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GPUs are SIMD Engines Underneath

 The instruction pipeline operates like an SIMD pipeline 
(e.g., an array processor)

 However, the programming is done using threads, NOT 
SIMD instructions

 Let us distinguish between 

 Programming Model (Software)

vs.

 Execution Model (Hardware)
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Programming Model vs. Hardware Execution Model

 Programming Model refers to how the programmer expresses 
the code

 E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow, 
Multi-threaded (MIMD, SPMD), …

 Execution Model refers to how the hardware executes the 
code underneath

 E.g., Out-of-order execution, Vector processor, Array processor, 
Dataflow processor, Multiprocessor, Multithreaded processor, …

 Execution Model can be very different from the Programming 
Model

 E.g., von Neumann model implemented by an OoO processor

 E.g., SPMD model implemented by a SIMD processor (a GPU)
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How Can You Exploit Parallelism Here?
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for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Let’s examine three programming 
options to exploit instruction-level 

parallelism present in this    
sequential code:

1. Sequential (SISD)

2. Data-Parallel (SIMD)

3. Multithreaded (MIMD/SPMD)
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Prog. Model 1: Sequential (SISD)
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load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code  Can be executed on a:

 Pipelined processor

 Out-of-order execution processor

 Independent instructions executed 
when ready

 Different iterations are present in the 
instruction window and can execute in 
parallel in multiple functional units

 In other words, the loop is dynamically 
unrolled by the hardware

 Superscalar or VLIW processor

 Can fetch and execute multiple 
instructions per cycle

for (i=0; i < N; i++)

C[i] = A[i] + B[i];
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load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 2: Data Parallel (SIMD)
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for (i=0; i < N; i++)

C[i] = A[i] + B[i];

Vector Instruction

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Vectorized Code

Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD 
instruction to execute the same instruction from 
all iterations across different data

Best executed by a SIMD processor (vector, array)

VLD     A  V1

VLD     B  V2

VADD     V1 + V2  V3

VST     V3  C
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load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 3: Multithreaded
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for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data)

Can be executed on a MIMD machine
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Prog. Model 3: Multithreaded
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for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineCan be executed on a SIMT machine

Single Instruction Multiple Thread
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A GPU is a SIMD (SIMT) Machine

 Except it is not programmed using SIMD instructions

 It is programmed using threads (SPMD programming model)

 Each thread executes the same code but operates a different 
piece of data

 Each thread has its own context (i.e., can be 
treated/restarted/executed independently)

 A set of threads executing the same instruction are 
dynamically grouped into a warp by the hardware

 A warp is essentially a SIMD operation formed by hardware!
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Warp Terminology
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Source: Wikipedia
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Warp 0 at PC X+3

Warp 0 at PC X+2

Warp 0 at PC X+1

SPMD on SIMT Machine
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for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineA GPU executes it using the SIMT model:

Single Instruction Multiple Thread

Warp 0 at PC X

Warp: A set of threads that execute

the same instruction (i.e., at the same PC)
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SIMD vs. SIMT Execution Model

 SIMD: A single sequential instruction stream of SIMD 
instructions  each instruction specifies multiple data inputs

 [VLD, VLD, VADD, VST], VLEN

 SIMT: Multiple instruction streams of scalar instructions 

threads grouped dynamically into warps

 [LD, LD, ADD, ST], NumThreads

 Two Major SIMT Advantages: 

 Can treat each thread separately  i.e., can execute each thread 
independently (on any type of scalar pipeline)  MIMD processing

 Can group threads into warps flexibly  i.e., can group threads 
that are supposed to truly execute the same instruction 

dynamically obtain and maximize benefits of SIMD processing
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Fine-Grained Multithreading 

of Warps 
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for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
0

Iter. 
1

Warp 0 at PC X

 Assume a warp consists of 32 threads

 If you have 32K iterations, and 1 iteration/thread  1K warps

 Warps can be interleaved on the same pipeline  Fine grained 

multithreading of warps

Warp 1 at PC X

Iter. 
32

Iter. 
33

Warp 20 at PC X+2

Iter.
20*32

Iter.
20*32 + 1
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Fine-Grained Multithreading 

(FGMT) of Warps 

14

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store
Iterations 0-31

Warp 0 at PC X+3

 Assume a warp consists of 32 threads

 If you have 32K iterations, and 1 iteration/thread  1K warps

 Warps can be interleaved on the same pipeline  Fine grained 

multithreading of warps

Warp 1 at PC X+2

Warp 2 at PC X+1

Warp 3 at PC X

Iterations 32-63

Iterations 64-95

Iterations 96-127

All threads in a warp are independent of each other 

 They be executed seamlessly in a fine-grained multithreaded pipeline 
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Fine-Grained Multithreading: Basic Idea

SignImmE

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE
0

1

PCF0

1

PC' InstrD
25:21

20:16

15:0

5:0

SrcBE

20:16

15:11

RtE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM
4:0

ResultW

PCPlus4EPCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD

ALUSrcD

RegWriteD

Op

Funct

Control

Unit

ZeroM

PCSrcM

CLK CLK CLK

CLK CLK

WriteRegW
4:0

ALUControlE
2:0

A
L
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

BranchE BranchM

RegDstE

ALUSrcE

WriteRegE
4:0

Each pipeline stage has an instruction from a different, completely-independent thread

We need a PC and a register file for each thread + muxes and controlUploaded By: Jibreel BornatSTUDENTS-HUB.com



Warps and Warp-Level FGMT

 Warp: A set of threads that execute the same instruction 
(on different data elements)  SIMT (Nvidia-speak)

 All threads run the same code
 Warp: The threads that run lengthwise in a woven fabric …

Thread Warp 3
Thread Warp 8

Thread Warp 7

Thread Warp

Scalar
Thread

W

Scalar
Thread

X

Scalar
Thread

Y

Scalar
Thread

Z

Common PC

SIMD Pipeline

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.Uploaded By: Jibreel BornatSTUDENTS-HUB.com



High-Level View of a GPU

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Latency Hiding via Warp-Level FGMT

 Warp: A set of threads that 
execute the same instruction 
(on different data elements)

 Fine-grained multithreading

 One instruction per thread in 
pipeline at a time (No 
interlocking)

 Interleave warp execution to 
hide latencies

 Register values of all threads stay 
in register file

 FGMT enables simple pipeline & 
long latency tolerance

 Millions of threads operating on the 
same large image/video 
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Decode

R
F

R
F

R
F

A
LU

A
LU

A
LU

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2DataAll Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline
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Recall: Vector Instruction Execution
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VADD A,B  C

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using 
one pipelined 
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using 
four pipelined 
functional units

Slide credit: Krste Asanovic

Time

Space

Time
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Warp Execution (Recall the Previous Slide)
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32-thread warp executing ADD A[tid],B[tid]  C[tid]

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using 
one pipelined 
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using 
four pipelined 
functional units

Slide credit: Krste Asanovic
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Time
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Recall: Vector Unit Structure
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Lane

Functional Unit

Partitioned
Vector
Registers

Memory Subsystem

Elements 
0, 4, 8, …

Elements 
1, 5, 9, …

Elements 
2, 6, 10, 
…

Elements 
3, 7, 11, 
…

Slide credit: Krste Asanovic Uploaded By: Jibreel BornatSTUDENTS-HUB.com
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Lane

Functional Unit

Registers
for each 
Thread

Memory Subsystem

Registers for 
thread IDs
0, 4, 8, …

Registers for 
thread IDs
1, 5, 9, …

Registers for 
thread IDs
2, 6, 10, …

Registers for 
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

GPU SIMD Execution Unit Structure
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 Same instruction in different threads uses thread id to 
index and access different data elements

SIMT Memory Access (Loads and Stores)

Let’s assume N=16, 4 threads per warp  4 warps 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+

+ + + +

Slide credit: Hyesoon Kim

Threads

Data elements

Warp 0 Warp 1 Warp 2 Warp 3

25

For maximum performance, memory should provide enough bandwidth 

(i.e., elements per cycle throughput to match computation unit throughput)
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 CPU threads and GPU kernels

 Sequential or modestly parallel sections on CPU

 Massively parallel sections on GPU: Blocks of threads

Serial Code (host)

. . .

. . .

Parallel Kernel (device)

KernelA<<<nBlk, nThr>>>(args);

Serial Code (host)

Parallel Kernel (device)

KernelB<<<nBlk, nThr>>>(args);

Warps not Exposed to GPU Programmers
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Slide credit: Hwu & Kirk
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Sample GPU SIMT Code (Simplified)

for (ii = 0; ii < 100000; ++ii) {
C[ii] = A[ii] + B[ii];
}

// there are 100000 threads
__global__ void KernelFunction(…) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
int varA = aa[tid];
int varB = bb[tid];
C[tid] = varA + varB;

}

CPU code

CUDA code
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Sample GPU Program (Less Simplified)
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From Blocks to Warps

 GPU core: A SIMD pipeline

 Streaming Processor (SP)

 Many such SIMD Processors

 Streaming Multiprocessor (SM)

 Blocks are divided into warps

 SIMD/SIMT unit (32 threads)

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

…

Block 0’s warps Block 1’s warps

…
t0 t1 t2 … t31

…

Block 2’s warps

29

NVIDIA Fermi architecture
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Warp-based SIMD vs. Traditional SIMD
 Traditional SIMD contains a single thread 

 Sequential instruction execution; lock-step operations in a SIMD instruction

 Programming model is SIMD (no extra threads)  SW needs to know 

vector length

 ISA contains vector/SIMD instructions

 Warp-based SIMD consists of multiple scalar threads executing in a 
SIMD manner (i.e., same instruction executed by all threads)

 Does not have to be lock step

 Each thread can be treated individually (i.e., placed in a different warp) 
 programming model not SIMD

 SW does not need to know vector length

 Enables multithreading and flexible dynamic grouping of threads

 ISA is scalar  SIMD operations can be formed dynamically

 Essentially, it is SPMD programming model implemented on SIMD 
hardware
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SPMD
 Single procedure/program, multiple data 

 This is a programming model rather than computer organization

 Each processing element executes the same procedure, except on 
different data elements

 Procedures can synchronize at certain points in program, e.g. barriers

 Essentially, multiple instruction streams execute the same 
program

 Each program/procedure 1) works on different data, 2) can execute a 
different control-flow path, at run-time

 Many scientific applications are programmed this way and run on MIMD 
hardware (multiprocessors)

 Modern GPUs programmed in a similar way on a SIMD hardware
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SIMD vs. SIMT Execution Model

 SIMD: A single sequential instruction stream of SIMD 
instructions  each instruction specifies multiple data inputs

 [VLD, VLD, VADD, VST], VLEN

 SIMT: Multiple instruction streams of scalar instructions 

threads grouped dynamically into warps

 [LD, LD, ADD, ST], NumThreads

 Two Major SIMT Advantages: 

 Can treat each thread separately  i.e., can execute each thread 
independently on any type of scalar pipeline  MIMD processing

 Can group threads into warps flexibly  i.e., can group threads 
that are supposed to truly execute the same instruction 

dynamically obtain and maximize benefits of SIMD processing
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Threads Can Take Different Paths in Warp-based SIMD

 Each thread can have conditional control flow instructions

 Threads can execute different control flow paths
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Thread Warp Common PC

Thread

2

Thread

3

Thread

4

Thread

1

B

C D

E

F

A

G

Slide credit: Tor Aamodt Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Control Flow Problem in GPUs/SIMT

 A GPU uses a SIMD 
pipeline to save area 
on control logic

 Groups scalar threads 
into warps

 Branch divergence 
occurs when threads 
inside warps branch to 
different execution 
paths

34

Branch

Path A

Path B

Branch

Path A

Path B

Slide credit: Tor Aamodt

This is the same as conditional/predicated/masked execution. 

Recall the Vector Mask and Masked Vector Operations
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Remember: Each Thread Is Independent

 Two Major SIMT Advantages: 

 Can treat each thread separately  i.e., can execute each thread 
independently on any type of scalar pipeline  MIMD processing

 Can group threads into warps flexibly  i.e., can group threads 
that are supposed to truly execute the same instruction 

dynamically obtain and maximize benefits of SIMD processing

 If we have many threads

 We can find individual threads that are at the same PC

 And, group them together into a single warp dynamically

 This reduces “divergence”  improves SIMD utilization

 SIMD utilization: fraction of SIMD lanes executing a useful 
operation (i.e., executing an active thread)
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Dynamic Warp Formation/Merging

 Idea: Dynamically merge threads executing the same 
instruction, i.e., at the same PC (after branch divergence)

 Form new warps from warps that are waiting

 Enough threads branching to each path enables the creation 
of full new warps

36

Warp X

Warp Y

Warp Z
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Dynamic Warp Formation/Merging

 Idea: Dynamically merge threads executing the same 
instruction, i.e., at the same PC (after branch divergence)

 Fung et al., “Dynamic Warp Formation and Scheduling for 
Efficient GPU Control Flow,” MICRO 2007.
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Branch

Path A

Path B

Branch

Path A
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Dynamic Warp Formation Example
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A A B B G G A AC C D D E E F F

Time

A A B B G G A AC D E E F

Time

A
x/1111
y/1111

B
x/1110
y/0011

C
x/1000
y/0010 D

x/0110
y/0001 F

x/0001
y/1100

E
x/1110
y/0011

G
x/1111
y/1111

A new warp created from scalar 

threads of both Warp x and y 

executing at Basic Block D

D

Execution of Warp x

at Basic Block A

Execution of Warp y

at Basic Block A

Legend
AA

Baseline

Dynamic

Warp

Formation
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Large Warps and Two-Level Warp Scheduling

 Two main reasons for GPU resources be underutilized

 Branch divergence

 Long latency operations
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time

Core

Memory
System

All Warps Compute

Req Warp 0

All Warps Compute

Req Warp 1

Req Warp 15

Round Robin Scheduling, 16 total warps

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp 

Scheduling,” MICRO 2011.

Long-latency load
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Two-Level Scheduling of Warps
 Scheduling smaller warp groups reduces stalls due to long latency operations

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp 

Scheduling,” MICRO 2011.

time

Core

Memory
System

All Warps Compute

Req Warp 0

All Warps Compute

Req Warp 1

Req Warp 15

Round Robin Scheduling, 16 total warps

time

Core

Memory
System

Compute

Req Warp 0
Req Warp 1

Req Warp 7

Two Level Round Robin Scheduling, 2 fetch groups, 8 warps each

Group 0

Compute

Group 1

Req Warp 8
Req Warp 9

Req Warp 15

Compute

Group 0

Compute

Group 1

Saved Cycles
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