Chapter 10 in the 9th Edition Chapter 9 in the 8^{the} Edition

Polyprotic Acid-Base Equilibria

Overview

- 10-1 Diprotic Acids and Bases
- 10-2 Diprotic Buffers
- 10-3 Polyprotic Acids and Bases
- 10-4 Which Is the Principal Species?
- 10-5 Fractional Composition Equations
- 10-6 Isoelectric and Isoionic pH

Solutions of weak acids and bases

Example:

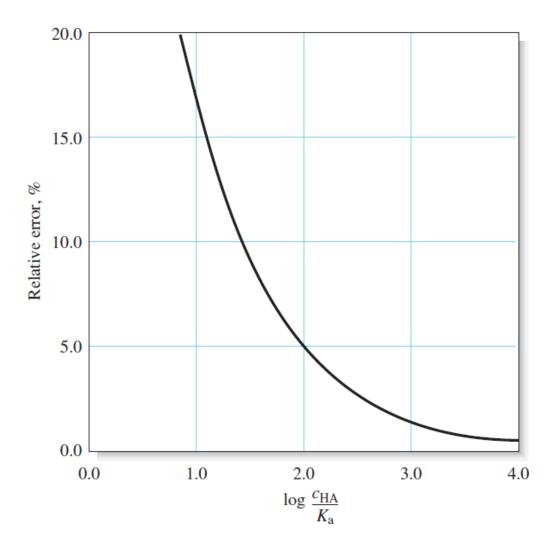
Propanoic acid (CH₃CH₂COOH, which we simplify as HPr) is a carboxylic acid whose salts are used to retard mold growth in food products. What is the [H₃O+] of 0.10 M HPr ($K_a = 1.3 \times 10^{-5}$)?

$$HPr(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + Pr^-(aq)$$

$$K_a = [H_3O^+][Pr^-]$$
[HPr]

Concentration (M)	HPr(<i>aq</i>) -	+ H ₂ O(1) ===	H ₃ O+(<i>aq</i>) + Pr⁻(<i>aq</i>)
Initial	0.10	-	0	0
Change	-x	-	+ <i>X</i>	+ <i>X</i>
Equilibrium	0.10 - <i>x</i>	-	X	X

Since K_a is small, we will assume that x << 0.10 and [HPr] ≈ 0.10 M.


$$K_{\rm a} = 1.3 \times 10^{-5} = \frac{[{\rm H}_3 {\rm O}^+][{\rm Pr}^-]}{[{\rm HPr}]} = \frac{\chi^2}{0.10}$$

$$x = \sqrt{(0.10)(1.3 \times 10^{-5})} = 1.1 \times 10^{-3} M = [H_3 O^+] \text{ pH} = -\log [H_3 O^+] = 2.96$$

Check:
$$[HPr]_{diss} = \frac{1.1 \times 10^{-3} M}{0.10 M}$$
 x 100 = 1.1% (< 5%; assumption is justified.)

Error Introduced by Assuming $\rm H_3O^+$ Concentration Is Small Relative to $c_{\rm HA}$ in Equation 9-16

$K_{\rm a}$	$c_{ m HA}$	[H ₃ O ⁺] Using Assumption	$\frac{c_{ m HA}}{K_{ m a}}$	[H ₃ O ⁺] Using More Exact Equation	Percent Error
1.00×10^{-2}	1.00×10^{-3}	3.16×10^{-3}	10^{-1}	0.92×10^{-3}	244
	1.00×10^{-2}	1.00×10^{-2}	10^{0}	0.62×10^{-2}	61
	1.00×10^{-1}	3.16×10^{-2}	10^{1}	2.70×10^{-2}	17
1.00×10^{-4}	1.00×10^{-4}	1.00×10^{-4}	10^{0}	0.62×10^{-4}	61
	1.00×10^{-3}	3.16×10^{-4}	10^{1}	2.70×10^{-4}	17
	1.00×10^{-2}	1.00×10^{-3}	10^{2}	0.95×10^{-3}	5.3
	1.00×10^{-1}	3.16×10^{-3}	10^{3}	3.11×10^{-3}	1.6
1.00×10^{-6}	1.00×10^{-5}	3.16×10^{-6}	10^{1}	2.70×10^{-6}	17
	1.00×10^{-4}	1.00×10^{-5}	10^{2}	0.95×10^{-5}	5.3
	1.00×10^{-3}	3.16×10^{-5}	10^{3}	3.11×10^{-5}	1.6
	1.00×10^{-2}	1.00×10^{-4}	10^{4}	9.95×10^{-5}	0.5
	1.00×10^{-1}	3.16×10^{-4}	10 ⁵	3.16×10^{-4}	0.0

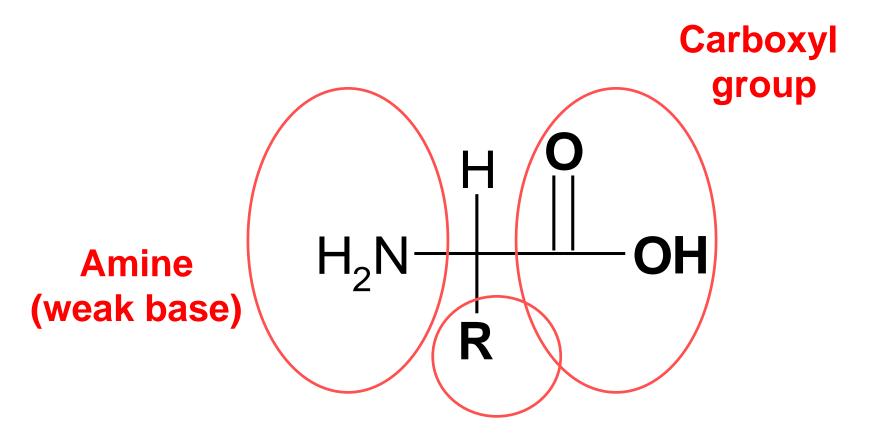
Relative error resulting from the assumption that $[H_3O^+] \ll c_{HA}$

10-1: Diprotic Acids and Bases

- Polyprotic acids and bases are those that can donate or accept more than one proton.
- Diprotic acids and bases therefore can either donate or accept two protons.

Types of polyprotic acids

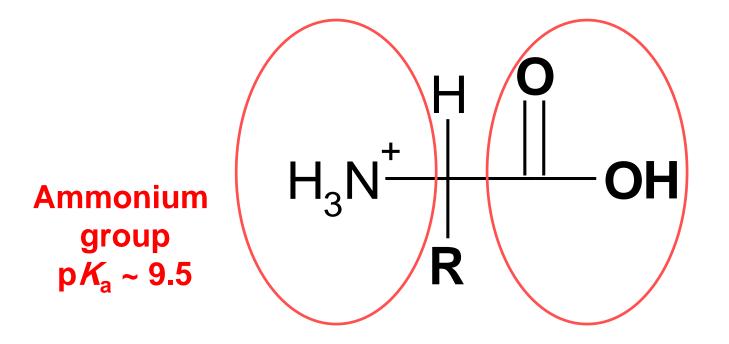
- H₂B+, Amino acids, Example: Alanine H₂A+
 Neutrally charged acids
- 2. H_2A Example: H_2SO_4 , H_2CO_3 , $H_2C_2O_4$


10-1: Diprotic Acids and Bases

 A common class of diprotic acids are amino acids, which are the building blocks of proteins.

 They have an acidic carboxylic acid group, a basic amino group, and a variable substituent designated R.

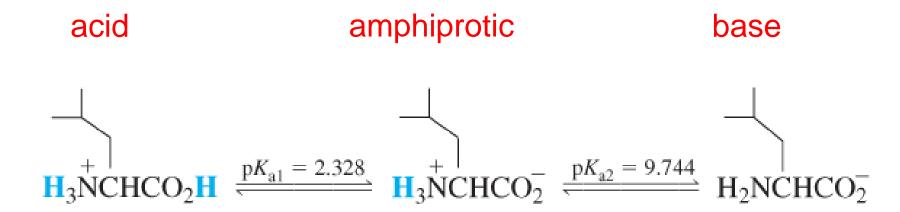
 The carboxyl group is a stronger acid than the ammonium group, so the nonionized form rearranges spontaneously to the zwitterion, which has both positive and negative sites.


Amino Acid

Substituent

Amino Acid

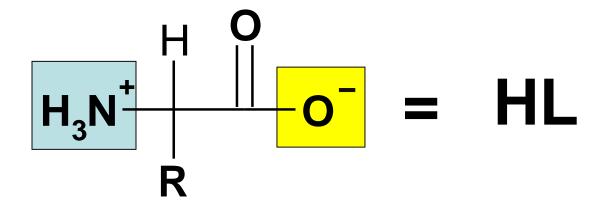
 $pK_a \sim 2.5$



10-1: Diprotic Acids and Bases

Amino acid ^a	Substituent ^a	Carboxylic acid ^b pK_a	Ammonium ^b pK_a	Substituent ^b pK_a	Formula mass
Alanine (A)	—СН ₃	2.344	9.868		89.09
Arginine (R)	-CH ₂ CH ₂ CH ₂ NHC NH ₂	1.823	8.991	(12.1°)	174.20
	0				
Asparagine (N)	−CH ₂ CNH ₂	2.16^{c}	8.73 ^c		132.12
Aspartic acid (D)	—CH ₂ CO ₂ H	1.990	10.002	3.900	133.10
Cysteine (C)	—CH₂SH	(1.7)	10.74	8.36	121.16
Glutamic acid (E)	−CH ₂ CH ₂ CO ₂ H O	2.16	9.96	4.30	147.13
Glutamine (O)	—CH₂CH₂CNH₂	2.19 ^c	9.00°		146.15
Glycine (G)	—Н	2.350	9.778		75.07
Histidine (H)	−CH ₂ −√NH N	(1.6)	9.28	5.97	155.16
(soleucine (I)	H —CH(CH ₃)(CH ₂ CH ₃)	2.318	9.758		131.17
Leucine (L)	—CH(CH ₃)(CH ₂ CH ₃) —CH ₂ CH(CH ₃) ₂	2.328	9.744		131.17
ysine (K)	-CH ₂ CH ₂ CH ₂ CH ₂ NH ₃ ⁺	(1.77)	9.07	10.82	146.19
Methionine (M)	-CH ₂ CH ₂ SCH ₃	2.18 ^c	9.08°	10.02	149.21
Phenylalanine (F)	-CH ₂ -⟨○⟩	2.20	9.31		165.19
Proline (P)	HO ₂ C Structure of entire amino acid	1.952	10.640		115.13
Serine (S)	—CH ₂ OH	2.187	9.209		105.09
Threonine (T)	—CH(CH ₃)(OH)	2.088	9.100		119.12
Γryptophan (W)	−CH ₂ N	2.37 ^c	9.33°		204.23
Tyrosine (Y)	_CH ₂ —(○)—OH	2.41 ^c	8.67 ^c	11.01°	181.19
Valine (V)	-CH(CH ₃) ₂	2.286	9.719		117.15

a. The acidic protons are shown in **bold** type. Each amino acid is written in its fully protonated form. Standard abbreviations are shown in parentheses. b. pK_a values refer to 25°C and zero ionic strength unless marked by c. Values considered to be uncertain are enclosed in parentheses. Appendix G gives pK_a for $\mu=0.1$ M. c. For these entries, the ionic strength is 0.1 M, and the constant refers to a product of concentrations instead of activities.


10-1: Diprotic Acids and Bases

Diprotic Acid: Consider the Leucine System

$$H_2L^+ + H_2O \rightleftharpoons H_3O^+ + HL \quad K_{a1} = 4.70 \times 10^{-3}$$

 $HL + H_2O \rightleftharpoons H_3O^+ + L^- \quad K_{a2} = 1.80 \times 10^{-10}$

HL is a Zwitterion.

Calculate the pH of the following 0.050 M aqueous solutions:

$$pK_a$$
's = 2.328 and 9.744

- (1) Estimate answer
- (2) Calculate it!

1. Calculating the pH of weak diprotic acids (H₂L+)

$$H_2LCI \rightarrow H_2L^+ + CI^-$$

- The weak acid H₂L⁺ dissociates only a little and the even weaker acid HL dissociates hardly at all.
- Treat as a monoprotic acid.

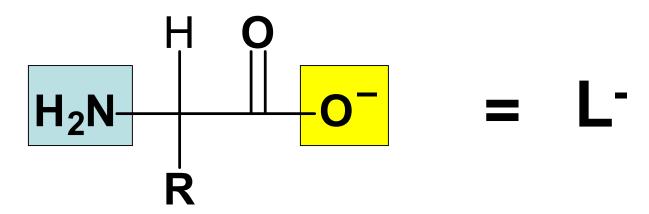
$$\frac{[H^+][HL]}{[H_2L^+]} = \frac{x^2}{F - x} = K_{a1}$$

where
$$[H^+] = [HL] = x$$
, and $[H_2L^+] = F - x$.

1. Calculating the pH of weak diprotic acids (H₂L⁺)

$$H_2L^+ \Rightarrow H^+ + HL$$
, $pK_{a1} = 2.328 (K_{a1} \ge 100K_{a2})$

We estimate the pH to be less than 2.328.


$$\frac{[H^+][HL]}{[H_2L^+]} = \frac{x^2}{F - x} = K_{a1}$$

$$\frac{x^2}{0.050 \text{ M}-x} = 10^{-2.328} = 4.70 \times 10^{-3}$$
 (solve using quadratic equation)

$$x = 1.32 \times 10^{-2} M$$

pH = 1.88

2. Sodium leucinate (L-)

$$L^{-} + H_{2}O \rightleftharpoons HL + OH^{-}$$
 $K_{b1} = \frac{K_{w}}{K_{a2}} = 5.55 \times 10^{-5}$ $HL + H_{2}O \rightleftharpoons H_{2}L^{+} + OH^{-}$ $K_{b2} = \frac{K_{w}}{K_{a1}} = 2.13 \times 10^{-12}$

2. Calculating the pH of weak diprotic bases (L⁻)

- The weak base L⁻ ionizes by hydrolysis only a little and the even weaker base HL ionizes hardly at all.
- Therefore, treat L⁻ as a monoprotic base.
- For the reaction $L^- + H_2O \Rightarrow HL + OH^-$, we set up and solve the equation

$$\frac{[HL][OH^-]}{[L^-]} = \frac{x^2}{F - x} = K_{b1}$$

where $[OH^{-}] = [HL] = x$, and $[L^{-}] = F - x$.

What is the pH of an aqueous 0.050 M sodium leucinate solution? NaL → Na⁺ + L⁻

$$L^{-} + H_{2}O \Rightarrow HL + OH^{-}, K_{b1} = 5.55 \times 10^{-5} (K_{b1} \ge 100 K_{b2})$$

$$\frac{[OH^{-}][HL]}{[L^{-}]} = \frac{x^{2}}{F - x} = K_{b1}$$

$$\frac{x^2}{0.050 \text{ M}-x} = 5.55 \times 10^{-5}$$
 (solve using quadratic equation)

$$x = 1.6_4 \times 10^{-3} \text{ M} = [OH^-]$$

pOH = 2.78₆; pH = 14.00 – pOH; pH = 11.21

A molecule that can both donate and accept a proton is said to be **amphiprotic.**

$$HL + H_2O \rightleftharpoons H_2L^+ + OH^-$$

$$HL + H_2O \rightleftharpoons L^- + H_3O^+$$

Using the systematic treatment of equilibrium, an equation for calculating the [H⁺] of amphiprotics can be derived (see text).

$$[H^{+}] = \sqrt{\frac{K_{a1}K_{a2}F + K_{a1}K_{w}}{K_{a1} + F}}$$

$$pH \sim \frac{1}{2} (pK_{a1} + pK_{a2})$$

What is the pH of a 0.05 M leucine (HL) solution?

$$[\mathbf{H}^{+}] = \sqrt{\frac{(4.7 \times 10^{-3})(1.8 \times 10^{-10})(0.050) + (4.7 \times 10^{-3})(1.0 \times 10^{-14})}{4.7 \times 10^{-3} + 0.050}} = 8.7_{9} \times 10^{-7} \,\mathrm{M}$$

$$pH = -Log(8.79 \times 10^{-7} M) = 6.06$$

pH ~
$$\frac{1}{2}$$
 (p K_{a1} + p K_{a2}) ~ $\frac{1}{2}$ (2.328 + 9.744) ~ 6.04

22

Calculating pH

$H_2L^+ \text{ or } H_2A$ $H_2A + HA^- (H_2L^+ + HL)$	monoprotic acid		
and K _{a1} ≥100K _{a2}			
$L^{-}(K_{b1} \ge 100K_{b2})$	Monoprotic base hydrolysis		
HL or HA	$[H^{+}] = \sqrt{\frac{K_{a1}K_{a2}F + K_{a1}K_{w}}{K_{a1} + F}}$		
	pH ~ $\frac{1}{2}$ (p K_{a1} + p K_{a2})		
HA ⁻ + A ²⁻	The pH is calculated using K _{a2}		
K _{a1} ≥ 100K _{a2}			

Solutions of Polyprotic acids

$$H_2A \leftrightarrow H^+ + HA^- \qquad K_1 = \frac{[H^+][HA^-]}{[H_2A]}$$
 $HA^- \leftrightarrow H^+ + A^{2-} \qquad K_2 = \frac{[H^+][A^{2-}]}{[HA^-]}$

1. A solution containing H_2A , or H_2A+HA^-

If K_1 is a hundred times or so greater than K_2 , the second ionization constant will have very little effect and can be ignored. The pH of the solution is calculated from K_1 expression.

2. A solution containing HA-: Here both ionization affect the composition of the solution and must be considered.

$$pH = (pK_1 + pK_2) / 2$$

3. A solution containing $HA^- + A^{2-}$: If K_1 100 times or more greater than K_2 , there will be very little H_2A in the solution at equilibrium and the first ionization constant need not be used. The pH is calculated using K_2 .

1. Example: Calculate the pH of a 0.15M solution of malonic acid, $CH_2(COOH)_2$. The ionization constants for malonic acids are, $K_{a1} = 1.40 \times 10^{-3}$, and $K_{a2} = 2.2 \times 10^{-6}$.

$$K_{a1} = \frac{[H^+][HA^-]}{[H_2A]}$$

$$K_{a1} = \frac{[H^+]^2}{0.15 - [H^+]}$$

Solving this equation by the quadratic formula:

$$[H^+] = 1.38 \times 10^{-2} M$$

 $pH = 1.86$

2. Example: Calculate the pH of a solution of sodium hydrogen malonate. The ionization constants for malonic acid are $pK_{a1} = 2.85$, $pK_{a2} = 5.66$

$$pH = (2.85 + 5.66) / 2 = 4.26$$

3. Example: Calculate the pH of a solution having, at equilibrium a hydrogen malonate ion (HA⁻) concentration of 0.15M and a malonate ion A⁻² concentration of 0.05M.

$$K_{a2} = \frac{[H^+][A^{2-}]}{[HA^-]}$$
 2.2 X 10⁻⁶ = $\frac{[H^+](0.05)}{(0.15)}$

$$pH = 5.18$$

Calculate the pH of the following 0.10 M aqueous solutions:

$$H_2A^+$$

$$pK_a$$
's = 2.34 and 9.87

- (1) Estimate answer
- (2) Calculate it!

Calculate the pH of the following 0.10 M aqueous solutions:

Name	Form	Strategy	Calculated pH
Alanine chloride	H ₂ A +	Monoprotic acid	1.71
Alanine	HA	Amphiprotic	6.11
Sodium alanate	A -	Monoprotic base	11.44

Describe how you would calculate the pH of the following 0.10 M aqueous solutions:

- sodium monohydrogen phosphate: Na₂HPO₄
- glycine hydrochloride: H₂G+.Cl⁻
- citric acid:
- trisodium citrate:
- potassium hydrogen phthalate, (KHP):

29

Describe how you would calculate the pH of the following 0.10 M aqueous solutions:

Solution:

Chemical Formula	Acid or base form	Strategy
Na ₂ HPO ₄	HPO ₄ ²⁻	amphiprotic, K _{a2} , K _{a3}
H ₂ GCI or HG·HCI	H_2G^+	monoprotic acid, K _{a1}
$H_3C_6H_5O_7$	$H_3C_6H_5O_7$	monoprotic acid, K _{a1}
$Na_3C_6H_5O_7$	$C_6H_5O_7^{3-}$	monoprotic base, K _{b1}
KHC ₈ H ₄ O ₄	HC ₈ H ₄ O ₄ -	amphiprotic, K _{a1} , K _{a2}

- A buffer made from a diprotic (or polyprotic) acid is treated in the same way as a buffer made from a monoprotic acid.
- For the acid H₂A, we can write two Henderson-Hasselbalch equations, both of which are always true.
- If we know [H₂A] and [HA⁻], then use the pK₁ equation. If we know [HA⁻] and [A²⁻], use the pK₂ equation.

$$H_2A \rightleftharpoons HA^- + H^+ pK_1$$

 $HA^- \rightleftharpoons A^{2-} + H^+ pK_2$

$$pH = pK_1 \pm Log \frac{[HA^-]}{[H_2A]}$$
 $pH = pK_2 \pm Log \frac{[A^{2^-}]}{[HA^-]}$

Example: A Diprotic Buffer System

 Find the pH of a solution prepared by dissolving 1.00 g of potassium hydrogen phthalate and 1.20 g of disodium phthalate in 50.0 mL of water.

EXAMPLE A Diprotic Buffer System

Find the pH of a solution prepared by dissolving 1.00 g of potassium hydrogen phthalate and 1.20 g of disodium phthalate in 50.0 mL of water.

Solution Monohydrogen phthalate and phthalate were shown in the preceding example. The formula masses are KHP = $C_8H_5O_4K = 204.221$ and Na $_2P = C_8H_4O_4Na_2 = 210.094$. We know [HP⁻] and [P²⁻], so we use the p K_2 Henderson-Hasselbalch equation to find the pH:

$$pH = pK_2 + \log \frac{[P^{2-}]}{[HP^{-}]} = 5.408 + \log \frac{(1.20 \text{ g})/(210.094 \text{ g/mol})}{(1.00 \text{ g})/(204.221 \text{ g/mol})} = 5.47$$

 K_2 is the acid dissociation constant of HP $\bar{}$, which appears in the denominator of the log term. Notice that the volume of solution was not used to answer the question.

TEST YOURSELF Find the pH with 1.50 g Na₂P instead of 1.20 g. (*Answer:* 5.57)

10-3: Polyprotic Acids and Bases

Example: A diprotic System

EXAMPLE Preparing a Buffer in a Diprotic System

How many milliliters of 0.800 M KOH should be added to 3.38 g of oxalic acid to give a pH of 4.40 when diluted to 500 mL?

OO
|| ||
HOCCOH
$$pK_1 = 1.250$$

Oxalic acid $pK_2 = 4.266$
(H₂Ox)
Formula mass = 90.035

Solution The desired pH is above p K_2 . We know that a 1:1 mole ratio of HOx $\overline{}$: Ox^2 would have pH = pK_2 = 4.266. If the pH is to be 4.40, there must be more Ox $\overline{}$ than HOx $\overline{}$ present. We must add enough base to convert all H $\overline{}$ 2Ox into HOx $\overline{}$, plus enough additional base to convert the right amount of HOx $\overline{}$ into Ox².

$$H_2Ox + OH^- \rightarrow HOx^- + H_2O$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad$$

10-3: Polyprotic Acids and Bases

Example: A diprotic System

In 3.38 g of H $_2$ Ox, there are 0.037 5 $_4$ mol. The volume of 0.800 M KOH needed to react with this much H $_2$ Ox to make HOx $^-$ is (0.037 5 $_4$ mol)/(0.800 M) = 46.9 $_3$ mL.

To produce a pH of 4.40 requires an additional x mol of OH :

	HOx-	+ OH -	\rightarrow Ox	2-
Initial moles	0.037 54	Х		_
Final moles	$0.037\ 5_4 - x$			х

$$pH = pK_2 + \log \frac{[Ox^{2-}]}{[HOx^{-}]}$$

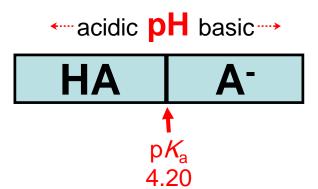
$$4.40 = 4.266 + \log \frac{x}{0.037 \, 5_4 - x} \Rightarrow x = 0.021 \, 6_6 \, \text{mol}$$

The volume of KOH needed to deliver 0.021 6_6 mole is $(0.021 6_4 \text{ mol})/(0.800 \text{ M}) = 27.0_5 \text{ mL}$. The total volume of KOH needed to bring the pH to 4.40 is $46.9_3 + 27.0_5 = 73.9_8 \text{ mL}$.

TEST YOURSELF What volume of KOH would bring the pH to 4.50? (Answer: 76.56 mL)

10-4: Which Is the Principal Species?

What is the principal form of benzoic acid (p K_a 4.20) at pH 8?


From the Henderson-Hasselbalch equation:

$$pH = pK_a \pm Log \frac{[A^-]}{[HA]}$$
 $pH = 4.20 \pm Log \frac{[A^-]}{[HA]}$

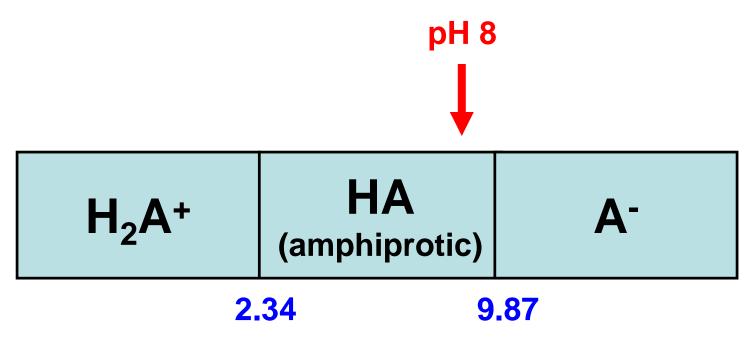
$$pH = 4.20 \pm Log \frac{[A^-]}{[HA]}$$

$$pH = 4.20$$
, $[HA] = [A^-]$
 $pH < 4.20$, $[HA] > [A^-]$

$$pH > 4.20$$
, $[HA] < [A^-]$

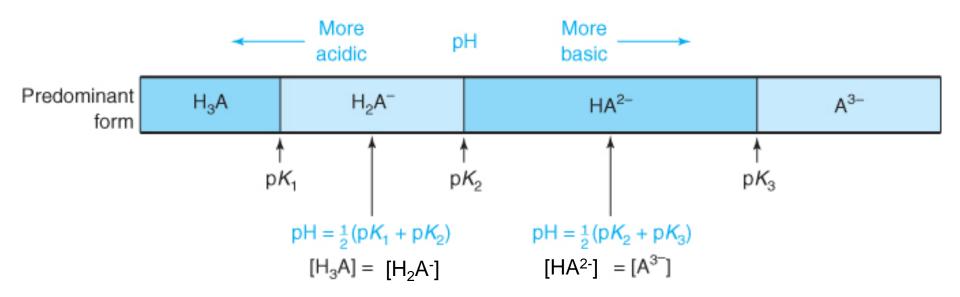
At pH 8.0, base form A⁻ predominates.

10-4: Which Is the Principal Species?


EXAMPLE Principal Species—Which One and How Much?

What is the predominant form of ammonia in a solution at pH 7.0? Approximately what fraction is in this form?

Solution In Appendix G, we find $pK_a = 9.24$ for the ammonium ion (NH_4^+) , the conjugate acid of ammonia, NH_3). At pH = 9.24, $[NH_4^+] = [NH_3]$. Below pH 9.24, NH_4^+ will be the predominant form. Because pH = 7.0 is about 2 pH units below pK_a , the quotient $[NH_4^+]/[NH_3]$ will be about 100:1. More than 99% is in the form NH_4^+ .


TEST YOURSELF Approximately what fraction of ammonia is in the form NH $_3$ at pH 11? (Answer: somewhat less than 99% because pH is almost 2 units above p K_a)

What is the principal form of alanine (p K_a 2.34 and 9.87) at pH 8?

The principal form of alanine pH 8 is the amphiprotic form, HA.

10-4: Which Is the Principal Species?

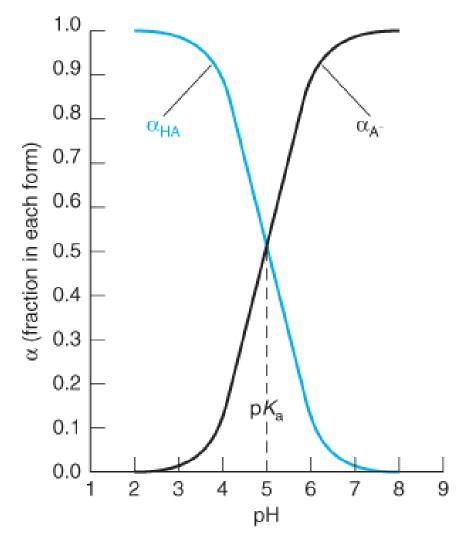
We can derive equations that give the fraction of each species of acid or base at a given pH.

Monoprotic Systems:

$$\alpha_{HA} = \frac{[HA]}{[F]} = \frac{[H^+]}{[H^+] + K_a}$$

$$\alpha_{A-} = \frac{[A^-]}{[F]} = \frac{K_a}{[H^+] + K_a}$$

Example:

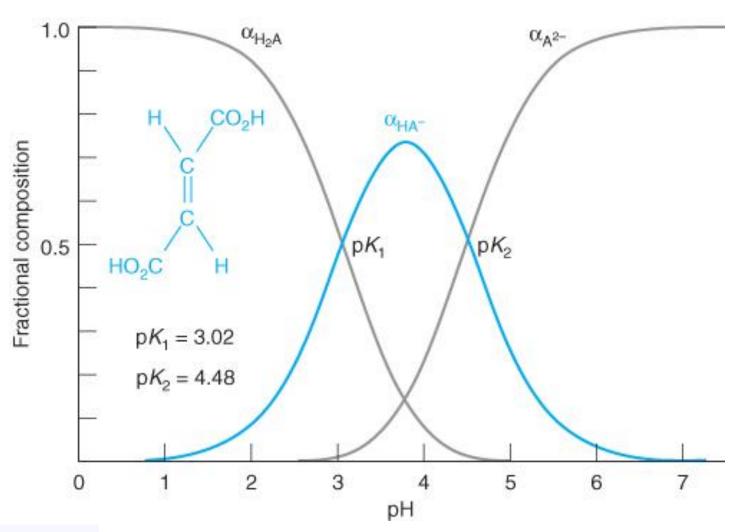

What fraction of benzoic acid exists as benzoate at pH 8.0?

$$\alpha_{A-} = \frac{K_a}{[H^+] + K_a} = \frac{10^{-4.20}}{10^{-8.0} + 10^{-4.20}} = 0.9_{998}$$

At pH 8.0, almost all of the benzoic acid exists in the basic form!

Uploaded By: Mariam Qadah

Fractional composition diagram of a monoprotic system with pK_a = 5.00.
 Below pH 5, HA is the dominant form, whereas, above pH 5, A- dominates



Diprotic Systems:

$$\alpha_{H_2A} = \frac{[H_2A]}{[F]} = \frac{[H^+]^2}{[H^+]^2 + [H^+]K_1 + K_1K_2}$$

$$\alpha_{HA-} = \frac{[HA^{-}]}{[F]} = \frac{K_{1}[H^{+}]}{[H^{+}]^{2} + [H^{+}]K_{1} + K_{1}K_{2}}$$

$$\alpha_{A2-} = \frac{A^{2-}}{F} = \frac{K_1 K_2}{[H^+]^2 + [H^+] K_1 + K_1 K_2}$$

42

10-6: Isoelectric and Isoionic pH

10-6: Isoelectric and Isoionic pH

- The isoionic point (or isoionic pH):
 - pH obtained when the pure, neutral polyprotic acid HA (the neutral zwitterion) is dissolved in water.
 - The only ions are H₂A⁺, A⁻, H⁺, and OH⁻.
 - Most alanine is in the form HA, and the concentrations of H₂A⁺ and
 A⁻ are *not* equal to each other.
 - For neutral alanine, HA, dissolved in water, the pH would be somewhere between 2.234 and 9.87. The [A⁻] would be slightly larger than the [H₂A⁺]. This is the **isoionic pH**.

$$[H^{+}] = \sqrt{\frac{K_{a1}K_{a2}F + K_{a1}K_{w}}{K_{a1} + F}}$$

10-6: Isoelectric and Isoionic pH

- The isoelectric point (or isoelectric pH):
 - pH at which the average charge of the polyprotic acid is 0.
 - Most of the molecules are in the uncharged form HA, and the concentrations of H₂A⁺ and A⁻ are equal to each other.

$$[H_2A^+] = [A^-]$$

- If a pure sample of neutral alanine (pK₁ 2.34, pK₂ 9.87) is dissolved in water, the [A⁻] would be slightly larger than the [H₂A⁺].
- By adding a small amount of acid, some A⁻ would be converted to H₂A⁺ until the concentrations are equal. This is the isoelectric pH. $pH = \frac{1}{2} \left(pK_{a1} + pK_{a2} \right)$
- Can be used to separate proteins from one another.

10-3: Polyprotic Acids and Bases

Example: A triprotic System, page 221 (9th Edition)

- Find the pH of 0.10 M H₃His²⁺, 0.10 M H₂His⁺, 0.10 M HHis, and 0.10 M His⁺, where His stands for the amino acid histidine.
- 1. H_3A is treated as monoprotic acid, with $ka = k_1$.
- 2. H₂A⁻ is tretaed as the intermediate form of a diprotic acid:

$$[H^{+}] = \sqrt{\frac{K_{a1}K_{a2}F + K_{a1}K_{w}}{K_{a1} + F}}$$

$$pH \approx \frac{1}{2} (pK_{a1} + pK_{a2})$$

10-3: Polyprotic Acids and Bases

3. HA^{2-} is treated as the intermediate form of a diprotic acid. However, HA^{2-} is "surrounded" by H_2A^- and A^{3-} , so the equilibrium constants to use are K_2 and K_3 , instead of K_1 and K_2 :

$$[H+] = [(K_2K_3F + K_2K_w)/(K_1 + F)]^{1/2}$$

$$pH \approx \frac{1}{2} (pK_{a2} + pK_{a3})$$

4. A^{3-} is treated as monobasic, with $K_b = K_{b1} = K_w/K_{a3}$