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GPUs are SIMD Engines Underneath

 The instruction pipeline operates like an SIMD pipeline 
(e.g., an array processor)

 However, the programming is done using threads, NOT 
SIMD instructions

 Let us distinguish between 

 Programming Model (Software)

vs.

 Execution Model (Hardware)
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Programming Model vs. Hardware Execution Model

 Programming Model refers to how the programmer expresses 
the code

 E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow, 
Multi-threaded (MIMD, SPMD), …

 Execution Model refers to how the hardware executes the 
code underneath

 E.g., Out-of-order execution, Vector processor, Array processor, 
Dataflow processor, Multiprocessor, Multithreaded processor, …

 Execution Model can be very different from the Programming 
Model

 E.g., von Neumann model implemented by an OoO processor

 E.g., SPMD model implemented by a SIMD processor (a GPU)
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How Can You Exploit Parallelism Here?
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for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Let’s examine three programming 
options to exploit instruction-level 

parallelism present in this    
sequential code:

1. Sequential (SISD)

2. Data-Parallel (SIMD)

3. Multithreaded (MIMD/SPMD)
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Prog. Model 1: Sequential (SISD)
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load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code  Can be executed on a:

 Pipelined processor

 Out-of-order execution processor

 Independent instructions executed 
when ready

 Different iterations are present in the 
instruction window and can execute in 
parallel in multiple functional units

 In other words, the loop is dynamically 
unrolled by the hardware

 Superscalar or VLIW processor

 Can fetch and execute multiple 
instructions per cycle

for (i=0; i < N; i++)

C[i] = A[i] + B[i];
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load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 2: Data Parallel (SIMD)
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for (i=0; i < N; i++)

C[i] = A[i] + B[i];

Vector Instruction

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Vectorized Code

Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD 
instruction to execute the same instruction from 
all iterations across different data

Best executed by a SIMD processor (vector, array)

VLD     A  V1

VLD     B  V2

VADD     V1 + V2  V3

VST     V3  C
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load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 3: Multithreaded
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for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data)

Can be executed on a MIMD machine
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Prog. Model 3: Multithreaded
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for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineCan be executed on a SIMT machine

Single Instruction Multiple Thread
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A GPU is a SIMD (SIMT) Machine

 Except it is not programmed using SIMD instructions

 It is programmed using threads (SPMD programming model)

 Each thread executes the same code but operates a different 
piece of data

 Each thread has its own context (i.e., can be 
treated/restarted/executed independently)

 A set of threads executing the same instruction are 
dynamically grouped into a warp by the hardware

 A warp is essentially a SIMD operation formed by hardware!
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Warp Terminology
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Source: Wikipedia
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Warp 0 at PC X+3

Warp 0 at PC X+2

Warp 0 at PC X+1

SPMD on SIMT Machine
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for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineA GPU executes it using the SIMT model:

Single Instruction Multiple Thread

Warp 0 at PC X

Warp: A set of threads that execute

the same instruction (i.e., at the same PC)
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SIMD vs. SIMT Execution Model

 SIMD: A single sequential instruction stream of SIMD 
instructions  each instruction specifies multiple data inputs

 [VLD, VLD, VADD, VST], VLEN

 SIMT: Multiple instruction streams of scalar instructions 

threads grouped dynamically into warps

 [LD, LD, ADD, ST], NumThreads

 Two Major SIMT Advantages: 

 Can treat each thread separately  i.e., can execute each thread 
independently (on any type of scalar pipeline)  MIMD processing

 Can group threads into warps flexibly  i.e., can group threads 
that are supposed to truly execute the same instruction 

dynamically obtain and maximize benefits of SIMD processing
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Fine-Grained Multithreading 

of Warps 

13

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
0

Iter. 
1

Warp 0 at PC X

 Assume a warp consists of 32 threads

 If you have 32K iterations, and 1 iteration/thread  1K warps

 Warps can be interleaved on the same pipeline  Fine grained 

multithreading of warps

Warp 1 at PC X

Iter. 
32

Iter. 
33

Warp 20 at PC X+2

Iter.
20*32

Iter.
20*32 + 1
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Fine-Grained Multithreading 

(FGMT) of Warps 
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for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store
Iterations 0-31

Warp 0 at PC X+3

 Assume a warp consists of 32 threads

 If you have 32K iterations, and 1 iteration/thread  1K warps

 Warps can be interleaved on the same pipeline  Fine grained 

multithreading of warps

Warp 1 at PC X+2

Warp 2 at PC X+1

Warp 3 at PC X

Iterations 32-63

Iterations 64-95

Iterations 96-127

All threads in a warp are independent of each other 

 They be executed seamlessly in a fine-grained multithreaded pipeline 
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Fine-Grained Multithreading: Basic Idea
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Each pipeline stage has an instruction from a different, completely-independent thread
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Warps and Warp-Level FGMT

 Warp: A set of threads that execute the same instruction 
(on different data elements)  SIMT (Nvidia-speak)

 All threads run the same code
 Warp: The threads that run lengthwise in a woven fabric …

Thread Warp 3
Thread Warp 8

Thread Warp 7

Thread Warp

Scalar
Thread

W

Scalar
Thread

X

Scalar
Thread

Y

Scalar
Thread

Z

Common PC

SIMD Pipeline

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.Uploaded By: Jibreel BornatSTUDENTS-HUB.com



High-Level View of a GPU

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Latency Hiding via Warp-Level FGMT

 Warp: A set of threads that 
execute the same instruction 
(on different data elements)

 Fine-grained multithreading

 One instruction per thread in 
pipeline at a time (No 
interlocking)

 Interleave warp execution to 
hide latencies

 Register values of all threads stay 
in register file

 FGMT enables simple pipeline & 
long latency tolerance

 Millions of threads operating on the 
same large image/video 
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Decode

R
F

R
F

R
F

A
LU

A
LU

A
LU

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2DataAll Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Recall: Vector Instruction Execution
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VADD A,B  C

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using 
one pipelined 
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using 
four pipelined 
functional units

Slide credit: Krste Asanovic

Time

Space

Time

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Warp Execution (Recall the Previous Slide)
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32-thread warp executing ADD A[tid],B[tid]  C[tid]

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using 
one pipelined 
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using 
four pipelined 
functional units

Slide credit: Krste Asanovic
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Space

Time
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Recall: Vector Unit Structure
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Lane

Functional Unit

Partitioned
Vector
Registers

Memory Subsystem

Elements 
0, 4, 8, …

Elements 
1, 5, 9, …

Elements 
2, 6, 10, 
…

Elements 
3, 7, 11, 
…

Slide credit: Krste Asanovic Uploaded By: Jibreel BornatSTUDENTS-HUB.com
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Lane

Functional Unit

Registers
for each 
Thread

Memory Subsystem

Registers for 
thread IDs
0, 4, 8, …

Registers for 
thread IDs
1, 5, 9, …

Registers for 
thread IDs
2, 6, 10, …

Registers for 
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

GPU SIMD Execution Unit Structure
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 Same instruction in different threads uses thread id to 
index and access different data elements

SIMT Memory Access (Loads and Stores)

Let’s assume N=16, 4 threads per warp  4 warps 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+

+ + + +

Slide credit: Hyesoon Kim

Threads

Data elements

Warp 0 Warp 1 Warp 2 Warp 3

25

For maximum performance, memory should provide enough bandwidth 

(i.e., elements per cycle throughput to match computation unit throughput)
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 CPU threads and GPU kernels

 Sequential or modestly parallel sections on CPU

 Massively parallel sections on GPU: Blocks of threads

Serial Code (host)

. . .

. . .

Parallel Kernel (device)

KernelA<<<nBlk, nThr>>>(args);

Serial Code (host)

Parallel Kernel (device)

KernelB<<<nBlk, nThr>>>(args);

Warps not Exposed to GPU Programmers

26

Slide credit: Hwu & Kirk
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Sample GPU SIMT Code (Simplified)

for (ii = 0; ii < 100000; ++ii) {
C[ii] = A[ii] + B[ii];
}

// there are 100000 threads
__global__ void KernelFunction(…) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
int varA = aa[tid];
int varB = bb[tid];
C[tid] = varA + varB;

}

CPU code

CUDA code

Slide credit: Hyesoon Kim 27Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Sample GPU Program (Less Simplified)
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From Blocks to Warps

 GPU core: A SIMD pipeline

 Streaming Processor (SP)

 Many such SIMD Processors

 Streaming Multiprocessor (SM)

 Blocks are divided into warps

 SIMD/SIMT unit (32 threads)

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

…

Block 0’s warps Block 1’s warps

…
t0 t1 t2 … t31

…

Block 2’s warps
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NVIDIA Fermi architecture
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Warp-based SIMD vs. Traditional SIMD
 Traditional SIMD contains a single thread 

 Sequential instruction execution; lock-step operations in a SIMD instruction

 Programming model is SIMD (no extra threads)  SW needs to know 

vector length

 ISA contains vector/SIMD instructions

 Warp-based SIMD consists of multiple scalar threads executing in a 
SIMD manner (i.e., same instruction executed by all threads)

 Does not have to be lock step

 Each thread can be treated individually (i.e., placed in a different warp) 
 programming model not SIMD

 SW does not need to know vector length

 Enables multithreading and flexible dynamic grouping of threads

 ISA is scalar  SIMD operations can be formed dynamically

 Essentially, it is SPMD programming model implemented on SIMD 
hardware
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SPMD
 Single procedure/program, multiple data 

 This is a programming model rather than computer organization

 Each processing element executes the same procedure, except on 
different data elements

 Procedures can synchronize at certain points in program, e.g. barriers

 Essentially, multiple instruction streams execute the same 
program

 Each program/procedure 1) works on different data, 2) can execute a 
different control-flow path, at run-time

 Many scientific applications are programmed this way and run on MIMD 
hardware (multiprocessors)

 Modern GPUs programmed in a similar way on a SIMD hardware
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SIMD vs. SIMT Execution Model

 SIMD: A single sequential instruction stream of SIMD 
instructions  each instruction specifies multiple data inputs

 [VLD, VLD, VADD, VST], VLEN

 SIMT: Multiple instruction streams of scalar instructions 

threads grouped dynamically into warps

 [LD, LD, ADD, ST], NumThreads

 Two Major SIMT Advantages: 

 Can treat each thread separately  i.e., can execute each thread 
independently on any type of scalar pipeline  MIMD processing

 Can group threads into warps flexibly  i.e., can group threads 
that are supposed to truly execute the same instruction 

dynamically obtain and maximize benefits of SIMD processing
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Threads Can Take Different Paths in Warp-based SIMD

 Each thread can have conditional control flow instructions

 Threads can execute different control flow paths
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Thread Warp Common PC

Thread

2

Thread

3

Thread

4

Thread

1

B

C D

E

F

A

G

Slide credit: Tor Aamodt Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Control Flow Problem in GPUs/SIMT

 A GPU uses a SIMD 
pipeline to save area 
on control logic

 Groups scalar threads 
into warps

 Branch divergence 
occurs when threads 
inside warps branch to 
different execution 
paths

34

Branch

Path A

Path B

Branch

Path A

Path B

Slide credit: Tor Aamodt

This is the same as conditional/predicated/masked execution. 

Recall the Vector Mask and Masked Vector Operations
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Remember: Each Thread Is Independent

 Two Major SIMT Advantages: 

 Can treat each thread separately  i.e., can execute each thread 
independently on any type of scalar pipeline  MIMD processing

 Can group threads into warps flexibly  i.e., can group threads 
that are supposed to truly execute the same instruction 

dynamically obtain and maximize benefits of SIMD processing

 If we have many threads

 We can find individual threads that are at the same PC

 And, group them together into a single warp dynamically

 This reduces “divergence”  improves SIMD utilization

 SIMD utilization: fraction of SIMD lanes executing a useful 
operation (i.e., executing an active thread)
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Dynamic Warp Formation/Merging

 Idea: Dynamically merge threads executing the same 
instruction, i.e., at the same PC (after branch divergence)

 Form new warps from warps that are waiting

 Enough threads branching to each path enables the creation 
of full new warps

36

Warp X

Warp Y

Warp Z
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Dynamic Warp Formation/Merging

 Idea: Dynamically merge threads executing the same 
instruction, i.e., at the same PC (after branch divergence)

 Fung et al., “Dynamic Warp Formation and Scheduling for 
Efficient GPU Control Flow,” MICRO 2007.
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Branch

Path A

Path B

Branch

Path A
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Dynamic Warp Formation Example
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A A B B G G A AC C D D E E F F

Time

A A B B G G A AC D E E F

Time
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y/1111

B
x/1110
y/0011
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y/0010 D
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y/0001 F

x/0001
y/1100

E
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y/0011

G
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y/1111

A new warp created from scalar 

threads of both Warp x and y 

executing at Basic Block D

D

Execution of Warp x

at Basic Block A

Execution of Warp y

at Basic Block A

Legend
AA

Baseline

Dynamic

Warp

Formation

Slide credit: Tor Aamodt Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Large Warps and Two-Level Warp Scheduling

 Two main reasons for GPU resources be underutilized

 Branch divergence

 Long latency operations

40

time

Core

Memory
System

All Warps Compute

Req Warp 0

All Warps Compute

Req Warp 1

Req Warp 15

Round Robin Scheduling, 16 total warps

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp 

Scheduling,” MICRO 2011.

Long-latency load
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Two-Level Scheduling of Warps
 Scheduling smaller warp groups reduces stalls due to long latency operations

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp 

Scheduling,” MICRO 2011.

time

Core

Memory
System

All Warps Compute

Req Warp 0

All Warps Compute

Req Warp 1

Req Warp 15

Round Robin Scheduling, 16 total warps

time

Core

Memory
System

Compute

Req Warp 0
Req Warp 1

Req Warp 7

Two Level Round Robin Scheduling, 2 fetch groups, 8 warps each

Group 0

Compute

Group 1

Req Warp 8
Req Warp 9

Req Warp 15

Compute

Group 0

Compute

Group 1

Saved Cycles
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