Chapter 42 summary BIO

- Exchanges ultimately occur at the cellular level.
- In unicellular organisms, these exchanges occur directly with the environment.
- For most cells making up multicellular organisms, direct exchange with the environment is not possible.
- Gills: are specialized exchange system in animals
- Internal transport and gas exchange are functionally related in most animals.

Circulatory systems:

- ✓ In most animals, transport systems connect the organs of exchange with the body cells.
- ✓ complex animals have either open or closed circulatory systems.
- ✓ Both systems have three basic components:
 - circulatory fluid (blood or hemolymph)
 - set of tubes (blood vessels)
 - muscular pump (the heart)
- ✓ In insects, other arthropods, and most molluscs, blood bathes the organs directly in an open circulatory system
- ✓ In an open circulatory system, there is no distinction between blood and interstitial fluid this and, general body fluid is more correctly called **hemolymph**.
- ✓ In a closed circulatory system, blood is **confined** to vessels and is distinct from the interstitial fluid.
- ✓ Closed systems are more efficient at transporting circulatory fluids to tissues and cells.
- ✓ Humans and other vertebrates have a closed circulatory system, often called the cardiovascular system.
- ✓ The three main types of blood vessels are: Arteries, Veins and Capillaries:
 - *Arteries branch into arterioles and carry blood to capillaries.
 - *Networks of capillaries called **capillary beds** are the sites of chemical exchange between the blood and interstitial fluid.
 - *Venules converge into veins and return blood from capillaries to the heart.
- ✓ Vertebrate hearts contain two or more chambers.
- ✓ Blood enters through an atrium and is pumped out through a ventricle.
- ✓ Single Circulation:
- * Bony fishes, rays, and sharks have single circulation with a two-chambered heart.
- * single circulation, blood leaving heart passes through **two** capillary beds before returning.
- ✓ Double Circulation:
- * Amphibian, reptiles, and mammals have double circulation.
- * Oxygen-poor and oxygen-rich blood are pumped separately from the right and left sides of the heart.

- In reptiles and mammals, oxygen-poor blood flows through the pulmonary circuit to pick up oxygen through the lungs.
- Oxygen-rich blood delivers oxygen through the systemic circuit.
- * Double circulation maintains higher blood pressure in the organs than does single circulation.
- ✓ Mammalian Circulation:
- ♣ Blood begins its flow with the right ventricle pumping blood to the lungs. In the lungs, the blood loads O₂ and unloads CO₂.
- A Oxygen-rich blood from the lungs enters the heart at the left atrium and is pumped through the aorta to the body tissues by the left ventricle.
- The aorta provides blood to the heart through the coronary arteries.
- Blood returns to heart through superior vena cava (blood from head, neck, and forelimbs) and inferior vena cava (blood from trunk and hind limbs), flow into right atrium.
- The heart contracts and relaxes in rhythmic cycle called cardiac cycle.
- ♣ The contraction, or pumping, phase is called **systole**.
- ♣ The relaxation, or filling, phase is called **diastole**.
- For an adult human, the heart rate is 72 beats/min; one complete cardiac cycle takes 0.8s
- The heart rate, also called the pulse, is the number of beats per minute.
- The stroke volume is the amount of blood pumped in a single contraction.
- * The cardiac output is the volume of blood pumped into the systemic circulation per minute and depends on both the heart rate and stroke volume.
- Four valves prevent backflow of blood in the heart.
- The atrioventricular (AV) valves separate each atrium and ventricle.
- The semilunar valves control blood flow to the aorta and the pulmonary artery.
- The "lub-dup" sound of a heartbeat is caused by the recoil of blood against the AV valves (lub) then against the semilunar (dup) valves.
- Backflow of blood through a defective valve causes a heart murmur.
- ♣ Some cardiac muscle cells are self-excitable, meaning they contract without any signal from the nervous system.
- The sinoatrial (SA) node or pacemaker sets the rate and timing at which cardiac muscle cells contract.

- ♣ Impulses from the SA node travel to the atrioventricular (AV) node.
- At the AV node, the impulses are delayed and then travel to the Purkinje fibres that make the ventricles contract.
- Impulses that travel during cardiac cycle can be recorded as electrocardiogram (ECG or EKG)

- The pacemaker is influenced by nerves, hormones(epinephrine), body temperature, and exercise.
- An increase of body temperature by 1C, increases heart rate by 10 beats /min.
- ✓ Blood Vessel Structure and Function:
- * The epithelial layer that lines blood vessels is called the **endothelium**.
- A Capillaries have thin walls, the endothelium plus its basement membrane, to facilitate the exchange of materials.
- Arteries and veins have an endothelium, smooth muscle, and connective tissue.
- Arteries have thicker walls than veins to accommodate the high pressure of blood pumped from the heart.
- ♣ In the thinner-walled veins, blood flows back to the heart mainly because of muscle action.
- ✓ Blood Flow Velocity:
- Velocity of blood flow is slowest in the capillary beds, because of the high resistance and large total cross-sectional area.
- Blood flow in capillaries is necessarily slow for exchange of materials.

The interrelationship of:

-cross-sectional area of blood vessels:

-velocity:

-pressure:

- ✓ Changes in Blood Pressure During the Cardiac Cycle:
- ♣ Blood pressure: is the hydrostatic pressure that blood exerts against the wall of a vessel.

BLOOD PRESSURE CATEGORY	SYSTOLIC mm Hg (upper number)	DIASTOLIC mm Hg (lower number)
NORMAL	LESS THAN 120	LESS THAN 80
ELEVATED	120-129	LESS THAN 80
HIGH BLOOD PRESSURE STAGE1	130-139	80-89
HIGH BLOOD PRESSURE STAGE2	140 OR HIGHER	90 OR HIGHER
HYPERTENSIVE	HIGHER THAN 180	HIGHER THAN 120

- A Systolic pressure is the pressure in the arteries during ventricular systole; it is the highest pressure in the arteries.
- A Diastolic pressure the is pressure in the arteries during diastole.
- A pulse is the rhythmic bulging of artery walls with each heartbeat.
- ♣ Blood pressure is determined by cardiac output and peripheral resistance due to constriction of arterioles.
- Vasoconstriction is contraction of smooth muscle in arteriole walls; it increases blood pressure.
- Vasodilation is the relaxation of smooth muscles in the arteriole walls; it causes blood pressure to fall.
- Blood pressure is generally measured for artery in the arm at the same height as the heart.
- ✓ Capillary Function:
- A Capillaries in major organs are usually filled to capacity.
- 2 mechanisms regulate distribution of blood in capillary bed:
 - Contraction of the smooth muscle layer in the wall of an arteriole constricts the vessel.
 - -Precapillary sphincters control flow of blood between arterioles and venules.
- The exchange of substances between the blood and interstitial fluid takes place across the thin endothelial walls of the capillaries.
- ✓ The lymphatic system:
- returns fluid that leaks out in the capillary beds.
- This system aids in body defence.
- Fluid, called lymph, re-enters the circulation directly at the venous end of the capillary bed.
- ♣ The lymphatic system drains into veins in the neck.
- ♣ Lymph nodes are organs that filter lymph and play an important role in the body's defence.
- Edema is swelling caused by disruptions in the flow of lymph.

