Removing The Ideal Memory Assumption:

The Memory Hierarchy & Cache

« The impact of real memory on CPU Performance.
« Main memory basic properties:
— Memory Types: DRAM vs. SRAM
» The Motivation for The Memory Hierarchy:
— CPU/Memory Performance Gap
— The Principle Of Locality
« Memory Hierarchy Structure & Operation
» Cache Concepts:
— Block placement strategy & Cache Organization:
 Fully Associative, Set Associative, Direct Mapped.
— Cache block identification: Tag Matching
— Block replacement policy
— Cache storage requirements

— Unified vs. Separate Cache
« CPU Performance Evaluation with Cache:

— Average Memory Access Time (AMAT)
— Memory Stall cycles
— Memory Access Tree

STUDENTS-HUB.com

https://students-hub.com

Removing The Ideal Memory Assumption

So far we have assumed that ideal memory is used for both
instruction and data memory in all CPU designs considered:

— Single Cycle, Multi-cycle, and Pipelined CPUs.

Ideal memory is characterized by a short delay or memory access
time (one cycle) comparable to other components in the datapath.

— 1.e 2ns which is similar to ALU delays.

« Real memory utilizing Dynamic Random Access Memory
(DRAM) has a much higher access time than other datapath
components (80Ns or MOre). | Memory Access Time >> 1 CPU Cycle

* Removing the ideal memory assumption in CPU designs leads to
a large increase in clock cycle time and/or CPI greatly reducing
CPU performance.

Ideal Memory Access Time < 1 CPU Cycle
Real Memory Access Time >> 1 CPU cycle

https://students-hub.com

Removing The Ideal Memory Assumption

« For example if we use real (non-ideal) memory with 80 ns access time (instead of
2ns) in our CPU designs then:

« Single Cycle CPU:
— Loads will require 80ns + 1ns + 2ns + 80ns + 1ns = 164ns =C

— The CPU clock cycle time C increases from 8ns to 164ns (125MHz to 6 MHz)
— CPU is 20.5 times slower

« Multi Cycle CPU:

— To maintain a CPU cycle of 2ns (500MHz) instruction fetch and data memory now take
80/2 = 40 cycles each resulting in the following CPIs

» Arithmetic Instructions CPlI = 40 + 3 =43 cycles
« Jump/Branch Instructions CPl =40 + 2 = 42 cycles
« Store Instructions CPI1 =80 + 2 = 82 cycles

» Load Instructions CPI = 80 + 3 =83 cycles

» Depending on instruction mix, CPU is 11-20 times
slower++++++++++++++++++++++++++++++++++++++H+ -+

« Pipelined CPU:
— To maintain a CPU cycle of 2ns, a pipeline with 83 stages is needed.

— Data/Structural hazards over instruction/data memory access may lead to 40 or 80 stall
cycles per instruction.

— Depending on instruction mix CPI increases from 1 to 41-81 and the CPU is 41-81 times
slower!

T=1xCPIxC Ideal Memory Access Time < 1 CPU Cycle
Real Memory Access Time >> 1 CPU cycle

STUDENTS-HUB.com

https://students-hub.com

Memory Hierarchy: Motivation

Processor-Memory (DRAM) Performance Gap

I l.e. Gap between memory access time (latency) and CPU cycle time

Memory Access Latency. The time between a memory access request Is issued by the

processor and the time the requested information (instructions or data) is available to the

Processor.

1000

ce

~— pProc
60%/yr.

<100

Processor-Memory
Performance Gap:
(grows 50% / year)

DRAM

7%l yr.

981

o
00)
o
—

Ideal Memory Access Time (latency) = 1 CPU Cycle
Real Memory Access Time (latency) >> 1 CPU cycle

STUDENTS-HUB.com

https://students-hub.com

Processor-DRAM Performance Gap:
Impact of Real Memory on CPI

« To illustrate the performance impact of using non-ideal memory,
we assume a single-issue pipelined RISC CPU with ideal CPI = 1.

 Ignoring other factors, the minimum cost of a full memory access
In terms of number of wasted CPU cycles (added to CPI):

Year

1986:
19809:
1992:
1996:
1998:
2000:
2002:
2004:

8
33
60
200
300
1000
2000
3000

CPU

speed
MHZ

125
30
16.6

5
3.33
1

5
333

CPU
cycle

190
165
120
110
100
90
80
60

ns

Memory

Access
ns

190/125 -1
165/30 -1

120/16.6 -1 =

110/5 -1
100/3.33 -1
90/1-1
80/.5-1
60.333 -1

Minimum CPU memory stall cycles
or instructions wasted

" i.e wait cycles added to CPI

STUDENTS-HUB.com

Ideal Memory Access Time <1 CPU Cycle
Real Memory Access Time >> 1 CPU cycle

https://students-hub.com

Memory Hierarchy: Motivation

The gap between CPU performance and main memory has been widening with
higher performance CPUs creating performance bottlenecks for memory access

Instructions. For Ideal Memory: Memory Access Time or latency = 1 CPU cycle

To hide long memory access latency, the memory hierarchy is organized into
several levels of memory with the smaller, faster SRAM-based memory levels
closer to the CPU: registers, then primary Cache Level (L,), then additional
secondary cache levels (L,, Ls...), then DRAM-based main memory, then mass
storage (virtual memory).

Each level of the hierarchy is usually a subset of the level below: data found in a
level is also found in the level below (farther from CPU) but at lower speed
(longer access time).

Each level maps addresses from a larger physical memory to a smaller level of
physical memory closer to the CPU.

This concept is greatly aided by the principal of locality both temporal and
spatial which indicates that programs tend to reuse data and instructions that
they have used recently or those stored in their vicinity leading to working set of
a program.

STUDENTS-HUB.com

https://students-hub.com

_evels of The Memory Hierarchy

Part of The On-chip CPU Faster Access

CPU Datapath Time | Closer to CPU Core
ISA 16-128 Registers

One or more levels (Static RAM):
Level 1: On-chip 16-64K

= Farther away from
the CPU:

Lower Cost/Bit

Registers

Level 2: On-chip 256K-2M Cache Hi .
: - gher Capacity
Level 3: On or Off-chip 1M-32M LEVG|(S) Increased Access
Dynamic RAM (DRAM) _ Time/Latency
256M-16G Main Memory Lower Throughput/
Bandwidth

Mag netiC DiSC (Virtual Memory)

Interface:

SCSI, RAID,
IDE, 1394

80G-300G

Optical Disk or Magnetic Tape

STUDENTS-HUB.com

https://students-hub.com

The Principle Of Locality

« Programs usually access a relatively small portion of their address
space (instructions/data) at any instant of time (program working

ﬂ)_- Thus: Memory Access Locality — Program Working Set
« Two Types of access locality:

Temporal Locality: 1f an item (instruction or data) is
referenced, it will tend to be referenced again soon.
* e.g. instructions in the body of inner loops

Spatial locality: f an item is referenced, items whose
addresses are close will tend to be referenced soon.

 e.g. sequential instruction execution, sequential access to elements of

array —_ : > X /

« The presence of locality in program behavior (memory access patterns),
makes it possible to satisfy a large percentage of program memory access
needs (both instructions and data) using faster memory levels (cache) with

much less capacity than program address space.
Cache utilizes faster memory (SRAM)

STUDENTS-HUB.com

https://students-hub.com

Access Locality & Program Working Set

Programs usually access a relatively small portion of their address space
(instructions/data) at any instant of time (program working set).

The presence of locality in program behavior and memory access patterns, makes it
possible to satisfy a large percentage of program memory access needs using faster
memory levels with much less capacity than program address space.

(i.e Cache)
Program Instruction Address Space
\
\

P!

Program instruction
working set at time T,

Using Static RAM (SRAM)

Program Data Address Space

/

Program data
working set at time T,

Program instruction
working set at time T, + A

Program data
working set at time T, + A

Locality in program memory access — Program Working Set

STUDENTS-HUB.com

https://students-hub.com

Memory Hierarchy Operation

« If an instruction or operand is required by the CPU, the levels
of the memory hierarchy are searched for the item starting
with the level closest to the CPU (Level 1 cache): L, Cache

— If the item is found, it’s delivered to the CPU resulting in a cache
hit without searching lower levels. | Hitrate for level one cache = H,

— If the item is missing from an upper level, resulting in a_ cache

miss, the level jUSt below is searched. | miss rate for level one cache =1 - Hit rate= 1-H,

— For systems with several levels of cache, the search continues
with cache level 2, 3 etc.

— If all levels of cache report a miss then main memory is accessed
for the item.

« CPU < cache <> memory: Managed by hardware.

— If the item is not found in main memory resulting in a page fault,
then disk (virtual memory), is accessed for the item.

 Memory <> disk: Managed by the operating system with
hardware support

STUDENTS-HUB.com

https://students-hub.com

Memory Hierarchy: Terminology

« A Block: The smallest unit of information transferred between two levels.
« Hit: Item is found in some block in the upper level (example: Block X)
egrt | — Hit Rate: The fraction of memory access found in the upper level.

— Hit Time: Time to access the upper level which consists of

Ideally = 1 Cycle

Hit rate for level

one cache = H. (S)RAM access time + Time to determine hit/miss

« Miss: Item needs to be retrieved from a block in the lower level (Block Y)
eg.1-H1 | — MIiss Rate =1 - (H|t Rate) Miss rate for level one cache =1 - Hitrate= 1-H,
— Miss Penalty: Time to replace a block in the upper level +

M Time to deliver the missed block to the processor
. ' ' << '
Hit Time << Miss Penalty M Level 1 (L,) Cache " over Level
Ideally = 1 Cycle) To Processor Upper Level Memory
(Fetch/Load) Memory e.g main memory
Blk X
From Processor
(Store) .
Typical Cache Block (or line) Size: 16-64 bytes
Ablock e.g cache

Hit if block is found in cache

STUDENTS-HUB.com

https://students-hub.com

Basic Cache Concepts

Cache is the first level of the memory hierarchy once the address leaves
the CPU and is searched first for the requested data.

If the data requested by the CPU is present in the cache, it is retrieved
from cache and the data access is a cache hit otherwise a cache miss
and data must be read from main memory.

On a cache miss a block of data must be brought in from main memory
to cache to possibly replace an existing cache block.

The allowed block addresses where blocks can be mapped (placed) into
cache from main memory is determined by cache placement strategy.

Locating a block of data in cache is handled by cache block
Identification mechanism: Tag matching.

On a cache miss choosing the cache block being removed (replaced) is
handled by the block replacement strategy in place.

When a write to cache is requested, a number of main memory update
strategies exist as part of the cache write policy.

STUDENTS-HUB.com

https://students-hub.com

Basic Cache Designh & Operation Issues

* Q1: Where can a block be placed cache?
(Block placement strateqy & Cache organization)
— Fully Associative, Set Associative, Direct Mapped.
Very complex Most common Simple but suffers from conflict misses
« Q2: How is a block found if it is in cache?
(Block identification)
— Tag/Block.

Cache Hit/Miss?

* Q3: Which block should be replaced on a miss?
(Block replacement)
— Random, LRU, FIFO.

* Q4: What happens on a write?
(Cache write policy)
— Write through, write back.

SSSSSSSSSSSSSSSS

https://students-hub.com

Cache Organization & Placement Strategies

Placement strategies or mapping of a main memory data block onto
cache block frames divide cache designs into three organizations:

1 Direct mapped cache: A block can be placed in only one location

(cache block frame), given by the mapping function:

Least complex to implement
suffers from conflict misses

index = (Block address) MOD (Number of blocks In cache)
2 Fully associative cache: A block can be placed anywhere in

CaChe. (nO mapp | ng fu nCti On). Most complex cache organization to implement

3 Set associative cache: A block can be placed in a restricted set of
places, or cache block frames. A set is a group of block frames in
the cache. A block is first mapped onto the set and then it can be
placed anywhere within the set. The set in this case Is chosen by:

iIndex = (Block address) MOD (Number of sets in cache)

If there are 77 blocks in a set the cache placement is called 7~way

Set'aSSOCiative- Most common cache organization

https://students-hub.com

Cache Organization: Tag Data

DlreCt Mapped CaChe Cache Block Frame

A block can be placed in one location only, given by:
(Block address) MOD (Number of blocks in cache)
In this case, mapping function: (Block address) MOD (8) =index

_—

Cache

Index (i.e low three bits of block address)
oS5 o408 33 Index bits
8 cache block frames
//w
Here four blocks in memory / X N\ Example:
map to the same cache block frame S 29MOD 8 = 5
(I oD (1009 =10
\
32 memory / >< index
blocks f A Index size = Log, 8
d 4 N \\ =3 bi'is
cacheable % / N
¢ \ Ne
00001 00101 01001 01101 10001 10101 11001 11101
Limitation of Direct Mapped Cache: Conflicts between Memory

memory blocks that map to the same cache block frame
may result in conflict cache misses

NFS-HUBcon

https://students-hub.com

4KB Direct Mapped

Address from CPU

Hit Access Time = SRAM Delay + Hit/Miss Logic Delay

STUDENTS-HUB.com

Address (showing bit positions) I:Tgi)xtfleld
Cache Example rag il fananin e _x (10DIS)
(20 bits) — o
Hi 20 N 10 5
— 210 = . Tag ™~ N ata
1K = 210=1024 Blocks N N Block offset
Each block = one word (2 bits)
(4 bytes)
Can CaChe up to Index Valid Tag D ata
0
2%2 bytes = 4 GB .
of memory 2
] _ > ° SRAM
Mapping function:
Cache Block frame number = 1021
(Block address) MOD (1024) izzz
i.e . Index field or 10 low bits of N S
block address Tag Matching 4
I Hit or Miss Logic
Block Address = 30 bits Block offse - -)
Tag = 20bits | Index =10bits | = 2 pits 1 (Hlt or Miss)
Tag % Index Offset i ermt o g mateimg e HHUMIS Logie cormpiondty
Mapping

https://students-hub.com

64KB Direct Mapped Cache Example

Tag field (16 bits)

4K= 212= 4096 blocks
Each block = four words = 16 bytes

Can cache up to
2%2 pytes= 4 GB
of memory

SRAM

Typical cache
Block or line size:
32-614 bytes

Hit

Address (showing bit positions)

31...6 15,.4 3210

Index field (12 bits)

| — 11 | Block Offset (4 bits)

and thus may result in a lower miss rate

!
Larger cache blocks take better advantage of spatial locality

Mapping Function:

Cache Bloc

i.e. index field or 12 low bit of block address

STUDENTS-HUB.com

16 12 2 Byte
Tag T T TPorset Word select Data
Index \ Block offset
16 bits 128 bits
\ ‘Tag i Data -
4
> ® ® p p 4K
entries
v
16 32 32 32 32
\\ N \\ \\ \\
=
Tag IRER!
Matching : N
Mux
- - _/
Hit or miss? \32
Block Address = 28 bits
Block offset
J X R Tag = 16 bits Index = 12 bits = 4 bits

Hit Access Time = SRAM Delay + Hit/Miss Logic Delay

K frame number = (Block address) MOD (4096)

https://students-hub.com

Cache Organization:
Set Associative Cache

One-way set associative
(direct mapped)

Block

1-way set associative:
(direct mapped)
1 block frame per set

N\ O

1

Set

Tag Data Tag Data

Tag Data

Tag Data

Cache Block Frame

Why set associative?

Set associative cache reduces cache misses by reducing conflicts
between blocks that would have been mapped to the same cache
block frame in the case of direct mapped cache

Four-way set associative

Tag Data Tag D

Two-way setassociative

Set Tag Data Tag

Data

0

1

2

3

ata Tag Data

Tag Datg/

—— | 2-way set associative:

2 blocks frames per set

4-way set associative:
4 blocks frames per set

7

Eight-way set associative (fully associative)

Tag Data

Tag Data

Tag Data

Tag Data

Tag Data

8-way set associative:

8 blocks frames per set

In this case it becomes fully associative
since total number of block frames = 8

Tag Data

STUDENTS-HUB.com

A cache with a total of 8 cache block frames shown above

https://students-hub.com

Cache Organization/Mapping Example

2-way
Fully associative: Direct mapped: Setl associalive:
block 12 can go block 12 can go block 12 can go
anmywheare only into block 4 amywhera in st (
(No mapping function) (12 mod 8) =index = 100 (12 mod 4) = index =00

Block 01234567 Block 012345867 Block 01234567
N, N, N,

Cache
8 Block Frames

No Index Set Set Set Sat

Index 00 o0 1 2 4

Block frame address

Block 1
ne.. 01234567880

Memaory
32 Block Frames

This example cache has eight block frames and memory has 32 blocks.

12 = 1100

STUDENTS-HUB.com

https://students-hub.com

4K Four-Way Set Associative Cache:

MIPS Implementation Example
Block Offset Field

Address .
Tag 3130...1211 10 98...3210 (2 bits)
Field (22 bits)
22 Q
Index Field

1024 block frames (8 bits)

EaCh bIOCk = 0one Word Index V Tag Data V Tag Data V Tag Data V Tag Data

4-way set associative ;

1024 | 4= 28= 256 sets 2

p p p [] ® [] p [] p ® p p SRAM
253

Can cache up to v54

2%2 bytes= 4 GB 255

of memory SR N I
Set associative cache requires parallel tag
matching and more complex hit logic which Hit/
may increase hit time Miss

Logic
Block Address = 30 bits Block offset LU 1-to-1 multiplexor l
Tag = 22 bits Index = 8 bits = 2 bits
Tag Index Offset

A Hit Data
Mapping Function: Cache Set Number = index= (Block address) MOD (256)

Hit Access Time = SRAM Delay + Hit/Miss Logic Delay

STUDENTS-HUB.com

https://students-hub.com

L_ocating A Data Block in Cache

« Each block frame in cache has an address tag.

« The tags of every cache block that might contain the required data
are checked in parallel.

« Avalid bit is added to the tag to indicate whether this entry contains
a valid address.

« The address from the CPU to cache is divided into:
— A block address, further divided into:
« An index field to choose a block frame/set in cache.
(no index field when fully associative).
A tag field to search and match addresses in the selected set.
— A block offset to select the data from the block.

Block Address Block
Tag Index Offset

STUDENTS-HUB.com

https://students-hub.com

Address Field Sizes/Mapping

< Physical Memory Address Generated by CPU

(size determined by amount of physical main memory cacheable)

Block Address Block

\ /
Mapping

Block offset size = log,(block size)

v

A

v

Index size = log,(Total number of blocks/associativity)

Tag size = address size - index size - offset size \
Number of Sets

_ _ in cache
Mapping function:

Cache set or block frame number = Index =
= (Block Address) MOD (Number of Sets)

I No index/mapping function for fully associative cache I

STUDENTS-HUB.com

https://students-hub.com

Cache Replacement Policy

* When a cache miss occurs the cache controller may have to select a block of
cache data to be removed from a cache block frame and replaced with the
requested data, such a block is selected by one of three methods:

(No cache replacement policy in direct mapped cache)

[1]- Random:

Which block to replace
on a cache miss?

No choice on which block to replace

« Any block is randomly selected for replacement providing uniform

allocation.

« Simple to build in hardware. Most widely used cache replacement

strategy.

— Least-recently used (LRU):

» Accesses to blocks are recorded and and the block replaced is the one

that was not used for the longest period of time.

« Full LRU is expensive to implement, as the number of blocks to be
tracked increases, and is usually approximated by block usage bits that

are cleared at reqular time intervals.

— First In, First Out (FIFO:

STUDENTS-HUB.com

» Because LRU can be complicated to implement, this approximates LRU

by determining the oldest block rather than LRU

https://students-hub.com

Miss Rates for Caches with Different Size,
Assoclativity & Replacement Algorithm

Associativity: 2-way 4-way 8-way

Size LRU Random LRU Random LRU Random
16 KB 5.18% 5.69% 4.67% 5.29% 4.39% 4.96%
64 KB 1.88% 2.01% 1.54% 1.66% 1.39% 1.53%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Program steady state cache miss rates are given
Initially cache is empty and miss rates ~ 100%

FIFO replacement miss rates (not shown here) is better than random but worse than LRU

For SPEC92

STUDENTS-HUB.com

https://students-hub.com

Unified vs. Separate Level 1 Cache

« Unified Level 1 Cache (Princeton Memory Architecture). | AKA shared Cache
A single level 1 (L,) cache is used for both instructions and data.

or Split_
———

« Separate instruction/data Level 1 caches (Harvard Memory Architecture):

The level 1 (L,) cache is split into two caches, one for instructions (instruction
cache, L, I-cache) and the other for data (data cache, L, D-cache).

Processor Processor py—
Common
Control Control
Accessed '
Instruction
for both
Py Unified // instructions 1+ (L:Z\(/;Iel
Datapath 8 Level - And data (_;E L,
P 723 One Datapath Q I-cache
o Cache 7]
2 @D Data
Z L P Ly T 1— Levell
D-cache Cache
Qnified Level 1 Cache _ Separate (Split) Level 1 Caches
(Princeton Memory Architecture) W (Harvard Memory Architecture)

Split Level 1 Cache is more preferred in pipelined CPUs
to avoid instruction fetch/Data access structural hazards

STUDENTS-HUB.com

https://students-hub.com

Memory Hierarchy Performance:
Average Memory Access Time (AMAT), Memory Stall cycles

« The Average Memory Access Time (AMAT): The number of cycles required
to complete an average memory access request by the CPU.

« Memory stall cycles per memory access: The number of stall cycles added to
CPU execution cycles for one memory access.

« |Memory stall cycles per average memory access = (AMAT -1)

« Forideal memory: AMAT = 1 cycle, this results in zero memory stall
cycles.

« Memory stall cycles per average instruction =
Number of memory accesses per instruction
Instruction ' X Memory stall cycles per average memory access
Fetch T _ y y P J ‘/y
= (1 + fraction of loads/stores) x (AMAT -1)

Base CPI = CPIl . ,iion, = CPI with ideal memory

CPl = CPleuion T Mem Stall cycles per instruction

STUDENTS-HUB.(:OFr\‘yCIes = CPU CyCIeS

https://students-hub.com

Cache Performance: (lgnoring Write Policy)

Single Level L1 Princeton (Unified) Memory Architecture

CPUtime = Instruction count x CPIl x Clock cycle time
CPl ecution = CPIl with ideal memory

CPl = CPl uion T Mem Stall cycles per instruction

Mem Stall cycles per instruct‘lon/:
Memory accesses per instruction x Memory stall cycles per access

Assuming no stall cycles on a cache hit (cache access time = 1 cycle, stall = 0)
Cache Hit Rate = H1 Miss Rate = 1- H1 i.e No hit penalty

Memory stall cycles per memory access = Miss rate x Miss penalty = (1- H1)x M
AMAT = 1+ Miss rate x Miss penalty =1 + (1- H1) x M
Memory accesses per instruction = (1 + fraction of loads/stores)
Miss Penalty = M = the number of stall cycles resulting from missing in cache
= Main memory access time - 1
Thus for a unified L1 cache with no stalls on a cache hit:

=P | CPl = CPl . ion T (L + fraction of loads/stores) x (1 - H1) x M
AMAT =1+ (1-H1)x M

CPI = CPlyecution + (1 + fraction of loads and stores) x stall cycles per access
stupenTdHUB.con= CPlayecution + (1 + fraction of loads and stores) x (AMAT —1)

https://students-hub.com

Memory Access Tree: (1gnoring Write Policy)
For Unified Level 1 Cache

Probability to be here CPU Memory AcCcess
—
H1 100% (1-H1)
| Unified |) orl
L L1 Hitt L1 Miss:
L % = HitRate = H1 % = (1- Hit rate) = (1-H1)
Stall cycles per access = 0 Stall cycles per access = M
Assuming: — —
Ideal access on a}\Sta“_ H1x0=0 Stall =M x (1-H1)
(No Stall)

Hit Rate Hit Time Miss Rate Miss Time
~ / ~ ~
AMAT = HIx1 + (1-HL) x (M+1) :/ 1 + M x (1-H1)

Stall Cycles Per Access= AMAT -1 = M x (1 -H1)
CPI = CPl cution + (1 + fraction of loads/stores) x M x (1 -H1)

M = Miss Penalty = stall cycles per access resulting from missing in cache

M + 1 = Miss Time = Main memory access time
H1 = Level 1 Hit Rate 1- H1 = Level 1 Miss Rate

AMAT =1 + Stalls per average memory access

STUDENTS-HUB.cor(:ReVieW from 550)

https://students-hub.com

Cache Performance Example

« Suppose a CPU executes at Clock Rate = 200 MHz (5 ns per cycle) with
a single level of cache.

. CPIexecution: 1.1 | (i.e base CPI with ideal memory)

* Instruction mix: 50% arith/logic, 30% load/store, 20% control
« Assume a cache miss rate of 1.5% and a miss penalty of M= 50 cycles.

CPl = CPl_..ion * mMem stalls per instruction
Mem Stalls per instruction = (1{1) /'V'
Mem accesses per instruction x Miss rate x Miss penalty
Mem accesses per instruction=1 + .3 = 1.3
Instruction fetch/ T Load/store
Mem Stalls per memory access = (1- H1) x M =.015 x50 =.75 cycles
AMAT =1+.75=1.75 cycles
Mem Stalls per instruction = 1.3 x .015x50 = 0.975

CPI=11 + 975= 2.075
The ideal memory CPU with no misses is 2.075/1.1 = 1.88 times faster

sivnsHbAisS Penalty = stall cycles per access resulting from missing in cache

https://students-hub.com

Cache Performance Example

« Suppose for the previous example we double the clock rate to
400 MHz, how much faster is this machine, assuming similar
miss rate, instruction mix?

« Since memory speed is not changed, the miss penalty takes
more CPU cycles:

Miss penalty =M = 50 x 2 = 100 cycles.
CPI=11+ 13x.015x100=1.1+1.95= 3.05

Speedup = (CPIl, 4 X C,) (CPI o, X Cren)
= 2.075 x2/ 3.05 = 1.36
The new machine is only 1.36 times faster rather than 2
times faster due to the increased effect of cache misses.

—> CPUs with higher clock rate, have more cycles per cache miss and more
memory impact on CPI.

https://students-hub.com

Usually:
Data Miss Rate >> Instruction Miss Rate

Cache Performance:

Data
Level 1
Cache

Instruction

Ly

D-cache

|_— Level 1

Ly - Cache

I-cache

Miss rate = 1 — data H1

Miss rate = 1 — instruction H1

Single Level L1 Harvard (Split) Memory Architecture

For a CPU with separate or split level one (L1) caches for

Instructions and data (Harvard memory architecture) and no stalls

for cache hits:

CPUtime = Instruction count x CPI x Clock cycle time

CPI = CPI

execution

+ Mem Stall cycles per instruction

4./ .
Mem Stall cycles per instruction =

1- Instruction H1

This is one method to find stalls per instruction
another method is shown in next slide —»

___—Instruction Fetch Miss rate x M +
Data Memory Accesses Per Instruction x Data Miss Rate x M

T~

Fraction of Loads and Stores

1- Data H1

M = Miss Penalty = stall cycles per access to main memory
resulting from missing in cache

CPlyecution = base CPI with ideal memory

STUDENTS-HUB.com

https://students-hub.com

Memory Access Tree (lgnoring Write Polcy)

For Separate Level 1 Caches

CPU Memory Access

| Split 1 or 100%
Ll % Instructions % data
Instruction Data
%instructions X Yeinstructions
Instruction H1) .
X (1 - Instruction H1) % data x Data H1 % data x (1 - Data H1)

Instruction L1 Hit: Instruction L1 Miss:
Hit Access Time=1 Access Time = M + 1 Data L1 Hit: Data L1 Miss:
Stalls=0 Stalls Per access = M Hit Access Time: = 1 Access Time =M+ 1
/ Stalls =%instructions x (1 - Instruction H1)x M Stalls=0 Stalls per access: M
Assuming: / Stalls = % data x (1-DataH1)xM
Ideal access on a hit, no stalls Assuming: _
Ideal access on a hit, no stalls

Stall Cycles Per Access = % Instructions x (1 - Instruction H1)xM + %data x (1-DataHl)x M
AMAT = 1+ Stall Cycles per access
Stall cycles per instruction = (1 + fraction of loads/stores) x Stall Cycles per access

CPI = CPl_.uiion + Stall cycles per instruction
= CPlecuion T (1 + fraction of loads/stores) x Stall Cycles per access

M = Miss Penalty = stall cycles per access resulting from missing in cache

M + 1 = Miss Time = Main memory access time

Data H1 = Level 1 Data Hit Rate 1- Data H1 = Level 1 Data Miss Rate

Instruction H1 = Level 1 Instruction Hit Rate 1- Instruction H1 = Level 1 Instruction Miss Rate

% Instructions = Percentage or fraction of instruction fetches out of all memory accesses
eRalas s, Rercentage or fraction of data accesses out of all memory accesses

https://students-hub.com

Split L1 Cache Performance Example

» Suppose a CPU uses separate level one (L1) caches for instructions and data (Harvard
memory architecture) with different miss rates for instruction and data access:

— A cache hit incurs no stall cycles while a cache miss incurs 200 stall cycles for both memory reads and
writes.

- CPlecution = 1.1 (i.e base CPI with ideal memory)
— Instruction mix: 50% arith/logic, 30% load/store, 20% control

— Assume a cache miss rate of 0.5% for instruction fetch and a cache data miss rate of 6%.

— Acache hit incurs no stall cycles while a cache miss incurs 200 stall cycles for both memory reads and

writes.
« Find the resulting stalls per access, AMAT and CPI using this cache? | M (lgnoring Weite Policy)
CPl = CPleetion + mem stalls per instruction
Memory Stall cycles per instruction = Instruction Fetch Miss rate x Miss Penalty +

Data Memory Accesses Per Instruction x Data Miss Rate x Miss Penalty

Memory Stall cycles per instruction = 0.5/100 x 200 + 0.3x 6/100 x 200 = 1 + 3.6 =4.6cycles
Stall cycles per average memory access = 4.6/1.3 = 3.54 cycles
AMAT = 1+ 3.54 = 4,54 cycles

CPl = CPlyecuion + mem stalls per instruction = 1.1 +4.6 = 5.7 cycles

. What is the miss rate of a single level unified cache that has the same performance?

46 = 1.3x Missrate x 200 which gives a miss rate of 1.8 % for an equivalent unified cache
* How much faster is the CPU with ideal memory?

The CPU with ideal cache (no misses) is 5.7/1.1 = 5.18 times faster
With no cache at all the CPI would have been = 1.1 + 1.3 X200 = 261.1 cycles !!

STUDENTS-HUB.com

https://students-hub.com

Memory Access Tree For Separate Level 1 Caches Example (Ignoring Write Policy)

30% of all instructions executed are loads/stores, thus:

Fraction of instruction fetches out of all memory accesses = 1/ (1+0.3) = 1/1.3=0.769 or 76.9 %
Fraction of data accesses out of all memory accesses = 0.3/ (1+0.3) = 0.3/1.3 = 0.231 or 23.1 %

For Last Example

CPU Memory Access

| Split) 100%
%o | ions =
L 0076'552:“7‘:;'822 % data=0.231 or 23.1%
. . .

Instruction 051 x 008 Data
. . 231 x0.
%lnstruptlons X %instructions % data x Data H1 0.231x0.06
Instruction H1) x (1 - Instruction H1) Z 2169 or 21.60 % % data x (1 - Data H1)

=0.01385 or 1.385%

=.7650r 76.5 % =0.003846 or 0.3846 %

0.769 x 0.995 0.769 x 0.005
Instruction L1 Hit: Instruction L1 Miss: - _
Hit Access Time = 1 Access Time = M + 1= 201 Data L1 Hit: DataLl Miss:
Stalls=0 Stalls Per access = M = 200 Hit Access Time: = 1 Access Time =M + 1 =201
/ Stalls = %instructions x (L - Instruction H1)x M Stalls=0 Stalls per access: M =200
7 / Stalls = % data x (1 - Data H1) x M

Ideal access on a hit, no stalls =0.003846 x 200 =0.7692 cycles = 0.01385x 200 = 2.769 cycles

\ Ideal access on a hit, no stalls

Stall Cycles Per Access = % Instructions x (1 - Instruction H1)xM + %data x (1-DataHl)x M
=0.7692 + 2.769 = 3.54 cycles

AMAT = 1+ Stall Cycles per access = 1 + 3.5 =4.54 cycles
Stall cycles per instruction = (1 + fraction of loads/stores) x Stall Cycles per access = 1.3 x 3.54 = 4.6 cycles

CPI = CPlouiion + Stall cycles per instruction =1.1 + 4.6 =5.7
-

Givenas1.1 |

M = Miss Penalty = stall cycles per access resulting from missing in cache = 200 cycles

M + 1= Miss Time = Main memory access time = 200+1 =201 cycles L1 access Time =1 cycle

DataH1 = 0.94 or 94% 1- Data H1 =0.06 or 6%

Instruction H1 = 0.995 or 99.5% 1- Instruction H1 = 0.005 or 0.5 %

% Instructions = Percentage or fraction of instruction fetches out of all memory accesses = 76.9 %
TR atastoRercentage or fraction of data accesses out of all memory accesses = 23.1 %

https://students-hub.com

Typical Cache Performance Data
Using SPEC92

Usually Date Miss Rate >> Instruction Miss Rate

Size Instruction cache Data cache Unified cache
1 KB 3.06% 24.61% 13.34%
2KB 2.20% 20.57% 9.78%
4 KB 1.7T8% 15.945; 1.24%
8 KB 1. 10% 10.19% 4.57%
16 KB 0.64% 6,47 % 2.87%
32 KB 0.39% 4. 82% 1.99%
64 KB 0.15% 3.77% 1.35%
128 KB 0.02% 2. 88%: 0.95%

Miss rates for instruction, data, and unified caches of different sizes.

Program steady state cache miss rates are given
Initially cache is empty and miss rates ~ 100%

STUDENTS-HUB.com

https://students-hub.com

Cache Read/Write Operations

 Statistical data suggest that reads (/n1cluding instruction fetches)
dominate processor cache accesses (ertes account for ~ 25% of

data cache traffic).

i.e stores

 In cache reads, a block is read at the same time while the tag is
being compared with the block address. If the read is a hit the
data is passed to the CPU, if a miss it ignores it.

* In cache writes, modifying the block cannot begin until the tag is
checked to see if the address is a hit.

« Thus for cache writes, tag checking cannot take place in parallel,

i.e write hit (we have old block to modify in cache)

and only the specific data (between 1 and 8 bytes) requested by

the CPU can be modified.

— Solution: Pipeline tag checking and cache write.

« Cache can be classified according to the write and memory
update strategy in place as: write through, or write back cache.

Tag Check

Cache Write

Pipelining of Tag Checking and Cache Write

Tag Check

Cache Write

STUDENTS-HUB.com

https://students-hub.com

Cache Write Strategies

1 Write Though: Data is written to both the cache block and to
a block of main memory. (i.e written though to memory)

— The lower level always has the most updated data; an important
feature for 1/0 and multiprocessing.

— Easier to implement than write back.
— A write buffer is often used to reduce CPU write stall while data

IS written to memory' The updated cache block is marked as modified or dirty

2 Write Back: Data is written or updated only to the cache

block. The modified or dirty cache block is Writﬁn to main

memory when it’s being replaced from cache. back
— Writes occur at the speed of cache
p=pirty |— A status bit called a dirty or modified bit, is used to indicate
N whether the block was modified while in cache; if not the block is
Status Bt not written back to main memory when replaced. | i. discarded
teany |- Advantage: Uses less memory bandwidth than write through.

IV Tag Data

YHd Rt o Cache Block Frame for Write-Back Cache

https://students-hub.com

Cache Write Strategies: _— Cache Write Hit = block to be modified is found in cache
Write Hit Operation (block to be written to is in cache)
Write Through

Write to cache

Cache Memory
Without Write Buffer:
Write to cache and also
5 to memory

Write —_— :
(Store)] Write Penalty =M

Without Write Buffer: \
For cache write mlss\
With no write allocate
Similar but no write to cache \ Write Buffer

Penalty is still M \

With perfect write buffer: N <
Write to cache and also to write buffer ™| Then update memory

No peﬂalty (no Sta“) Later from write buffer

Write Back

Write to cache

Cache Memory

Write 1 1 ‘I\ Set modified/dirty
(Store) bit to 1 to indicate

that cache block
has been modified
(i.e block is dirty)

Just write to cache block
and set dirty or modified bitto 1

No penalty (no stall) No write to memory

Write back to memory when replaced in cache

Sashe \Write Miss = block to be modified is not in cache

https://students-hub.com

Cache Write Miss Policy

 Since data is usually not needed immediately on a write miss two
options exist on a cache write miss:

Write Allocate: (Bring old block to cache then update it)

The missed cache block is loaded into cache on a write miss followed by
Write h |t aCtionS. i.e A cache block frame is allocated for the block to be modified (written-to)

No-Write Allocate: i.e A cache block frame is not_allocated for the block to be modified (written-to)

The block is modified in the lower level (lower cache level, or main
memory) and not loaded (written or updated) into cache.

While any of the above two write miss policies can be used with
either write back or write through.

« Write back caches always use write allocate to capture
subsequent writes to the block in cache.

« Write through caches usually use no-write allocate since
subsequent writes still have to go to memory.

Cache Write Miss = Block to be modified is not in cache
JAHggcate = Allocate or assign a cache block frame for written data

https://students-hub.com

Write Back Cache With Write Allocate: Cache Miss Operation

(read or write miss)

Block to be replaced is 9Iean

Miss Penalty = M

Cache

ie.Dwas=0

Set modified/dirty
D bit to 1 if this is a write

CPUreads 2
or writes
to block in cache

Replaced (old) /

block is discarded
since it’s clean

2%

Block to be replaced is dirty (moglified)

1 Write back modified block being

replaced to memory
Penalty =M

2 Read missed block

from memory
Penalty =M

Thus:

Total Miss Penalty =M + M =2M

ie.Dwas=1

Cache

CPUreads 3

Read missed block
from memory

Penalty =M

Set modified/dirty
bit to 1 if this is a write

Write replaced modified
block to memory

Penalty =M

or writes

H

Memory

Memory

v

1

to block in cache

2

Read missed block
from memory

Penalty =M

M = Miss Penalty = stall cycles per access resulting from missing in cache

STUDENTS-HUB.com

https://students-hub.com

Memory Access Tree, Unified L,

Write Through, No Write Allocate, No Write Buffer

Instruction Fetch + Loads

CPU Memory Access

N

Exercise:

Create memory access tree for split level 1

| Unified |

Ll
Read
96 reads x H1 %readsx(l- Hl) % write x H1

L1Read Hit: L1 Read Miss: o

Hit Access Time =1 Access Time = M + 1 L1 Write Hit:

Stalls =0 Stalls Per access = M écclelssl:')l'ime: M +}\/I

talls Per access =
Stalls=% readsx (1- H1)xM Stalls =0 write x (H1)x M

Assuming: .

Ideal access on a read hit, no stalls

'S
Stall Cycles Per Memory Access =

AMAT = 1+ %readsx(1- HL)XxM + % write XM

CPI = CPl .uiion + (1 + fraction of loads/stores) x Stall Cycles per access

Stall Cycles per access = AMAT - 1

M = Miss Penalty = stall cycles per access resulting from missing in cache
M + 1 = Miss Time = Main memory access time
H1 = Level 1 Hit Rate 1- H1 = Level 1 Miss Rate

com

STUDENTS-HU|

-
% reads 100% Yowrite o
orl

Write

% write x (1- H1)

L1 Write Miss:
Access Time: M+1
Stalls per access = M
Stalls= % write X (1- H1)xM

% readsx(1- HL) XM + % write x M

M = Miss Penalty
H1l = Level 1 Hit Rate
1- H1 = Level 1 Miss Rate

https://students-hub.com

Reducing Write Stalls For Write Though Cache
Using Write Buffers

» To reduce write stalls when write though is used, a write
buffer is used to eliminate or reduce write stalls:

— Perfect write buffer: All writes are handled by write
buffer, no stalling for writes

— In this case (for unified L1 cache):
Stall Cycles Per Memory Access= % readsx (1- H1)xM
(i.e No stalls at all for writes)

— Realistic Write buffer: A percentage of write stalls are
not eliminated when the write buffer is full.

— In this case (for unified L1 cache): \
Stall Cycles/Memory Access = (% reads x (1 - H1) + % write stalls not eliminated) x M

SSSSSSSSSSSSSSSS

https://students-hub.com

Write Through Cache Performance Example

« A CPUwith CPl .cuiion = 1.1 Mem accesses per instruction = 1.3

e Uses a unified L1 Write Through, No Write Allocate, with:

1 |— No write buffer.

2 |- Perfect Write buffer

3 |— A realistic write buffer that eliminates 85% of write stalls

* Instruction mix: 50% arith/logic, 15% load, 15% store, 20% control

« Assume a cache miss rate of 1.5% and a miss penalty of 50 cycles.| =M
CPl = CPleuion + mMem stalls per instruction
% reads = 1.15/1.3 = 88.5% % writes = .15/1.3= 11.5%

1| With No Write Buffer : | Stall on all writes
Mem Stalls/ instruction = 1.3x50 x (88.5% x 1.5% + 11.5%) = 8.33 cycles
CPl= 1.1 +8.33= 943
2 | With Perfect Write Buffer (all write stalls eliminated):

Mem Stalls/ instruction = 1.3 x50 x (88.5% x 1.5%) = 0.86 cycles
CPI=11 +086= 196

3 | With Realistic Write Buffer (eliminates 85% of write stalls)

Mem Stalls/ instruction = 1.3x50 x (88.5% x 1.5% + 15% x 11.5%) = 1.98 cycles
CPI=11 +198= 3.08

STUDENTS-HUB.com

https://students-hub.com

Memory Access Tree Unified L,
Write Back, With Write Allocate

CPU Memory Access

2M needed to:
- Write (back) Dirty Block
- Read new block
(2 main memory accesses needed)

1 or 100%
| Unified |
L H1
1 (1-H1)
L1 Hit:
% =H1 L1 Miss
Hit Access Time=1
Stalls=0
(1-H1) x % clean (1-H1) x % dirty
Assuming:
Ideal access on a hit, no stalls
L1 Miss, Clean L1 Miss, Dirty /

Access Time = M_+1 Access Time = 2M +1
Stalls per access = M Stalls per access = 2M

Stall cycles = M x (1 -H1) x % clean Stall cycles = 2M x (1-H1) x % dirty

One access to main memory to get needed block \

Stall Cycles Per Memory Access = (1-H1) x (M x %clean + 2M x % dirty)

AMAT = 1 + Stall Cycles Per Memory Access

CPI =CPl_.uiion + (1 + fraction of loads/stores) x Stall Cycles per access

M = Miss Penalty = stall cycles per access resulting from missing in cache
M + 1 = Miss Time = Main memory access time

H1 = Level 1 Hit Rate 1- H1 = Level 1 Miss Rate
STUDENTS-HUB.com

https://students-hub.com

Write Back Cache Performance Example

« ACPUwith CPIl .o, = 1.1 usesa unified L1 with with write back,
with write allocate, and the probability a cache block is dirty = 10%

« Instruction mix: 50% arith/logic, 15% load, 15% store, 20% control

« Assume a cache miss rate of 1.5% and a miss penalty of 50 cycles.
(1-H1) =

CPl = CPl ., + mem stalls per instruction
Mem Stalls per instruction =
Mem accesses per instruction x Stalls per access
Mem accesses per instruction= 1 + 0.3 = 1.3
Stalls per access = (1-H1) x (M x %clean + 2M x % dirty)

Stalls per access =1.5% x (50 x 90% + 100x 10%) = 0.825 cycles
AMAT = 1 + stallsperaccess= 1+ 0.825= 1.825 cycles
Mem Stalls per instruction = 1.3 x 0.825 = 1.07 cycles

CPI=11 +1.07 = 217

The ideal CPU with no missesis 2.17/1.1 = 1.97 times faster

STUDENTS-HUB.com

https://students-hub.com

Memory Access Tree For Unified L,
Write Back, With Write Allocate Example

CPU Memory ACCeSS —| Given Parameters:
1 or 100% H1 =985% T1 =0cycles
M =50 cycles | o
| Unified | H1 = 0.985 or 98.5% Stallson a hitin L1
(1-H1) = 0.015 or 1.5% L1 Misses: 10% dirty 90% clean
Ll L1 Hit: CPI execution — 11 .]
% = H1 =0.985 or 98.5% L1 Miss Memory accesses per instruction = 1.3
Hit Access Time =1 -
Stalls=0 (1-H1) x % clean (1-H1) x % dirty
= .015x0.9 = 0.015x0.1
- =0.0135 or 1.35% = 0.0015 or 0.15% 2M needed to
Assuming: . Write Dirty Block
Ideal access on a hitin L, and Read new block
L1 Miss, Clean L1 Miss, Dirty
Access Time = M +1 = 51 Access Time = 2M +1= 101
Stalls per access = M = 50 Stalls per access = 2M = 100
Stall cycles = M x (1 -H1) x % clean Stall cycles = 2M x (1-H1) x % dirty
= 50x 0.0135=0.675 cycles = 100 x0.0015 = 0.15 cycles

T~ —

Stall Cycles Per Memory Access= M x (1-H1) x % clean + 2M x (1-H1) x % dirty)

= 0.675 + 015 = 0.825 cycles
AMAT = 1 + Stall Cycles Per Memory Access =1 + 0.825 = 1.825 cycles
Stall cycles per instruction = (1 + fraction of loads/stores) x Stall Cycles per access = 1.3 x 0.825 = 1.07 cycles
CPI = CPlyecuiion *+ Stall cycles per instruction = 1.1+ 1.07 = 2.17

Givenas1.1 |

M = Miss Penalty = 50 cycles
M+ 1= Miss Time =50+ 1=51cycles L1 access Time =1 cycle
H1 = 0.985 or 98.5% 1-H1=0.015 or 1.5%

STUDENTS-HUB.com

https://students-hub.com

Memory Access Tree Structure
For Separate Level 1 Caches, Write Back, With Write Allocate

p— CPU Memory Access
_p : 1 or 100%
Ll % Instructions % data

Instruction Data

%instructions x
Instruction H1) % data x (1 - Data H1)

%instructions
X (1 - Instruction H1)

% data x Data H1

Instruction L1 Hit:
Hit Access Time=1 Data L1 Miss: Data L1 Hit:

Instruction L1 Miss:
Access Time = M + 1
Stalls Per access = M Stalls=0

Stalls =
M x %instructions x (1 - Instruction H1) % data x (1-Data H1) x % clean

Stalls=0

% data x (1- Data H1) x % dirty

Data L1 Miss, Clean Data L1 Miss, Dirty
Access Time =M +1 Access Time = 2M +1
Stalls per access = M Stalls per access = 2M
Stall cycles = M x % data x (1 —-Data H1) x % clean Stall cycles = 2M x % data x (1- Data H1) x % dirty

Exercise: Find expression for: Stall cycles per average memory access, AMAT

M = Miss Penalty = stall cycles per access resulting from missing in cache
M + 1 = Miss Time = Main memory access time Assuming:
Data H1 = Level 1 Data Hit Rate 1- Data H1 = Level 1 Data Miss Rate Ideal access on a hit in L,

Instruction H1 = Level 1 Instruction Hit Rate 1- Instruction H1 = Level 1 Instruction Miss Rate
% Instructions = Percentage or fraction of instruction fetches out of all memory accesses

% Data = Percentage or fraction of data accesses out of all memory accesses

% Clean = Percentage or fraction of data L1 misses that are clean

% Dirty = Percentage or fraction of data L1 misses that are dirty = 1 - % Clean

STUBENTS-HUB-corm

Hit Access Time: = 1

https://students-hub.com

Improving Cache Performance: Multi-Level Cache

2 Levels of Cache: L,, L,

Basic Design Rule for L, Cache: CPU Assuming
K.1.S.S Ideal access on a hitin L
1
and capaciy to koep L 1as) Hit Rate= H,
N - .
~_ L. Cache Hit Access Time = 1 cycle (No Stall)
1 Stalls for hit access=T, =0
L, has slower access time : _
than L, (5-8 cycles typical) | [~ Local Hit R_ate_ H,
But has more capacity |—2 Cache Stalls per hit access=T,
and higher associativity Hit Access Time = T, + 1 cycles

Main Memory

Slower (longer access time) than L, Memory access penalty M
L, = Level 1 Cache (stalls per main memory access)
Lo = Level 2 Cache Access Time = M +1

Goal of multi-level Caches: 4t Edition: Appendix C.3

Reduce the effective miss penalty incurred by level 1 cache misses (3¢ Edition Chapter 5.4)

by using additional levels of cache that capture some of these misses.
Thus hiding more main memory latency and reducing AMAT further

STODENTSOBTEoNT

https://students-hub.com

i.e that

Miss Rates For Multi-Level Caches

« Local Miss Rate: This rate I1s the number of miISses IN | thislevel

a cache level divided by the number of memory accesses to
this level (i.e those memory accesses that reach this level).

Local Hit Rate = 1 - Local Miss Rate

* Global Miss Rate: The number of misses in a cache level
divided by the total number of memory accesses generated
by the CPU.

« Since level 1 receives all CPU memory accesses, for level 1:
Local Miss Rate = Global Miss Rate = 1 - H1
* For level 2 since it only receives those accesses missed in 1:
Local Miss Rate = Miss rate,, = 1- H2
Global Miss Rate = Miss rate ; x Local Miss rate, ,
= (1-H1) x(1-H2)

For Level 3, global miss rate?

SSSSSSSSSSSSSSSS

https://students-hub.com

2-Level Cache (Both Unified) Performance
(Ignoring Write Policy)

CPUtime = ICx (CPI

oecution T Mem Stall cycles per instruction) x C

Mem Stall cycles per instruction = Mem accesses per instruction x Stall cycles per access

» For asystem with 2 levels of unified cache, assuming no
penalty when found in L, cache: (1,=0)

Stall cycles per memory access =
[miss rate L,] x [Hitrate L, x Hittime L,
+ Miss rate L, x Memory access penalty | =
(1I-H1) xH2xT2 + (1-H1)(1-H2)x M
/

L1 Miss, L2 Hit

Here we assume T1 =0
(no stall on L1 hit)

H1 = L1 Hit Rate

___——T1 =stall cycles per L1 access hit
H2 = Local L2 Hit Rate
T2 =stall cycles per L2 access hit

CPI = CPlecuiion + (1 + fraction of loads and stores) x stall cycles per access

= CPlgyecution + (1 + fraction of loads and stores) x (AMAT —1)

STUDENTS-HUB.com

AMAT = 1+ Stall Cycles per access

T~

L1 Miss, L2 Miss:
Must Access Main Memory

Full Miss

https://students-hub.com

2-Level Cache (Both Unified) Performance
I\/Iemory Access Tree (ignoring Write Policy)

CPU Stall Cycles Per Memory Access

CPU Memory Access

Assuming:

Ideal access on a hitin L,

T1=0

Unified

Unified

r j/

L1 Hit:

Hit Access Time =1
Stalls=H1x0=0
(No Stall)

Global Hit Rate

for Level 2

1 or 100%

N

L1 Miss:
0p = (1-H1) Global Miss Rate for Level 2
(1-H1) x H2 (1-H1)(1-H2)
L1 Miss, L2 Hit: L1 Miss, L2 MisS: [o viss
Hit Access Time =T2 +1 Access Time = M +1
Stalls per L2 Hit = T2 Stalls per access = M

Stalls =(1-H1) x H2 x T2 Stalls= (1-H1)(1-H2) x M

... >

Stall cycles per memory access = (1-H1)xH2xT2 + (1-H1)(1-H2)x M
AMAT =1 +(1-H1) xH2xT2 + (1-H1)(1-H2)x M

CPI = CPlyecution + (1 + fraction of loads and stores) x stall cycles per access
stupenTdHUB.con= CPlayecution + (1 + fraction of loads and stores) x (AMAT —1)

https://students-hub.com

Unified Two-Level Cache Example

« CPU with CPl ., = 1.1 running at clock rate =500 MHz [(fgmoring Write Policy)
« 1.3 memory accesses per instruction.

« With two levels of cache (both unified)

« L, hitaccess time = 1 cycle (no stall on a hit, T1=0), a miss rate of 5%

» L, hitaccess time = 3 cycles (T2= 2 stall cycles per hit) with local miss rate 40%o,

.« Memory access penalty, M =100 cycles (stalls per access). FInd CPI ... \

CPl = CPlwuion T Mem Stall cycles per instruction ie 1-H2

With No Cache, CPI = 1.1+ 1.3x100 = 131.1

WithsingleL;, CPlI =11 + 1.3x.05x100= 7.6
Mem Stall cycles per instruction = Mem accesses per instruction x Stall cycles per access

Stall cycles per memory access = (1-H1) xH2xT2 + (1-H1)(1-H2)xM

= 005x 6 x2 + 0.05x 0.4 x 100
= 006 + 2 = 2.06 cycles

AMAT =2.06 + 1 = 3.06 cycles
Mem Stall cycles per instruction = Mem accesses per instruction x Stall cycles per access
= 206 x 1.3 = 2.678 cycles

CPI=11+ 2,678 =3.778
Speedup = 7.6/3.778 = 2 | comparedto CPU with L1 only

CPI = CPlyecution + (1 + fraction of loads and stores) x stall cycles per access
stuents B desecution T (1 + fraction of loads and stores) x (AMAT — 1)

https://students-hub.com

Memory Access Tree For 2-Level Cache (Both Unified) Example

Ignoring Write Polic
CPU Stall Cycles Per Memory Access (lgnoring Y)
CPU Memo ry AcCcess —| Given Parameters:
1 or 100% H1 =95% T1 =0cycles
H2 =60% T2=2cycles
H1 =0.95 or 95% N
M =100 cycles
| Unified | Stalls on a hit
Ll Hlt 1 . CPI execution — 11
Ll i e = L1 Miss: Memory accesses per instruction = 1.3
Hit Access Time =1 (1-H1)= 0.05 or 5%
Stallsper LLHit=T1=0 '
Stalls=H1x0=0
/ (No Stall) (_1;(')15);0'462 (1-H1)(1-H2) — f
- — =Y. : =0.05x0.4 - Global Miss Rate for L
Ideal access on a hitin L, =0.030r 3% _ 0.02Xor 2%/ 2
T1=0
l_—J- . L1 Miss. L2 Hit: L1 Miss, L2 _Miss:
Unified Global Hit Rate for L2 Hit Access Tlme =T2+1=3 CyCIES Access Time = M +1 = 100 + 1 =101 CyCIeS
L Stalls perL2 Hit=T2=2 cycles Stalls per access = M = 100 cycles
2 Stalls =(1-H1) x H2 x T2 Stalls= (1-H1)(1-H2) x M
= 0.03x2=0.06 CyCleS = 0.02x100=2 CyCleS Full Miss

Stall cycles per memory access = (1-H1)xH2xT2 + (1-H1)(1-H2)x M
= 0.06 + 2 =2.06cycles
AMAT = 1 + Stall cycles per memory access =1 + 2.06 = 3.06 cycles
Stall cycles per instruction = (1 + fraction of loads/stores) x Stall Cycles per access
=1.3x2.06= 2.678 cycles
CPI = CPlecuiion + Stall cycles per instruction = 1.1+ 2.678 = 3.778

CPI = CPlyecution + (1 + fraction of loads and stores) x stall cycles per access
stupenTdHUB.con= CPlayecution + (1 + fraction of loads and stores) x (AMAT —1)

https://students-hub.com

Memory Access Tree Structure For 2-Level Cache

(Separate Level 1 Caches, Unified Level 2)

(lgnoring Write Policy)

CPU Memory Access

1 or 100%
% Instructions
[spit Instruction
Instruction L1 Hit: Instruction L1 Miss:
Unified
L2
L2 Hit L2 Miss

% data

Data

N\

Data L1 Hit: Data L1 Miss:
L2 Hit L2 Miss

\

% Instructions = Percentage or fraction of instruction fetches out of all memory accesses
% Data = Percentage or fraction of data accesses out of all memory accesses

Forl1: T1= Stalls per hit access to level 1
Data H1 = Level 1 Data Hit Rate

Instruction H1 = Level 1 Instruction Hit Rate
For L2: T2 = Stalls per access to level 2

H2 = Level 2 local hit Rate 1-H2 = Level 2 local miss rate

1- Data H1 = Level 1 Data Miss Rate

M = Miss Penalty = stall cycles per access resulting from missing in cache level 2
STOPENTSHUBRAISS Time = Main memory access time

Exercise: In terms of the parameters below,
complete the memory access tree and find the expression
for stall cycles per memory access

1- Instruction H1 = Level 1 Instruction Miss Rate

/

https://students-hub.com

Common Write Policy For 2-Level Cache

L,| e

STUDENTS-HUB.com

Write Policy For Level 1 Cache:

— Usually Write through to Level 2.[(ot write through to main memory just to L2)

— Write allocate Is used to reduce level 1 read misses.

— Use write buffer to reduce write stalls to level 2.

Write Policy For Level 2 Cache:

— Usually write back with write allocate is used.

« To minimize memory bandwidth usage.

The above 2-level cache write policy results in inclusive L2 cache
since the content of L1 isalso in L2

« Common in the majority of all CPUs with 2-levels of cache

« As opposed to exclusive L1, L2 (e.g AMD Athlon XP, A64)

As if we have a single level of cache with one
portion (L1) is faster than remainder (L2)

i.e whatis in L1 is not duplicated in L2

L1

L2

https://students-hub.com

2-Level (Both Unified) Memory Access Tree

L1: Write Through to L2, Write Allocate, With Perfect Write Buffer
L2: Write Back with Write Allocate

Assuming:
Ideal access on a hitin L1
Ti=0 CPU Memory Access
1 or 100%
(H1) (1-H1)
| Unified |
L1 Hit:
Hit Access Time=1 L1 Miss:
Stalls Per access = 0 (1-H1) x H2
/\ P Global Miss Rate for L,
| Unified | L1 Miss, L2 Hit:
Hit Access Time =T2 +1 (1-H1) x (1-H2)
|_2 Stalls per L2 Hit=T2 L1 Miss, L2 Miss
talls= (1-H1) x H2x T2
Stalls= (1-H1)xHz x (L-H1) x (1'|_W\(1-I-ll))((1-H2) x % dirty
Ll_MiSS, L2 MiSS, Clean L1 MiSS, L2 MiSS, Dil’tV
Access Time = M +1 Access Time = 2M +1
Stalls per access = M Stalls per access = 2M
Stall cycles = Stall cycles = 2M x (1-H1) x (1-H2)x % dirty
M x (1 -H1) x (1-H2) x % clean
Stall cycles per memory access = (I-H1)xH2x T2+ Mx(1-H1) x (1-H2) x % clean + 2M x (1-H1) x (1-H2) x % dirty

= (I-H)xH2xT2+ (1-H1) x(1-H2) x (%clean XM + % dirty x 2M)

AMAT = 1 + Stall Cycles Per Memory Access
SR GER execution T (1 + fraction of loads and stores) x Stall Cycles per access

https://students-hub.com

Two-Level (Both Unified) Cache Example With Write Policy

« CPU with CPI_,..ion = 1.1 running at clock rate = 500 MHz
« 1.3 memory accesses per instruction. Two levels of cache (both unified)

 For Ll_ i.e. ideal access time = 1 cycle

— Cache operates at 500 MHz (no stall on L1 Hit, T1 =0) with a miss rate of 1-H1 = 5%
— Write though to L, with perfect write buffer with write allocate

« ForlL,:
— Hit access time = 3 cycles (T2= 2 stall cycles per hit) local miss rate 1- H2 = 40%
— Write back to main memory with write allocate

— Probability a cache block is dirty = 10%
« Memory access penalty, M =100 cycles.

« Create memory access tree and find, stalls per memory access, AMAT, CPI.
« Stall cycles per memory access = (1-H1) xH2x T2 +
(1-H1) x(1-H2) x (% clean xM + 9% dirty x 2M)

= .05x.6 x2 + .05x.4x(.9x100 + .1 x200)
= .06+ 0.02x110=.06+2.2= 2.26

« AMAT =226 +1=23.26 cycles
Mem Stall cycles per instruction = Mem accesses per instruction x Stall cycles per access
= 226 x 1.3 = 2.938 cycles

CPI=11+2938=4.038=4

CP1 = CPloeaution + (1 + fraction of loads and stores) X (AMAT -1)

STUOENTS-HUB.col

https://students-hub.com

Memory Access Tree For Two-Level (Both Unified) Cache Example With Write Policy

L1: Write Through to L2, Write Allocate, With Perfect Write Buffer
L2: Write Back with Write Allocate

— Given Parameters:
H1 =95% T1 =0cycles

| Unified | 1 or 100% H2 =60% T2 = 2&0Ies
H1) = 0.95 or 95% _ —
Ll (H1) N_ 0.05 or 5% M =100 cycles Stalls on a hit

CPU Memory Access

L1 Hit: . ; ;
== ; L2 Misses: 10% dirty 90% clean
Hit Access Time =1 (16%15) X0H62 L1 Miss CPI -1 10 y 0
Stalls Per access = 0 =B X . exacution — . .
:0.03)3%/\ Memory accesses per instruction = 1.3
| Unified | L1 Miss, L2 Hit: _ _ o
Hit Access Time =T2 +1 = 3 cycles (1-H1)x (1-H2)=0.05x 0.4 =0.02 or 2%
|_2 Stalls per L2 Hit=T2 = 2 cycles L1 Miss, L2 Miss
Stalls= (1-H1)x H2x T2 (1-H1) x (1-H2) x % clean 1-H1) x (1-H2) x % dirt
= 0.03x 2 = 0.06 cycles T002x09= O'W\(:o.o)z o= 0008 or 02%
L1 Miss, L2 Miss, Clean L1 Miss, L2 Miss, Dirty
Access Time= M +1 =101 cycles Access Time = 2M +1 =200 + 1 = 201 cycles
Stalls per access =M Stalls per access = 2M = 200 cycles
Stall cycles= M x (1 -H1) x (1-H2) x % clean Stall cycles = 2M x (1-H1) x (1-H2) x % dirty
=100 x 0.018 = 1.8 cycles = 200 x 0.002 = 0.4 cycles
Stall cycles per memory access = (1-H1)xH2xT2 + Mx(1-H1) x(1-H2) x % clean + 2M x (1-H1) x (1-H2) x % dirty
= 0.06 + 1.8 + 0.4 = 2.26 cycles

AMAT = 1 + Stall cycles per memory access =1 + 2.26 = 3.26 cycles

Stall cycles per instruction = (1 + fraction of loads/stores) x Stall Cycles per access
=1.3x2.26= 2.938 cycles
CPI = CPlyecution *+ Stall cycles per instruction = 1.1+ 2.938 = 4.038

AMAT = 1 + Stall Cycles Per Memory Access
SoRbs6eBlexecution T (1 + fraction of loads and stores) x Stall Cycles per access

https://students-hub.com

Memory Access Tree Structure For 2-Level Cache(Separate Level 1 Caches, Unified Level 2)
L1: Write Through to L2, Write Allocate, With Perfect Write Buffer L2: Write Back with Write Allocate

CPU Memory Access

1 or 100%

% Instructions

| split Instruction Data

1N

Instruction L1 Hit: Instruction L1 Miss: Data L1 Hit: Data L1 Miss:
| Unified | 2 Hit L2 Miss Hit L2 Miss
L2 Miss Clean L2 Miss Dirty L2 Miss Clean L2 Miss Dirty

N
= EXercise: In terms of the parameters below,
% Instructions = Percentage or fraction of instruction fetches out of all memory accesses Complete the memo 'y access tree and find the exXp ression
% Data = Percentage or fraction of data accesses out of all memory accesses
for stall cycles per memory access
ForL1: T1= Stalls per hit access to level 1

DataH1 = Level 1 Data Hit Rate 1- Data H1 = Level 1 Data Miss Rate /
Instruction H1 = Level 1 Instruction Hit Rate 1- Instruction H1 = Level 1 Instruction Miss Rate

For L2: T2 =Stalls per access to level 2

H2 = Level 2 local hit Rate 1-H2 = Level 2 local miss rate

% Clean = Percentage or fraction of data L2 misses that are clean

% Dirty = Percentage or fraction of L2 missesthat aredirty= 1 - % Clean

M = Miss Penalty = stall cycles per access resulting from missing in cache level 2
+ 1=
S%DEJNTS-'MUES Time = Main memory access time

com

https://students-hub.com

Memory Hierarchy—Ways to Reduce Misses

https://students-hub.com

Review Cache Performance Equations

CPUtime = (CPU execution cycles + Mem stall cycles) * Cycle time
* Mem stall cycles = Mem accesses * Miss rate * Miss penalty

« CPUtime = IC * (CPI,,, + Mem accesses per instr * Miss rate * Miss
penalty) * Cycle time

« Misses per instr = Mem accesses per instr * Miss rate

« CPUtime = IC * (CPI,,, + Misses per instr * Miss penalty) * Cycle
time

SSSSSSSSSSSSSSSS

https://students-hub.com

Reducing Misses
» Classifying Misses: 3 Cs

— Compulsory~—The first access to a block is not in the cache, so
the block must be brought into the cache. These are also called
cold start misses or first reference misses.

(Misses in Infinite Cache)

— Capacity—If the cache cannot contain all the blocks needed
during execution of a program, capacity misses will occur due
to blocks being discarded and later retrieved.

(Misses in Size)

— Conflict—If the block-placement strategy Is set associative or
direct mapped, conflict misses (in addition to compulsory and
capacity misses) will occur because a block can be discarded
and later retrieved if too many blocks map to its set. These are
also called collision misses or interference misses.

(Misses in N-way Associative)

STUDENTS-HUB.com

https://students-hub.com

Improving Cache Performance

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

SSSSSSSSSSSSSSSS

https://students-hub.com

How to Reduce Miss Rate?

* Increase Block Size

* Increase Associativity

« Use a Victim Cache

» Use a Pseudo Associative Cache

« Hardware Prefetching

« Compiler-Controlled Prefetching
« Compiler Optimizations

SSSSSSSSSSSSSSSS

https://students-hub.com

1. Increase cache Block Size

« One way to reduce the miss rate is to increase the block size
— Reduce compulsory misses - why?

« Take advantage of spacial locality
— Helps improve miss rate b/c of principle of locality:

says that if something is accessed once, it’ll probably
be accessed again soon

says that if something is accessed, something nearby it
will probably be accessed

« Larger block sizes help with spatial locality

« However, larger blocks have disadvantages
— May increase the miss penalty (need to get more data)
« Generally, larger blocks reduce # of total blocks in cache

— May increase hit time (need to read more data from cache and larger
mux)

— May increase conflict and capacity misses

 Increasing the block size can help, but don’t overdo it.

STUDENTS-HUB.com

https://students-hub.com

1. Increase cache Block Size (cont.)

Miss
Rate

STUDENTS-HUB.com

Cache Size (bytes)

— 1K

— T 4K

— 16K
— 0 64K

— & 256K

https://students-hub.com

Example Increase cache Block Size (1/3)

« Assume that to access lower-level of memory hierarchy
you:
— Incur a 40 clock cycle overhead
— Get 16 bytes of data every 2 clock cycles

» |.e. get 16 bytes in 42 clock cycles, 32 in 44, etc...

 Using data below, which block size has minimum average
memory access time?

Cache sizes
Block Size 1K AK 16K 64K 256K |
16 15.05% 8.57% 3.949, 2.04% 1.09% Mi
Iss rates
32 13.34% 7.24% 2.87% 1.35% 0.70%
64 13.76% 7.00% 2.64% 1.06% 0.51%
128 16.64% 7.78% 2.77% 1.02% 0.49%
256 22.01% 9.51% 3.29% 1.15% 0.49%

STUDENTS-HUB.com

https://students-hub.com

Example Increase cache Block Size (3/3)

» Assume a cache hit otherwise takes 1 clock cycle —independent of block size
 So, for a 16-byte block in a 1-KB cache...
Average memory access time =
1+ (15.05% X 42) = 7.321 clock cycles
« And for a 256-byte block in a 256-KB cache...
Average memory access time =
1+ (0.49% X 72) = 1.353 clock cycles

Cache sizes

Block Miss 1K 4K 16K 64K 256K
Size Penalty
16 42 7.321 4.599 2.655 1.857 1.485
32 44 6.870 4.186 2.263 1.594 1.308
64 48 7.605 4.360 2.267 1.509 1.245
128 o6 10.318 5.357 2.551 1.571 1.274
256 72 16.847 7.847 3.369 1.828 1.353

Red entries are lowest average time for a particular configuration
Note: All of these block sizes are common in processor’s today
swarsnofNOY@: Data for cache sizes in units of “clock cycles”

https://students-hub.com

Summary Increase cache Block Size

« We want to minimize cache miss rate & cache miss
penalty at same time!

 Selection of block size depends on latency and bandwidth
of lower-level memory:
— High latency, high bandwidth encourage large block size

« Cache gets many more bytes per miss for a small increase in
miss penalty

— Low latency, low bandwidth encourage small block size

« Twice the miss penalty of a small block may be close to the
penalty of a block twice the size

 Larger # of small blocks may reduce conflict misses

STUDENTS-HUB.com

https://students-hub.com

2. Reduce Misses via Higher Associativity

* Increasing associativity helps reduce conflict misses

e 2:1 Cache Rule:

— The miss rate of a direct mapped cache of size N is about equal to the miss
rate of a 2-way set associative cache of size N/2

 Disadvantages of higher associativity
— Need to do large number of comparisons
— Need n-to-1 multiplexer for n-way set associative
— Could increase hit time

Cache Size Associativity

(KB) 1-way 2-way 4-way 8-way
1 7.65 6.60 6.22 5.44
2 5.90 4.90 4.62 4.09
4 4.60 3.95 3.57 3.19
8 3.30 3.00 2.87 2.59
16 2.45 2.20 2.12 2.04
32 2.00 1.80 1.77 1.79
64 1.70 1.60 1.57 1.59

128 1.50 1.45 1.42 1.44
(Red means A.M.A.T. not improved by more associativity)

STUDENTS-HUB.com

https://students-hub.com

Avg. Memory Access vs Cache Size vs
Associativity

Memory Access
Time

B 1-way
W 2-way
'l 3-way
[14-way

8 KB 16 KB 32 KB 64 kb 128 KB

SSSSSSSSSSSSSSSS

https://students-hub.com

3. Reducing Misses via Victim Cache

« What s a “victim cache”?

— A victim cache temporarily stores blocks that have been
discarded from the main cache (usually not that big)

* How does it help us?

— If there’s a cache miss, instead of immediately going down to
the next level of memory hierarchy we check the victim cache
first

— If the entry is there, we swap the victim cache block with the
actual cache block

» Research shows:
— Victim caches with 1-5 entries help reduce conflict misses
— For a 4KB direct mapped cache victim caches:
« Removed 20% - 95% of conflict misses!

SSSSSSSSSSSSSSSS

https://students-hub.com

3. Reducing Misses via Victim Cache

STUDENTS-HUB.com

A 4

Tag

Data

) 4

;

A 4

A

Y

Victim Cache

in

CPU

Address
. Data Data

out

A 4

Write
buffer

A 4

Lower level

memory

https://students-hub.com

4. Reducing Misses via Pseudo-Associativity

This technigues should help:
— The miss rate of set-associative caches
— The hit speed of direct mapped caches

Also called: “column associated cache”

Access proceeds normally as for a direct mapped cache

— But, on a miss, we look at another entry before going to a lower level
of memory hierarchy

— Usually done by:
* Inverting the most significant bit of index field to find the
other block in the psuedo-set
Pseudo-associative caches usually have 1 fast and 1 slow
hit time (regular, psuedo hit respectively)
— In addition to the miss penalty that is...

STUDENTS-HUB.com

https://students-hub.com

5. HW Prefetching of Instruction & Data

E.g., Instruction Prefetching

— Alpha 21064 fetches 2 blocks on a miss
— Extra block placed in stream buffer
— On miss check stream buffer

« Works with data blocks too

« Prefetching relies on extra memory bandwidth that can be used without
penalty

« What is the effective miss rate for the Alpha using instruction prefetching?

« How much larger of an instruction cache would we need if the Alpha to match
the average access time if prefetching was removed?

— ASssume:

STUDENTS-HUB.com

It takes 1 extra clock cycle if the instruction misses the cache but is found in
the prefetch buffer

The prefetch hit rate is 25%

Miss rate for 8-KB instruction cache is 1.10%
Hit time is 2 clock cycles

Miss penalty is 50 clock cycles

https://students-hub.com

5. HW Prefetching of Instruction & Data

* \We need a revised memory access time formula:

— Say: Average memory access timeprefetch =

« Hit time + miss rate * prefetch hit rate * 1 + miss rate * (1 -
prefetch hit rate) * miss penalty

« Plugging in numbers to the above, we get:
— 2+ (1.10% * 25% * 1) + (1.10% * (1 — 25%) * 50) = 2.415
« To find the miss rate with equivalent performance, we
start with the original formula and solve for miss rate:

— Average memory access timeno prefetching =
« Hit time + miss rate * miss penalty
— Results in: (2.415 - 2) / 50 = 0.83%

 Calculation suggests effective miss rate of prefetching
with 8KB cache is 0.83%

e Actual miss rates for 16 KB = 0.64% and 8KB =1.10%

SSSSSSSSSSSSSSSS

https://students-hub.com

6. Reducing Misses by Compiler Optimizations

 Instructions
— Reorder procedures in memory so as to reduce misses
— Profiling to look at conflicts between groups of instructions

« McFarling [1989] reduced caches misses by 75% on 8KB direct mapped
cache with 4 byte blocks

« Data

— Merging Arrays. improve spatial locality by single array of compound elements vs.
2 arrays (prevents the same indicies being used)

— Loop Interchange. change nesting of loops to access data in order stored in memory

— Loop Fusion. Combine 2 independent loops that have same looping and some
variables overlap

— Blocking. Improve temporal locality by accessing “blocks” of data repeatedly vs.
going down whole columns or rows

STUDENTS-HUB.com

https://students-hub.com

Merging arrays

» This works by improving spatial locality

* For example, some programs may reference multiple
arrays of the same size at the same time

— Could be bad:

« Accesses may interfere with one another in the cache

« Asolution: Generate a single, compound array...

STUDENTS-HUB.com

[* Before:*/

int tag[SIZE]
int bytel[SIZE]
int byte2[SIZE]
int dirty[size]

[* After */

struct merge {
int tag;
int bytel,
int byte2;
int dirty;

}

struct merge cache_block_entry[SIZE]

https://students-hub.com

Array Organizations

Row Col Memory

X[1]0]

Row Major Ordering

N-20ON-2O0O0N-0O0N-O0O0MN-O0O

SSSSSSSSSSSSSSSS

https://students-hub.com

Row Col

Loop Interchange Example o Memory
1
/* Before */ 2
for (53 =0; 5 < 100; § = j+1) 1 0
for (i = 0; i < 5000; i = i+1) 2
x[i1[3] = 2* x[i][3]; 2 0
/* After */ 5
for (i = 0; 1 < 5000; i = i+1) 3 0
for (5 =0; 5 < 100; § = j5+1) ;
x[i1[3] = 2* x[i][3]; 4 0
1
2

« Some programs have nested loops that access memory in
non-sequential order

— Simply changing the order of the loops may make them access the
data /nsequential order...

— Sequential accesses Instead of striding through memory every 100
words

STUDENTS-HUB.com

https://students-hub.com

Loop Fusion Example

/* Before */
for (i =0; 1i < N; i = i#1)
for (3 =0; j <N; j=3jH)
al[i]l[3] = 1/b[i]1[3] * c[i][]]:
for (1 =0; 1i < N; i = i+1)
for (j =0; j <N; j=3jH)
d[i][J] = al[i]l[J] *c[i][]];

/* After */
for (1 =0; 1i < N; i =i+1)
for (j =0; j <N; j=3jH)
{ a[i]l[j] = 1/b[i]1[3] * c[ill[3];
d[i] [3] = ali]l[3j] + c[i][3];

2 MIsses per access to a & c vs. one mIss Per aCCess

STUDENTS-HUB.com

https://students-hub.com

Blocking

This is probably the most “famous” of compiler optimizations
to improve cache performance

Tries to reduce misses by improving temporal locality

15t of all, we need to realize that arrays can be accessed/indexed
“differently”:

— Some arrays are accessed by rows, others by columns

— Storing array data row-by-row is called row major order

— Storing array data column-by-column is called column major order

In some code this won’t help b/c array data is going to be
accessed both by rows and by columns!
— Things like loop interchange don’t help...

Blocking tries to create “submatricies” — or b/ocks to maximize
accesses to data loaded in the cache before its replaced.

STUDENTS-HUB.com

https://students-hub.com

Example blocking (Before)

[* Before */
for (=0 1<N;i=i+1) A 2 inner loops read all N x N elements
fOI’_(J : 0;]<N;j=]+1) of z, access the same N elements in a
{r=0; row of yrepeatedly, and write one
for (k =0; kK <N; k = k+1) row of N elements of x.
{
r=r + y[il[k]*z[KI[T;
b
x[i]0] =r;
&
Pictorially what happens is: A
X 012345 y 012345 7 012345 White block =
0 0 0
not accessed
L L] JEEEEEN L Light block =
i 3 i 3 kK 3 older access
4 4 4 Dark block =
5 5 5 newer access

STUDENTS-HUB.com

https://students-hub.com

Blocking (some comments)

 In the matrix multiply code, the # of capacity misses is going to
depend upon:
— The factor N (i.e. the sizes of the matrices)
— The size of the cache

« Some possible outcomes:
— The cache can hold all N x N matrices (great!)
* Provided there are no conflict misses
— The cache can hold 1 N x N matrix and one row of size N
« Maybe ith row of y and matrix z may stay in the cache
— The cache can’t hold even this much
« Misses will occur for both x and z

 In the worst case there will be 2N2 + N2 memory reads — for N3
memory operations!

STUDENTS-HUB.com

https://students-hub.com

Example blocking (After)

[* After */
for j) =0;)] <N; j] =]Jj+B)
for (kk =0; kk < N; kk = kk+B) To ensure that the elements accessed
for (i=0;i<N;i=i+l) will all fit/stay in the cache, the code
for (= jj: j < min(jj+B-1,N); | = j+1) is changed to operate on submatrices
’ ol of size B x B.
{r=0;
for (k = kk; k <min(kk+B-1,N); k = k+1) The 2 inner loops compute in steps of
{ size B instead of going from the
r=r + y[i][K]*z[K][]]; beginning to the end of x and z.
};
x[i1[i1 = x[il[i] +r; B is called the blocking factor.
1
Pictorially what happens is: f
Ji k
X 012345 y 012345 7 4 5
Smaller # of

elements accessed
but they’re all
in the cache!

~
OhWNRO

~
OhWNRFR O

x
OhWNRFRO

STUDENTS-HUB.com

https://students-hub.com

Summary blocking

« What might happen with regard to capacity misses?
— Total # of memory words accessed is 2N3/B + N?
— This is an improvement by a factor of B
 Blocking thus exploits a combination of spatial and
temporal locality

— y matrix benefits from spatial locality and z benefits from temporal
locality

« Usually, blocking aimed at reducing capacity misses:
— Assumes that conflict misses are not significant or. ..
— ...can be eliminated by more associative caches

 Blocking reduces # of words active in a cache at 1 point
In time — therefore small block size helps with conflicts...

STUDENTS-HUB.com

https://students-hub.com

Improving Cache Performance

1. Reduce the miss rate,
2. Reduce the miss penalty
3. Reduce the time to hit in the cache.

SSSSSSSSSSSSSSSS

https://students-hub.com

1. Reducing Miss Penalty:
Read Priority over Write on Miss

 Reads are the common case — make them fast!
« \Write buffers helped us with cache writes but...

— They complicate memory accesses b/c they might hold updated value of

a location on a read miss
« Example:

SW 512(R0), R3 ; M[512] € R3 (cache index 0)
LW R1, 1024(R0) ; R1 € M[1024] (cache index 0)
LW R2,512(R0) ; R2 € M[512] (cache index 0)

«Assume direct mapped, write through cache

(512, 1024 mapped to the same location)

«Assume a 4 word write buffer

*Will the value in R2 always be equal to the value in R3?

STUDENTS-HUB.com

https://students-hub.com

1. Reducing Miss Penalty:
Read Priority over Write on Miss

« Example continue:
— This code generates a RAW hazard in memory
— A cache access might work as follows:

STUDENTS-HUB.com

Data in R3 placed into the write buffer after the store
Next load uses same cache index — we get a miss

— (i.e. b/c the store data is there)
Next load tries to put value in location 512 into R2
This also results in a cache miss

— (i.e. b/c 512 has been updated)

If write buffer hasn’t finished writing to location 512, reading
location 512 will put the wrong, old value into the cache block
and then into R2

R3 would not be equal to R2 — which is a bad thing!

https://students-hub.com

1. Reducing Miss Penalty:
Read Priority over Write on Miss

 First solution to this problem is to handle read misses

only if the write buffer is empty
— (Causes quite a performance hit however!)

« Alternative is to check contents of the write buffer on a
read miss
— If there are no conflicts & memory system is available, let read miss
continue
« Can also reduce the cost of writes within a processor with
a write-back cache...
— What if a read miss should replace a dirty memory block?

« Could: write to memory, read memory

« Or: copy the dirty block to a buffer, read memory, then
write memory — lets the CPU “not wait”

STUDENTS-HUB.com

https://students-hub.com

2. Subblock Placement to Reduce Miss Penalty

 Instead of replacing a whole complete block of a cache,
we only replace one of its subblocks:
— Note: We’ll have to make a hardware change to do this. What is
it??2?
« Subblocks should have a smaller miss penalty then full
blocks

Tjgs Valid Bits Sub-blocks

SSSSSSSSSSSSSSSS

https://students-hub.com

3. Reduce Miss Penalty:
Early Restart and Critical Word First

« Don’t wait for full block to be loaded before restarting
CPU

— Early restart—As soon as the requested word of the block arrives,
send it to the CPU and let the CPU continue execution

— Cnitical Word First—Request the missed word first from memory
and send it to the CPU as soon as it arrives; let the CPU continue

execution while filling the rest of the words in the block. Also called
wrapped fetch and requested word first

« Generally useful only in large blocks,

« Spatial locality a problem; tend to want next sequential
word, so not clear if benefit by early restart

block

STUDENTS-HUB.com

https://students-hub.com

4. Reduce Miss Penalty: Non-blocking Caches
to reduce stalls on misses

« Non-blocking cache or [lockup-free cache allow data
cache to continue to supply cache hits during a miss
— requires out-of-order executuion CPU

o “hit under miss” reduces the effective miss penalty by
working during miss vs. ignoring CPU requests

o “hit under multiple miss” or “miss under miss® may
further lower the effective miss penalty by overlapping
multiple misses

— Significantly increases the complexity of the cache controller as there
can be multiple outstanding memory accesses

— Requires muliple memory banks (otherwise cannot support)
— Penium Pro allows 4 outstanding memory misses

STUDENTS-HUB.com

https://students-hub.com

Value of Hit Under Miss for SPEC

« FP programs on average: AMAT=0.68 -> 0.52 -> 0.34 -> 0.26
« Int programs on average: AMAT=0.24 -> 0.20 -> 0.19 -> 0.19
« 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss

T

1.8 T

16 T

14 +

Ll D 0->1 0->1
' W2 1->2

1 1

W26t | 2->64
M Base B ase

08 T

06 T

Avg. Mem. Access Time

04 1 “Hit under n Misses”

02 +

0

(&)
2 O 2] 5 o > = 0 N~ ©
E 25 8|2 F 23835358 a3eshg s
2 9o 2 o|a g s S o 2 N £ 9 Z
s ¢ %X 5|2 a d 53 d - B = = 8 %
g o £\ = E E 7 = T 8 ® S 9
o
] SE A g <)

Integer Floating Point

STUDENTS-HUB.com

https://students-hub.com

S5th Miss Penalty

« L2 Equations
AMAT = Hit Time 4 + Miss Rate, ; X Miss Penalty, ,

Miss Penalty, , = Hit Time , + Miss Rate, , X Miss Penalty, ,

AMAT = Hit Time 4 + Miss Rate 4 x (Hit Time , + Miss Rate, , +
Miss Penalty, ,)

« Definitions:
— Local miss rate— misses in this cache divided by the total number of
memory accesses 7o this cache (Miss rate, ,)

— Global miss rate—misses in this cache divided by the total number of
memory accesses generated by the CPU
(Miss Rate, , X Miss Rate, ,)

— Global Miss Rate is what matters

STUDENTS-HUB.com

https://students-hub.com

LLocal and Global Miss Rates

« 32 KByte L1 cache;

80
« Global miss rate close to I =
single level cache rate ;@ 50 \
provided L2 L_l g 5 \ e tocd
« Don’t use local miss rate T 4 \ = single
because it is a function of the | , 4 \ global
miss rate of the first level é’ 2 .
cache. 04 e —
- L2 not tied to clock cycle! 0 Tt e
. Cost&A.M.A.T._ | b@gb&@p@b@ q}@&@ 'ﬁqu,&b@&q&@
 Generally Fast Hit Times K NI AP S

and fewer misses

: . Cache size
« Since hits are few, target

miss reduction

STUDENTS-HUB.com

https://students-hub.com

L2 cache block size & A.M.A.T.

32KB L1, 512KB L2, 4-byte path to memory, 1 cycle to send the address, 6
cycles to access the data, and 1 word/cycle to transfer the data

STUDENTS-HUB.com

1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1

Relative CPU Time

1.95

16 32 64 128 256 512
Block Size

https://students-hub.com

Reducing Miss Penalty Summary

* Five technigues
— Read priority over write on miss
— Sub block placement
— Early Restart and Critical Word First on miss
— Non-blocking Caches (Hit under Miss, Miss under Miss)
— Second Level Cache

« Can be applied recursively to Multilevel Caches

— Danger is that time to DRAM will grow with multiple levels in
between

— First attempts at L2 caches can make things worse, since
Increased worst case is worse

https://students-hub.com

Review: Improving Cache Performance

1. Reduce the miss rate,
2. Reduce the miss penalty
3. Reduce the time to hit in the cache.

SSSSSSSSSSSSSSSS

https://students-hub.com

Reducing Hit Time

« Hit time affects the CPU clock rate

— Even for machines that take multiple cycles to
access the cache

« Techniques
— Small and simple caches
— Avoiding address translation
— Pipelining writes
— Small sub blocks

SSSSSSSSSSSSSSSS

https://students-hub.com

1. Small and simple caches

* Why is this good?
— Generally, smaller hardware is faster — so a small
cache should help the hit time...

— If an L1 cache is small enough, it should fit on

the same chip as the actual processing logic...

» Processor avoids time going off chip!

« Some designs compromise and keep tags on a chip and data
off chip — allows for fast tag check and >> memory capacity

— Direct mapping also falls under the category of
“simple”

 Relates to point above as well — you can check tag and read
data at the same time!

https://students-hub.com

2. Fast hits by Avoiding Address
Translation

« Send virtual address to cache? Called Virtually Addressed Cache or
just Virtual Cachevs. Physical Cache

— Every time process is switched logically must flush the cache; otherwise get
false hits

« Cost is time to flush + “compulsory” misses from empty cache

— Dealing with a//ases (sometimes called syrnonyms);
Two different virtual addresses map to same physical address

— 1/O must interact with cache, so need virtual address
e Solution to aliases

— HW guaranteess covers index field & direct mapped, they must be unique;
called page coloring

e Solution to cache flush

— Add process identifier tag that identifies process as well as address within
process: can’t get a hit if wrong process

STUDENTS-HUB.com

https://students-hub.com

3. Fast Hit Times Via Pipelined Writes

» Pipeline Tag Check and Update Cache as separate stages; current write tag
check & previous write cache update

« Only STORES in the pipeline; empty during a miss

Address
@ . Data Data
in out
T A\ 4
Tag Delayed write buffer
Data
, M
4@ u > v
" X Write
buffer

In shade is “Delayed Write Buffer”; must be checked on
reads; either complete write or read from buffer

STUDENTS-HUB.com

Lower level memory

https://students-hub.com

4. Fast Writes on Misses Via Small
Subblocks

e If most writes are 1 word, subblock size iIs1 word, &
write through then always write subblock & tag

Immediately

— Tag match and valid bit already set. Writing the block was proper, &
nothing lost by setting valid bit on again.

— Tag match and valid bit not set. The tag match means that this is the
proper block; writing the data into the subblock makes it appropriate
to turn the valid bit on.

— Tag mismatc/r. This is a miss and will modify the data portion of the
block. Since write-through cache, no harm was done; memory still
has an up-to-date copy of the old value. Only the tag to the address of
the write and the valid bits of the other subblock need be changed
because the valid bit for this subblock has already been set

 Doesn’t work with write back due to last case

STUDENTS-HUB.com

https://students-hub.com

Cache Optimization Summary

Technigue MR MP HT Complexity

Larger Block Size

Higher Associativity

Victim Caches
Pseudo-Associative Caches

HW Prefetching of Instr/Data
Compiler Controlled Prefetching
Compiler Reduce Misses

miss rate
+ + + + + + +

Priority to Read Misses

Subblock Placement

Early Restart & Critical Word 1st
Non-Blocking Caches

Second Level Caches

miss
penalty
+ + + + +

Small & Simple Caches — +
Avoiding Address Translation
Pipelining Writes +

+
= NOINOMN=_2=y OWMNDMMN-O

hit time

STUDENTS-HUB.com

https://students-hub.com

Main Memory

« Main memory generally utilizes Dynamic RAM (DRAM),

which use a single transistor to store a bit, but require a periodic data refresh by
reading every row increasing cycle time. DRAM: Slow but high density

« Static RAM may be used for main memory if the added expense, low density, high
power consumption, and complexity is feasible (e.g. Cray Vector Supercomputers).

SRAM: Fast but low density

« Main memory performance is affected by:

— Memory latency: Affects cache miss penalty, M. Measured by:

« Memory Access time: The time it takes between a memory access
request is issued to main memory and the time the requested
information is available to cache/CPU.

« Memory Cycle time: The minimum time between requests to memory
(greater than access time in DRAM to allow address lines to be stable)

— Peak Memory bandwidth: The maximum sustained data transfer rate
between main memory and cache/CPU.

 In current memory technologies (e.g Double Data Rate SDRAM) published peak
memory bandwidth does not take account most of the memory access latency.

« This leads to achievable realistic memory bandwidth < peak memory bandwidth

Or maximum effective memory bandwidth

STUDENTS-HUB.com

https://students-hub.com

Logical Dynamic RAM (DRAM) Chip Organization

(16 Mbit)

Column Decoder -
14 E
Sense Amps & 1/0 S|—D
ROW/COIumn ———————— Data |n
Address ;&: . | g g ﬁir]rz]aged
AQ...Al3 % Memory Array |
0 0 (16,384 x 16,384} S Q
I_ g '_{e Data Out
-g é D, Q share the same pins
T Word Li
ord Lin€ ___Storage
Cell

Basic Steps:
Control Signals:
1 - Row Access Strobe (RAS): Low to latch row address
2- Column Address Strobe (CAS): Low to latch column address
3- Write Enable (WE) or
Output Enable (OE)
4- Wait for data to be ready

B1 - Supply Row Address 2- Supply Column Address 3- Get Data

STUDENTS-HU!

(Single transistor per bit)

A periodic data refresh is required
by reading every bit

https://students-hub.com

Four Key DRAM Timing Parameters

1

tracs Minimum time from RAS (Row Access Strobe) line

falling (activated) to the valid data output.
— Used to be quoted as the nominal speed of a DRAM chip
— For a typical 64Mb DRAM tg,- =60 ns

trc: Minimum time from the start of one row access to the

start of the next (memory cycle time).
— tre = thac + RAS Precharge Time
— tge = 110 ns for a 64Mbit DRAM with a tgz . of 60 ns

teac: Minimum time from CAS (Column Access Strobe) line

falling to valid data output.
— 12 ns for a 64Mbit DRAM with a tz,- of 60 ns

tpc: Minimum time from the start of one column access to

the start of the next.

— tpe = teac + CAS Precharge Time
— About 25 ns for a 64Mbit DRAM with a t;, of 60 ns

1 - Supply Row Address 2- Supply Column Address 3- Get Data

STUDENTS-HUB.com

https://students-hub.com

Quest for DRAM Performance

1. Fast Page mode

— Add timing signals that allow repeated accesses to row
buffer without another row access time

— Such a buffer comes naturally, as each array will buffer
1024 to 2048 bits for each access

2. Synchronous DRAM (SDRAM)

— Add a clock signal to DRAM interface, so that the

repeated transfers would not bear overhead to synchronize
with DRAM controller

3. Double Data Rate (DDR SDRAM)

— Transfer data on both the rising edge and falling edge of
the DRAM clock signal = doubling the peak data rate

— DDR2 lowers power by dropping the voltage from 2.5 to
1.8 volts + offers higher clock rates: up to 400 MHz

— DDR3 drops to 1.5 volts + higher clock rates: up to 800
MHz

« Improved Bandwidth, not Latency
109

SSSSSSSSSSSSSSSS

https://students-hub.com

DRAM Generations

~ RAS+

Year Size RAS (ns) CAS (ns) Cycle Time Memory Type 5
1980 64 Kb 150-180 75 250 ns Page Mode =
1983 256 Kb 120-150 50 220 ns Page Mode S
1986 1 Mb 100-120 25 190 ns 2
1989 4 Mb 80-100 20 165 ns Fast Page Mode 3
1992 16 Mb 60-80 15 120 ns EDO =
1996 64 Mb 50-70 12 110 ns PC66 SDRAM &
1998 128 Mb 50-70 10 100 ns PC100 SDRAM &
2000 256 Mb 45-65 7 90 ns PC133 SDRAM 3
2002 512Mb 40-60 5 80ns PC2700 DDR SDRAM 2
8000:1 15:1 3:1 | >
(Capacity) (~bandwidth) (Latency) PC3200 DDR (2003)

STUDENTS-HUB.com

Peak

pd

DDR2 SDRAM (2004)

A major factor in cache miss penalty M

v

DDR3 SDRAM (2007-8?)

https://students-hub.com

Basic Memory Bandwidth Improvement/Miss Penalty (M) Latency
Reduction Techniques

1| Wider Main Memory (CPU-Memory Bus): | iewiderrss

Memory bus width is increased to a number of words (usually up to the size of a
cache block).

— Memory bandwidth is proportional to memory bus width.

« e.g Doubling the width of cache and memory doubles potential memory bandwidth
available to the CPU. | e.g 128 bit (16 bytes) memory bus instead of 64 bits (8 bytes)

— The miss penalty is reduced since fewer memory bus accesses are needed to
fill a cache block on a miss.

2 | Interleaved (Multi-Bank) Memory:

Memory is organized as a number of independent banks.

— Multiple interleaved memory reads or writes are accomplished by sending
memory addresses to several memory banks at once or pipeline access to the

banks.

— Interleaving factor: Refers to the mapping of memory addressees to
memory banks. Goal reduce bank conflicts.

e.g. using 4 banks (width one word), bank 0 has all words whose address is:
(word addressmod) 4 = 0

The above two techniques can also be applied to any cache level to reduce

cache hit time and increase cache bandwidth.
STUDENTSHUBTOoNT

https://students-hub.com

(a) One-word-wide (b) Wide memory organization (c) Interleaved

memory organization memory organization
CPU CPU Wider memory, bus CPU
and cache Narrow bus
Q @: (highest performance) @ and cache
with
Multiplexor interleaved
Cache Cache memor
T IT T TT T« +—> parnks.
ache
o — _________=— ——— &
“v’—‘—_—_—‘_‘—;—:——'—'_—_ ‘--\-h\-"‘:-..
Memory ([Memory || Memory || Memory
MR bank 0 bank 1 bank 2 bank 3

Memory
Three examples of bus width, memory width, and memory interleaving

to achieve higher memory bandwidth

Simplest design:
Everything is the width
of one word for example (lowest performance)

stubentsAoLONt Side Bus (FSB) = System Bus = CPU-memory Bus

https://students-hub.com

Bank 2

Address Bank 0 Address Bank 1 Address
0 1 2
4 5 6
a 9 10
12 13 14

Address

Bank 3

3

7

11

15

Four Way (Four Banks) Interleaved Memory

Memory Bank Number

Sequential Mapping of Bank O Bank 1

Memory Addresses

To Memory Banks 0 » 1 +—
Example B 4 > 5 -1 5

8 T1 9

Address 12 13
Within 16 17
Bank 20 21

Bank Width = One Word
Bank Number = (Word Address) Mod (4)

STUDENTS-HUB.com

Bank 2

7
6 —
10
14
18
22

——>

——>

Bank 3

3
7
11
15
19
23

https://students-hub.com

Memory Bank Interleaving

Can be applied at. 1- DRAM chip level (e.g SDRAM, DDR) 2- DRAM module level 3- DRAM channel level

Access Pattern without Interleaving:
g: (One Memory Bank) CPU Misiory

Very long memory bank
recovery time shown here
\

\

<«—— Memory Bank Cycle Time ——

D1 available (4 banks similar to the organization

Start Access for D1 Start Access for D2 of DDR SDRAM memory chips)
Also DDR2 (DDR3 increases the number to 8 banks)

Pipeline access to different memory banks to increase effective bandwidth Memory

Access Pattern with 4-way Interleaving: ®1 Bank 0
Memory

<«—— Memory Bank Cycle Time —— - Bank 1
Memory

. Bank 2
Memory

—
|

Access Bank 3

We can Access Bank 0 again
Number of banks > Number of cycles to access word in a bank

Bank 3
Access Bank 1
Access Bank 2

Access Bank 0

Bank interleaving does not reduce latency of accesses to the same bank

STOUDENTSTTUBTTOMT

https://students-hub.com

Memory Width, Interleaving: Performance Example

(i.e multiple memory banks)
Given the following system parameters with single unified cache level L, (ignoring write policy):

Block size= 1 word Memory bus width=1 word Miss rate =3% M = Miss penalty = 32 cycles

(4 cycles to send address 24 cycles access time, 4 cycles to send a word to CPU)
s~ s~ B

4 cycles 24 cycles 4 cycles | MissPenalty=M=4+24+4=32
cycles
(Base system)

Memory access/instruction =1.2 CPl_,..iion (Ignoring cache misses) = 2
Miss rate (block size =2 word =8 bytes) = 2% Miss rate (block size =4 words = 16 bytes) = 1%

« The CPI of the base machine with 1-word blocks = 2 + (1.2 x 0.03 x 32) = 3.15 | (For Base system)

Increasing the block size to two words (64 bits) gives the following CPl: (miss rate = 2%)

e 32-bit bus and memory, no interleaving, M =2 x 32 =64 cycles CPI=2+(1.2x .02x64)=3.54
« 32-bit bus and memory, interleaved, M=4+24+8 =36¢cycles CPI=2+(1.2x.02x36) =2.86
* 64-bit bus and memory, no interleaving, M = 32 cycles CPI=2+(1.2x0.02x32) =277

Increasing the block size to four words (128 bits); resulting CPI: (miss rate = 1%)

» 32-bit bus and memory, no interleaving, M =4x32=128cycles CPl =2+ (1.2x0.01 x 128) = 3.54
» 32-bit bus and memory, interleaved, M=4+24+16=44cycles CPlI=2+(1.2x0.01 x44) =253
* 64-bit bus and memory, no interleaving, M =2x32= 64cycles CPlI=2+(1.2x0.01x64)=2.77
* 64-bit bus and memory, interleaved, M=4+24+8 =36c¢cycles CPl=2+(1.2x0.01x36)=2.43
« 128-bit bus and memory, no interleaving, M = 32 cycles CPI=2+(1.2x0.01x32)=2.38

4 24 4 4 4 4

MisseERaAtyecbh= Number of CPU stall cycles for an access missed in cache and satisfied by main memory

https://students-hub.com

