Sorting Algorithms
Definitions

* Sorting is a process that organizes a collection of data into either ascending or
descending order.

* Internal Sort — all of the data are held in primary storage during the sorting process
(requires that the collection of data fit entirely in the computer’s main memory).

* External sort — uses primary storage for the data currently being sorted and secondary
storage for any data that will not fit in primary memory (We can use this sort when the
collection of data cannot fit in the computer’s main memory all at once but must reside
in secondary storage such as on a disk).

e An in-place algorithm is an algorithm that does not need an extra space and produces
an output in the same memory that contains the data by transforming the input ‘in-
place’. However, a small constant extra space used for variables is allowed.

e A sorting algorithm is said to be stable if two objects with equal keys appear in the same
order in sorted output as they appear in the input data set

/;()\ e : 207) 30
\ 4 -

Sorting is stable because
the order of balls is maintained
when values are same. The ball
with blue color and value 10
appears before the purple color
ball with value 10
Similarly order is maintained for 20

’/1 0\/ 20 30
@

Example of stable sort

Abdallah Karakra
Data Structures and Algorithms, Comp 242

STUDENTS-HUB.com Uploaded By: Ayham Nobani

Mergesort

* Mergesort algorithm is one of two important divide-and-conquer sorting algorithms (the
other one is quicksort).

* ltisarecursive algorithm.
— Divides the list into halves,
— Sort each halve separately, and

— Then merge the sorted halves into one sorted array.

theArray: | 8 | 1 | 4 | 3 | 2 | Divide the array in half

1 4 8 2 3 Sort the halves

Merge the halves:
a. 1 <2, so move 1 from left half to tempAarray
b. 4 > 2, so move 2 from right half to tempaAarray
c. 4 > 3, so move 3 from right half to tempArray
d. Right half is finished, so move rest of left
half to tempArray

Temporary array
tempArray:

Copy temporary array back into
original array

theArray: 1 2 3 4 8

Abdallah Karakra
Data Structures and Algorithms, Comp 242

STUDENTS-HUB.com Uploaded By: Ayham Nobani

Examples:

Example (1)

 le3oxs47d

6391
i ffiéilLﬂ
3 91 /5 _\il\ 7/2
lél’d& l/ﬂtﬂ"'l'%] LA'.-I'-Ir 1- E&P}E\

6 3 9 1

Sems e Sems e

Abdallah Karakra
Data Structures and Algorithms, Comp 242

STUDENTS-HUB.com Uploaded By: Ayham Nobani

Example (2)

3816127139 121 27 7
38116 | 27 391121 27
> Recursive calls to mergesort
38116 27 39| 12 27
/ 7
// //
38 || 16 / 39 || 12 J/
\\ P /, \\ P /, _<
16 | 38 / 12 | 39 ,/
/ - /
S~~~/ T~/

12 |16 | 27 | 27 | 38 | 39

Analysis of Merge-Sort
The height h of the merge-sort tree is O(log n)
B at each recursive call we divide in half the sequence,
The overall amount or work done at the nodes of depth i is O(n)
B we partition and merge 2/ sequences of size n/2’
B we make 2™ recursive calls

@ Thus, the total running time of merge-sort is O(n log n)

Abdallah Karakra
Data Structures and Algorithms, Comp 242

STUDENTS-HUB.com Uploaded By: Ayham Nobani

Coding:

public class MergeSort {

public static void sort (Comparable [] data, int low, int high) {
int mid = (lOW + hlgh)/2,' constant
if (low < high) {
System.out.println (low+" "+mid+" "+high);

sort(data, low, mid) ;//T(n/2)
sort(data, mid+1, high);
merge (data, low, mid,high)q/Tm)

}

public static void merge (Comparable [] data,int low,int mid,int high) {

int n = high - low+l;
Comparable[] temp = new Comparable[n];
int 1 = low, j = mid+1l, k=0;
while ((i <= mid) && (j <= high)) {
(

if (data[j].compareTo (datal[i]) <= 0)
temp [k++] = datal[j++];

else
temp[k++] = datal[i++];

}
if (i <= mid)
for (; i<= mid;)
temp [k++] = datal[i++];
else
for (; j<= high;)
temp [k++] = datal[j++];
for (k = 0; k < n; k++)
datal[low + k] = templk];

Téﬁj ~ Z T(n/2) + cn 2:1 0 (néaﬁ,,

Abdallah Karakra
Data Structures and Algorithms, Comp 242

STUDENTS-HUB.com Uploaded By: Ayham Nobani

