GPU Architectures

Prof. Onur Mutlu

ETH Zlrich
Spring 2023
11 May 2023

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

GPUs are SIMD Engines Underneath

= The instruction pipeline operates like an SIMD pipeline
(e.g., an array processor)

= However, the programming is done using threads, NOT
SIMD instructions

= Let us distinguish between
a Programming Model (Software)
VS.
o Execution Model (Hardware)

STUDENTS-HUB.com Uploaded By: Jibreel BorAat

Programming Model vs. Hardware Execution Model

Programming Model refers to how the programmer expresses
the code

o E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow,
Multi-threaded (MIMD, SPMD), ...

Execution Model refers to how the hardware executes the
code underneath

o E.g., Out-of-order execution, Vector processor, Array processor,
Dataflow processor, Multiprocessor, Multithreaded processor, ...

Execution Model can be very different from the Programming
Model

o E.g., von Neumann model implemented by an OoO processor
o E.g., SPMD model implemented by a SIMD processor (a GPU)

STUDENTS-HUB.com Uploaded By: Jibreel BorRat

How Can You Exploit Parallelism Here?
for (i=0; i < N; i++)
Scalar Sequential Code C[1l = A[1] + B[1];

Let’s examine three programming
options to exploit instruction-level
parallelism present in this
sequential code:

1. Sequential (SISD)

2. Data-Parallel (SIMD)

3. Multithreaded (MIMD/SPMD)

STUDENTS-HUB.com Uploaded By: Jibreel Borfat

Prog. Model 1: Sequential (SISD) ™ &1} = atsy « a4,

Scalar Sequential Code ™ Can be executed on a:

= Pipelined processor

= Out-of-order execution processor

o Independent instructions executed
when ready

a Different iterations are present in the
instruction window and can execute in
parallel in multiple functional units

Iter. 2 \ o In other words, the loop is dynamically
unrolled by the hardware

@ = Superscalar or VLIW processor

o Can fetch and execute multiple
d instructions per cycle
STUDENTS-HUB.com Uploaded By: Jibreel BorRat

Prog. Model 2: Data Parallel (SIMDJ™ i) = ati) + ata1;

Scalar Sequential Code Vectorized Code

VLD A->V1

VLD B—>V2

VADD V1+V2->V3

VST V3->C

Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD
instruction to execute the same instruction from
all iterations across different data

Best executed by a SIMD processor (vector, array)
STUDENTS-HUB.com Uploaded By: Jibreel Borfat

for (i=0; i < N; i++)

Prog. Model 3: Multithreaded = cra1'= arsr + a1

Sca/ar Sequential Code

" Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine
STUDENTS-HUB.com Uploaded By: Jibreel Borrat

i < N; i++)

Prog. Model 3: Multithreaded ™ ci) = ati) + aii1,
g

1 > Realization: Each iteration is independent

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMT machine
STUDENTS-HUB.com Slngle Instruction MUJFABLQPIEJ%%QPI Bornat

A GPU 1s a SIMD (SIMT) Machine

Except it is not programmed using SIMD instructions

It is programmed using threads (SPMD programming model)

o Each thread executes the same code but operates a different
piece of data

o Each thread has its own context (i.e., can be
treated/restarted/executed independently)

A set of threads executing the same instruction are
dynamically grouped into a warp by the hardware

o A warp is essentially a SIMD operation formed by hardware!

STUDENTS-HUB.com Uploaded By: Jibreel Borflat

Warp Terminology

Source: Wikipedia

STUDENTS-HUB.com Uploaded By: Jibreel BotRat

i < N; i++)

SPMD on SIMT Machine o c(:l[j?= A[i] + B[i];

(i.e., at the same PC)

This particular model is also called:

SPMD: Single Program Multiple Data

A GPU executes it using the SIMT model:
STUDENTS-HUB.com Slngle Instruction Mul'ErlBL%@Ier'%%rgpl Bornat

SIMD vs. SIMT Execution Model

SIMD: A single sequential instruction stream of SIMD
instructions = each instruction specifies multiple data inputs

5 [VLD, VLD, VADD, VST], VLEN

SIMT: Multiple instruction streams of scalar instructions >
threads grouped dynamically into warps

o [LD, LD, ADD, ST], NumThreads

Two Major SIMT Advantages:

o Can treat each thread separately = i.e., can execute each thread
independently (on any type of scalar pipeline) > MIMD processing

o Can group threads into warps flexibly - I.e., can group threads
that are supposed to fruly execute the same instruction >
dynamically obtain and maximize benefits of SIMD processing

STUDENTS-HUB.com Uploaded By: Jibreel Botdat

Fine-Grained Multithreading for (i=0; i < N; i++)
C[i] = A[i] + B[i];

of Warps
= Assume a warp consists of 32 threads

= If you have 32K iterations, and 1 iteration/thread - 1K warps

= Warps can be interleaved on the same pipeline - Fine grained
multithreading of warps

Warp 20 at PC X+2

Iter. Iter.

STUDENTS-HUB.com Uploaded By: Jibreel Botdat

Fine-Grained Multithreading for (120, i < N, ith)
(FGMT) of Warps Cli] = A[i] + B[il;

= Assume a warp consists of 32 threads
If you have 32K iterations, and 1 iteration/thread - 1K warps

Warps can be interleaved on the same pipeline = Fine grained
multithreading of warps

Iterations 96-127

J O\

\

Iterations 64-95

~

J Iterations 32-63

] Iterations 0-31

All threads in a warp are independent of each other
- They be executed seamlessly in a fine-grained multithreaded pipeline

STUDENTS-HUB.com Uploaded By: Jibreel BotAat

Fine-Grained Multithreading: Basic Idea

InstrD

PCPIlus4F

CLK CLK CLK
(_T RegWriteD 67 RegWriteE 6 RegWriteM 67 RegWriteW
C?Jnt.rto MemtoRegD MemtoRegE MemtoRegM MemtoRegW
ni
MemWriteD MemWriteE MemWriteM
BranchD BranchE BranchM
31:26
21 ALUControlD| ~ [ALUControlE,, PCSrcM
20 Funct | |ALUSIcD ALUSICE
RegDstD RegDstE
— —] ALUOUtW
| CLK
|
SrcAE ZeroM WE
-] ALUOUM ReadDataw
~ = L A RDH
0sreee| < Data
Regi L T Memory
egister f riteDatal
WD3 lgile WriteDataE WD
. RIE ~~_ . _ _
' ' — 0 WriteRegE,., WriteRegM, WriteRegW,,.,
: 1
L —
M- SignimmEe <<
ign Exten ignimm e —
+
PCPlus4D PCPlus4E

ResultW

Each pipeline stage has an instruction from a different, completely-independent thread

STUDENTSYWebhewd a PC and a register file for each thread + muxes\énehdenthplJibreel Bornat

Warps and Warp-Level FGMT

Warp: A set of threads that execute the same instruction
(on different data elements) > SIMT (Nvidia-speak)

All threads run the same code
Warp: The threads that run lengthwise in a woven fabric ...

-~ | Thread Warp 3

- “| Thread Warp 8
)4
Thread Warp Common PC 7 :
Scalar | Scalar | Scalar Scalar Thread Warp 7
Thread|Thread|Thread|« « « |Thread ¢
W X Y Z . .
SIMD Pipeline

Sindholimsetalg. e IDIA Tesla: A Unified Graphics and Computing Architecturest IEE Hiliviier @ 2008.

High-Level View ot a GPU

!;’ (PC, Mask) JJ
’ -Cache |
Shader| | Shader| Shader| _,, | Shader *
Core Core Core Core ‘ Decode
I IR = o 2 =
¥ [I
Interconnection Network | : & Ei & & :
¢ t t \ 1R AR RE LR
A |
Memory | | Memory Memory | | el a2l e 1S]
Controller| |Controller Controller h‘k ! % % % % ;
¢ ¢ s t k.. : (D 4 4] o |
\| 1 SIMD Execution _ |
GDDR3 | | GDDR3 GDDR3 | mom =TS E e

Sindholimsetalg. e IDIA Tesla: A Unified Graphics and Computing Architecturest IEE Hiliviier @ 2008.

Latency Hiding via Warp-Level FGMT

Warp: A set of threads that
execute the same instruction
(on different data elements)

Fine-grained multithreading

o One instruction per thread in
pipeline at a time (No
interlocking)

o Interleave warp execution to
hide latencies

Register values of all threads stay
in register file

FGMT enables simple pipeline &
long latency tolerance
o Millions of threads operating on the

same large image/video
e e TapAkthdB.com

L 2

Thread Warp 3

Thread Warp 8

| Threalearp 7 |

A 2

I-Fetch
v

Decode

NV [« R |«

<NV € 3 €

NV ¢ 3 €

D-Cache

'_

Al Hit?l

,l; Data

v

Writeback

il Thread Warp 6 |

Warps available
for scheduling

SIMD Pipeline

Warps accessing

memory hierarchy
Miss?

Thread Warp 1
Thread Warp 2

Uploaded By: Jibreel BotSat

Recall: Vector Instruction Execution

A[6]
A[5]
Al4]
A[3]

Execution using
one pipelined
functional unit

B[6]
B[5]
B[4]
B[3]

|
\

|
/

e

]

4

e

4

VADD A,B > C

Execution using
four pipelined
functional units

Time

-

C[0]

Slide Eréditl KrSie Asdidvizom

A[24] B[24] A[25] B[25] A[26] B[26] A[27] B[27]

A[20] B[20] A[21] B[21] A[22] B[22] A[23] B[23]

A[16] B[16] A[17] B[17] A[18] B[18] A[19] B[19]

A[12] B[12] A[13] B[13] A[14] B[14] A[15] B[15]
b b b b

> TR]]]] 1

\ C[8] / \ C[9] / \C[lO] / \C[ll] /

| e es ae) en |
C[0] C[1] C[2] C[3]

<€ Space >

Uploaded By: Jibreel Botfat

Warp Execution (Recall the Previous Slide)

A[6]
A[5]
Al4]
A[3]

Execution using
one pipelined
functional unit

B[6]
B[5]
B[4]
B[3]

|
\

|
/

e

]

4

e

4

Time

-

C[0]

Slide Eréditl KrSie Asdidvizom

Execution using
four pipelined
functional units

32-thread warp executing ADD A[tid],B[tid] 2> C[tid]

A[24] B[24] A[25] B[25] A[26] B[26] A[27] B[27]

A[20] B[20] A[21] B[21] A[22] B[22] A[23] B[23]

A[16] B[16] A[17] B[17] A[18] B[18] A[19] B[19]

A[12] B[12] A[13] B[13] A[14] B[14] A[15] B[15]
b b b b

> TR]]]] 1

\ C[8] / \ C[9] / \C[lO] / \C[ll] /

| e es ae) en |
C[0] C[1] C[2] C[3]

<€ Space >

Uploaded By: Jibreel BofRat

Recall: Vector Unit Structure

Partition
Vector

Functional Unit
/

(T

[

—4

2, 6, 10,

[—— [— [— (—
Registe
\rE Elements Elements Elements Elements
0,48, .. 1,5,9, ...

3,7, 11,

[<+ [< [<+ [<+
Lane /
Memory Subsystem
Sde BN KiSetAtdByizom Uploaded By: Jibreel Bofdat

GPU SIMD Execution Unit Structure

Functional Unit
/

(~ —
el v T T
el | T

Registers \—— L — 1 L ¢

for eac\I:[

Thread Registers for Registers for Registers for Registers for
thread IDs thread IDs thread IDs thread IDs
0,4,HS8,.. 1,5,09, ... 2,6, 10, ... 3,7, 11, ...

Lane /
Memory Subsystem
STde BédiN KiSie sdivizo m Uploaded By: Jibreel Bo#dat

SIMT Memory Access (LLoads and Stores)

= Same instruction in different threads uses thread id to
index and access different data elements

Let's assume N=16, 4 threads per warp - 4 warps

10 11 12 13 14 15 Threads

10 11 12 13 14 15 Data elements

Warp O Warp 1 Warp 2 Warp 3

For maximum performance, memory should provide enough bandwidth
(i.e., elements per cycle throughput to match computation unit throughput)

el ExédiN FiyBsbahimcom Uploaded By: Jibreel Bo?dat

Warps not Exposed to GPU Programmers

= CPU threads and GPU kernels
o Sequential or modestly parallel sections on CPU
o Massively parallel sections on GPU: Blocks of threads

Serial Code (host)

. DO DIOOIIIOH DO RO
Parallel Kernel (device) SSSSS> | | SSSSSSS | SS > S
KernelA<<<nBlk, nThr>>>(args);||ssses || ssosss R RN
Serial Code (host)
Parallel Kernel (device) PO | | LR | | 00 LR

A
\
VA

AY Y
A
u:‘\" /
A\
A

A

Y

A

A

A

A

A

A

A

Y

KernelB<<<nBlk, nThr>>>(args) ;

Slide credit: Hwu & Kirk

STUDENTS-HUB.com UpmadajBy;HMEele%at

Sample GPU SIMT Code (Simplified)

CPU code
[for (il = 0; ii < 100000; +-+ii) {

Clii] = A[ii] + BI[ii];

¥
CUDA code I

—

(// there are 100000 threads
__global__ void KernelFunction(...) {

~

int tid = blockDim.x * blockIdx.x + threadIdx.x;

int varA = aa[tid];
int varB = bb[tid];
C[tid] = varA + varB;

W

J

Siidel Evédinl Hiyesbdhkncom

Uploaded By: Jibreel Bo#at

Sample GPU Program (Less Simplified)

CPU Program GPU Program

__global __ add_matrix

(float *a, float *b, float *c, int N) {
int 1 = blockldx.x * blockDim.x + threadldx.x;
Int] = blockldx.y * blockDim.y + threadldx.y;
int index =1+ j*N;
if(1<N&&j<N)

c[index] = a[index]+b[index];

}

Int main() {
dim3 dimBlock(blocksize, blocksize) ;
dim3 dimGrid (N/dimBlock.x, N/dimBlock.y);
add_matrix<<<dimGrid, dimBlock>>>(a, b, c, N);

}

STde Bédi Aigesbohincom Uploaded By: Jibreel Bo?dat

From Blocks to Warps

| G PU CO re : A SI M D pi pel i ne Streaming Multiprocessor
. . smeionCache |
D St rea m I n g P rocesso r (S P) Warp Scheduler | | Warp Scheduler

Dispatch Unit || Dispatch Unit

o Many such SIMD Processors
= Streaming Multiprocessor (SM)

Register File

= Blocks are divided into warps
o SIMD/SIMT unit (32 threads)

Block O’s warps Block 1’s warps Block 2’s warps ..
| | |
tOt1t2 ... t31 tOt1t2 ... 131 t0t1t2 .. 131 .. .
NN NN NN .. .

NVIDIA Fermi architecture

STUDENTS-HUB.com Uploaded By: Jibreel Boffat

Warp-based SIMD vs. Traditional SIMD

= Traditional SIMD contains a single thread
o Sequential instruction execution; lock-step operations in a SIMD instruction

o Programming model is SIMD (no extra threads) - SW needs to know
vector length

o ISA contains vector/SIMD instructions

= Warp-based SIMD consists of multiple scalar threads executing in a
SIMD manner (i.e., same instruction executed by all threads)

o Does not have to be lock step

o Each thread can be treated individually (i.e., placed in a different warp)
- programming model not SIMD

= SW does not need to know vector length
= Enables multithreading and flexible dynamic grouping of threads
o ISA is scalar > SIMD operations can be formed dynamically

o Essentially, it is SPMD programming model implemented on SIMD

hardware
STUDENTS-HUB.com Uploaded By: Jibreel BodRat

SPMD

Single procedure/program, multiple data
a This is a programming model rather than computer organization

Each processing element executes the same procedure, except on
different data elements

o Procedures can synchronize at certain points in program, e.g. barriers

Essentially, multiple instruction streams execute the same
program

o Each program/procedure 1) works on different data, 2) can execute a
different control-flow path, at run-time

o Many scientific applications are programmed this way and run on MIMD
hardware (multiprocessors)

o Modern GPUs programmed in a similar way on a SIMD hardware

STUDENTS-HUB.com Uploaded By: Jibreel BoPAat

SIMD vs. SIMT Execution Model

SIMD: A single sequential instruction stream of SIMD
instructions = each instruction specifies multiple data inputs

5 [VLD, VLD, VADD, VST], VLEN

SIMT: Multiple instruction streams of scalar instructions >
threads grouped dynamically into warps

o [LD, LD, ADD, ST], NumThreads

Two Major SIMT Advantages:

o Can treat each thread separately = i.e., can execute each thread
independently on any type of scalar pipeline > MIMD processing

a Can group threads into warps flexibly - i.e., can group threads

that are supposed to fruly execute the same instruction >
dynamically obtain and maximize benefits of SIMD processing
STUDENTS-HUB.com Uploaded By: Jibreel Bo?Aat

Threads Can Take Different Paths in Warp-based SIMD

Each thread can have conditional control flow instructions
Threads can execute different control flow paths

Thread Warp Common PC

Thread| Thread|Thread | Thread
1 2 3 4

Siide it TepAatdbE.COM Uploaded By: Jibreel BofRat

Control Flow Problem in GPUs/SIMT

A GPU uses a SIMD
pipeline to save area

on control logic 1 1 1 1 1 1 1 1

o Groups scalar threads

into warps Branch 1 1 1 1 1 1 1 1

Path A
Branch divergence - 1 1 1 1
occurs when threads Patﬂ I
inside warps branch to
different execution 1 1 1 1 1 1 1 1
paths

This is the same as conditional/predicated/masked execution.
Recall the Vector Mask and Masked Vector Operations

Siide it TepAatdbE.COM Uploaded By: Jibreel Bo?fat

Remember: Each Thread Is Independent

Two Major SIMT Advantages:

o Can treat each thread separately = i.e., can execute each thread
independently on any type of scalar pipeline > MIMD processing

o Can group threads into warps flexibly - i.e., can group threads
that are supposed to fruly execute the same instruction =2

dynamically obtain and maximize benefits of SIMD processing

If we have many threads
We can find individual threads that are at the same PC
And, group them together into a single warp dynamically

This reduces “divergence” - improves SIMD utilization

a SIMD utilization: fraction of SIMD lanes executing a useful
operation (i.e., executing an active thread)

STUDENTS-HUB.com Uploaded By: Jibreel BofRat

Dynamic Warp Formation/Merging

Idea: Dynamically merge threads executing the same
instruction, i.e., at the same PC (after branch divergence)

Form new warps from warps that are waiting

o Enough threads branching to each path enables the creation
of full new warps

WarpX 4 ¥ 4 \ - Vidd e v Wwapz

STUDENTS-HUB.com Uploaded By: Jibreel Bodfat

Dynamic Warp Formation/Merging

= Idea: Dynamically merge threads executing the same
instruction, i.e., at the same PC (after branch divergence)

RN
RN
RN
EERRNER
TXIE RN
e oy T } !

Path B

= Fung et al., “Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow,” MICRO 2007.

STUDENTS-HUB.com Uploaded By: Jibreel Bo?riat

Dynamic Warp Formation Example

x/1111
A 111
A A
x/1110 S a
B y/0011 [5] Execution of Warpx [Execution of Warp y
|_>| at Basic Block A |_>| at Basic Block A
x/0110] [~ x/0001 =gt gl

D yi0001| [F yr1100 5

Y A new warp created from scalar
E 1110 i threads of both Warp x and y
Y/(gL —»| executing at Basic Block D

Baseline °®°°

N

Dynamic A A B B |c! E E G G A A
[15 [> > > >[5 5 [5]

Warp N <] <] < ->l> 2l [E<lE<lE<l B R
: > 1> |=>l|>I>0>H>| > i ad i ded
Formation ElE] =2 =d |=d)l | ES [l oy g

> Time

Slidel Erédinl TdsARtdEB .com Uploaded By: Jibreel BodBat

Large Warps and Two-Level Warp Scheduling

= Two main reasons for GPU resources be underutilized
o Branch divergence

o Long latency operations

Long-latency load

!

Core A” Warps Compute} .. [A” Warps Compute]
Req Warp 0 < >
Memory Req Warp 1+— >
System *
Reg Warp 15« >

»time

Round Robin Scheduling, 16 total warps

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp

sghedd®g,MIGRO 2011. Uploaded By: Jibreel Boffat

Two-Level Scheduling of Warps

Scheduling smaller warp groups reduces stalls due to long latency operations

.................. [All Warps Computel

Core A” Warps Compute} ..
Req Warp 0 < >
Memory Req Warp 1 +— >
System ¢

»

®
Req Warp 15«

»

Round Robin Scheduling,

Group 0 Group 1

=t§ime
16 total warps :

Group 0 Group 1

Core ComputeICOmpute] .. [ComputelComputeL p
\ Saved Cycles
Req Warp 0 < >
Req Warp 1 « >
)
[
Req Warp 7 « >
Memory
System Req Warp 8 « >
Req Warp 9 < ° >
[
Req Warp 15« >

»time

Two Level Round Robin Scheduling, 2 fetch groups, 8 warps each

Narasiman et al., “Improving GPU Performance via Large

sfghedulmngOMIGRO 2011.

Warps and Two-Level Warp
Uploaded By: Jibreel Bornat

