
GPU Architectures

Prof. Onur Mutlu

ETH Zürich

Spring 2023

11 May 2023

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

GPUs are SIMD Engines Underneath

 The instruction pipeline operates like an SIMD pipeline
(e.g., an array processor)

 However, the programming is done using threads, NOT
SIMD instructions

 Let us distinguish between

 Programming Model (Software)

vs.

 Execution Model (Hardware)

2Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Programming Model vs. Hardware Execution Model

 Programming Model refers to how the programmer expresses
the code

 E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow,
Multi-threaded (MIMD, SPMD), …

 Execution Model refers to how the hardware executes the
code underneath

 E.g., Out-of-order execution, Vector processor, Array processor,
Dataflow processor, Multiprocessor, Multithreaded processor, …

 Execution Model can be very different from the Programming
Model

 E.g., von Neumann model implemented by an OoO processor

 E.g., SPMD model implemented by a SIMD processor (a GPU)
3Uploaded By: Jibreel BornatSTUDENTS-HUB.com

How Can You Exploit Parallelism Here?

4

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Let’s examine three programming
options to exploit instruction-level

parallelism present in this
sequential code:

1. Sequential (SISD)

2. Data-Parallel (SIMD)

3. Multithreaded (MIMD/SPMD)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Prog. Model 1: Sequential (SISD)

5

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code Can be executed on a:

 Pipelined processor

 Out-of-order execution processor

 Independent instructions executed
when ready

 Different iterations are present in the
instruction window and can execute in
parallel in multiple functional units

 In other words, the loop is dynamically
unrolled by the hardware

 Superscalar or VLIW processor

 Can fetch and execute multiple
instructions per cycle

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 2: Data Parallel (SIMD)

6

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

Vector Instruction

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Vectorized Code

Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD
instruction to execute the same instruction from
all iterations across different data

Best executed by a SIMD processor (vector, array)

VLD A V1

VLD B V2

VADD V1 + V2 V3

VST V3 C

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 3: Multithreaded

7

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Prog. Model 3: Multithreaded

8

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineCan be executed on a SIMT machine

Single Instruction Multiple Thread
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

A GPU is a SIMD (SIMT) Machine

 Except it is not programmed using SIMD instructions

 It is programmed using threads (SPMD programming model)

 Each thread executes the same code but operates a different
piece of data

 Each thread has its own context (i.e., can be
treated/restarted/executed independently)

 A set of threads executing the same instruction are
dynamically grouped into a warp by the hardware

 A warp is essentially a SIMD operation formed by hardware!

9Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Warp Terminology

10

Source: Wikipedia

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Warp 0 at PC X+3

Warp 0 at PC X+2

Warp 0 at PC X+1

SPMD on SIMT Machine

11

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineA GPU executes it using the SIMT model:

Single Instruction Multiple Thread

Warp 0 at PC X

Warp: A set of threads that execute

the same instruction (i.e., at the same PC)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

SIMD vs. SIMT Execution Model

 SIMD: A single sequential instruction stream of SIMD
instructions each instruction specifies multiple data inputs

 [VLD, VLD, VADD, VST], VLEN

 SIMT: Multiple instruction streams of scalar instructions

threads grouped dynamically into warps

 [LD, LD, ADD, ST], NumThreads

 Two Major SIMT Advantages:

 Can treat each thread separately i.e., can execute each thread
independently (on any type of scalar pipeline) MIMD processing

 Can group threads into warps flexibly i.e., can group threads
that are supposed to truly execute the same instruction

dynamically obtain and maximize benefits of SIMD processing
12Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Fine-Grained Multithreading

of Warps

13

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
0

Iter.
1

Warp 0 at PC X

 Assume a warp consists of 32 threads

 If you have 32K iterations, and 1 iteration/thread 1K warps

 Warps can be interleaved on the same pipeline Fine grained

multithreading of warps

Warp 1 at PC X

Iter.
32

Iter.
33

Warp 20 at PC X+2

Iter.
20*32

Iter.
20*32 + 1

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Fine-Grained Multithreading

(FGMT) of Warps

14

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store
Iterations 0-31

Warp 0 at PC X+3

 Assume a warp consists of 32 threads

 If you have 32K iterations, and 1 iteration/thread 1K warps

 Warps can be interleaved on the same pipeline Fine grained

multithreading of warps

Warp 1 at PC X+2

Warp 2 at PC X+1

Warp 3 at PC X

Iterations 32-63

Iterations 64-95

Iterations 96-127

All threads in a warp are independent of each other

 They be executed seamlessly in a fine-grained multithreaded pipeline

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Fine-Grained Multithreading: Basic Idea

SignImmE

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE
0

1

PCF0

1

PC' InstrD
25:21

20:16

15:0

5:0

SrcBE

20:16

15:11

RtE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM
4:0

ResultW

PCPlus4EPCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD

ALUSrcD

RegWriteD

Op

Funct

Control

Unit

ZeroM

PCSrcM

CLK CLK CLK

CLK CLK

WriteRegW
4:0

ALUControlE
2:0

A
L
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

BranchE BranchM

RegDstE

ALUSrcE

WriteRegE
4:0

Each pipeline stage has an instruction from a different, completely-independent thread

We need a PC and a register file for each thread + muxes and controlUploaded By: Jibreel BornatSTUDENTS-HUB.com

Warps and Warp-Level FGMT

 Warp: A set of threads that execute the same instruction
(on different data elements) SIMT (Nvidia-speak)

 All threads run the same code
 Warp: The threads that run lengthwise in a woven fabric …

Thread Warp 3
Thread Warp 8

Thread Warp 7

Thread Warp

Scalar
Thread

W

Scalar
Thread

X

Scalar
Thread

Y

Scalar
Thread

Z

Common PC

SIMD Pipeline

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.Uploaded By: Jibreel BornatSTUDENTS-HUB.com

High-Level View of a GPU

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Latency Hiding via Warp-Level FGMT

 Warp: A set of threads that
execute the same instruction
(on different data elements)

 Fine-grained multithreading

 One instruction per thread in
pipeline at a time (No
interlocking)

 Interleave warp execution to
hide latencies

 Register values of all threads stay
in register file

 FGMT enables simple pipeline &
long latency tolerance

 Millions of threads operating on the
same large image/video

18

Decode

R
F

R
F

R
F

A
LU

A
LU

A
LU

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2DataAll Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Recall: Vector Instruction Execution

19

VADD A,B C

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined
functional units

Slide credit: Krste Asanovic

Time

Space

Time

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Warp Execution (Recall the Previous Slide)

20

32-thread warp executing ADD A[tid],B[tid] C[tid]

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined
functional units

Slide credit: Krste Asanovic

Time

Space

Time

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Recall: Vector Unit Structure

21

Lane

Functional Unit

Partitioned
Vector
Registers

Memory Subsystem

Elements
0, 4, 8, …

Elements
1, 5, 9, …

Elements
2, 6, 10,
…

Elements
3, 7, 11,
…

Slide credit: Krste Asanovic Uploaded By: Jibreel BornatSTUDENTS-HUB.com

22

Lane

Functional Unit

Registers
for each
Thread

Memory Subsystem

Registers for
thread IDs
0, 4, 8, …

Registers for
thread IDs
1, 5, 9, …

Registers for
thread IDs
2, 6, 10, …

Registers for
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

GPU SIMD Execution Unit Structure

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Same instruction in different threads uses thread id to
index and access different data elements

SIMT Memory Access (Loads and Stores)

Let’s assume N=16, 4 threads per warp 4 warps

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+

+ + + +

Slide credit: Hyesoon Kim

Threads

Data elements

Warp 0 Warp 1 Warp 2 Warp 3

25

For maximum performance, memory should provide enough bandwidth

(i.e., elements per cycle throughput to match computation unit throughput)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 CPU threads and GPU kernels

 Sequential or modestly parallel sections on CPU

 Massively parallel sections on GPU: Blocks of threads

Serial Code (host)

. . .

. . .

Parallel Kernel (device)

KernelA<<<nBlk, nThr>>>(args);

Serial Code (host)

Parallel Kernel (device)

KernelB<<<nBlk, nThr>>>(args);

Warps not Exposed to GPU Programmers

26

Slide credit: Hwu & Kirk

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Sample GPU SIMT Code (Simplified)

for (ii = 0; ii < 100000; ++ii) {
C[ii] = A[ii] + B[ii];
}

// there are 100000 threads
__global__ void KernelFunction(…) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
int varA = aa[tid];
int varB = bb[tid];
C[tid] = varA + varB;

}

CPU code

CUDA code

Slide credit: Hyesoon Kim 27Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Sample GPU Program (Less Simplified)

28Slide credit: Hyesoon Kim Uploaded By: Jibreel BornatSTUDENTS-HUB.com

From Blocks to Warps

 GPU core: A SIMD pipeline

 Streaming Processor (SP)

 Many such SIMD Processors

 Streaming Multiprocessor (SM)

 Blocks are divided into warps

 SIMD/SIMT unit (32 threads)

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

…

Block 0’s warps Block 1’s warps

…
t0 t1 t2 … t31

…

Block 2’s warps

29

NVIDIA Fermi architecture

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Warp-based SIMD vs. Traditional SIMD
 Traditional SIMD contains a single thread

 Sequential instruction execution; lock-step operations in a SIMD instruction

 Programming model is SIMD (no extra threads) SW needs to know

vector length

 ISA contains vector/SIMD instructions

 Warp-based SIMD consists of multiple scalar threads executing in a
SIMD manner (i.e., same instruction executed by all threads)

 Does not have to be lock step

 Each thread can be treated individually (i.e., placed in a different warp)
 programming model not SIMD

 SW does not need to know vector length

 Enables multithreading and flexible dynamic grouping of threads

 ISA is scalar SIMD operations can be formed dynamically

 Essentially, it is SPMD programming model implemented on SIMD
hardware

30Uploaded By: Jibreel BornatSTUDENTS-HUB.com

SPMD
 Single procedure/program, multiple data

 This is a programming model rather than computer organization

 Each processing element executes the same procedure, except on
different data elements

 Procedures can synchronize at certain points in program, e.g. barriers

 Essentially, multiple instruction streams execute the same
program

 Each program/procedure 1) works on different data, 2) can execute a
different control-flow path, at run-time

 Many scientific applications are programmed this way and run on MIMD
hardware (multiprocessors)

 Modern GPUs programmed in a similar way on a SIMD hardware

31Uploaded By: Jibreel BornatSTUDENTS-HUB.com

SIMD vs. SIMT Execution Model

 SIMD: A single sequential instruction stream of SIMD
instructions each instruction specifies multiple data inputs

 [VLD, VLD, VADD, VST], VLEN

 SIMT: Multiple instruction streams of scalar instructions

threads grouped dynamically into warps

 [LD, LD, ADD, ST], NumThreads

 Two Major SIMT Advantages:

 Can treat each thread separately i.e., can execute each thread
independently on any type of scalar pipeline MIMD processing

 Can group threads into warps flexibly i.e., can group threads
that are supposed to truly execute the same instruction

dynamically obtain and maximize benefits of SIMD processing
32Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Threads Can Take Different Paths in Warp-based SIMD

 Each thread can have conditional control flow instructions

 Threads can execute different control flow paths

33

Thread Warp Common PC

Thread

2

Thread

3

Thread

4

Thread

1

B

C D

E

F

A

G

Slide credit: Tor Aamodt Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Control Flow Problem in GPUs/SIMT

 A GPU uses a SIMD
pipeline to save area
on control logic

 Groups scalar threads
into warps

 Branch divergence
occurs when threads
inside warps branch to
different execution
paths

34

Branch

Path A

Path B

Branch

Path A

Path B

Slide credit: Tor Aamodt

This is the same as conditional/predicated/masked execution.

Recall the Vector Mask and Masked Vector Operations

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Remember: Each Thread Is Independent

 Two Major SIMT Advantages:

 Can treat each thread separately i.e., can execute each thread
independently on any type of scalar pipeline MIMD processing

 Can group threads into warps flexibly i.e., can group threads
that are supposed to truly execute the same instruction

dynamically obtain and maximize benefits of SIMD processing

 If we have many threads

 We can find individual threads that are at the same PC

 And, group them together into a single warp dynamically

 This reduces “divergence” improves SIMD utilization

 SIMD utilization: fraction of SIMD lanes executing a useful
operation (i.e., executing an active thread)

35Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dynamic Warp Formation/Merging

 Idea: Dynamically merge threads executing the same
instruction, i.e., at the same PC (after branch divergence)

 Form new warps from warps that are waiting

 Enough threads branching to each path enables the creation
of full new warps

36

Warp X

Warp Y

Warp Z

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dynamic Warp Formation/Merging

 Idea: Dynamically merge threads executing the same
instruction, i.e., at the same PC (after branch divergence)

 Fung et al., “Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow,” MICRO 2007.

37

Branch

Path A

Path B

Branch

Path A

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dynamic Warp Formation Example

38

A A B B G G A AC C D D E E F F

Time

A A B B G G A AC D E E F

Time

A
x/1111
y/1111

B
x/1110
y/0011

C
x/1000
y/0010 D

x/0110
y/0001 F

x/0001
y/1100

E
x/1110
y/0011

G
x/1111
y/1111

A new warp created from scalar

threads of both Warp x and y

executing at Basic Block D

D

Execution of Warp x

at Basic Block A

Execution of Warp y

at Basic Block A

Legend
AA

Baseline

Dynamic

Warp

Formation

Slide credit: Tor Aamodt Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Large Warps and Two-Level Warp Scheduling

 Two main reasons for GPU resources be underutilized

 Branch divergence

 Long latency operations

40

time

Core

Memory
System

All Warps Compute

Req Warp 0

All Warps Compute

Req Warp 1

Req Warp 15

Round Robin Scheduling, 16 total warps

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp

Scheduling,” MICRO 2011.

Long-latency load

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Two-Level Scheduling of Warps
 Scheduling smaller warp groups reduces stalls due to long latency operations

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp

Scheduling,” MICRO 2011.

time

Core

Memory
System

All Warps Compute

Req Warp 0

All Warps Compute

Req Warp 1

Req Warp 15

Round Robin Scheduling, 16 total warps

time

Core

Memory
System

Compute

Req Warp 0
Req Warp 1

Req Warp 7

Two Level Round Robin Scheduling, 2 fetch groups, 8 warps each

Group 0

Compute

Group 1

Req Warp 8
Req Warp 9

Req Warp 15

Compute

Group 0

Compute

Group 1

Saved Cycles

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

