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Artificial Intelligence Areas
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Computer Vision and AI
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Machine Learning Basics

 Machine learning is a field of 
computer science that gives 
computers the ability to learn without 
being explicitly programmed

 It is a branch of artificial intelligence, 
concerned with the design and 
development of algorithms that allow 
computers to evolve behaviors based 
on empirical data.

 Most machine learning methods work 
well because of human-designed 
representations and input features 
ML becomes just optimizing weights 
to best make a final prediction
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Types of Learning

 Supervised: Learning with a labeled training set 

 Example: email classification with already labeled emails
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Types of Learning

 Unsupervised: Discover patterns in unlabeled data 

 Example: cluster similar documents based on text
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Types of Learning

 Reinforcement learning: learn to act based on 
feedback/reward 

 Example: learn to play Go, reward: win or lose 
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Machine Learning Cycle 

Predicted 

Gesture 

Gesture Prediction – An Example 
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Classical ML Approach

 Traditional pattern recognition models use hand-crafted features and 
relatively simple trainable classifier.

 This approach has the following limitations: 
 It is very tedious and costly to develop hand-crafted features

 The hand-crafted features are usually highly dependents on one application, and 
cannot be transferred easily to other applications

 How to know what features/representation is best?

 Difficult to know!

 Why not learn the representation as well in addition to the mapping from 
representation to output

 Learned representations many times result in much better performance

hand-crafted 

feature 

extractor 

“Simple” 

Trainable 

Classifier 

output

Uploaded By: anonymousSTUDENTS-HUB.com



Deep Learning Approach

 Deep Learning is “a subset of Machine Learning that achieves 

great power and flexibility by learning to represent the world 

as nested hierarchy of concepts, with each concept defined in 

relation to simpler concepts, and more abstract 

representations computed in terms of less abstract ones”.

 Practically, Deep Learning’ means using a neural network with 

several layers of nodes between input and output. 

 The series of layers between input & output do feature 

identification and processing in a series of stages,  just as our 

brains seem to.
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Deep Learning Approach 

 Deep learning (a.k.a. representation learning) seeks to learn rich 
hierarchical representations (i.e. features) automatically through 
multiple stage of feature learning process. 

Low-level 

features
output

Mid-level 

features

High-level 

features

Trainable 

classifier
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Learning Hierarchical Representations
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Learning Hierarchical Representations

 Hierarchy of representations with increasing level of abstraction. 
Each stage is a kind of trainable nonlinear feature transform 

 Image

 Pixel → edge → texton → motif → part → object 

 Text 

 Character → word → word group → clause → sentence → story 

Low-level 

features
output

Mid-level 

features

High-level 

features

Trainable 

classifier

Increasing level of abstraction
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So, Why is DL Useful? 

 Handling Complex Data: DL excels at processing and understanding 

complex, high-dimensional data such as images, audio, text, and video. 

 Automated Feature Learning: DL models are capable of automatically 

learning hierarchical features from data.

 Manually designed features are often over-specified, incomplete and take a long 

time to design and validate

 Learned Features are easy to adapt, fast to learn

 Deep learning provides a very flexible, (almost?) universal, learnable 

framework for representing world, visual and linguistic information.

 Adaptability: DL models can be adapted for various tasks through 

transfer learning. 

 Can learn both unsupervised and supervised

 Effective end-to-end joint system learning
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DL Vs. Classical ML in Term of Performance
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What made this possible?

 Big Data

 Larger data sets

 Easier collection and storage

 Hardware Computing Power

 Graphics Processing Units (GPUs), Google TPU, Intel Nervana, Movidius HW 
accelerators

 Open source software

 Improved techniques, new models, Toolboxes

 Five decades of research in machine learning 

 Resources and efforts from large corporations

 Better media coverage and success cases
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When to use Deep Learning or not over others?

 Deep Learning out perform other techniques if the data size is 

large. But with small data size, traditional Machine 

Learning algorithms are preferable.

 Deep Learning techniques need to have high end infrastructure to 

train in reasonable time.

 When there is lack of domain understanding for feature 

introspection, Deep Learning techniques outshines others as you 

have to worry less about feature engineering.

 Deep Learning really shines when it comes to complex problems 

such as image classification, natural language processing, and 

speech recognition.
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ML History

 1805–Least squares (Adrien-Marie Legendre)

 1812–Bayes Theorem (named after Thomas Bayes)

 1913–Markov Chains (Andrey Markov)

 Probabilistic models–one of the earliest forms of machine learning, and it’s 
still widely used to this day, e.g., Naïve Bayes, HMMs.

 Early neural networks were proposed in 1950s but lacked efficient training 
methods.

 KNN was conceived in 1967—the beginning of basic pattern recognition.

 Rabiner’s (AT&T Bell Labs) work on HMMs in 1980s made them the model of 
choice for sequential data.

 Backpropagation algorithm for network training discovered in 1980s

 The first successful practical application of neural nets came in 1989 from Bell 
Labs (Yann LeCun), LeNet for US postal services.
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ML History

 SVM was developed by Vladimir Vapnik and Corinna Cortes in the early 
1990s at Bell Labs and published in 1995.

 Decisions trees began to receive significant research interest in the 
2000s, and by 2010 they were often preferred to kernel methods.

 Kaggle competitions started in 2010. Gradient boosting and Random 
forest (Tin Kam Ho in 1995) were the top two models most of the time. 

 Neural network winner–until 2012.

 The Canadian Institute for Advanced Research (CIFAR) and Neural 
Computation and Adaptive Perception (NCAP) research initiative:

 The groups of Geoffrey Hinton (University of Toronto), 

 Yoshua Bengio (University of Montreal), 

 Yann LeCun (New York University and IDSIA in Switzerland) were still active in the area.

 Others
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ML History
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ML History

 ImageNet competitions:

 2011, accuracy around 74-75%

 2012, system from Alex Krizhevsky (supervised by Geoffrey
Hinton) reached an accuracy of 83.6% (AlexNet)

 2015 onwards ImageNet considered a ‘solved’ problem.

 Kaggle is currently dominated by two approaches: Boosting 
machines (for structured data) and deep learning (for 
perceptual problems)
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The 2012 Revolution
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The 2012 Revolution
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Performance of CNN Networks
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2012 to Present: Deep Learning is Everywhere
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2012 to Present: Deep Learning is Everywhere
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2012 to Present: Deep Learning is Everywhere
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2012 to Present: Deep Learning is Everywhere
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2012 to Present: Deep Learning is Everywhere
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2012 to Present: Deep Learning is Everywhere

 Deep Art: Combining 
Content and Style from 
Different Images

 Coarse-scale Content 
from one image, Fine-
scale Style from another 
image

 Dynamic Capacity 
Networks (DCNs) learn 
sophisticated multi-scale 
representations
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2012 to Present: Deep Learning is Everywhere

Generative Adversarial Nets (GANs) for Natural Image Translation
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2012 to Present: Deep Learning is Everywhere

Deep learning crucial for the global success of automotive autonomy –
Automotive World, 6/26/2018 Uploaded By: anonymousSTUDENTS-HUB.com

https://www.automotiveworld.com/analysis/deep-learning-crucial-global-success-automotive-autonomy/
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