
Removing The Ideal Memory Assumption:

The Memory Hierarchy & Cache

• The impact of real memory on CPU Performance.

• Main memory basic properties:

– Memory Types: DRAM vs. SRAM

• The Motivation for The Memory Hierarchy:

– CPU/Memory Performance Gap

– The Principle Of Locality

• Memory Hierarchy Structure & Operation

• Cache Concepts:

– Block placement strategy & Cache Organization:

• Fully Associative, Set Associative, Direct Mapped.

– Cache block identification: Tag Matching

– Block replacement policy

– Cache storage requirements

– Unified vs. Separate Cache
• CPU Performance Evaluation with Cache:

– Average Memory Access Time (AMAT)

– Memory Stall cycles

– Memory Access Tree

STUDENTS-HUB.com

https://students-hub.com

Removing The Ideal Memory Assumption

• So far we have assumed that ideal memory is used for both

instruction and data memory in all CPU designs considered:

– Single Cycle, Multi-cycle, and Pipelined CPUs.

• Ideal memory is characterized by a short delay or memory access

time (one cycle) comparable to other components in the datapath.

– i.e 2ns which is similar to ALU delays.

• Real memory utilizing Dynamic Random Access Memory

(DRAM) has a much higher access time than other datapath

components (80ns or more).

• Removing the ideal memory assumption in CPU designs leads to

a large increase in clock cycle time and/or CPI greatly reducing

CPU performance.

Ideal Memory Access Time  1 CPU Cycle

Real Memory Access Time >> 1 CPU cycle

Memory Access Time >> 1 CPU Cycle

STUDENTS-HUB.com

https://students-hub.com

• For example if we use real (non-ideal) memory with 80 ns access time (instead of
2ns) in our CPU designs then:

• Single Cycle CPU:

– Loads will require 80ns + 1ns + 2ns + 80ns + 1ns = 164ns = C

– The CPU clock cycle time C increases from 8ns to 164ns (125MHz to 6 MHz)

– CPU is 20.5 times slower

• Multi Cycle CPU:

– To maintain a CPU cycle of 2ns (500MHz) instruction fetch and data memory now take
80/2 = 40 cycles each resulting in the following CPIs

• Arithmetic Instructions CPI = 40 + 3 = 43 cycles

• Jump/Branch Instructions CPI = 40 + 2 = 42 cycles

• Store Instructions CPI = 80 + 2 = 82 cycles

• Load Instructions CPI = 80 + 3 = 83 cycles

• Depending on instruction mix, CPU is 11-20 times
slower++

• Pipelined CPU:

– To maintain a CPU cycle of 2ns, a pipeline with 83 stages is needed.

– Data/Structural hazards over instruction/data memory access may lead to 40 or 80 stall
cycles per instruction.

– Depending on instruction mix CPI increases from 1 to 41-81 and the CPU is 41-81 times
slower!

Removing The Ideal Memory Assumption

Ideal Memory Access Time  1 CPU Cycle

Real Memory Access Time >> 1 CPU cycle
T = I x CPI x C

STUDENTS-HUB.com

https://students-hub.com

Memory Hierarchy: Motivation

Processor-Memory (DRAM) Performance Gap

µProc

60%/yr.

DRAM

7%/yr.
1

10

100

1000

1
9
8
0

1
9
8
1

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

DRAM

CPU

1
9
8
2

Processor-Memory

Performance Gap:

(grows 50% / year)

P
e

rf
o

rm
a

n
c
e

i.e. Gap between memory access time (latency) and CPU cycle time

Ideal Memory Access Time (latency) = 1 CPU Cycle

Real Memory Access Time (latency) >> 1 CPU cycle

Memory Access Latency: The time between a memory access request is issued by the

processor and the time the requested information (instructions or data) is available to the

processor.

STUDENTS-HUB.com

https://students-hub.com

Processor-DRAM Performance Gap:

Impact of Real Memory on CPI

• To illustrate the performance impact of using non-ideal memory,

we assume a single-issue pipelined RISC CPU with ideal CPI = 1.

• Ignoring other factors, the minimum cost of a full memory access

in terms of number of wasted CPU cycles (added to CPI):

CPU CPU Memory Minimum CPU memory stall cycles

Year speed cycle Access or instructions wasted
MHZ ns ns

1986: 8 125 190 190/125 - 1 = 0.5

1989: 33 30 165 165/30 -1 = 4.5

1992: 60 16.6 120 120/16.6 -1 = 6.2

1996: 200 5 110 110/5 -1 = 21

1998: 300 3.33 100 100/3.33 -1 = 29

2000: 1000 1 90 90/1 - 1 = 89

2002: 2000 .5 80 80/.5 - 1 = 159

2004: 3000 .333 60 60.333 - 1 = 179

Ideal Memory Access Time  1 CPU Cycle

Real Memory Access Time >> 1 CPU cycle

i.e wait cycles added to CPI

STUDENTS-HUB.com

https://students-hub.com

Memory Hierarchy: Motivation
• The gap between CPU performance and main memory has been widening with

higher performance CPUs creating performance bottlenecks for memory access
instructions.

• To hide long memory access latency, the memory hierarchy is organized into
several levels of memory with the smaller, faster SRAM-based memory levels
closer to the CPU: registers, then primary Cache Level (L1), then additional
secondary cache levels (L2, L3…), then DRAM-based main memory, then mass
storage (virtual memory).

• Each level of the hierarchy is usually a subset of the level below: data found in a
level is also found in the level below (farther from CPU) but at lower speed
(longer access time).

• Each level maps addresses from a larger physical memory to a smaller level of
physical memory closer to the CPU.

• This concept is greatly aided by the principal of locality both temporal and
spatial which indicates that programs tend to reuse data and instructions that
they have used recently or those stored in their vicinity leading to working set of
a program.

For Ideal Memory: Memory Access Time or latency = 1 CPU cycle

STUDENTS-HUB.com

https://students-hub.com

Levels of The Memory Hierarchy

Part of The On-chip

CPU Datapath

ISA 16-128 Registers

One or more levels (Static RAM):

Level 1: On-chip 16-64K

Level 2: On-chip 256K-2M

Level 3: On or Off-chip 1M-32M

Registers

Cache

Level(s)

Main Memory

Magnetic Disc

Optical Disk or Magnetic Tape

Farther away from

the CPU:

Lower Cost/Bit

Higher Capacity

Increased Access

Time/Latency

Lower Throughput/

Bandwidth

Dynamic RAM (DRAM)

256M-16G

Interface:

SCSI, RAID,

IDE, 1394

80G-300G

CPU Faster Access

Time

(Virtual Memory)

Closer to CPU Core

STUDENTS-HUB.com

https://students-hub.com

The Principle Of Locality

• Programs usually access a relatively small portion of their address

space (instructions/data) at any instant of time (program working

set).

• Two Types of access locality:

– Temporal Locality: If an item (instruction or data) is

referenced, it will tend to be referenced again soon.

• e.g. instructions in the body of inner loops

– Spatial locality: If an item is referenced, items whose

addresses are close will tend to be referenced soon.

• e.g. sequential instruction execution, sequential access to elements of

array

• The presence of locality in program behavior (memory access patterns),

makes it possible to satisfy a large percentage of program memory access

needs (both instructions and data) using faster memory levels (cache) with

much less capacity than program address space.

Thus: Memory Access Locality  Program Working Set

Cache utilizes faster memory (SRAM)

X

1

2

STUDENTS-HUB.com

https://students-hub.com

Access Locality & Program Working Set
• Programs usually access a relatively small portion of their address space

(instructions/data) at any instant of time (program working set).

• The presence of locality in program behavior and memory access patterns, makes it

possible to satisfy a large percentage of program memory access needs using faster

memory levels with much less capacity than program address space.

Program Instruction Address Space

Program instruction

working set at time T0

Program instruction

working set at time T0 + D

Program Data Address Space

Program data

working set at time T0

Program data

working set at time T0 + D

Locality in program memory access Program Working Set

Using Static RAM (SRAM)(i.e Cache)

STUDENTS-HUB.com

https://students-hub.com

Memory Hierarchy Operation
• If an instruction or operand is required by the CPU, the levels

of the memory hierarchy are searched for the item starting

with the level closest to the CPU (Level 1 cache):

– If the item is found, it’s delivered to the CPU resulting in a cache

hit without searching lower levels.

– If the item is missing from an upper level, resulting in a cache

miss, the level just below is searched.

– For systems with several levels of cache, the search continues

with cache level 2, 3 etc.

– If all levels of cache report a miss then main memory is accessed

for the item.

• CPU cache memory: Managed by hardware.

– If the item is not found in main memory resulting in a page fault,

then disk (virtual memory), is accessed for the item.

• Memory disk: Managed by the operating system with

hardware support

Hit rate for level one cache = H1

Miss rate for level one cache = 1 – Hit rate = 1 - H1

L1 Cache

STUDENTS-HUB.com

https://students-hub.com

Memory Hierarchy: Terminology
• A Block: The smallest unit of information transferred between two levels.

• Hit: Item is found in some block in the upper level (example: Block X)

– Hit Rate: The fraction of memory access found in the upper level.

– Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

• Miss: Item needs to be retrieved from a block in the lower level (Block Y)

– Miss Rate = 1 - (Hit Rate)

– Miss Penalty: Time to replace a block in the upper level +

Time to deliver the missed block to the processor

• Hit Time << Miss Penalty
Lower Level

MemoryUpper Level

Memory
To Processor

From Processor

Blk X

Blk Y

e.g cache

e.g main memory

A block

M

M

Miss rate for level one cache = 1 – Hit rate = 1 - H1

Hit rate for level

one cache = H1

e. g. H1

(Fetch/Load)

(Store)

e. g. 1- H1

Ideally = 1 Cycle

Ideally = 1 Cycle

(S)

Level 1 (L1) Cache

Typical Cache Block (or line) Size: 16-64 bytes

Hit if block is found in cache

STUDENTS-HUB.com

https://students-hub.com

Basic Cache Concepts
• Cache is the first level of the memory hierarchy once the address leaves

the CPU and is searched first for the requested data.

• If the data requested by the CPU is present in the cache, it is retrieved

from cache and the data access is a cache hit otherwise a cache miss

and data must be read from main memory.

• On a cache miss a block of data must be brought in from main memory

to cache to possibly replace an existing cache block.

• The allowed block addresses where blocks can be mapped (placed) into

cache from main memory is determined by cache placement strategy.

• Locating a block of data in cache is handled by cache block

identification mechanism: Tag matching.

• On a cache miss choosing the cache block being removed (replaced) is

handled by the block replacement strategy in place.

• When a write to cache is requested, a number of main memory update

strategies exist as part of the cache write policy.

STUDENTS-HUB.com

https://students-hub.com

Basic Cache Design & Operation Issues

• Q1: Where can a block be placed cache?

(Block placement strategy & Cache organization)

– Fully Associative, Set Associative, Direct Mapped.

• Q2: How is a block found if it is in cache?

(Block identification)

– Tag/Block.

• Q3: Which block should be replaced on a miss?

(Block replacement)

– Random, LRU, FIFO.

• Q4: What happens on a write?

(Cache write policy)

– Write through, write back.

Cache Hit/Miss?

Simple but suffers from conflict missesMost commonVery complex

STUDENTS-HUB.com

https://students-hub.com

Cache Organization & Placement Strategies

Placement strategies or mapping of a main memory data block onto

cache block frames divide cache designs into three organizations:

1 Direct mapped cache: A block can be placed in only one location

(cache block frame), given by the mapping function:

index = (Block address) MOD (Number of blocks in cache)

2 Fully associative cache: A block can be placed anywhere in

cache. (no mapping function).

3 Set associative cache: A block can be placed in a restricted set of

places, or cache block frames. A set is a group of block frames in

the cache. A block is first mapped onto the set and then it can be

placed anywhere within the set. The set in this case is chosen by:

index = (Block address) MOD (Number of sets in cache)

If there are n blocks in a set the cache placement is called n-way

set-associative. Most common cache organization

Most complex cache organization to implement

Least complex to implement

suffers from conflict misses

STUDENTS-HUB.com

https://students-hub.com

Cache Organization:

Direct Mapped Cache

0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1

0
0

0

C a c h e

M e m o ry

0
0

1

0
1

0

0
1

1

1
0

0

1
0

1

1
1

0

1
1

1

A block can be placed in one location only, given by:

(Block address) MOD (Number of blocks in cache)

In this case, mapping function: (Block address) MOD (8)

32 memory

blocks

cacheable

8 cache block frames

(i.e low three bits of block address)

Example:

29 MOD 8 = 5

(11101) MOD (1000) = 101

Index bits

Limitation of Direct Mapped Cache: Conflicts between

memory blocks that map to the same cache block frame

may result in conflict cache misses

Index

index

DataTagV

Cache Block Frame

Here four blocks in memory

map to the same cache block frame

= index

Index size = Log2 8

= 3 bits

STUDENTS-HUB.com

https://students-hub.com

4KB Direct Mapped

Cache Example
A d d re s s (s h o w in g b it p o s i t io n s)

2 0 1 0

B y te

o f fs e t

V a l id T a g D a taIn d e x

0

1

2

1 0 2 1

1 0 2 2

1 0 2 3

T a g

In d e x

H it D a ta

2 0 3 2

3 1 3 0 1 3 1 2 1 1 2 1 0

1K = 210 = 1024 Blocks

Each block = one word

Can cache up to

232 bytes = 4 GB

of memory

Mapping function:

Cache Block frame number =

(Block address) MOD (1024)

i.e . Index field or 10 low bits of

block address

Index field

(10 bits)
Tag field

(20 bits)

Block offset

= 2 bits

Block Address = 30 bits

Tag = 20 bits Index = 10 bits

Block offset

(2 bits)

Hit or Miss Logic

(Hit or Miss?)

SRAM

Address from CPU

Tag Index Offset

(4 bytes)

Hit Access Time = SRAM Delay + Hit/Miss Logic Delay

Direct mapped cache is the least complex cache organization

in terms of tag matching and Hit/Miss Logic complexity

Tag Matching

Mapping

STUDENTS-HUB.com

https://students-hub.com

64KB Direct Mapped Cache Example
A d d re s s (s ho w in g b it p o s ition s)

1 6 1 2 B yte

o ffs e t

V T ag D a ta

H it D a ta

1 6 32

4 K

e n tr ie s

1 6 b its 12 8 b its

M u x

3 2 3 2 3 2

2

3 2

B lo c k o f fs e tInd ex

T ag

3 1 16 1 5 4 3 2 1 04K= 212 = 4096 blocks

Each block = four words = 16 bytes

Can cache up to

232 bytes = 4 GB

of memory

Mapping Function: Cache Block frame number = (Block address) MOD (4096)

i.e. index field or 12 low bit of block address

Index field (12 bits)
Tag field (16 bits)

Word select

Block Address = 28 bits

Tag = 16 bits Index = 12 bits
Block offset

= 4 bits

Larger cache blocks take better advantage of spatial locality

and thus may result in a lower miss rate

Hit or miss?

SRAM

Tag

Matching

X

Block Offset (4 bits)

Hit Access Time = SRAM Delay + Hit/Miss Logic Delay

Typical cache

Block or line size:

32-64 bytes

STUDENTS-HUB.com

https://students-hub.com

T a g D a ta T a g D a ta T a g D a ta T a g D a ta T a g D a ta T a g D a ta T a g D a ta T a g D a ta

E ig h t - w a y s e t a s s o c ia t iv e (fu l ly a s s o c ia t iv e)

T a g D a ta T a g D a ta T a g D a ta T a g D a ta

F o u r - w a y s e t a s s o c ia tiv e

S e t

0

1

T a g D a ta

O n e - w a y s e t a s s o c ia t iv e

(d i re c t m a p p e d)

B lo c k

0

7

1

2

3

4

5

6

T a g D a ta

T w o - w a y s e t a s s o c ia t iv e

S e t

0

1

2

3

T a g D a ta

Cache Organization:
Set Associative Cache

Set associative cache reduces cache misses by reducing conflicts

between blocks that would have been mapped to the same cache

block frame in the case of direct mapped cache

2-way set associative:

2 blocks frames per set

4-way set associative:

4 blocks frames per set

8-way set associative:

8 blocks frames per set

In this case it becomes fully associative

since total number of block frames = 8

1-way set associative:

(direct mapped)

1 block frame per set

DataTagV

Cache Block Frame

A cache with a total of 8 cache block frames shown above

Why set associative?

STUDENTS-HUB.com

https://students-hub.com

Cache Organization/Mapping Example

8 Block Frames

32 Block Frames

2-way

00

100

12 = 1100

(No mapping function) = index = 00= index = 100

No Index
Index

Index

STUDENTS-HUB.com

https://students-hub.com

Index Field

(8 bits)

Tag

Field (22 bits)

Block Offset Field

(2 bits)

4K Four-Way Set Associative Cache:
MIPS Implementation Example

Address

22 8

V TagIndex

0

1

2

253

254

255

Data V Tag Data V Tag Data V Tag Data

3222

4 - to -1 m ultip lexo r

Hit Da ta

123891011123031 0

1024 block frames

Each block = one word

4-way set associative

1024 / 4= 28= 256 sets

Can cache up to

232 bytes = 4 GB

of memory

Block Address = 30 bits

Tag = 22 bits Index = 8 bits
Block offset

= 2 bits

Set associative cache requires parallel tag

matching and more complex hit logic which

may increase hit time

Tag Index Offset

SRAM

Hit/

Miss

Logic

Mapping Function: Cache Set Number = index= (Block address) MOD (256)

Hit Access Time = SRAM Delay + Hit/Miss Logic Delay

STUDENTS-HUB.com

https://students-hub.com

Locating A Data Block in Cache
• Each block frame in cache has an address tag.

• The tags of every cache block that might contain the required data

are checked in parallel.

• A valid bit is added to the tag to indicate whether this entry contains

a valid address.

• The address from the CPU to cache is divided into:

– A block address, further divided into:

• An index field to choose a block frame/set in cache.

(no index field when fully associative).

• A tag field to search and match addresses in the selected set.

– A block offset to select the data from the block.

Block Address Block

OffsetTag Index

STUDENTS-HUB.com

https://students-hub.com

Address Field Sizes/Mapping

Block Address Block

OffsetTag Index

Block offset size = log2(block size)

Index size = log2(Total number of blocks/associativity)

Tag size = address size - index size - offset size

Physical Memory Address Generated by CPU

Mapping function:

Cache set or block frame number = Index =

= (Block Address) MOD (Number of Sets)

Number of Sets

in cache

No index/mapping function for fully associative cache

(size determined by amount of physical main memory cacheable)

Mapping

STUDENTS-HUB.com

https://students-hub.com

Cache Replacement Policy
• When a cache miss occurs the cache controller may have to select a block of

cache data to be removed from a cache block frame and replaced with the

requested data, such a block is selected by one of three methods:

(No cache replacement policy in direct mapped cache)

– Random:
• Any block is randomly selected for replacement providing uniform

allocation.

• Simple to build in hardware. Most widely used cache replacement

strategy.

– Least-recently used (LRU):
• Accesses to blocks are recorded and and the block replaced is the one

that was not used for the longest period of time.

• Full LRU is expensive to implement, as the number of blocks to be
tracked increases, and is usually approximated by block usage bits that
are cleared at regular time intervals.

– First In, First Out (FIFO:

• Because LRU can be complicated to implement, this approximates LRU

by determining the oldest block rather than LRU

No choice on which block to replace

1

2

3

Which block to replace

on a cache miss?

STUDENTS-HUB.com

https://students-hub.com

Miss Rates for Caches with Different Size,

Associativity & Replacement Algorithm

Associativity: 2-way 4-way 8-way

Size LRU Random LRU Random LRU Random

16 KB 5.18% 5.69% 4.67% 5.29% 4.39% 4.96%

64 KB 1.88% 2.01% 1.54% 1.66% 1.39% 1.53%

256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

FIFO replacement miss rates (not shown here) is better than random but worse than LRU

Program steady state cache miss rates are given

Initially cache is empty and miss rates ~ 100%

For SPEC92

STUDENTS-HUB.com

https://students-hub.com

Unified vs. Separate Level 1 Cache
• Unified Level 1 Cache (Princeton Memory Architecture).

A single level 1 (L1) cache is used for both instructions and data.

• Separate instruction/data Level 1 caches (Harvard Memory Architecture):

The level 1 (L1) cache is split into two caches, one for instructions (instruction

cache, L1 I-cache) and the other for data (data cache, L1 D-cache).

Control

Datapath

Processor

R
eg

isters

Unified

Level

One

Cache

L1

Control

Datapath

Processor

R
eg

isters

L1

I-cache

L1

D-cache

Unified Level 1 Cache

(Princeton Memory Architecture)
Separate (Split) Level 1 Caches

(Harvard Memory Architecture)

Instruction

Level 1

Cache

Data

Level 1

Cache

Most

Common

Accessed

for both

instructions

And data

Or Split

Split Level 1 Cache is more preferred in pipelined CPUs

to avoid instruction fetch/Data access structural hazards

Why?

AKA Shared Cache

STUDENTS-HUB.com

https://students-hub.com

Memory Hierarchy Performance:
Average Memory Access Time (AMAT), Memory Stall cycles

• The Average Memory Access Time (AMAT): The number of cycles required

to complete an average memory access request by the CPU.

• Memory stall cycles per memory access: The number of stall cycles added to

CPU execution cycles for one memory access.

• Memory stall cycles per average memory access = (AMAT -1)

• For ideal memory: AMAT = 1 cycle, this results in zero memory stall

cycles.

• Memory stall cycles per average instruction =

Number of memory accesses per instruction

x Memory stall cycles per average memory access

= (1 + fraction of loads/stores) x (AMAT -1)

Base CPI = CPIexecution = CPI with ideal memory

CPI = CPIexecution + Mem Stall cycles per instruction

Instruction

Fetch

cycles = CPU cyclesSTUDENTS-HUB.com

https://students-hub.com

Cache Performance:
Single Level L1 Princeton (Unified) Memory Architecture

CPUtime = Instruction count x CPI x Clock cycle time

CPIexecution = CPI with ideal memory

CPI = CPIexecution + Mem Stall cycles per instruction

Mem Stall cycles per instruction =

Memory accesses per instruction x Memory stall cycles per access

Assuming no stall cycles on a cache hit (cache access time = 1 cycle, stall = 0)

Cache Hit Rate = H1 Miss Rate = 1- H1

Memory stall cycles per memory access = Miss rate x Miss penalty

AMAT = 1 + Miss rate x Miss penalty

Memory accesses per instruction = (1 + fraction of loads/stores)

Miss Penalty = M = the number of stall cycles resulting from missing in cache

= Main memory access time - 1

Thus for a unified L1 cache with no stalls on a cache hit:

CPI = CPIexecution + (1 + fraction of loads/stores) x (1 - H1) x M

AMAT = 1 + (1 - H1) x M

(Ignoring Write Policy)

CPI = CPIexecution + (1 + fraction of loads and stores) x stall cycles per access

= CPIexecution + (1 + fraction of loads and stores) x (AMAT – 1)

= (1- H1) x M

= 1 + (1- H1) x M

i.e No hit penalty

STUDENTS-HUB.com

https://students-hub.com

Memory Access Tree:

For Unified Level 1 Cache

CPU Memory Access

L1 Miss:

% = (1- Hit rate) = (1-H1)

Access time = M + 1

Stall cycles per access = M

Stall = M x (1-H1)

L1 Hit:

% = Hit Rate = H1

Hit Access Time = 1

Stall cycles per access = 0

Stall= H1 x 0 = 0

(No Stall)

AMAT = H1 x 1 + (1 -H1) x (M+ 1) = 1 + M x (1 -H1)

Stall Cycles Per Access = AMAT - 1 = M x (1 -H1)

CPI = CPIexecution + (1 + fraction of loads/stores) x M x (1 -H1)

M = Miss Penalty = stall cycles per access resulting from missing in cache

M + 1 = Miss Time = Main memory access time

H1 = Level 1 Hit Rate 1- H1 = Level 1 Miss Rate

100%

or 1

H1 (1-H1)

(Review from 550)

Probability to be here

Hit TimeHit Rate Miss Rate Miss Time

(Ignoring Write Policy)

Assuming:

Ideal access on a hit

Unified

L1

AMAT = 1 + Stalls per average memory access

STUDENTS-HUB.com

https://students-hub.com

Cache Performance Example
• Suppose a CPU executes at Clock Rate = 200 MHz (5 ns per cycle) with

a single level of cache.

• CPIexecution = 1.1

• Instruction mix: 50% arith/logic, 30% load/store, 20% control

• Assume a cache miss rate of 1.5% and a miss penalty of M= 50 cycles.

CPI = CPIexecution + mem stalls per instruction

Mem Stalls per instruction =

Mem accesses per instruction x Miss rate x Miss penalty

Mem accesses per instruction = 1 + .3 = 1.3

Mem Stalls per memory access = (1- H1) x M = .015 x 50 = .75 cycles

AMAT = 1 +.75 = 1.75 cycles

Mem Stalls per instruction = 1.3 x .015 x 50 = 0.975

CPI = 1.1 + .975 = 2.075

The ideal memory CPU with no misses is 2.075/1.1 = 1.88 times faster

Instruction fetch Load/store

M = Miss Penalty = stall cycles per access resulting from missing in cache

M(1- H1)

(i.e base CPI with ideal memory)

STUDENTS-HUB.com

https://students-hub.com

Cache Performance Example
• Suppose for the previous example we double the clock rate to

400 MHz, how much faster is this machine, assuming similar

miss rate, instruction mix?

• Since memory speed is not changed, the miss penalty takes

more CPU cycles:

Miss penalty = M = 50 x 2 = 100 cycles.

CPI = 1.1 + 1.3 x .015 x 100 = 1.1 + 1.95 = 3.05

Speedup = (CPIold x Cold)/ (CPInew x Cnew)

= 2.075 x 2 / 3.05 = 1.36

The new machine is only 1.36 times faster rather than 2

times faster due to the increased effect of cache misses.

 CPUs with higher clock rate, have more cycles per cache miss and more

memory impact on CPI.

STUDENTS-HUB.com

https://students-hub.com

For a CPU with separate or split level one (L1) caches for

instructions and data (Harvard memory architecture) and no stalls

for cache hits:

CPUtime = Instruction count x CPI x Clock cycle time

CPI = CPIexecution + Mem Stall cycles per instruction

Mem Stall cycles per instruction =

Instruction Fetch Miss rate x M +

Data Memory Accesses Per Instruction x Data Miss Rate x M

M = Miss Penalty = stall cycles per access to main memory

resulting from missing in cache

Cache Performance:

Single Level L1 Harvard (Split) Memory Architecture

L1

I-cache

Instruction

Level 1

Cache

Data

Level 1

Cache
L1

D-cache

CPIexecution = base CPI with ideal memory

This is one method to find stalls per instruction

another method is shown in next slide

1- Data H1

1- Instruction H1

Fraction of Loads and Stores

Miss rate = 1 – instruction H1Miss rate = 1 – data H1

Usually:

Data Miss Rate >> Instruction Miss Rate

STUDENTS-HUB.com

https://students-hub.com

Memory Access Tree

For Separate Level 1 Caches

CPU Memory Access

Instruction Data

Data L1 Miss:

Access Time = M + 1

Stalls per access: M

Stalls = % data x (1 - Data H1) x M

Data L1 Hit:

Hit Access Time: = 1

Stalls = 0

Instruction L1 Hit:

Hit Access Time = 1

Stalls = 0

Instruction L1 Miss:

Access Time = M + 1

Stalls Per access = M

Stalls =%instructions x (1 - Instruction H1) x M

Stall Cycles Per Access = % Instructions x (1 - Instruction H1) x M + % data x (1 - Data H1) x M

AMAT = 1 + Stall Cycles per access

Stall cycles per instruction = (1 + fraction of loads/stores) x Stall Cycles per access

CPI = CPIexecution + Stall cycles per instruction

= CPIexecution + (1 + fraction of loads/stores) x Stall Cycles per access

% data x (1 - Data H1)
% data x Data H1

% data% Instructions

%instructions

x (1 - Instruction H1)

%instructions x

Instruction H1)

1 or 100%

Assuming:

Ideal access on a hit, no stalls Assuming:

Ideal access on a hit, no stalls

(Ignoring Write Policy)

M = Miss Penalty = stall cycles per access resulting from missing in cache

M + 1 = Miss Time = Main memory access time

Data H1 = Level 1 Data Hit Rate 1- Data H1 = Level 1 Data Miss Rate

Instruction H1 = Level 1 Instruction Hit Rate 1- Instruction H1 = Level 1 Instruction Miss Rate

% Instructions = Percentage or fraction of instruction fetches out of all memory accesses

% Data = Percentage or fraction of data accesses out of all memory accesses

Split

L1

STUDENTS-HUB.com

https://students-hub.com

Split L1 Cache Performance Example
• Suppose a CPU uses separate level one (L1) caches for instructions and data (Harvard

memory architecture) with different miss rates for instruction and data access:

– A cache hit incurs no stall cycles while a cache miss incurs 200 stall cycles for both memory reads and
writes.

– CPIexecution = 1.1

– Instruction mix: 50% arith/logic, 30% load/store, 20% control

– Assume a cache miss rate of 0.5% for instruction fetch and a cache data miss rate of 6%.

– A cache hit incurs no stall cycles while a cache miss incurs 200 stall cycles for both memory reads and
writes.

• Find the resulting stalls per access, AMAT and CPI using this cache?

CPI = CPIexecution + mem stalls per instruction

Memory Stall cycles per instruction = Instruction Fetch Miss rate x Miss Penalty +

Data Memory Accesses Per Instruction x Data Miss Rate x Miss Penalty

Memory Stall cycles per instruction = 0.5/100 x 200 + 0.3 x 6/100 x 200 = 1 + 3.6 = 4.6 cycles

Stall cycles per average memory access = 4.6/1.3 = 3.54 cycles

AMAT = 1 + 3.54 = 4.54 cycles

CPI = CPIexecution + mem stalls per instruction = 1.1 + 4.6 = 5.7 cycles

• What is the miss rate of a single level unified cache that has the same performance?

4.6 = 1.3 x Miss rate x 200 which gives a miss rate of 1.8 % for an equivalent unified cache

• How much faster is the CPU with ideal memory?

The CPU with ideal cache (no misses) is 5.7/1.1 = 5.18 times faster

With no cache at all the CPI would have been = 1.1 + 1.3 X 200 = 261.1 cycles !!

(i.e base CPI with ideal memory)

(Ignoring Write Policy)M

STUDENTS-HUB.com

https://students-hub.com

Memory Access Tree For Separate Level 1 Caches Example

CPU Memory Access

Instruction Data

Data L1 Miss:

Access Time = M + 1 = 201

Stalls per access: M = 200

Stalls = % data x (1 - Data H1) x M

= 0.01385 x 200 = 2.769 cycles

Data L1 Hit:

Hit Access Time: = 1

Stalls = 0

Instruction L1 Hit:

Hit Access Time = 1

Stalls = 0

Instruction L1 Miss:

Access Time = M + 1= 201

Stalls Per access = M = 200

Stalls = %instructions x (1 - Instruction H1) x M

= 0.003846 x 200 =0.7692 cycles

Stall Cycles Per Access = % Instructions x (1 - Instruction H1) x M + % data x (1 - Data H1) x M

= 0.7692 + 2.769 = 3.54 cycles

AMAT = 1 + Stall Cycles per access = 1 + 3.5 = 4.54 cycles

Stall cycles per instruction = (1 + fraction of loads/stores) x Stall Cycles per access = 1.3 x 3.54 = 4.6 cycles

CPI = CPIexecution + Stall cycles per instruction = 1.1 + 4.6 = 5.7

% data x (1 - Data H1)

= 0.01385 or 1.385 %

% data x Data H1

= .2169 or 21.69 %

% data = 0.231 or 23.1 %
% Instructions =

0.769 or 76.9 %

%instructions

x (1 - Instruction H1)

= 0.003846 or 0.3846 %

%instructions x

Instruction H1)

= .765 or 76.5 %

100%

Ideal access on a hit, no stalls
Ideal access on a hit, no stalls

(Ignoring Write Policy)

M = Miss Penalty = stall cycles per access resulting from missing in cache = 200 cycles

M + 1 = Miss Time = Main memory access time = 200+1 =201 cycles L1 access Time = 1 cycle

Data H1 = 0.94 or 94% 1- Data H1 = 0.06 or 6%

Instruction H1 = 0.995 or 99.5% 1- Instruction H1 = 0.005 or 0.5 %

% Instructions = Percentage or fraction of instruction fetches out of all memory accesses = 76.9 %

% Data = Percentage or fraction of data accesses out of all memory accesses = 23.1 %

30% of all instructions executed are loads/stores, thus:

Fraction of instruction fetches out of all memory accesses = 1/ (1+0.3) = 1/1.3 = 0.769 or 76.9 %

Fraction of data accesses out of all memory accesses = 0.3/ (1+0.3) = 0.3/1.3 = 0.231 or 23.1 %

Given as 1.1

Split

L1

0.231 x 0.060.231 x 0.94

0.769 x 0.005
0.769 x 0.995

For Last Example

STUDENTS-HUB.com

https://students-hub.com

Typical Cache Performance Data

Using SPEC92

Program steady state cache miss rates are given

Initially cache is empty and miss rates ~ 100%

Usually Date Miss Rate >> Instruction Miss Rate

STUDENTS-HUB.com

https://students-hub.com

Cache Read/Write Operations
• Statistical data suggest that reads (including instruction fetches)

dominate processor cache accesses (writes account for ~ 25% of
data cache traffic).

• In cache reads, a block is read at the same time while the tag is
being compared with the block address. If the read is a hit the
data is passed to the CPU, if a miss it ignores it.

• In cache writes, modifying the block cannot begin until the tag is
checked to see if the address is a hit.

• Thus for cache writes, tag checking cannot take place in parallel,
and only the specific data (between 1 and 8 bytes) requested by
the CPU can be modified.

– Solution: Pipeline tag checking and cache write.

• Cache can be classified according to the write and memory
update strategy in place as: write through, or write back cache.

Pipelining of Tag Checking and Cache Write

Tag Check Cache Write

Tag Check Cache Write

i.e stores

i.e write hit (we have old block to modify in cache)

STUDENTS-HUB.com

https://students-hub.com

Cache Write Strategies
1 Write Though: Data is written to both the cache block and to

a block of main memory.

– The lower level always has the most updated data; an important

feature for I/O and multiprocessing.

– Easier to implement than write back.

– A write buffer is often used to reduce CPU write stall while data

is written to memory.

2 Write Back: Data is written or updated only to the cache

block. The modified or dirty cache block is written to main

memory when it’s being replaced from cache.

– Writes occur at the speed of cache

– A status bit called a dirty or modified bit, is used to indicate

whether the block was modified while in cache; if not the block is

not written back to main memory when replaced.

– Advantage: Uses less memory bandwidth than write through.

(i.e written though to memory)

back

The updated cache block is marked as modified or dirty

DataTagVD

D = Dirty

Or

Modified

Status Bit

0 = clean

1 = dirty

or modified

Cache Block Frame for Write-Back CacheValid Bit

i.e discarded

STUDENTS-HUB.com

https://students-hub.com

Cache Write Strategies:

Write Through

Write Hit Operation (block to be written to is in cache)

Cache Memory

Write

(Store)

Write to cache
Without Write Buffer:

Write to cache and also

to memory

Write Penalty =M

Write Buffer

With perfect write buffer:

Write to cache and also to write buffer

No penalty (no stall)

For cache write miss:
With no write allocate

Similar but no write to cache

Penalty is still M

Write Back
Cache Memory

Write

(Store)

Write to cache

No write to memory

Just write to cache block

and set dirty or modified bit to 1

No penalty (no stall)

1 Set modified/dirty

bit to 1 to indicate

that cache block

has been modified

(i.e block is dirty)

Without Write Buffer:

Cache Write Hit = block to be modified is found in cache

Write back to memory when replaced in cache

Then update memory

Later from write buffer

Cache Write Miss = block to be modified is not in cacheSTUDENTS-HUB.com

https://students-hub.com

Cache Write Miss Policy
• Since data is usually not needed immediately on a write miss two

options exist on a cache write miss:

Write Allocate:

The missed cache block is loaded into cache on a write miss followed by

write hit actions.

No-Write Allocate:

The block is modified in the lower level (lower cache level, or main

memory) and not loaded (written or updated) into cache.

While any of the above two write miss policies can be used with

either write back or write through:

• Write back caches always use write allocate to capture

subsequent writes to the block in cache.

• Write through caches usually use no-write allocate since

subsequent writes still have to go to memory.

Cache Write Miss = Block to be modified is not in cache

Allocate = Allocate or assign a cache block frame for written data

i.e A cache block frame is allocated for the block to be modified (written-to)

i.e A cache block frame is not allocated for the block to be modified (written-to)

(Bring old block to cache then update it)

STUDENTS-HUB.com

https://students-hub.com

CPU reads

or writes

to block in cache

Block to be replaced is clean

Write Back Cache With Write Allocate: Cache Miss Operation

Cache Memory

1

Cache Memory

0

Set modified/dirty

bit to 1 if this is a write

Read missed block

from memory

Penalty =M

1

2CPU reads

or writes

to block in cache

Block to be replaced is dirty (modified)

Replaced (old)

block is discarded

since it’s clean

Write replaced modified

block to memory

Penalty =M

1

Read missed block

from memory

Penalty =M

2

Set modified/dirty

bit to 1 if this is a write

3

1 Write back modified block being

replaced to memory

Penalty =M

2 Read missed block

from memory

Penalty =M

Thus:

Total Miss Penalty = M + M = 2M

Miss Penalty = M

M = Miss Penalty = stall cycles per access resulting from missing in cache

(read or write miss)

D
i.e. D was = 0

i.e. D was = 1

STUDENTS-HUB.com

https://students-hub.com

Memory Access Tree, Unified L1

Write Through, No Write Allocate, No Write Buffer

CPU Memory Access

Read Write

L1 Write Miss:

Access Time : M + 1

Stalls per access = M

Stalls = % write x (1 - H1) x M

L1 Write Hit:

Access Time: M +1

Stalls Per access = M

Stalls =% write x (H1) x M

L1 Read Hit:

Hit Access Time = 1

Stalls = 0

L1 Read Miss:

Access Time = M + 1

Stalls Per access = M

Stalls = % reads x (1 - H1) x M

Stall Cycles Per Memory Access = % reads x (1 - H1) x M + % write x M

AMAT = 1 + % reads x (1 - H1) x M + % write x M

CPI = CPIexecution + (1 + fraction of loads/stores) x Stall Cycles per access

Stall Cycles per access = AMAT - 1

M = Miss Penalty

H1 = Level 1 Hit Rate

1- H1 = Level 1 Miss Rate

% write% reads

% reads x (1 - H1)% reads x H1 % write x (1 - H1)
% write x H1

100%

or 1

M = Miss Penalty = stall cycles per access resulting from missing in cache

M + 1 = Miss Time = Main memory access time

H1 = Level 1 Hit Rate 1- H1 = Level 1 Miss Rate

Assuming:

Ideal access on a read hit, no stalls

Exercise:

Create memory access tree for split level 1

Unified

L1

Instruction Fetch + Loads

Stores

STUDENTS-HUB.com

https://students-hub.com

• To reduce write stalls when write though is used, a write

buffer is used to eliminate or reduce write stalls:

– Perfect write buffer: All writes are handled by write

buffer, no stalling for writes

– In this case (for unified L1 cache):

Stall Cycles Per Memory Access = % reads x (1 - H1) x M

(i.e No stalls at all for writes)

– Realistic Write buffer: A percentage of write stalls are

not eliminated when the write buffer is full.

– In this case (for unified L1 cache):

Stall Cycles/Memory Access = (% reads x (1 - H1) + % write stalls not eliminated) x M

Reducing Write Stalls For Write Though Cache

Using Write Buffers

STUDENTS-HUB.com

https://students-hub.com

Write Through Cache Performance Example

• A CPU with CPIexecution = 1.1 Mem accesses per instruction = 1.3

• Uses a unified L1 Write Through, No Write Allocate, with:

– No write buffer.

– Perfect Write buffer

– A realistic write buffer that eliminates 85% of write stalls

• Instruction mix: 50% arith/logic, 15% load, 15% store, 20% control

• Assume a cache miss rate of 1.5% and a miss penalty of 50 cycles.

CPI = CPIexecution + mem stalls per instruction

% reads = 1.15/1.3 = 88.5% % writes = .15/1.3 = 11.5%

With No Write Buffer :

Mem Stalls/ instruction = 1.3 x 50 x (88.5% x 1.5% + 11.5%) = 8.33 cycles

CPI = 1.1 + 8.33 = 9.43

With Perfect Write Buffer (all write stalls eliminated):

Mem Stalls/ instruction = 1.3 x 50 x (88.5% x 1.5%) = 0.86 cycles

CPI = 1.1 + 0.86 = 1.96

With Realistic Write Buffer (eliminates 85% of write stalls)

Mem Stalls/ instruction = 1.3 x 50 x (88.5% x 1.5% + 15% x 11.5%) = 1.98 cycles

CPI = 1.1 + 1.98 = 3.08

= M

1

2

3

1

2

3

Stall on all writes

STUDENTS-HUB.com

https://students-hub.com

Memory Access Tree Unified L1

Write Back, With Write Allocate

CPU Memory Access

L1 Miss
L1 Hit:

% = H1

Hit Access Time = 1

Stalls = 0

Stall Cycles Per Memory Access = (1-H1) x (M x % clean + 2M x % dirty)

AMAT = 1 + Stall Cycles Per Memory Access

CPI = CPIexecution + (1 + fraction of loads/stores) x Stall Cycles per access

L1 Miss, Clean

Access Time = M +1

Stalls per access = M

Stall cycles = M x (1 -H1) x % clean

L1 Miss, Dirty

Access Time = 2M +1

Stalls per access = 2M

Stall cycles = 2M x (1-H1) x % dirty

H1
(1-H1)

(1-H1) x % dirty(1 -H1) x % clean

1 or 100%

M = Miss Penalty = stall cycles per access resulting from missing in cache

M + 1 = Miss Time = Main memory access time

H1 = Level 1 Hit Rate 1- H1 = Level 1 Miss Rate

Assuming:

Ideal access on a hit, no stalls

Unified

L1

2M needed to:

- Write (back) Dirty Block

- Read new block

(2 main memory accesses needed)

One access to main memory to get needed block

STUDENTS-HUB.com

https://students-hub.com

Write Back Cache Performance Example

• A CPU with CPIexecution = 1.1 uses a unified L1 with with write back,
with write allocate, and the probability a cache block is dirty = 10%

• Instruction mix: 50% arith/logic, 15% load, 15% store, 20% control

• Assume a cache miss rate of 1.5% and a miss penalty of 50 cycles.

CPI = CPIexecution + mem stalls per instruction

Mem Stalls per instruction =

Mem accesses per instruction x Stalls per access

Mem accesses per instruction = 1 + 0.3 = 1.3

Stalls per access = (1-H1) x (M x % clean + 2M x % dirty)

Stalls per access = 1.5% x (50 x 90% + 100 x 10%) = 0.825 cycles

AMAT = 1 + stalls per access = 1 + 0.825 = 1.825 cycles

Mem Stalls per instruction = 1.3 x 0.825 = 1.07 cycles

CPI = 1.1 + 1.07 = 2.17

The ideal CPU with no misses is 2.17/1.1 = 1.97 times faster

(1 – H1) = M

STUDENTS-HUB.com

https://students-hub.com

Memory Access Tree For Unified L1

Write Back, With Write Allocate Example

CPU Memory Access

L1 Miss

L1 Hit:

% = H1 = 0.985 or 98.5%

Hit Access Time = 1

Stalls = 0

Stall Cycles Per Memory Access = M x (1-H1) x % clean + 2M x (1-H1) x % dirty)
= 0.675 + 0.15 = 0.825 cycles

AMAT = 1 + Stall Cycles Per Memory Access =1 + 0.825 = 1.825 cycles

Stall cycles per instruction = (1 + fraction of loads/stores) x Stall Cycles per access = 1.3 x 0.825 = 1.07 cycles

CPI = CPIexecution + Stall cycles per instruction = 1.1 + 1.07 = 2.17

L1 Miss, Clean

Access Time = M +1 = 51

Stalls per access = M = 50

Stall cycles = M x (1 -H1) x % clean

= 50 x 0.0135 = 0.675 cycles

L1 Miss, Dirty

Access Time = 2M +1= 101

Stalls per access = 2M = 100

Stall cycles = 2M x (1-H1) x % dirty

= 100 x 0.0015 = 0.15 cycles

2M needed to

Write Dirty Block

and Read new block

H1 = 0.985 or 98.5%

(1-H1) = 0.015 or 1.5%

(1-H1) x % dirty

= 0.015 x 0.1

= 0.0015 or 0.15%

(1 -H1) x % clean

= .015 x 0.9

= 0.0135 or 1.35%

1 or 100%

M = Miss Penalty = 50 cycles

M + 1 = Miss Time = 50 + 1 = 51 cycles L1 access Time = 1 cycle

H1 = 0.985 or 98.5% 1- H1 = 0.015 or 1.5%

Given as 1.1

Assuming:

Ideal access on a hit in L1

H1 = 98.5% T1 = 0 cycles

M = 50 cycles

L1 Misses: 10% dirty 90% clean

CPI execution = 1.1

Memory accesses per instruction = 1.3

Stalls on a hit in L1

Given Parameters:

Unified

L1

STUDENTS-HUB.com

https://students-hub.com

Memory Access Tree Structure

For Separate Level 1 Caches, Write Back, With Write Allocate

CPU Memory Access

Instruction Data

Data L1 Miss: Data L1 Hit:

Hit Access Time: = 1

Stalls = 0

Instruction L1 Hit:

Hit Access Time = 1

Stalls = 0

Instruction L1 Miss:

Access Time = M + 1

Stalls Per access = M

Stalls =

M x %instructions x (1 - Instruction H1)

% data x (1 - Data H1) % data x Data H1

% data% Instructions

%instructions

x (1 - Instruction H1)
%instructions x

Instruction H1)

1 or 100%

M = Miss Penalty = stall cycles per access resulting from missing in cache

M + 1 = Miss Time = Main memory access time

Data H1 = Level 1 Data Hit Rate 1- Data H1 = Level 1 Data Miss Rate

Instruction H1 = Level 1 Instruction Hit Rate 1- Instruction H1 = Level 1 Instruction Miss Rate

% Instructions = Percentage or fraction of instruction fetches out of all memory accesses

% Data = Percentage or fraction of data accesses out of all memory accesses

% Clean = Percentage or fraction of data L1 misses that are clean

% Dirty = Percentage or fraction of data L1 misses that are dirty = 1 - % Clean

Data L1 Miss, Clean

Access Time = M +1

Stalls per access = M

Stall cycles = M x % data x (1 –Data H1) x % clean

Data L1 Miss, Dirty

Access Time = 2M +1

Stalls per access = 2M

Stall cycles = 2M x % data x (1- Data H1) x % dirty

% data x (1- Data H1) x % dirty

% data x (1 –Data H1) x % clean

Exercise: Find expression for: Stall cycles per average memory access, AMAT

Assuming:

Ideal access on a hit in L1

Split

L1

STUDENTS-HUB.com

https://students-hub.com

2 Levels of Cache: L1, L2

CPU

L1 Cache

L2 Cache

Main Memory

Hit Rate= H1

Hit Access Time = 1 cycle (No Stall)

Stalls for hit access = T1 = 0

Local Hit Rate= H2

Stalls per hit access= T2

Hit Access Time = T2 + 1 cycles

Memory access penalty, M

(stalls per main memory access)

Access Time = M +1

Goal of multi-level Caches:

Reduce the effective miss penalty incurred by level 1 cache misses

by using additional levels of cache that capture some of these misses.

Thus hiding more main memory latency and reducing AMAT further

Improving Cache Performance: Multi-Level Cache

L2 has slower access time

than L1 (5-8 cycles typical)

But has more capacity

and higher associativity

Slower (longer access time) than L2

Ideal access on a hit in L1

L1 = Level 1 Cache

L2 = Level 2 Cache

Basic Design Rule for L1 Cache:

K.I.S.S
(e.g low degree of associatively

and capacity to keep it fast)

Assuming

4th Edition: Appendix C.3

(3rd Edition Chapter 5.4)

STUDENTS-HUB.com

https://students-hub.com

Miss Rates For Multi-Level Caches
• Local Miss Rate: This rate is the number of misses in

a cache level divided by the number of memory accesses to
this level (i.e those memory accesses that reach this level).

Local Hit Rate = 1 - Local Miss Rate

• Global Miss Rate: The number of misses in a cache level
divided by the total number of memory accesses generated
by the CPU.

• Since level 1 receives all CPU memory accesses, for level 1:

Local Miss Rate = Global Miss Rate = 1 - H1

• For level 2 since it only receives those accesses missed in 1:

Local Miss Rate = Miss rateL2 = 1- H2

Global Miss Rate = Miss rateL1 x Local Miss rateL2

= (1- H1) x (1 - H2)

For Level 3, global miss rate?

i.e that

reach

this level

STUDENTS-HUB.com

https://students-hub.com

CPUtime = IC x (CPIexecution + Mem Stall cycles per instruction) x C

Mem Stall cycles per instruction = Mem accesses per instruction x Stall cycles per access

• For a system with 2 levels of unified cache, assuming no
penalty when found in L1 cache:

Stall cycles per memory access =

[miss rate L1] x [Hit rate L2 x Hit time L2

+ Miss rate L2 x Memory access penalty] =

(1-H1) x H2 x T2 + (1-H1)(1-H2) x M

2-Level Cache (Both Unified) Performance

(Ignoring Write Policy)

L1 Miss, L2 Hit L1 Miss, L2 Miss:

Must Access Main Memory
H1 = L1 Hit Rate

T1 = stall cycles per L1 access hit

H2 = Local L2 Hit Rate

T2 =stall cycles per L2 access hit

CPI = CPIexecution + (1 + fraction of loads and stores) x stall cycles per access

= CPIexecution + (1 + fraction of loads and stores) x (AMAT – 1)

Here we assume T1 =0

(no stall on L1 hit)

(T1 = 0)

AMAT = 1 + Stall Cycles per access

Full Miss

STUDENTS-HUB.com

https://students-hub.com

2-Level Cache (Both Unified) Performance

Memory Access Tree (Ignoring Write Policy)

CPU Stall Cycles Per Memory Access

CPU Memory Access

L1 Miss:

% = (1-H1)

L1 Hit:

Hit Access Time = 1

Stalls= H1 x 0 = 0

(No Stall)

L1 Miss, L2 Miss:
Access Time = M +1

Stalls per access = M

Stalls= (1-H1)(1-H2) x M

L1 Miss, L2 Hit:

Hit Access Time =T2 +1

Stalls per L2 Hit = T2

Stalls =(1-H1) x H2 x T2

Stall cycles per memory access = (1-H1) x H2 x T2 + (1-H1)(1-H2) x M

AMAT = 1 + (1-H1) x H2 x T2 + (1-H1)(1-H2) x M

H1

(1-H1) x H2 (1-H1)(1-H2)

1 or 100%
Assuming:

Ideal access on a hit in L1

T1 = 0

CPI = CPIexecution + (1 + fraction of loads and stores) x stall cycles per access

= CPIexecution + (1 + fraction of loads and stores) x (AMAT – 1)

Global Miss Rate for Level 2

Global Hit Rate

for Level 2

Unified

L2

Unified

L1

Full Miss

STUDENTS-HUB.com

https://students-hub.com

Unified Two-Level Cache Example
• CPU with CPIexecution = 1.1 running at clock rate = 500 MHz

• 1.3 memory accesses per instruction.

• With two levels of cache (both unified)

• L1 hit access time = 1 cycle (no stall on a hit, T1= 0), a miss rate of 5%

• L2 hit access time = 3 cycles (T2= 2 stall cycles per hit) with local miss rate 40%,

• Memory access penalty, M = 100 cycles (stalls per access). Find CPI ...

CPI = CPIexecution + Mem Stall cycles per instruction

With No Cache, CPI = 1.1 + 1.3 x 100 = 131.1

With single L1, CPI = 1.1 + 1.3 x .05 x 100 = 7.6
Mem Stall cycles per instruction = Mem accesses per instruction x Stall cycles per access

Stall cycles per memory access = (1-H1) x H2 x T2 + (1-H1)(1-H2) x M

= 0.05 x .6 x 2 + 0.05 x 0.4 x 100

= 0.06 + 2 = 2.06 cycles

AMAT = 2.06 + 1 = 3.06 cycles

Mem Stall cycles per instruction = Mem accesses per instruction x Stall cycles per access

= 2.06 x 1.3 = 2.678 cycles

CPI = 1.1 + 2.678 = 3.778

Speedup = 7.6/3.778 = 2

CPI = CPIexecution + (1 + fraction of loads and stores) x stall cycles per access

= CPIexecution + (1 + fraction of loads and stores) x (AMAT – 1)

Compared to CPU with L1 only

(Ignoring Write Policy)

i.e 1-H2

STUDENTS-HUB.com

https://students-hub.com

Memory Access Tree For 2-Level Cache (Both Unified) Example

CPU Stall Cycles Per Memory Access

CPU Memory Access

L1 Miss:
(1-H1)= 0.05 or 5%

L1 Hit:
Hit Access Time = 1

Stalls per L1 Hit = T1 = 0

Stalls= H1 x 0 = 0

(No Stall)

L1 Miss, L2 Miss:

Access Time = M +1 = 100 + 1 =101 cycles

Stalls per access = M = 100 cycles

Stalls= (1-H1)(1-H2) x M

= 0.02 x 100 = 2 cycles

L1 Miss, L2 Hit:

Hit Access Time =T2 +1 = 3 cycles

Stalls per L2 Hit = T2 = 2 cycles

Stalls =(1-H1) x H2 x T2

= 0.03 x 2 = 0.06 cycles

Stall cycles per memory access = (1-H1) x H2 x T2 + (1-H1)(1-H2) x M

= 0.06 + 2 = 2.06 cycles

AMAT = 1 + Stall cycles per memory access = 1 + 2.06 = 3.06 cycles

Stall cycles per instruction = (1 + fraction of loads/stores) x Stall Cycles per access

= 1.3 x 2.06 = 2.678 cycles

CPI = CPIexecution + Stall cycles per instruction = 1.1 + 2.678 = 3.778

H1 = 0.95 or 95%

(1-H1) x H2

= 0.05 x 0.6

= 0.03 or 3%

(1-H1)(1-H2)

= 0.05 x 0.4

= 0.02 or 2%

1 or 100%

Ideal access on a hit in L1

T1 = 0

CPI = CPIexecution + (1 + fraction of loads and stores) x stall cycles per access

= CPIexecution + (1 + fraction of loads and stores) x (AMAT – 1)

(Ignoring Write Policy)

H1 = 95% T1 = 0 cycles

H2 = 60% T2 = 2 cycles

M = 100 cycles

CPI execution = 1.1

Memory accesses per instruction = 1.3

Stalls on a hit

Given Parameters:

Global Miss Rate for L2

Global Hit Rate for L2

Unified

L1

Unified

L2

Full Miss

STUDENTS-HUB.com

https://students-hub.com

Memory Access Tree Structure For 2-Level Cache

(Separate Level 1 Caches, Unified Level 2)

CPU Memory Access

Instruction Data

Data L1 Miss:Data L1 Hit:Instruction L1 Hit: Instruction L1 Miss:

% data% Instructions

1 or 100%

% Instructions = Percentage or fraction of instruction fetches out of all memory accesses

% Data = Percentage or fraction of data accesses out of all memory accesses

For L1: T1 = Stalls per hit access to level 1

Data H1 = Level 1 Data Hit Rate 1- Data H1 = Level 1 Data Miss Rate

Instruction H1 = Level 1 Instruction Hit Rate 1- Instruction H1 = Level 1 Instruction Miss Rate

For L2: T2 = Stalls per access to level 2

H2 = Level 2 local hit Rate 1-H2 = Level 2 local miss rate

M = Miss Penalty = stall cycles per access resulting from missing in cache level 2

M + 1 = Miss Time = Main memory access time

L2 MissL2 Hit

(Ignoring Write Policy)

L2 MissL2 Hit

Exercise: In terms of the parameters below,

complete the memory access tree and find the expression

for stall cycles per memory access

Split

L1

Unified

L2

STUDENTS-HUB.com

https://students-hub.com

Common Write Policy For 2-Level Cache

• Write Policy For Level 1 Cache:

– Usually Write through to Level 2.

– Write allocate is used to reduce level 1 read misses.

– Use write buffer to reduce write stalls to level 2.

• Write Policy For Level 2 Cache:

– Usually write back with write allocate is used.

• To minimize memory bandwidth usage.

• The above 2-level cache write policy results in inclusive L2 cache
since the content of L1 is also in L2

• Common in the majority of all CPUs with 2-levels of cache

• As opposed to exclusive L1, L2 (e.g AMD Athlon XP, A64)

i.e what is in L1 is not duplicated in L2

L1 L2

As if we have a single level of cache with one

portion (L1) is faster than remainder (L2)

L1

L2

(not write through to main memory just to L2)

STUDENTS-HUB.com

https://students-hub.com

2-Level (Both Unified) Memory Access Tree

L1: Write Through to L2, Write Allocate, With Perfect Write Buffer

L2: Write Back with Write Allocate

CPU Memory Access

L1 Miss:
L1 Hit:

Hit Access Time = 1

Stalls Per access = 0

L1 Miss, L2 Hit:

Hit Access Time =T2 +1

Stalls per L2 Hit = T2

Stalls = (1-H1) x H2 x T2

(1-H1)(H1)

L1 Miss, L2 Miss

(1-H1) x (1-H2)

L1 Miss, L2 Miss, Clean

Access Time = M +1

Stalls per access = M

Stall cycles =

M x (1 -H1) x (1-H2) x % clean

L1 Miss, L2 Miss, Dirty

Access Time = 2M +1

Stalls per access = 2M

Stall cycles = 2M x (1-H1) x (1-H2) x % dirty

Stall cycles per memory access = (1-H1) x H2 x T2 + M x (1 -H1) x (1-H2) x % clean + 2M x (1-H1) x (1-H2) x % dirty

= (1-H1) x H2 x T2 + (1 -H1) x (1-H2) x (% clean x M + % dirty x 2M)

AMAT = 1 + Stall Cycles Per Memory Access

CPI = CPIexecution + (1 + fraction of loads and stores) x Stall Cycles per access

(1-H1) x H2

1 or 100%

(1-H1) x (1-H2) x % dirty(1 -H1) x (1-H2) x % clean

Assuming:

Ideal access on a hit in L1

T1 = 0

Global Miss Rate for L2

Unified

L2

Unified

L1

STUDENTS-HUB.com

https://students-hub.com

• CPU with CPIexecution = 1.1 running at clock rate = 500 MHz

• 1.3 memory accesses per instruction. Two levels of cache (both unified)

• For L1 :
– Cache operates at 500 MHz (no stall on L1 Hit, T1 =0) with a miss rate of 1-H1 = 5%

– Write though to L2 with perfect write buffer with write allocate

• For L2:
– Hit access time = 3 cycles (T2= 2 stall cycles per hit) local miss rate 1- H2 = 40%

– Write back to main memory with write allocate

– Probability a cache block is dirty = 10%

• Memory access penalty, M = 100 cycles.

• Create memory access tree and find, stalls per memory access, AMAT, CPI.

• Stall cycles per memory access = (1-H1) x H2 x T2 +

(1 -H1) x (1-H2) x (% clean x M + % dirty x 2M)

= .05 x .6 x 2 + .05 x .4 x (.9 x 100 + .1 x200)

= .06 + 0.02 x 110 = .06 + 2.2 = 2.26

• AMAT = 2.26 + 1 = 3.26 cycles

Mem Stall cycles per instruction = Mem accesses per instruction x Stall cycles per access

= 2.26 x 1.3 = 2.938 cycles

CPI = 1.1 + 2.938 = 4.038 = 4

Two-Level (Both Unified) Cache Example With Write Policy

CPI = CPIexecution + (1 + fraction of loads and stores) x (AMAT –1)

i.e. ideal access time = 1 cycle

STUDENTS-HUB.com

https://students-hub.com

Memory Access Tree For Two-Level (Both Unified) Cache Example With Write Policy

L1: Write Through to L2, Write Allocate, With Perfect Write Buffer

L2: Write Back with Write Allocate

CPU Memory Access

L1 Miss:
L1 Hit:

Hit Access Time = 1

Stalls Per access = 0

L1 Miss, L2 Hit:

Hit Access Time =T2 +1 = 3 cycles

Stalls per L2 Hit = T2 = 2 cycles

Stalls = (1-H1) x H2 x T2

= 0.03 x 2 = 0.06 cycles

(1-H1) = 0.05 or 5%
(H1) = 0.95 or 95%

L1 Miss, L2 Miss

(1-H1) x (1-H2) = 0.05 x 0.4 = 0.02 or 2%

L1 Miss, L2 Miss, Clean

Access Time = M +1 = 101 cycles

Stalls per access = M

Stall cycles = M x (1 -H1) x (1-H2) x % clean

= 100 x 0.018 = 1.8 cycles

L1 Miss, L2 Miss, Dirty

Access Time = 2M +1 = 200 + 1 = 201 cycles

Stalls per access = 2M = 200 cycles

Stall cycles = 2M x (1-H1) x (1-H2) x % dirty

= 200 x 0.002 = 0.4 cycles

Stall cycles per memory access = (1-H1) x H2 x T2 + M x (1 -H1) x (1-H2) x % clean + 2M x (1-H1) x (1-H2) x % dirty

= 0.06 + 1. 8 + 0.4 = 2.26 cycles

AMAT = 1 + Stall cycles per memory access = 1 + 2.26 = 3.26 cycles

Stall cycles per instruction = (1 + fraction of loads/stores) x Stall Cycles per access

= 1.3 x 2.26 = 2.938 cycles

CPI = CPIexecution + Stall cycles per instruction = 1.1 + 2.938 = 4.038

AMAT = 1 + Stall Cycles Per Memory Access

CPI = CPIexecution + (1 + fraction of loads and stores) x Stall Cycles per access

(1-H1) x H2

= 0.05 x 0.6

= 0.03 or 3%

1 or 100%

(1-H1) x (1-H2) x % dirty

= 0.02 x 0.1 = 0.002 or 0.2 %

(1 -H1) x (1-H2) x % clean

= 0.02 x 0.9 = 0.018 or 1.8%

H1 = 95% T1 = 0 cycles

H2 = 60% T2 = 2 cycles

M = 100 cycles

L2 Misses: 10% dirty 90% clean

CPI execution = 1.1

Memory accesses per instruction = 1.3

Stalls on a hit

Given Parameters:

Unified

L1

Unified

L2

STUDENTS-HUB.com

https://students-hub.com

Memory Access Tree Structure For 2-Level Cache(Separate Level 1 Caches, Unified Level 2)
L1: Write Through to L2, Write Allocate, With Perfect Write Buffer L2: Write Back with Write Allocate

CPU Memory Access

Instruction Data

Data L1 Miss:Data L1 Hit:Instruction L1 Hit: Instruction L1 Miss:

% data% Instructions

1 or 100%

% Instructions = Percentage or fraction of instruction fetches out of all memory accesses

% Data = Percentage or fraction of data accesses out of all memory accesses

For L1: T1 = Stalls per hit access to level 1

Data H1 = Level 1 Data Hit Rate 1- Data H1 = Level 1 Data Miss Rate

Instruction H1 = Level 1 Instruction Hit Rate 1- Instruction H1 = Level 1 Instruction Miss Rate

For L2: T2 = Stalls per access to level 2

H2 = Level 2 local hit Rate 1-H2 = Level 2 local miss rate

% Clean = Percentage or fraction of data L2 misses that are clean

% Dirty = Percentage or fraction of L2 misses that are dirty = 1 - % Clean

M = Miss Penalty = stall cycles per access resulting from missing in cache level 2

M + 1 = Miss Time = Main memory access time

L2 MissL2 HitL2 MissL2 Hit

Exercise: In terms of the parameters below,

complete the memory access tree and find the expression

for stall cycles per memory access

L2 Miss DirtyL2 Miss Clean L2 Miss DirtyL2 Miss Clean

Split

L1

Unified

L2

STUDENTS-HUB.com

https://students-hub.com

Memory Hierarchy—Ways to Reduce Misses

STUDENTS-HUB.com

https://students-hub.com

Review Cache Performance Equations

• CPUtime = (CPU execution cycles + Mem stall cycles) * Cycle time

• Mem stall cycles = Mem accesses * Miss rate * Miss penalty

• CPUtime = IC * (CPIexe + Mem accesses per instr * Miss rate * Miss

penalty) * Cycle time

• Misses per instr = Mem accesses per instr * Miss rate

• CPUtime = IC * (CPIexe + Misses per instr * Miss penalty) * Cycle

time

STUDENTS-HUB.com

https://students-hub.com

Reducing Misses
• Classifying Misses: 3 Cs

– Compulsory—The first access to a block is not in the cache, so

the block must be brought into the cache. These are also called

cold start misses or first reference misses.

(Misses in Infinite Cache)

– Capacity—If the cache cannot contain all the blocks needed

during execution of a program, capacity misses will occur due

to blocks being discarded and later retrieved.

(Misses in Size)

– Conflict—If the block-placement strategy is set associative or

direct mapped, conflict misses (in addition to compulsory and

capacity misses) will occur because a block can be discarded

and later retrieved if too many blocks map to its set. These are

also called collision misses or interference misses.

(Misses in N-way Associative)

STUDENTS-HUB.com

https://students-hub.com

Improving Cache Performance

1. Reduce the miss rate,

2. Reduce the miss penalty, or

3. Reduce the time to hit in the cache.

STUDENTS-HUB.com

https://students-hub.com

How to Reduce Miss Rate?

• Increase Block Size

• Increase Associativity

• Use a Victim Cache

• Use a Pseudo Associative Cache

• Hardware Prefetching

• Compiler-Controlled Prefetching

• Compiler Optimizations

STUDENTS-HUB.com

https://students-hub.com

1. Increase cache Block Size
• One way to reduce the miss rate is to increase the block size

– Reduce compulsory misses - why?

• Take advantage of spacial locality

– Helps improve miss rate b/c of principle of locality:

– Temporal locality says that if something is accessed once, it’ll probably

be accessed again soon

– Spatial locality says that if something is accessed, something nearby it

will probably be accessed

• Larger block sizes help with spatial locality

• However, larger blocks have disadvantages

– May increase the miss penalty (need to get more data)

• Generally, larger blocks reduce # of total blocks in cache

– May increase hit time (need to read more data from cache and larger

mux)

– May increase conflict and capacity misses

• Increasing the block size can help, but don’t overdo it.

STUDENTS-HUB.com

https://students-hub.com

Cache Size (bytes)

Miss

Rate

0%

5%

10%

15%

20%

25%
1
6

3
2

6
4

1
2
8

2
5
6

1K

4K

16K

64K

256K

1. Increase cache Block Size (cont.)

STUDENTS-HUB.com

https://students-hub.com

Example Increase cache Block Size (1/3)

• Assume that to access lower-level of memory hierarchy

you:

– Incur a 40 clock cycle overhead

– Get 16 bytes of data every 2 clock cycles

• I.e. get 16 bytes in 42 clock cycles, 32 in 44, etc…

• Using data below, which block size has minimum average

memory access time?

Block Size 1K 4K 16K 64K 256K

16 15.05% 8.57% 3.94% 2.04% 1.09%

32 13.34% 7.24% 2.87% 1.35% 0.70%

64 13.76% 7.00% 2.64% 1.06% 0.51%

128 16.64% 7.78% 2.77% 1.02% 0.49%

256 22.01% 9.51% 3.29% 1.15% 0.49%

Cache sizes

Miss rates

STUDENTS-HUB.com

https://students-hub.com

Example Increase cache Block Size (3/3)

Block

Size

Miss

Penalty

1K 4K 16K 64K 256K

16 42 7.321 4.599 2.655 1.857 1.485

32 44 6.870 4.186 2.263 1.594 1.308

64 48 7.605 4.360 2.267 1.509 1.245

128 56 10.318 5.357 2.551 1.571 1.274

256 72 16.847 7.847 3.369 1.828 1.353

Red entries are lowest average time for a particular configuration
Note: All of these block sizes are common in processor’s today
Note: Data for cache sizes in units of “clock cycles”

Cache sizes

• Assume a cache hit otherwise takes 1 clock cycle –independent of block size

• So, for a 16-byte block in a 1-KB cache…

Average memory access time =

1 + (15.05% X 42) = 7.321 clock cycles

• And for a 256-byte block in a 256-KB cache…

Average memory access time =

1 + (0.49% X 72) = 1.353 clock cycles

STUDENTS-HUB.com

https://students-hub.com

Summary Increase cache Block Size

• We want to minimize cache miss rate & cache miss

penalty at same time!

• Selection of block size depends on latency and bandwidth

of lower-level memory:

– High latency, high bandwidth encourage large block size

• Cache gets many more bytes per miss for a small increase in

miss penalty

– Low latency, low bandwidth encourage small block size

• Twice the miss penalty of a small block may be close to the

penalty of a block twice the size

• Larger # of small blocks may reduce conflict misses

STUDENTS-HUB.com

https://students-hub.com

2. Reduce Misses via Higher Associativity

• Increasing associativity helps reduce conflict misses

• 2:1 Cache Rule:

– The miss rate of a direct mapped cache of size N is about equal to the miss

rate of a 2-way set associative cache of size N/2

• Disadvantages of higher associativity

– Need to do large number of comparisons

– Need n-to-1 multiplexer for n-way set associative

– Could increase hit time

Cache Size Associativity

(KB) 1-way 2-way 4-way 8-way

1 7.65 6.60 6.22 5.44

2 5.90 4.90 4.62 4.09

4 4.60 3.95 3.57 3.19

8 3.30 3.00 2.87 2.59

16 2.45 2.20 2.12 2.04

32 2.00 1.80 1.77 1.79

64 1.70 1.60 1.57 1.59

128 1.50 1.45 1.42 1.44

(Red means A.M.A.T. not improved by more associativity)

STUDENTS-HUB.com

https://students-hub.com

Avg. Memory Access vs Cache Size vs

Associativity

0

0.5

1

1.5

2

2.5

3

3.5

8 KB 16 KB 32 KB 64 kb 128 KB

1-way

2-way

3-way

4-way

Memory Access

Time

STUDENTS-HUB.com

https://students-hub.com

3. Reducing Misses via Victim Cache

• What is a “victim cache”?

– A victim cache temporarily stores blocks that have been
discarded from the main cache (usually not that big)

• How does it help us?

– If there’s a cache miss, instead of immediately going down to
the next level of memory hierarchy we check the victim cache
first

– If the entry is there, we swap the victim cache block with the
actual cache block

• Research shows:

– Victim caches with 1-5 entries help reduce conflict misses

– For a 4KB direct mapped cache victim caches:

• Removed 20% - 95% of conflict misses!

STUDENTS-HUB.com

https://students-hub.com

3. Reducing Misses via Victim Cache

Address

Data Data

in out

CPU

Write

buffer

Lower level memory

=?

=?

Tag Data

Victim Cache

STUDENTS-HUB.com

https://students-hub.com

4. Reducing Misses via Pseudo-Associativity

• This techniques should help:

– The miss rate of set-associative caches

– The hit speed of direct mapped caches

• Also called: “column associated cache”

• Access proceeds normally as for a direct mapped cache

– But, on a miss, we look at another entry before going to a lower level
of memory hierarchy

– Usually done by:

• Inverting the most significant bit of index field to find the
other block in the psuedo-set

• Pseudo-associative caches usually have 1 fast and 1 slow
hit time (regular, psuedo hit respectively)

– In addition to the miss penalty that is…

STUDENTS-HUB.com

https://students-hub.com

5. HW Prefetching of Instruction & Data
• E.g., Instruction Prefetching

– Alpha 21064 fetches 2 blocks on a miss

– Extra block placed in stream buffer

– On miss check stream buffer

• Works with data blocks too

• Prefetching relies on extra memory bandwidth that can be used without

penalty

• What is the effective miss rate for the Alpha using instruction prefetching?

• How much larger of an instruction cache would we need if the Alpha to match
the average access time if prefetching was removed?

– Assume:

• It takes 1 extra clock cycle if the instruction misses the cache but is found in
the prefetch buffer

• The prefetch hit rate is 25%

• Miss rate for 8-KB instruction cache is 1.10%

• Hit time is 2 clock cycles

• Miss penalty is 50 clock cycles
STUDENTS-HUB.com

https://students-hub.com

5. HW Prefetching of Instruction & Data

• We need a revised memory access time formula:

– Say: Average memory access timeprefetch =

• Hit time + miss rate * prefetch hit rate * 1 + miss rate * (1 –
prefetch hit rate) * miss penalty

• Plugging in numbers to the above, we get:

– 2 + (1.10% * 25% * 1) + (1.10% * (1 – 25%) * 50) = 2.415

• To find the miss rate with equivalent performance, we
start with the original formula and solve for miss rate:

– Average memory access timeno prefetching =

• Hit time + miss rate * miss penalty

– Results in: (2.415 – 2) / 50 = 0.83%

• Calculation suggests effective miss rate of prefetching
with 8KB cache is 0.83%

• Actual miss rates for 16KB = 0.64% and 8KB = 1.10%

STUDENTS-HUB.com

https://students-hub.com

6. Reducing Misses by Compiler Optimizations

• Instructions

– Reorder procedures in memory so as to reduce misses

– Profiling to look at conflicts between groups of instructions

• McFarling [1989] reduced caches misses by 75% on 8KB direct mapped

cache with 4 byte blocks

• Data

– Merging Arrays: improve spatial locality by single array of compound elements vs.

2 arrays (prevents the same indicies being used)

– Loop Interchange: change nesting of loops to access data in order stored in memory

– Loop Fusion: Combine 2 independent loops that have same looping and some

variables overlap

– Blocking: Improve temporal locality by accessing “blocks” of data repeatedly vs.

going down whole columns or rows

STUDENTS-HUB.com

https://students-hub.com

Merging arrays

• This works by improving spatial locality

• For example, some programs may reference multiple

arrays of the same size at the same time

– Could be bad:

• Accesses may interfere with one another in the cache

• A solution: Generate a single, compound array…

/* Before:*/

int tag[SIZE]

int byte1[SIZE]

int byte2[SIZE]

int dirty[size]

/* After */

struct merge {

int tag;

int byte1;

int byte2;

int dirty;

}

struct merge cache_block_entry[SIZE]

STUDENTS-HUB.com

https://students-hub.com

Array Organizations

X[i][j]

Row Major Ordering

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

3

4

Row Col
Memory

STUDENTS-HUB.com

https://students-hub.com

Loop Interchange Example

/* Before */

for (j = 0; j < 100; j = j+1)

for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];

/* After */

for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

• Some programs have nested loops that access memory in
non-sequential order

– Simply changing the order of the loops may make them access the
data in sequential order…

– Sequential accesses Instead of striding through memory every 100
words

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

3

4

Row Col
Memory

STUDENTS-HUB.com

https://students-hub.com

Loop Fusion Example

/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];

/* After */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];

}

2 misses per access to a & c vs. one miss per access
STUDENTS-HUB.com

https://students-hub.com

Blocking

• This is probably the most “famous” of compiler optimizations
to improve cache performance

• Tries to reduce misses by improving temporal locality

• 1st of all, we need to realize that arrays can be accessed/indexed

“differently”:

– Some arrays are accessed by rows, others by columns

– Storing array data row-by-row is called row major order

– Storing array data column-by-column is called column major order

• In some code this won’t help b/c array data is going to be

accessed both by rows and by columns!

– Things like loop interchange don’t help…

• Blocking tries to create “submatricies” – or blocks to maximize

accesses to data loaded in the cache before its replaced.

STUDENTS-HUB.com

https://students-hub.com

Example blocking (Before)

/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{ r = 0;

for (k = 0; k < N; k = k+1)

{

r = r + y[i][k]*z[k][j];

};

x[i][j] = r;

};

2 inner loops read all N x N elements

of z, access the same N elements in a

row of y repeatedly, and write one

row of N elements of x.

!

Pictorially what happens is:

0 1 2 3 4 5

0

1

2

3

4

5

i

j

0 1 2 3 4 5

0

1

2

3

4

5

i

k

0 1 2 3 4 5

0

1

2

3

4

5

k

j

x y z

!
White block =

not accessed
Light block =

older access
Dark block =

newer access

STUDENTS-HUB.com

https://students-hub.com

Blocking (some comments)

• In the matrix multiply code, the # of capacity misses is going to
depend upon:

– The factor N (i.e. the sizes of the matrices)

– The size of the cache

• Some possible outcomes:

– The cache can hold all N x N matrices (great!)

• Provided there are no conflict misses

– The cache can hold 1 N x N matrix and one row of size N

• Maybe ith row of y and matrix z may stay in the cache

– The cache can’t hold even this much

• Misses will occur for both x and z

• In the worst case there will be 2N3 + N2 memory reads – for N3

memory operations!

STUDENTS-HUB.com

https://students-hub.com

Example blocking (After)

/* After */

for (jj = 0; jj < N; jj = jj+B)

for (kk = 0; kk < N; kk = kk+B)

for (i = 0; i < N; i = i+1)

for (j = jj; j < min(jj+B-1,N); j = j+1)

{ r = 0;

for (k = kk; k < min(kk+B-1,N); k = k+1)

{

r = r + y[i][k]*z[k][j];

};

x[i][j] = x[i][j] + r;

};

To ensure that the elements accessed

will all fit/stay in the cache, the code

is changed to operate on submatrices

of size B x B.

The 2 inner loops compute in steps of

size B instead of going from the

beginning to the end of x and z.

B is called the blocking factor.

!

Pictorially what happens is:

0 1 2 3 4 5

0

1

2

3

4

5

i

j

0 1 2 3 4 5

0

1

2

3

4

5

i

k

0 1 2 3 4 5

0

1

2

3

4

5

k

j

x y z
!

Smaller # of

elements accessed

but they’re all

in the cache!

STUDENTS-HUB.com

https://students-hub.com

Summary blocking

• What might happen with regard to capacity misses?

– Total # of memory words accessed is 2N3/B + N2

– This is an improvement by a factor of B

• Blocking thus exploits a combination of spatial and

temporal locality

– y matrix benefits from spatial locality and z benefits from temporal

locality

• Usually, blocking aimed at reducing capacity misses:

– Assumes that conflict misses are not significant or…

– …can be eliminated by more associative caches

• Blocking reduces # of words active in a cache at 1 point

in time – therefore small block size helps with conflicts…

STUDENTS-HUB.com

https://students-hub.com

Improving Cache Performance

1. Reduce the miss rate,

2. Reduce the miss penalty

3. Reduce the time to hit in the cache.

STUDENTS-HUB.com

https://students-hub.com

1. Reducing Miss Penalty:

Read Priority over Write on Miss

• Reads are the common case – make them fast!

• Write buffers helped us with cache writes but…

– They complicate memory accesses b/c they might hold updated value of
a location on a read miss

• Example:

SW 512(R0), R3 ; M[512]  R3 (cache index 0)

LW R1, 1024(R0) ; R1  M[1024] (cache index 0)

LW R2, 512(R0) ; R2  M[512] (cache index 0)

•Assume direct mapped, write through cache

•(512, 1024 mapped to the same location)

•Assume a 4 word write buffer

•Will the value in R2 always be equal to the value in R3?

STUDENTS-HUB.com

https://students-hub.com

1. Reducing Miss Penalty:

Read Priority over Write on Miss

• Example continue:

– This code generates a RAW hazard in memory

– A cache access might work as follows:

• Data in R3 placed into the write buffer after the store

• Next load uses same cache index – we get a miss

– (i.e. b/c the store data is there)

• Next load tries to put value in location 512 into R2

• This also results in a cache miss

– (i.e. b/c 512 has been updated)

• If write buffer hasn’t finished writing to location 512, reading

location 512 will put the wrong, old value into the cache block

and then into R2

• R3 would not be equal to R2 – which is a bad thing!

STUDENTS-HUB.com

https://students-hub.com

1. Reducing Miss Penalty:

Read Priority over Write on Miss

• First solution to this problem is to handle read misses

only if the write buffer is empty

– (Causes quite a performance hit however!)

• Alternative is to check contents of the write buffer on a

read miss

– If there are no conflicts & memory system is available, let read miss

continue

• Can also reduce the cost of writes within a processor with

a write-back cache…

– What if a read miss should replace a dirty memory block?

• Could: write to memory, read memory

• Or: copy the dirty block to a buffer, read memory, then

write memory – lets the CPU “not wait”

STUDENTS-HUB.com

https://students-hub.com

2. Subblock Placement to Reduce Miss Penalty

• Instead of replacing a whole complete block of a cache,

we only replace one of its subblocks:

– Note: We’ll have to make a hardware change to do this. What is

it???

• Subblocks should have a smaller miss penalty then full

blocks

Valid Bits Sub-blocksTags
STUDENTS-HUB.com

https://students-hub.com

3. Reduce Miss Penalty:

Early Restart and Critical Word First

• Don’t wait for full block to be loaded before restarting

CPU

– Early restart—As soon as the requested word of the block ar rives,

send it to the CPU and let the CPU continue execution

– Critical Word First—Request the missed word first from memory

and send it to the CPU as soon as it arrives; let the CPU continue

execution while filling the rest of the words in the block. Also called

wrapped fetch and requested word first

• Generally useful only in large blocks,

• Spatial locality a problem; tend to want next sequential

word, so not clear if benefit by early restart

block

STUDENTS-HUB.com

https://students-hub.com

4. Reduce Miss Penalty: Non-blocking Caches

to reduce stalls on misses

• Non-blocking cache or lockup-free cache allow data

cache to continue to supply cache hits during a miss

– requires out-of-order executuion CPU

• “hit under miss” reduces the effective miss penalty by

working during miss vs. ignoring CPU requests

• “hit under multiple miss” or “miss under miss” may

further lower the effective miss penalty by overlapping

multiple misses

– Significantly increases the complexity of the cache controller as there

can be multiple outstanding memory accesses

– Requires muliple memory banks (otherwise cannot support)

– Penium Pro allows 4 outstanding memory misses

STUDENTS-HUB.com

https://students-hub.com

Value of Hit Under Miss for SPEC

• FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26

• Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19

• 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss

Integer Floating Point

“Hit under n Misses”

0->1

1->2

2->64

Base

A
v

g
.

M
e
m

.
A

c
c
e
s
s
 T

im
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

e
q
n
to

tt

e
s
p
re

s
s
o

x
lis

p

c
o
m

p
re

s
s

m
d
ljs

p
2 e
a
r

fp
p
p
p

to
m

c
a
tv

s
w

m
2
5
6

d
o
d
u
c

s
u
2
c
o
r

w
a
v
e
5

m
d
ljd

p
2

h
yd

ro
2
d

a
lv

in
n

n
a
s
a
7

s
p
ic

e
2
g

6

o
ra

0->1

1->2

2->64

Base

STUDENTS-HUB.com

https://students-hub.com

5th Miss Penalty

• L2 Equations

AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1

Miss PenaltyL1 = Hit TimeL2 + Miss RateL2 x Miss PenaltyL2

AMAT = Hit TimeL1 + Miss RateL1 x (Hit TimeL2 + Miss RateL2 +

Miss PenaltyL2)

• Definitions:

– Local miss rate— misses in this cache divided by the total number of

memory accesses to this cache (Miss rateL2)

– Global miss rate—misses in this cache divided by the total number of

memory accesses generated by the CPU
(Miss RateL1 x Miss RateL2)

– Global Miss Rate is what matters

STUDENTS-HUB.com

https://students-hub.com

Local and Global Miss Rates

• 32 KByte L1 cache;

• Global miss rate close to

single level cache rate

provided L2 >> L1

• Don’t use local miss rate

because it is a function of the

miss rate of the first level

cache.

• L2 not tied to clock cycle!

• Cost & A.M.A.T.

• Generally Fast Hit Times

and fewer misses

• Since hits are few, target

miss reduction

0

10

20

30

40

50

60

70

80

4K
B

8K
B

16
K
B

32
K
B

64
K
B

12
8K

B

25
6K

B

51
2K

B

10
24

K
B

20
48

K
B

40
96

K
B

Cache size

M
is

s
 r

a
te

 (
%

)

local

single

global

STUDENTS-HUB.com

https://students-hub.com

Relative CPU Time

Block Size

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

16 32 64 128 256 512

1.36
1.28 1.27

1.34

1.54

1.95

L2 cache block size & A.M.A.T.

32KB L1, 512KB L2, 4-byte path to memory, 1 cycle to send the address, 6

cycles to access the data, and 1 word/cycle to transfer the data

STUDENTS-HUB.com

https://students-hub.com

Reducing Miss Penalty Summary

• Five techniques

– Read priority over write on miss

– Sub block placement

– Early Restart and Critical Word First on miss

– Non-blocking Caches (Hit under Miss, Miss under Miss)

– Second Level Cache

• Can be applied recursively to Multilevel Caches

– Danger is that time to DRAM will grow with multiple levels in

between

– First attempts at L2 caches can make things worse, since

increased worst case is worse

STUDENTS-HUB.com

https://students-hub.com

Review: Improving Cache Performance

1. Reduce the miss rate,

2. Reduce the miss penalty

3. Reduce the time to hit in the cache.

STUDENTS-HUB.com

https://students-hub.com

Reducing Hit Time

• Hit time affects the CPU clock rate

– Even for machines that take multiple cycles to

access the cache

• Techniques

– Small and simple caches

– Avoiding address translation

– Pipelining writes

– Small sub blocks

STUDENTS-HUB.com

https://students-hub.com

1. Small and simple caches

• Why is this good?

– Generally, smaller hardware is faster – so a small

cache should help the hit time…

– If an L1 cache is small enough, it should fit on

the same chip as the actual processing logic…
• Processor avoids time going off chip!

• Some designs compromise and keep tags on a chip and data

off chip – allows for fast tag check and >> memory capacity

– Direct mapping also falls under the category of

“simple”
• Relates to point above as well – you can check tag and read

data at the same time!

STUDENTS-HUB.com

https://students-hub.com

2. Fast hits by Avoiding Address

Translation
• Send virtual address to cache? Called Virtually Addressed Cache or

just Virtual Cache vs. Physical Cache

– Every time process is switched logically must flush the cache; otherwise get

false hits

• Cost is time to flush + “compulsory” misses from empty cache

– Dealing with aliases (sometimes called synonyms);

Two different virtual addresses map to same physical address

– I/O must interact with cache, so need virtual address

• Solution to aliases

– HW guaranteess covers index field & direct mapped, they must be unique;

called page coloring

• Solution to cache flush

– Add process identifier tag that identifies process as well as address within

process: can’t get a hit if wrong process

STUDENTS-HUB.com

https://students-hub.com

3. Fast Hit Times Via Pipelined Writes

• Pipeline Tag Check and Update Cache as separate stages; current write tag

check & previous write cache update

• Only STORES in the pipeline; empty during a miss

Address

Data Data

in out

Write

buffer

Lower level memory

=?

=?

Tag

Data

Delayed write buffer

M

u

x

In shade is “Delayed Write Buffer”; must be checked on
reads; either complete write or read from buffer

STUDENTS-HUB.com

https://students-hub.com

4. Fast Writes on Misses Via Small

Subblocks

• If most writes are 1 word, subblock size is 1 word, &

write through then always write subblock & tag

immediately

– Tag match and valid bit already set: Writing the block was proper, &

nothing lost by setting valid bit on again.

– Tag match and valid bit not set: The tag match means that this is the

proper block; writing the data into the subblock makes it appropriate

to turn the valid bit on.

– Tag mismatch: This is a miss and will modify the data portion of the

block. Since write-through cache, no harm was done; memory still

has an up-to-date copy of the old value. Only the tag to the address of

the write and the valid bits of the other subblock need be changed

because the valid bit for this subblock has already been set

• Doesn’t work with write back due to last case

STUDENTS-HUB.com

https://students-hub.com

Cache Optimization Summary

Technique MR MP HT Complexity

Larger Block Size + – 0

Higher Associativity + – 1

Victim Caches + 2

Pseudo-Associative Caches + 2

HW Prefetching of Instr/Data + 2

Compiler Controlled Prefetching + 3

Compiler Reduce Misses + 0

Priority to Read Misses + 1

Subblock Placement + + 1

Early Restart & Critical Word 1st + 2

Non-Blocking Caches + 3

Second Level Caches + 2

Small & Simple Caches – + 0

Avoiding Address Translation + 2

Pipelining Writes + 1

m
is

s
 r

a
te

h
it

 t
im

e
m

is
s

p
e
n

a
lt

y

STUDENTS-HUB.com

https://students-hub.com

Main Memory
• Main memory generally utilizes Dynamic RAM (DRAM),

which use a single transistor to store a bit, but require a periodic data refresh by

reading every row increasing cycle time.

• Static RAM may be used for main memory if the added expense, low density, high

power consumption, and complexity is feasible (e.g. Cray Vector Supercomputers).

• Main memory performance is affected by:

– Memory latency: Affects cache miss penalty, M. Measured by:

• Memory Access time: The time it takes between a memory access

request is issued to main memory and the time the requested

information is available to cache/CPU.

• Memory Cycle time: The minimum time between requests to memory

(greater than access time in DRAM to allow address lines to be stable)

– Peak Memory bandwidth: The maximum sustained data transfer rate

between main memory and cache/CPU.

• In current memory technologies (e.g Double Data Rate SDRAM) published peak

memory bandwidth does not take account most of the memory access latency.

• This leads to achievable realistic memory bandwidth < peak memory bandwidth

Or maximum effective memory bandwidth

DRAM: Slow but high density

SRAM: Fast but low density

STUDENTS-HUB.com

https://students-hub.com

Logical Dynamic RAM (DRAM) Chip Organization

(16 Mbit)

Data In

Data Out

Column Decoder

Sense Amps & I/O

Memory Array

(16,384 x 16,384)

A0…A13

0

…14
D

Q

Word Line Storage
Cell

R
o

w
 D

ec
o
d
er

Row/Column

Address

Control Signals:

1 - Row Access Strobe (RAS): Low to latch row address

2- Column Address Strobe (CAS): Low to latch column address

3- Write Enable (WE) or

Output Enable (OE)

4- Wait for data to be ready

D, Q share the same pins

(Single transistor per bit)

Shared

Pins

A periodic data refresh is required

by reading every bit

Basic Steps:

1 - Supply Row Address 2- Supply Column Address 3- Get Data
STUDENTS-HUB.com

https://students-hub.com

Four Key DRAM Timing Parameters

• tRAC: Minimum time from RAS (Row Access Strobe) line

falling (activated) to the valid data output.

– Used to be quoted as the nominal speed of a DRAM chip

– For a typical 64Mb DRAM tRAC = 60 ns

• tRC: Minimum time from the start of one row access to the

start of the next (memory cycle time).

– tRC = tRAC + RAS Precharge Time

– tRC = 110 ns for a 64Mbit DRAM with a tRAC of 60 ns

• tCAC: Minimum time from CAS (Column Access Strobe) line

falling to valid data output.

– 12 ns for a 64Mbit DRAM with a tRAC of 60 ns

• tPC: Minimum time from the start of one column access to

the start of the next.

– tPC = tCAC + CAS Precharge Time

– About 25 ns for a 64Mbit DRAM with a tRAC of 60 ns

1 - Supply Row Address 2- Supply Column Address 3- Get Data

1

2

3

4

STUDENTS-HUB.com

https://students-hub.com

109

Quest for DRAM Performance
1. Fast Page mode

– Add timing signals that allow repeated accesses to row
buffer without another row access time

– Such a buffer comes naturally, as each array will buffer
1024 to 2048 bits for each access

2. Synchronous DRAM (SDRAM)

– Add a clock signal to DRAM interface, so that the
repeated transfers would not bear overhead to synchronize
with DRAM controller

3. Double Data Rate (DDR SDRAM)

– Transfer data on both the rising edge and falling edge of
the DRAM clock signal  doubling the peak data rate

– DDR2 lowers power by dropping the voltage from 2.5 to
1.8 volts + offers higher clock rates: up to 400 MHz

– DDR3 drops to 1.5 volts + higher clock rates: up to 800
MHz

• Improved Bandwidth, not Latency

STUDENTS-HUB.com

https://students-hub.com

DRAM Generations

Year Size RAS (ns) CAS (ns) Cycle Time Memory Type

1980 64 Kb 150-180 75 250 ns Page Mode

1983 256 Kb 120-150 50 220 ns Page Mode

1986 1 Mb 100-120 25 190 ns

1989 4 Mb 80-100 20 165 ns Fast Page Mode

1992 16 Mb 60-80 15 120 ns EDO

1996 64 Mb 50-70 12 110 ns PC66 SDRAM

1998 128 Mb 50-70 10 100 ns PC100 SDRAM

2000 256 Mb 45-65 7 90 ns PC133 SDRAM

2002 512 Mb 40-60 5 80 ns PC2700 DDR SDRAM

8000:1 15:1 3:1

(Capacity) (~bandwidth) (Latency)

A
sy

n
ch

ro
n

o
u

s D
R

A
M

 S
y
n

ch
ro

n
o

u
s D

R
A

M

PC3200 DDR (2003)

DDR2 SDRAM (2004)

DDR3 SDRAM (2007-8?)
A major factor in cache miss penalty M

~ RAS+

Peak

STUDENTS-HUB.com

https://students-hub.com

Basic Memory Bandwidth Improvement/Miss Penalty (M) Latency

Reduction Techniques

• Wider Main Memory (CPU-Memory Bus):

Memory bus width is increased to a number of words (usually up to the size of a

cache block).

– Memory bandwidth is proportional to memory bus width.

• e.g Doubling the width of cache and memory doubles potential memory bandwidth

available to the CPU.

– The miss penalty is reduced since fewer memory bus accesses are needed to

fill a cache block on a miss.

• Interleaved (Multi-Bank) Memory:

Memory is organized as a number of independent banks.

– Multiple interleaved memory reads or writes are accomplished by sending

memory addresses to several memory banks at once or pipeline access to the

banks.

– Interleaving factor: Refers to the mapping of memory addressees to

memory banks. Goal reduce bank conflicts.

e.g. using 4 banks (width one word), bank 0 has all words whose address is:

(word address mod) 4 = 0

e.g 128 bit (16 bytes) memory bus instead of 64 bits (8 bytes)

i.e wider FSB1

2

The above two techniques can also be applied to any cache level to reduce

cache hit time and increase cache bandwidth.
STUDENTS-HUB.com

https://students-hub.com

Three examples of bus width, memory width, and memory interleaving

to achieve higher memory bandwidth

Narrow bus

and cache

with

interleaved

memory

banks

Wider memory, bus

and cache

(highest performance)

Simplest design:

Everything is the width

of one word for example (lowest performance)

(FSB)

Front Side Bus (FSB) = System Bus = CPU-memory Bus

(FSB)

+

STUDENTS-HUB.com

https://students-hub.com

Four Way (Four Banks) Interleaved Memory

Memory Bank Number

Address

Within

Bank

0

4

8

12

16

20

..

1

5

9

13

17

21

..

2

6

10

14

18

22

..

3

7

11

15

19

23

..

Bank 0 Bank 1 Bank 2 Bank 3

Bank Width = One Word

Bank Number = (Word Address) Mod (4)

Sequential Mapping of

Memory Addresses

To Memory Banks

Example

STUDENTS-HUB.com

https://students-hub.com

Memory Bank Interleaving

Number of banks  Number of cycles to access word in a bank

(One Memory Bank)

(4 banks similar to the organization

of DDR SDRAM memory chips)

Memory Bank Cycle Time

Memory Bank Cycle Time

Pipeline access to different memory banks to increase effective bandwidth

Can be applied at: 1- DRAM chip level (e.g SDRAM, DDR) 2- DRAM module level 3- DRAM channel level

Bank interleaving does not reduce latency of accesses to the same bank

Very long memory bank

recovery time shown here

Also DDR2 (DDR3 increases the number to 8 banks)

STUDENTS-HUB.com

https://students-hub.com

Memory Width, Interleaving: Performance Example

Given the following system parameters with single unified cache level L1 (ignoring write policy):

Block size= 1 word Memory bus width= 1 word Miss rate =3% M = Miss penalty = 32 cycles

(4 cycles to send address 24 cycles access time, 4 cycles to send a word to CPU)

Memory access/instruction = 1.2 CPIexecution (ignoring cache misses) = 2

Miss rate (block size = 2 word = 8 bytes) = 2% Miss rate (block size = 4 words = 16 bytes) = 1%

• The CPI of the base machine with 1-word blocks = 2 + (1.2 x 0.03 x 32) = 3.15

Increasing the block size to two words (64 bits) gives the following CPI: (miss rate = 2%)

• 32-bit bus and memory, no interleaving, M = 2 x 32 = 64 cycles CPI = 2 + (1.2 x .02 x 64) = 3.54

• 32-bit bus and memory, interleaved, M = 4 + 24 + 8 = 36 cycles CPI = 2 + (1.2 x .02 x 36) = 2.86

• 64-bit bus and memory, no interleaving, M = 32 cycles CPI = 2 + (1.2 x 0.02 x 32) = 2.77

Increasing the block size to four words (128 bits); resulting CPI: (miss rate = 1%)

• 32-bit bus and memory, no interleaving , M = 4 x 32 = 128 cycles CPI = 2 + (1.2 x 0.01 x 128) = 3.54

• 32-bit bus and memory, interleaved , M = 4 + 24 + 16 = 44 cycles CPI = 2 + (1.2 x 0.01 x 44) = 2.53

• 64-bit bus and memory, no interleaving, M = 2 x 32 = 64 cycles CPI = 2 + (1.2 x 0.01 x 64) = 2.77

• 64-bit bus and memory, interleaved, M = 4 + 24 + 8 = 36 cycles CPI = 2 + (1.2 x 0.01 x 36) = 2.43

• 128-bit bus and memory, no interleaving, M = 32 cycles CPI = 2 + (1.2 x 0.01 x 32) = 2.38

4 cycles 24 cycles 4 cycles Miss Penalty = M= 4 + 24 + 4 = 32

cycles

Miss Penalty = M = Number of CPU stall cycles for an access missed in cache and satisfied by main memory

(Base system)

(For Base system)

24 444 44

(i.e multiple memory banks)

STUDENTS-HUB.com

https://students-hub.com

