d

13.6
The energy of the electron after acceleration across a potential difference V is given by:

E =eV, so its momentum is given by: p :X/ZmeE :\/2meeV , therefore its de Broglie

wavelength is given by:

h_h 6.63x107
P \2meV  2x9.1x10x1.6x10%°V

A =1.23x10°V **[m]

13.7
From problem 13.6 we have:

1.23x10° 1.23x107°
= = _10 = 4_1
A 3x10

VY2
-V =16.81[V]
13.8

1
The energy per unit volume of electromagnetic wave is given by: E = Ego EQ2 , Where E; isthe

electric field amplitude. For photons of zero rest mass, the energy is given by: E = mc? = pc,

where P is the average momentum per unit volume associated with this electromagnetic wave.
So we have:

1
EEOEOZ = pc
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ie. pzlgOEoz/c

The dimension the above equation is given by:

F-VZm? C-V-m? C-W-m? A-.s-kg-m*-m? 1
1 = 1 = 1 = 1 3 :kgm S
m-s m-s m-s—-A m-s=-s°-A

which is the dimension of momentum.

13.9
When the wave is normally incident on a perfect absorber, all the photons’ velocity changes from
C to 0, the radiation pressure should equal the energy density of the incident wave, i.e.:

P:cp—O:cpzégoEo2

When the wave is normally incident on a perfect reflector, all the photons’ velocity changes to the
opposite directing but keeps the same value, hence, the radiation pressure is given by:

P =cp—(—cp) = 2cp = &,E¢

13.10
Using the result of Problem 13.9, we have the radiation pressure from the sun incident upon the
perfectly absorbing surface of the earth given by:

1 1.4x10°

Zx =2 _15%10°%[Pal~ 10 *[atm
3 gy O Pal=L0 T

P==-x—=¢gkE; :%xl:
C

13.11
Using the result of Problem 13.3, we have the minimum energy, i.e. the zero point energy, of such
an oscillation given by:

%h y = %x 6.63x107** x6.43x10" = 2.13x107%’[J] =1.33x10°[eV]

13.12
The probability of finding the mass in the box is given by the integral:

a 2 a1(. 2%\
j_a|y/(x)| dx = Lg(l‘ o J dx

a 2,2 4,4
=J- 1 1—7”(2 +7I—X4 dx
-ag 4a 64a
2 4
9 2T 2T 0,96
12 320

ikx —ikx

The general expression of the wave function is given by:  =Ce™ + De™™, where A,B are

constants. Using boundary conditionat Xx=a and X =—a, we have:
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w(a) =Ce" + De™ =0
w(-a)=Ce ™ + De** =0
which gives: C = D, so we have:
w =Ce™ + Ce™ = Acoskx
where A=2C.

Boundary condition: ¥ =0 at x=a gives: coska=0,i.e.

K = (n +3j1,where n=0123,--
2)a

Hence, the ground state equation is given by letting n =0, i.e.:

v = Acos(ﬁj
2a

By normalization of the wave function, we have:

f:|l//(x)|zdx =1

ie. _|'+°°A2 cos?| 2 lax =1
-0 2a

i, j pelreosiz/a) o o

—a

ie. Azil/\/g

Therefore the normalized ground state wave function is:

v (X) = (1/a) cos(mx/ 2a)

which can be expanded as:

13.13
At ground state, i.e. at the bottom of the deep potential well, n, =n, =n, =1.

By normalization of the wave function at ground state, we have:
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2
Asin 2 sin %sin lz‘ dxdydz
C

[[fytoafav = [ [ [ Asin"
- Azjj‘(sin%jzdx -La(sin%jzdy-f(sin%zjzdz

= AZJ-a{l_icosz_ﬂxjdx.jb(i_icosz_ﬂyjdy.J’C{i_icos%jdz
°o\2 2 a o\2 2 0 c

i.e. A =,/8/abc

13.14
Text in page 426 shows number of electrons per unit volume in energy interval dE is given by:

_ 2)( 472_(2m3)1/2 E1/2

dn 3

dE

and the total number of electrons given by:

16z (2md)?EY?

N
3h?

so we have the total energy of these electrons given by:

u:jEdnszEj—EdE

3\Y2 =32
_ J'Ef 2x4x(2m°)°E dE
0 h?
3\Y2 £5/2
_ 167(2m 2 Ef” _ 3 NE,
5h 5

13.15
Noting that Copper has one conduction electron per atom and one atom has a mass of

m, =1.66 x107%"Kg , the number of free electrons per unit volume in Copper is given by:

o P 9x10°
° 64m, 64x1.66x10%

~ 8x10%[m?]

Using the expression of number of electrons per unit volume in text of page 426, we have the
Fermi energy level of Copper given by:

~1.08x107*°[J] = 7[eV]

2/3 2/3
E n, -3h° | 8x10% x3x(6.63x10°*)°
1674/2m?

| 167x4/2x(9.1x107%)°
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13.16

By substitution of valuesof X, V —E ,and m into the expression € >*, we have:

For an electron:

~ - —2[ V2x9.1:40%0.64109 /(66300 /27 ) ka0
e 2% _ g 2[/2m, (V=E) /nJx _e [ } —e2% 101

For a proton:

— — - x1.67x107°" 1. A . A x2x10™
ot _ g2 [2m, (E) /i e 2[\/2 167x1027x1.6x10 2 /(6.63x10 34/2;:)} 2x10719 o4 10

13.17
Text in page 432-434 shows the amplitude reflection and transmission coefficients for such a
particle are given by:

where,

~2mE JJ2m(E-V)
k, = P and kZ:T

If V is a very large negative value at X > 0, we have the amplitude reflection coefficient given
by:

v2mE —/2m(E -V)
r=1lim =—
Vo \[2mE +,2m(E -V)

and the amplitude transmission coefficient given by:

2+/2mE

Voo \[2ME +,/2m(E -V)

i.e. the amplitude of reflected wave tends to unity and that of transmitted wave to zero.

13.18
The potential energy of one dimensional simple harmonic oscillator of frequency @ is given by:
1
V = =—mao’x?
2

By substitution into Schrédinger’s equation, we have:

(13.18.1)

Try t//(x)=,/a/\/;e‘f"zxz/2 in dy/dx:
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SO.

4,2

2 7&2X2 732)(2
d W _ 2 a 2 4,2 a 2 _
—-=-a’ [-—e 2 +a'x’ [——e
dx N N7

In order to satisfy the Schrédinger’s equation (13.18.1), we should have:

2 _2
Zzz;lan and mhio =a’
which yields:
2,2
EO:h a zlha)
2m 2

Try t//(x)=1/a/2\/;2axe“"‘zxz/2 in dy/dx:

d‘/’ 32\/Tazxz 32\/Tazxz
=2a —2a°X° |—=e 2 =(2a-2a’x) |——e 2
Vo A Nodn
SO.

dZ‘/’ 3\/Tazxz 5,3 3 a S 5.3 3 a -
=-4a’x [—e 2?2 +(2a’°x°-2a°x).|——e 2 =(2a’x°-6a°x).|[——e 2
0x° A Wamt o = Nodn

In order to satisfy the Schrédinger’s equation (13.18.1), we should have:

2 2
3a = Z?rlan and mhf) =a*
which yields:
2,2
E = 3n’a = Eha)
2m 2
13.19
When n=0:
N, = (a/7¥22°00"2 = \Ja/ 7
Ho(ax) = (-1)°e* e =1
Hence:
Wy = NoHo(ax)e“"‘zxz/2 = ,/a/x/;e‘azxz/z
When n=1:

N, = (a/7*?2')"2 = \Ja/2/x
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242 d 2,2 2,2 2.0
H,(ax) = (-1)'e** ——e ™ =—¥* .e™** .(-2ax) = 2ax
(@0 = (e o (-2%)
Hence:
v, = N,H, (ax)e ™ = \Ja/2/x 2axe **/
When n=2:
[ \a/2
N2 = (a/ﬂ'l/2222!)1/2 = a/8\/; :#
2 a’x? d2 2,2 9 2
H,(ax) = (-1)"e"” e =-2+4a’x
(@0 = (e o
Hence:
w, = N,H, (ax)e ™/ = \Ja/2/z (2a*x? ~1)e ="
When n=3:
N, = (a/7¥22°3)*? = \Ja/ 48z =_V‘5‘/43*/;
2y2 d3 2,2
Hy(ax) = (-1)%6™ —° e = 8a’’ —12ax
d(ax)
Hence:
Vs = NsHa(aX)e_azxz/z = xla/3ﬁ(2a3x3 —3ax)e“"‘zxz/2
13.20

The reflection angle &, and reflection wavelength A, should satisfy Bragg condition:

r
2asing, = 4,
where a is separation of the atomic plane of the nickel crystal. Hence the reflected electron

momentum P, should satisfy:

p_L_ h
"1 2asiné

r

Hence, the reflected electron energy is given by:
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pr h’
2m, 8m,a’sin’ 0,
_ (6.63x10°%)?
8x9.1x107*" x(0.91x107°)? xsin® 65°
= 8.88x10°[J] = 55.5[eV]

The difference between the incident and scattered Kinetic energies is given by:

E =

r

[E,—E| 555-54
E 54

x100% = 2.8% < 3.9%

13.21

For y =sinka:

Since v, l//*,V are all periodic functions with a period of a, we have:

a . 27X
. | sin®kxV_cos dx
AT ) a

vy &= J‘Oasin2 kxdx

_[a 1-cos(27nx/a) cos 27mx

dx

— _va 0 2 a
- J-al—cos(27znx/a) dx
0 2

1 27mX 27mx
o ——j cos -COS dx
20 a

- _ZV a/2 :

1l 2z (M+n)x 2z(Mm—n)x
fJ‘ COS¥+COS¥ dx
0 a a
m=1 a
The above equation has non-zero term only when m = n, so we have:

J;a(coswﬂjdx
AE =V, a —v. 2 -2y
2a 2a 2

For y =coska:
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27mx

j pVpdx & fcos2 kxV,, cos dx
_[W pdx = J‘Oa cos’ kxdx
i J-a1+ cos (2znx/a) cos 27mx dx
— _va 0 2 a
o r1+ cos (27mx/a) dx
0 2
1 27mX 27mx
= cos -C0S dx
_ _ZV 2% a a
a/2
*J‘ [ 27z(m+n)x co SZyz(m—n)x}dX
Z a
m=1 a

The above equation has non-zero term only when m = n, so we have:

jo al(cos47mx+1)dx a 1
AE = -V a v 2oy

" 2a "2a 2"

© 2008 John Wiley & Sons, Ltd

Uploaded By: Jibreel Bornat


https://students-hub.com

SOLUTIONS TO CHAPTER 14

141

For 6, <30°, we have:
T <T,|1+ Lin? 3% =1.017T,
4 2

T-Ty =1.7% < 2%

0

For 6,=90", we have:

T=T,1+> Lin? 20 =1.125T,
4 2

T-T, =12.5%

0

14.2
Multiplying the equation of motion by 2dx/dt and integrating with respect to t

gives:
dx )’ x
m(aj = A—zjof(x)dx
where A is the constant of integration. The velocity % is zero at the maximum

displacement x = x,, giving A= ZJ:(’ f(x)dx.

i.e. m(%jz = zjo“ f(x)dx—zjox f(x)dx = 2F (%,) — 2F (X)
ie. ‘;’t( \/ [F (%)~ F(X)]

Upon integration of the above equation, we have:
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_([m dx
t_I\EJon)—F(x)

If x=0 attime t=0 and z, isthe period of oscillation, then x=x, at t=17,/4,

_ m Xo dX
T°‘4\D° JF (o) —F(x)
14.3

By substitution of the solution into X:

© n® n n> . n
X= —a, —Co0S—¢@—h —sin—
z[ "9 3¢ "9 34

n=1

so we have:

Since s, <<'s;, we have s(x) = sX, So:
" < n n n”). n
X+s(X) =Y la,| s, —— [cOs_—g+Db | s, —— [sin—¢ | = F, cosat
— 9 3 9 ) 3

Ee) 2 2
ie. Z[a (sl——Jcos ¢+b, [sl—%]sm 4 F, cos¢
i.e.
The above equation is true only if b, =0 and the even numbered cosine terms are

zero. By neglecting the zero terms, we have:

a,(s; —1)cosg+a,(s, —9)cos3p +--- = F,cos¢
i.e. a,(s, —1)cosg+a,(s, —9)(4cos’ g —3cos @) +-- = F, coS ¢
i.e. [a,(s, —1) —3a,(s, —9)]cos ¢ + 4a,(s, —9)cos’ g +--- = F, cos ¢

As we can see, only a, and a, are the main coefficients in the solution, i.e. the

fundamental frequency term and its third harmonic term are the significant terms in
the solution.

14.4

Since V =V, at r=r,, by expanding V at r,, we have:

V= V+[ j(r )[dzr\Z/J(r—ro)2+
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Noting that:

dv ré r?
&) Zm{%‘% =0
o 0 0

12 6
(dZVJ :uvo[ﬂ_m}?zv_o

2 14 8
dr 5 I

We have:

Y, :V0+l\2/°(r—ro)2+~--

0

The expression of potential energy for harmonic oscillation is given by:

V=V, +%sx2, hence s= 72\2/0 , and the oscillation frequency is given by:

r-O
PRI 72\/20
m  mr,
14.5
The restoring force of this oscillator is given by:
F(x) = SV s

Hence, the equation of motion is given by:

mX = F(X)
ie. X‘+£x—3x2:0
m m

At @ =’ =k/m,using « =a/m, the equation of motion becomes:

X+ aix—ax’ =0

2

try the solution x = Acosa,t +Bsin2at+x, in the above equation with x, = —

23

o’ X, _
= —?, we have:

and B=-——
6wy

X = % — @, Asin ot + 2w,B cos 2a,t
X = X — ¢ Acos wyt — 4w Bsin 2at = X, —ijcoswot—%aa)éxlsin 2wt (2)

x> = X7 + A% cos® wyt + B sin® 2wt + 2 AB cos a,t sin 2wt + 2( Acos et + Bsin 2at) X,
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—ax’ = —ax} —al’ cos’ w,t — aB’ sin® 2wyt — 2aAB Cos ot sin 2wt
—2a(Acosw,t + Bsin 2m,t) x,

where
—aA? cos’ wt = —2awix, cos® ot (b)
a2
—oB’sin’ 2a,t :—?xfsinZZa)ot (e)
. 2, .
—20AB cos ot sin 2t = §oz Acosmytsin 2a,t |X; (©
— 20AX, COS w,t — 2aBX, Sin 2wt = —2aAX, COS w,t (d)
2 2 2 -
+§a X; sin 2a,t )

Using (a)(b)(c)(d) the coefficients of x, are:
N —%awg Sin 2a,t — 2aw; cos® agt — 2a* Acos yt sin 2wt — 2aAcos gt
which with « << @} leaves w;x, as the only significant term.

Similarly using (e) and (f) the coefficients of x? are:

2
—a-Zsin 2a,t +Ea2 sin 2a,t
9 3

with —ax? the dominant term. (Note xfoc%).
Wy

We therefore have X +ix —ax’ =0 as a good approximation to the original

equation.

14.6
Extending the chain rule at the bottom of page 472 and noting that the fixed point x,

is the origin of the cycle: x, — x, — X, — X, which are fixed points for f* when
A >% and also noting that x; = f(x;) and x, = f(x;), we have:

F206) = £/ 1/06) and £7(x) = F'06) f'(x)
So the slopes of f? at x; and x, are equal.
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14.7
The fractal dimension of the Koch Snowflake is:
d =104 _ 965
log3
The Hausdorff-Besicovitch definition uses a scaling process for both integral and
fractal dimensions to produce the relation:

c=a’

where ¢ is the number of copies(including the original) produced when a shape of
dimensions d has its side length increased by a factor a.

Thus, for a=2

Q) aline d=1 has c=2

(i) asquare d=2 has c=4

(iii) acube d=3 has c=8

(iv)  an equilateral triangle with a horizontal base produces 3 copies to give

_ log3
log2

d =1.5849 (a fractal)
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SOLUTIONS TO CHAPTER 15

15.1
In the energy conservation equation the internal energy:
1
N R
y=1p
S0 the two terms:
e P_ v P
p r-1lp

. . . . 1
In the reservoir there is no flow energy, so its total energy is internal = Y P _ c?

y=1p, y-1"

where C, is the velocity of sound in the reservoir.

When the diaphragm where is flow along the tube of velocity U and energy 1/2u2 so the total

energy of flow along the tube is:

Ly v P %C*Z P (LLJC*Z

2 y=1p y-1 2 y-1
where u=c", u?=c" :7p* .
P
Hence,
y-1 2(y-1) 2(y-1)

If the wavefront flows at a velocity U, with a local velocity of sound C,, the energy

conservation condition gives:

2 y—1 2(y -1
1 1 ’ 1 (cY
ie. I - R
2 y-1y 2(y-1\ uy,
: 1 1 y+1
i.e. —+ = -
2 (y-DM;  2(y-1M
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i.e.
15.2
Energy conservation gives
1 1 1,
——C+ U =+ U =
y—-1 2 y—-1 2
So
2771
2
(A)

Momentum conservation gives

NI 0 LU
(y-DM{ +2

y+1 c’? from Problem 15.1
2(r-1)
:C§+7_1 22:7/'*‘1(:*2
2 2

¢+ =22 (2 u2) = B (¢ + )
P u,

(B)

Combine equations A and B to eliminate Cf and sz and rearrange terms to give

y+1 ., -1, 17/+1*2 y-1,
c - u, + = c u, +
2 2 1 7ul , 2 2 2 7U2
. r+1l . y+1
l.e. C +U,)= cC +u
5 ( u) = , ( > j( 2)
ie. (U, —U,)C™ = (Ul —UyUz ) = UyU, (U — U,)
ie. c? =uyu,
153
The three conservation equations are given by:
Pl = pPrU,
(15.3.1)
P+ plulz =P, + ,02U22
(15.3.2)
1u +e, L :Euz2 +€, P
2 2 P>
(15.3.3)

Using equation 15.3.1 and 15.3.2 to eliminate U, gives:
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(15.3.4)
Using equation 15.3.1 and 15.3.3 and the relation

e=c,T

to eliminate U, gives:

(15.3.5)

/022 —PiPs 2

U, =p,— P
P
b
o,
pr=p 2 7 (&_&J
2_
2p¢ y=1p o

Then, using equation 15.3.4 and 15.3.5 to eliminate U,, we have:

Pt
2

L(pl P, — P, p1)
y-1

i

p2/p1+1: Y PP pa/p

2
i.e.
i.e.
which yields:
P _f-a
p, 1-pa
where & =(y~1)/(y+1) and B=p,/p,.

15.4
Using the result of Problems 15.1 and 15.2, we have:

(15.4.1)

Using equation 15.3.1 and 15.3.2 to eliminate p, gives:
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=1 p,/p-1

[(l+p2/p1)(7—1)—27] pZ/pl = (1+,02/,01)(}/—1) -2yp

[B(r =D~ (r+D1p,/p, = (=D~ p(r+1)

ul _u _ (r+)M¢
uu, u, (F-)YM?Z2+2
PL— P, =1 i
lozuz2 u,
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(15.4.2)

Using equation 15.3.1 and 15.3.3 to eliminate p, gives:
1 2
w1 7w, ,
2 u; ) p; ¥ =1y, b

Using equation 15.4.2 and 15.4.3 to eliminate p, gives:

(15.4.3)

(15.4.4)

where y = p,/p, and & = (y~D/(y+1).

Then, using equation 15.4.1 and 15.4.4 to eliminate U, /u, we have:
u +
M, =—1= yr+a
C, l+a

u l+ay

2 __ - 77
C, “l+ay+a

(15.4.5)
Frome equation 15.4.4 and 15.4.5 we have:

(15.4.6)
Hence, from equations 15.4.5 and 15.4.6 we have the flow velocity behind the shock give by:

_ 6d-a)(y-))

RN Toww e

15.5

In the case of reflected shock wave, as shown in Fig.(b), the shock strength is p, / p, and the
velocity of sound ahead of the shock front is C,. Hence, using the result of Problem 15.4, we

have the flow velocity U, behind the reflected wave given by:

U, _ (@-a)(ps/p,-1)
¢, JA+a)(ps/p,+a)

(15.5.1)
In Fig.(a) the flow velocity U behind of the incident shock front is given by:
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u_ (A-a)(y-1

C, \/(1+ a)(y+a)

(15.5.2)

Using equation 15.5.1 and 15.5.2 together with the relation u+u, =0, c,/c, = (T,/T,)"* and

+
,Where y = , we have:
P y] y pz/ P,

(V=D (Pa/Po+@) _
(ps/ P, 1) yi+a)

which yields:
P (Ra+ly-«a
p,  ay+l
15.6

Pa— P _ Pa/Po—P/P, _ Po/P-VYy _yps/p,-1

p,-P  l-p/p,  L1-ly y-1
By substitution of y = p,/p, and by (Qo+ly-a into the above equation, we have:
2 oy +1
(a+1)y’-ay
Ps— P _ oy +1 _(a+Dy* -2ay-1
P, = Py y-1 (y-D(ay+1)

In the limit of very strong shock, i.e. 'y >>1, we have:

Ps— Py (2a +1)y? :2_’_1
P, — Py ayz a
15.7
u, =—(u+tu)f’
. uf’
i.e. (== -
1+tf
From equation 15.9 in the text, we have:
fl
u, = ;
1+tf
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so we have:

!

uf’ uf
+—
1+tf" 14tf'

u, +uu, =-

15.8
Using u=-2vy,/w, we have:
ut =y ViV Vi

2

7

2
U, = o Yl W

2

V4
3
u, = —2V|: Vo _ 3l//xlé/xx + ZWSX :|
y oy %

By substitution of the above expression into Burger’s equation, we have:

_ 3 3
R e 2 T sz[wm w2, j 0

y 7 vy vty

ie YW — VW _ v YV — VW xx
.€. 2 - 2

4 4

Y x YV x
which yields:
Wy =V

15.9
Using the relation tanh’¢ = sech?4 and sech’¢ = sechgtanhg, where ¢ = a(x — ct), we have the
derivatives:

uy= 40 ¢ sech?p tanhg = 2auc tanh g
Ux = —40® sech’g tanhg = —2ou tanh ¢
Ux = 8a* sech?¢ tanh? ¢ — 4a* sech* ¢ = 4a°u tanh?g — u?

Ux = —160° sech?¢ tanh ¢ + 480.° sech* ¢ tanh ¢ = —-80°u tanhg + 12au tanh ¢

Then, using the relation C = Ao® we have:
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u, +6uu, +U,,
= 2auic tanh ¢ — 120 tanh ¢ —8a°u tanh ¢ +12au” tanh ¢
=0

15.10

At the peak of Figure 15.5(a), ¢ =2a(Xx—ct)=0, and near the base of Figure 15.5(a),

¢ =2a(x—ct)>>0,ie e ~0.Hence, the solution of the KdV equation can be written as:

0° e 02 o
U(X,t) — 2—|Og[l+e 2a(x ct)] ~2° ¢ 2a(x—ct) :80629 2a(x—ct)
5X2 axz
Then, we have the derivatives,

_ 3Anq—2a(x—Ct)
u, =16a’ce

u = _64a5e72a(xfct)

X;

Therefore, if ¢ =4a?,

15.11
Using the substitution z = X—Ct and the relation tanh’¢ = sech?s and sech’¢ = —sechgtanhg,

where ¢ = a(z—z,), we have the derivatives:

U= —4o’c sech®4 tanhg = 2auc tanhg
Uy = —4¢° sech?g tanhg = —2au tanh g
U = 4c sech®d + 40U tanh?¢ = 407U tanh® g + u?

Uxx = —16a° sech’g tanh¢ + 480.° sech® ¢ tanh g = —80°u tanh g — 12u® tanh ¢

Then, using the relation C = Aor®, we have:

u, —6uu, +U,,,
= 2auctanh ¢ +12au” tanh ¢ + 8a°u tanh ¢ —12au” tanh ¢

= —8a’utanh ¢ +8c’utanh ¢
=0

15.12

If V24V, =uU, then:
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u, = 2w, +V,,
2
uXX = 2(VX + VVXX) + VXXX

uXXX = 2(2VXVXX + VVXXX + VXVXX) +VXXXX = 6VXVXX + 2VVXXX + VXXXX

U, = 2W, +V,,

The left side terms of equation mark in equation 15.13 give:
0 2
(& + ZVJ(Vt —6VV, +V,,)

=V, —6(2W> +V*V, ) +V,  +2V(V, —6VV +V, )

XXXX

3 2 2
= 2w, =12vv, +v,, —12w, —6V°V,, + 2w, +V

XXXX

The right side terms of equation mark in equation 15.13 give:
u, —6uu, +Uu,,,

=2W, +V, —6(V’ +V,)(2W, +V, ) +6V,V  +2W  +V

XXX XXXX

3 2 2
= 2w, —12v°v, +V, —12w, —6VV,, +2W,  + V.
So we have:
) =U,—6uu, +u,,

(2 + ZVJ(Vt — 6V, +V,,
OX
15.13

By substitution of V=, /i into U(X) =V, +V’, we have:

2 2
VW — Wy Wy _ Vo
— 5 T ="

% vy

u(x)=v, +v> =

hence,

Vi —U(X)l// =V _l//l/;/xx =0

15.14

wy = —ah secha (X — Xg) tanha (X — Xo)
Wax = 0PA secha(X — Xo) — 207A sech®a (X — Xo)
Using the soliton solution

U =207 sech®a (X — Xo)
we have:
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Yo+ (A= U(X) v
= o?A secha(x — Xg) — 2¢A sech®a (X — Xo) + [-c sech®a (X — Xo)]A sechar (X — Xo)

=0
15.15
Using transformation U —>U —A and X — X +6At, where U and X are the variables
before transformation, we have: U =u+A4 and X = X—6.1t, hence:

u =(U -2), =u,

U= (U —4).X; =u.

U,, =U...X, =U...
XXX XXx X X X X

Using the above relations, equation U, +6uu, +U,, =0 is transformed to its original form:

u +6uu. +u...=0
X X X X

15.16

y = asin zx

Fig.A.15.16

In Fig.A.15.16, A is the peak and B is the base point of the leading edge of the right going

wave: Y = asin zx . The phase velocity of any point on the leading edge is given by:
Y2
1 1
V=g, 1+eag =C, 1+—eag = C,y| 1+ = &axr cos zix
OX 2 OX 2
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.. phase velocityat A:v, =c¢, (cos;zx = cos% = Oj
and phase velocityat B : v, = Co(l—%é‘aﬂ') (cosax =cosz =-1)
.. phase velocity of Arelatedto B :

V,—Vg =C, —Co(l—%é‘aﬂj = %coaazr =|dul

The phase distance |dx| between A and B =7/2
.. Time for Ato reach the position verticallyabove B is :

dx

du

T 1 1
=— = [secs]
212c,ear cypea
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