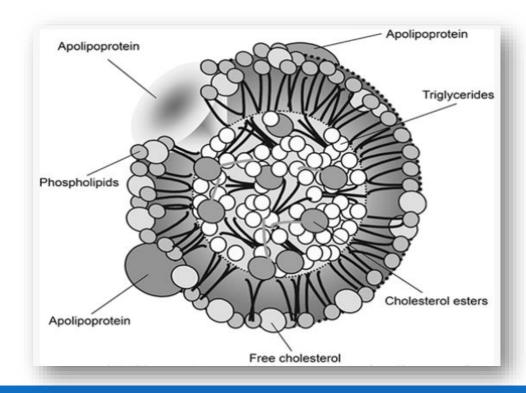
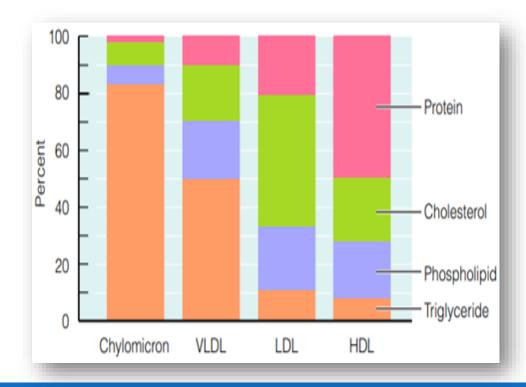
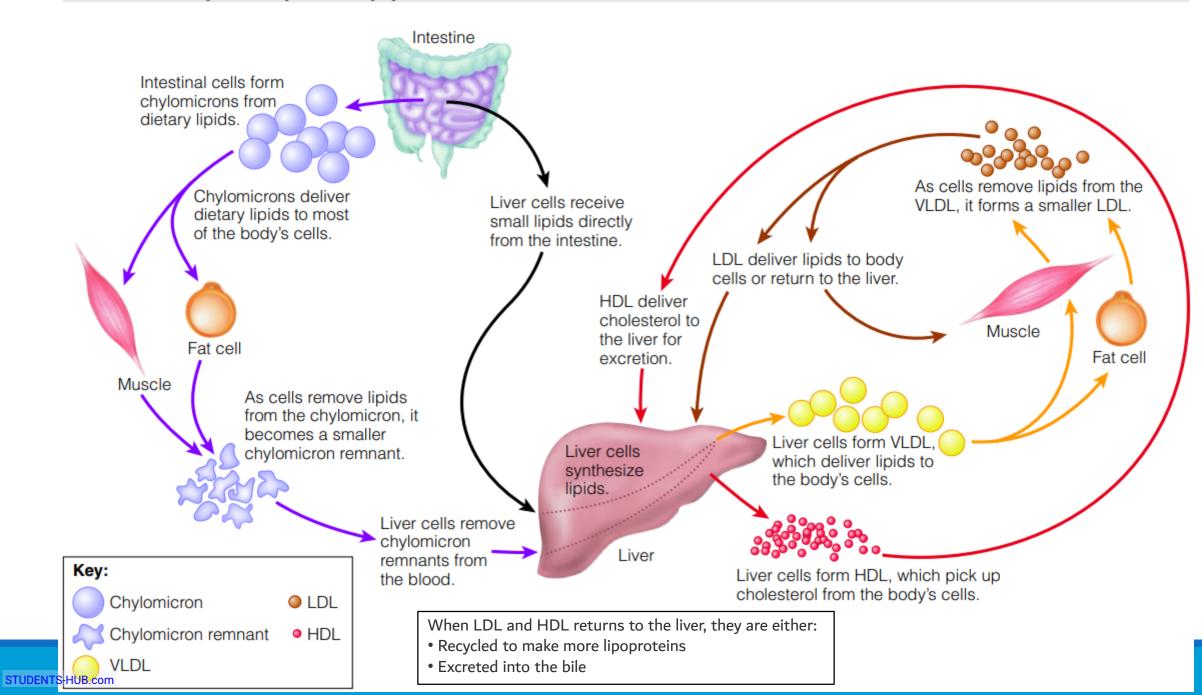
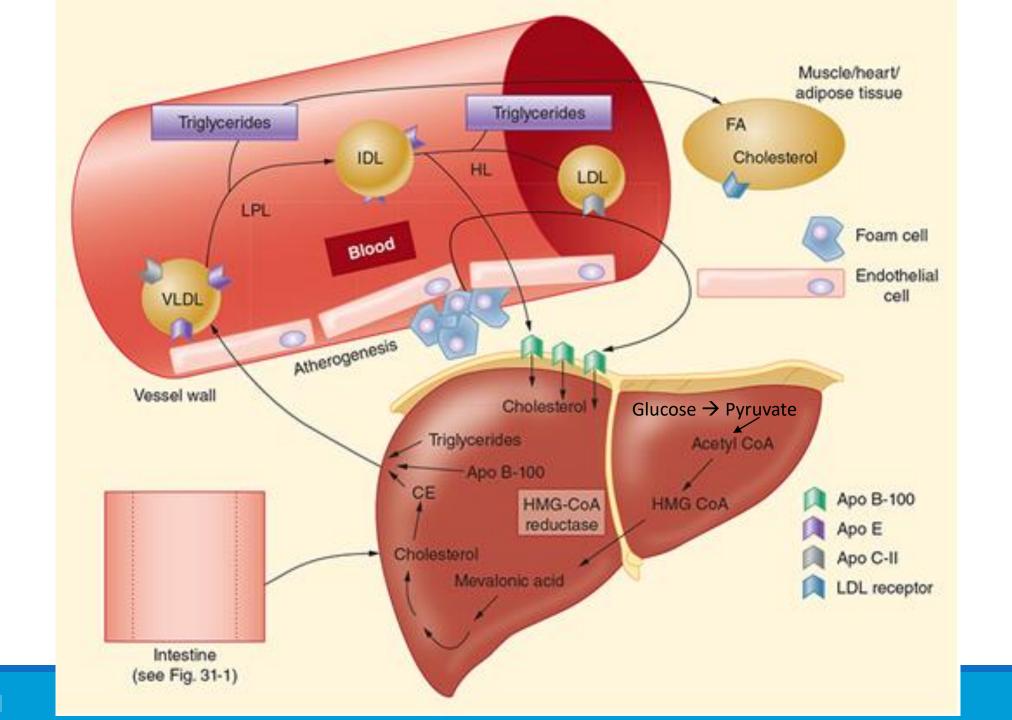


Dyslipidemia

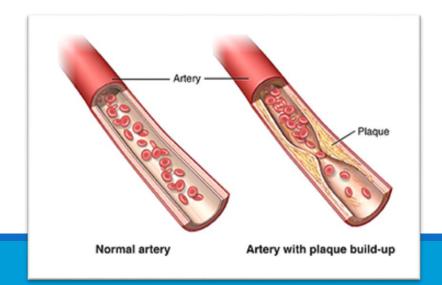

04/03/2025

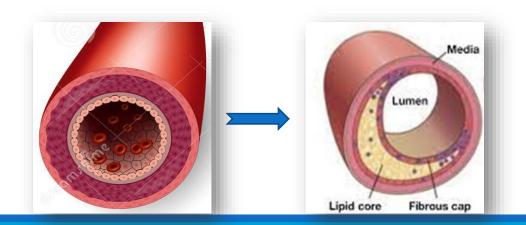

BADER REMAWI

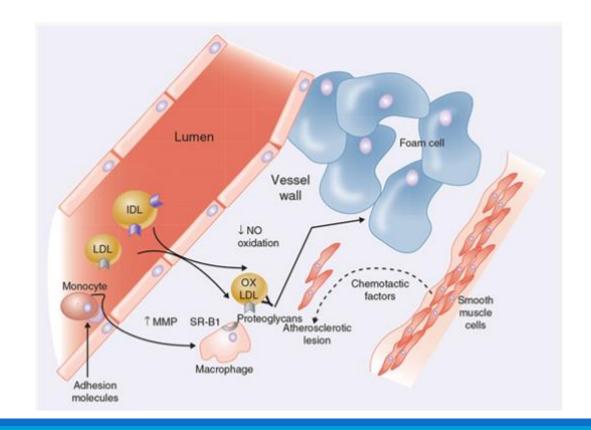



Serum lipoproteins

- Lipids are insoluble in plasma
 - Lipids combine with Proteins for transport → Lipoprotein complexes




Atherosclerotic cardiovascular disease


- Lipid abnormalities (genetic/environmental factors) → Risk of ASCVD → Risk of death
 - ASCVD = Coronary, Cerebrovascular, & Peripheral vascular arterial disease
- Framingham Heart Study:
 - Risk of developing CV disease is related to the degree of LDL-C elevation (atherogenic)
- For every 38 mg/dL reduction in LDL-C, ASCVD events reduce by 21%

Pathophysiology

- Plasma LDL-C migrates into the subendothelium; there it gets oxidized and glycated
- Oxidized LDL-C:
 - Recruits circulating monocytes
 - Enhances platelet aggregation and coagulation
 - Stimulates vasoconstriction
 - Provokes inflammatory response

Collect

- Patient characteristics (eg, age, race, gender, pregnant)
- Patients history: Past medical (eg, HTN), family (eg, early-onset coronary heart disease), social
- Current medications (including over-the-counter [OTC]) and prior lipid-lowering medication use
- Socioeconomic factors that may affect access to treatment or other aspects of care
- Lifestyle assessment: smoking status, exercise, diet, and alcohol intake
- Symptoms indicative of ischemic injury (eg, chest pain)
- Objective data
 - Height, weight, BMI, and blood pressure
 - Lipoprotein concentrations (eg, total cholesterol/LDL-C/HDL-C/triglycerides)
 - Laboratory findings (eg, AST/ALT, urinalysis, TSH, glucose, serum creatinine, and BUN at baseline)

Assess

- Potential secondary causes (eg, diabetes mellitus, alcohol abuse, kidney dysfunction, liver disease, drug-induced, thyroid disorder)
- Special needs of specific patient populations such as children/adolescents, pregnant or menopausal women, older adults, ethnic/racial groups, or high-risk conditions/residual risks (eg, patients with rheumatoid arthritis or residual risk despite statin and lifestyle therapy)
- Presence of high-risk comorbid conditions: diabetes mellitus, peripheral arterial disease, coronary artery disease, chronic kidney disease, carotid artery stenosis, and abdominal aortic aneurysm
- Dyslipidemia-related complications (eg, heart disease, stroke)
- Ten-year ASCVD-risk assessment (only if primary prevention)
- Current medications that may contribute to dyslipidemia
- LDL-C reduction based on statin benefit group (see Table 32-5, Fig. 32-6, and Fig. 32-7)
- Appropriateness and effectiveness of current lipid-lowering therapy (if any)

Plan

- Tailored therapeutic lifestyle changes (eg, diet and nutrition)
- Drug therapy regimen including specific lipid-lowering medication, dose, route, frequency, and duration; specify the continuation and discontinuation of existing therapies (see Table 32-5, Fig. 32-6, and Fig. 32-7). Monitoring parameters including efficacy (eg, lipid panel, cardiovascular events), safety (medication-specific adverse effects), and time frame (3-month initial follow-up intervals, followed by 6 to 12 month intervals once at goal)
- Patient education (eg, purpose of treatment, dietary and lifestyle modification, drug therapy). Selfmonitoring of weight, exercise, diet, drug adherence/adverse effects
- Referrals to other providers when appropriate for coordination of care (eg, physician, dietician)

Implement

- Provide patient education regarding all elements of the treatment plan, including self-management training
- Use motivational interviewing and coaching strategies to maximize adherence
- Schedule follow-up; consider the time frame to achieve goals of therapy

Follow-up: Monitor and Evaluate

- The occurrence of cardiovascular (CV) events
- · Determine patient adherence to treatment plan using multiple sources of information
- Determine response to lipid-lowering therapy and weight-loss goals
- Presence of medication-induced adverse effects (eg, elevated transaminases or myalgia on statins)

*Collaborate with patient, caregivers, and other healthcare professionals.

Desired outcomes of treatment

 Abnormalities in Cholesterol and TGs may increase the risk for ASCVD events (surrogate markers)

Treatment goal:

- Not merely to correct lab abnormalities
- But also to prevent the development/progression of ASCVD

• <u>Desired outcome of treatment</u>:

- To prevent ASCVD-related morbidity and mortality (MI, ischemic stroke, revascularization procedures ...)
- Effective lipid-lowering therapies have good evidence in reducing ASCVD risk

TABLE 32-2

Classification of Total-, LDL-, HDL-Cholesterol, and Triglycerides in Adults

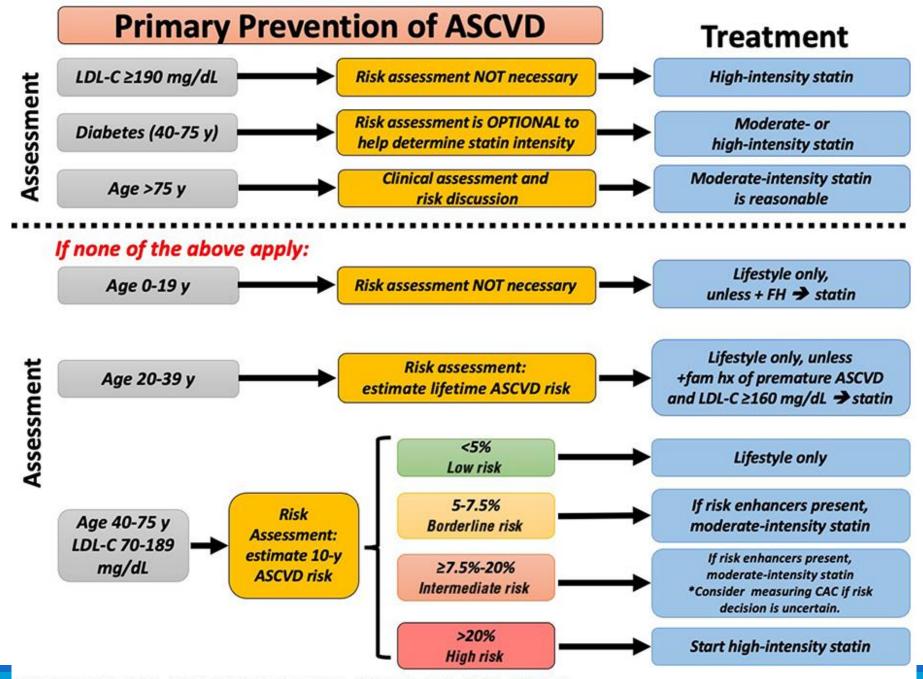
Total Cholesterol	
<200 mg/dL (5.17 mmol/L)	Desirable
200-239 mg/dL (5.17-6.20 mmol/L)	Borderline high
≥240 mg/dL (6.21 mmol/L)	High
Low-Density Lipoprotein Cholesterol	
<100 mg/dL (2.59 mmol/L)	Optimal
100-129 mg/dL (2.59-3.35 mmol/L)	Near or above optimal
130-159 mg/dL (3.36-4.13 mmol/L)	Borderline high
160-189 mg/dL (4.14-4.90 mmol/L)	High
≥190 mg/dL (4.91 mmol/L)	Very high
High-Density Lipoprotein Cholesterol	
<40 mg/dL (1.03 mmol/L)	Low (Men)
<50 mg/dL (1.29 mmol/L)	Low (Women)
Triglycerides	
<150 mg/dL (1.70 mmol/L)	Normal
150-199 mg/dL (1.70-2.25 mmol/L)	Borderline high
200-499 mg/dL (2.26-5.64 mmol/L)	High
≥500 mg/dL (5.65 mmol/L)	Very high

General approach to treatment

- Comprehensive approach to treating dyslipidemia, ASCVD risk factors, & comorbid conditions (HTN, DM...)
- Therapeutic lifestyle changes:
 - Decreased intake of saturated and trans fats
 - Increased intake of soluble fiber
 - Weight reduction if overweight or obese
 - Increased physical activity
 - Avoiding or quitting tobacco use
- <u>Lipid-lowering therapy</u>:
 - Choice of agent depends on:
 - Which lipid is at undesirable level
 - Which agent decreases ASCVD risk more
 - Statins are typically the 'drug of choice' in dyslipidemia
 - Good evidence on reducing first and recurrent CV events/mortality
 - Pleiotropic effects (independent of LDL lowering): improve endothelial fxn, increase NO, antioxidant, anti-inflammatory, plaque stability
 - Benefit often outweighs risk

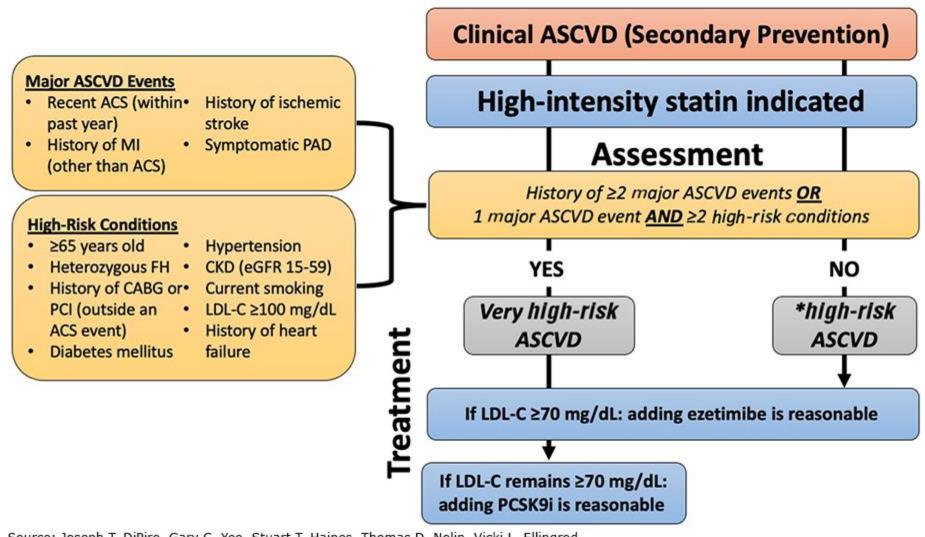
Primary prevention of ASCVD

- **Primary prevention**: for patients *without* established clinical ASCVD
- Insufficient therapeutic lifestyle changes \rightarrow May initiate lipid-lowering agents
- To initiate or Not to initiate lipid-lowering agents?
 - Not merely plasma levels of atherogenic lipoproteins
 - But also individual's ASCVD risk
- How to assess individual's ASCVD risk?
 - Consider risk factors (age, HTN...)
 - Online calculators (e.g. ASCVD Risk Estimator Plus)
 - 10-year vs lifetime ASCVD risk
 - High ASCVD risk? → Lipid-lowering therapy
 - On the other hand, consider risks of lipid-lowering therapy and patient preference


App should be used for primary prevention patients (those without ASCVD) only.

ASCVD Risk Estimator Plus

Current Age 🛭 *	Sex *			Race *			
	1	Male	Female	White	Afri	can American	Other
Age must be between 20-79							
Systolic Blood Pressure (mm Hg) *		Diastolic Bl	ood Pressure (mm Hg) *				
Value must be between 90-200		Value must be be	etween 60-130				
Total Cholesterol (mg/dL) *		HDL Cholesterol (mg/dL) * LDL Cholesterol (mg/dL) •					
Value must be between 130 - 320		Value must be between 20 - 100 Value must be between 30-300					
History of Diabetes? *		Smoker? ①	*				
Yes	No		Current 1	Form	er 🛈	Never	•
On Hypertension Treatment? *		On a Statin? 🛭 🔾		On Aspirin Therapy? 🛭 ^O			
Yes	No		Yes	No	Yes	s	No


Do you want to refine current risk estimation using data from a previous visit? •

Source: Joseph T. DiPiro, Gary C. Yee, Stuart T. Haines, Thomas D. Nolin, Vicki L. Ellingrod, L. Michael Posey: *DiPiro's Pharmacotherapy: A Pathophysiologic Approach, 12e* Copyright © McGraw Hill. All rights reserved.

Secondary prevention of ASCVD

- Secondary prevention: for patients with established clinical ASCVD
- Not all lipid-lowering agents that reduce LDL-C have resulted in reduced ASCVD events!
- Statins are the drugs of choice:
 - High-intensity statin is automatically indicated
 - Moderate-intensity statin only in adults > 75 yrs if reasonable or those not tolerating high-intensity statin
- Non-statin lipid-lowering therapies:
 - Supportive role in dyslipidemia management
 - Used in combination with statins when adequate LDL-C lowering cannot be achieved with statins alone
 - Used in patients unable to tolerate the recommended statin dose

Source: Joseph T. DiPiro, Gary C. Yee, Stuart T. Haines, Thomas D. Nolin, Vicki L. Ellingrod, L. Michael Posey: *DiPiro's Pharmacotherapy: A Pathophysiologic Approach, 12e*Copyright © McGraw Hill. All rights reserved.

Non-pharmacologic therapy

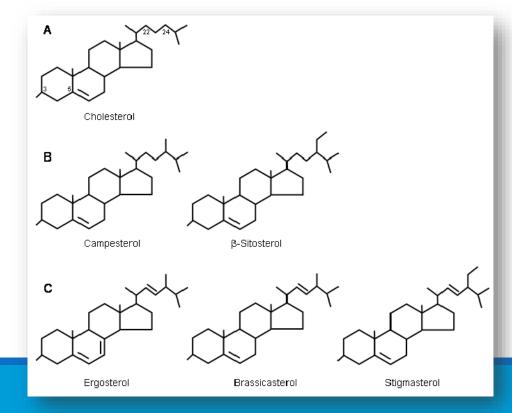
- Therapeutic lifestyle changes:
 - First-line therapy for any lipoprotein disorder
 - Cornerstone of ASCVD-risk reduction
 - Recommended in all patients, including those receiving lipid-lowering therapy
- No single diet is suitable for all patients!
 - Adapt to patient's caloric requirements, cultural food preferences, medical conditions (e.g. DM)
- Patients without ASCVD, DM, or high-risk features:
 - 12-week trial of lifestyle modification is recommended before considering lipid-lowering therapy
- Patients with established ASCVD or DM:
 - Lifestyle modification alone is inappropriate given the benefit of statins in these patients

Non-pharmacologic therapy

Recommendations to Modify Select Lipid Parameters		
Lower LDL cholesterol	Increase soluble fiber intake Phytosterol (2 g/day) supplementation	
Increase HDL cholesterol	 Increase physical activity Smoking cessation 	
Lower triglycerides	 Lose weight (5%-10% body weight loss) Increase physical activity Abstain from alcohol Reduce intake of refined carbohydrates and sugars 	

Non-pharmacologic therapy

Recommendations to Reduce ASCVD Risk		
Nutrition and diet	 Avoid eating trans fats Increase intake of vegetables, fruits, legumes, nuts, whole grains, and fish Replace foods containing saturated fats with unsaturated (monounsaturated and polyunsaturated) fats Minimize intake of processed meat products, refined carbohydrate foods, and sweetened beverages Reduce intake of cholesterol and sodium-containing foods For patients who are overweight or obese, reduce daily calories to achieve and maintain weight loss of 5%-10% 	
Physical activity	 Obtain at least 150 min/week of moderate-intensity or 75 minutes of vigorous-intensity physical activity Decrease sedentary behaviors 	
Other lifestyle factors	Smoking cessation and avoiding tobacco products Avoid secondhand smoke exposure	


Dietary supplements

• Fibers:

- Bind cholesterol and bile acids in small intestines
- Laxative effect (relieve constipation associated with bile acid sequestrants)
- Recommended total daily fiber intake ~ 25 g/day
- Consume with enough water to avoid GI distress

Phytosterols:

- Naturally found in plants
- Interferes with intestinal cholesterol absorption
- Ingestion of 2 g/day reduces LDL-C by 5% 15%
- Doses > 3 g/day confer no additional LDL-C lowering
- Unknown long-term effects on ASCVD risk
- Generally recognized as safe, may cause GI distress

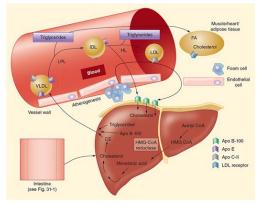
Dietary supplements

• Oily fish:

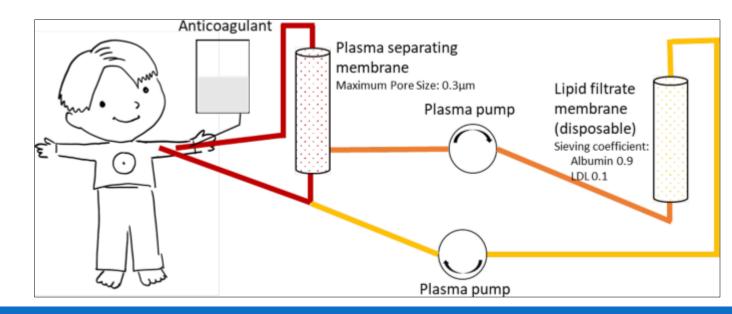
- Oily fish (e.g. salmon) is associated with reduced ASCVD risk
- AHA recommends eating oily fish at least twice a week
- Concerns about environmental contaminants (e.g. in tuna)

• Fish oil supplementation:

- Alternative to oily fish
- Provides consistent daily intake of omega-3 PUFAs
 - e.g. eicosapentaenoic acid 'EPA', docosahexaenoic acid 'DHA'
- Significantly reduces TG and VLDL-C, but may increase TC and LDL-C (mainly DHA)
- Low doses of omega-3 PUFA (< 2 g/day) do not reduce the risk of ASCVD events
 - Low doses are not recommended in primary prevention
- Other potentially favorable CV effects: antiarrhythmic, antiplatelet, anti-inflammatory

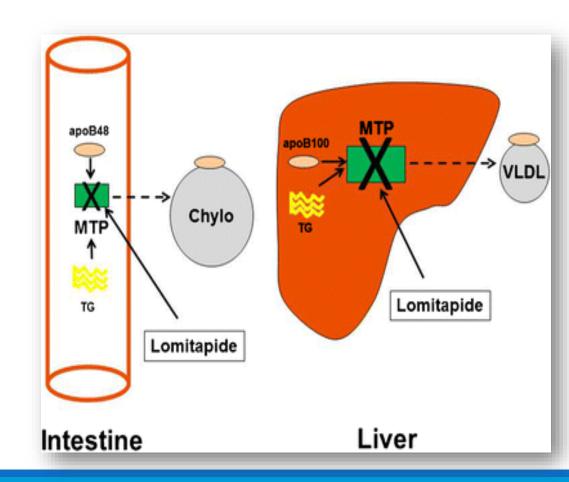

Dietary supplements

- Red yeast rice:
 - From Chinese medicine
 - Active ingredient is monacolin (chemically identical to lovastatin \rightarrow 'natural statin!')
 - Red yeast rice products in market have variable monacolin concentrations
 - From little/no monacolin to toxic levels causing rhabdomyolysis, liver toxicity, and renal failure
 - Not recommended as an alternative to statins
 - Avoid concurrent use with prescribed statins

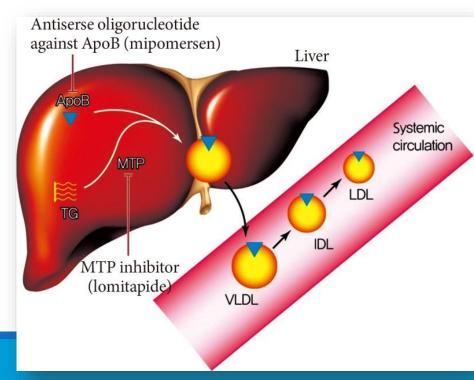

Familial hypercholesterolemia

- Typically results from genetic mutation in LDL receptors
- Physical findings: Deposition of LDL-C in tendons (xanthoma), arteries (atheroma), eyelids, cornea
- Suspected in adults with:
 - LDL-C levels ≥ 190 mg/dL or non-HDL-C ≥ 220 mg/dL
 - Family history of high cholesterol or ASCVD in first-degree relatives
- Types of Familial Hypercholesterolemia:
 - Homozygous FH
 - The patient inherits two FH genes, one from each parent (both parents have FH)
 - More serious (higher LDL, earlier onset of ASCVD and death)
 - Heterozygous FH
 - The patient inherits one FH gene from a parent
 - More common

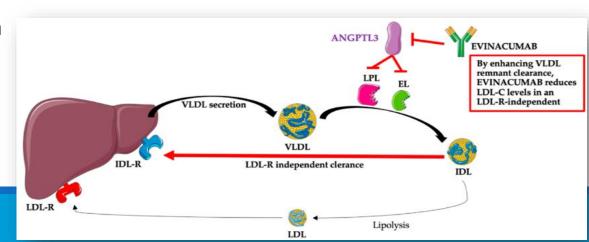
- Treatment of FH in adults:
 - Intensive lifestyle modifications
 - Pharmacological therapy
 - LDL apheresis (for homozygous FH, similar to dialysis; removes LDL from blood)
 - Liver transplant (for homozygous FH)



- Patients with FH and negative history of ASCVD:
 - High-intensity statin
 - Those with LDL-C ≥ 100 mg/dL despite max-tolerated statin should receive non-statin therapies
 - Ezetimibe, and/or Bempedoic acid, and/or PCSK9 inhibitor
- Patients with FH and positive history of ASCVD:
 - High-intensity statin
 - Those with LDL-C ≥ 70 mg/dL despite max-tolerated statin should receive non-statin therapies
 - Ezetimibe, and/or Bempedoic acid, and/or PCSK9 inhibitor
- Other agents (for homozygous FH):
 - Lomitapide, Mipomersen, Evinacumab


• Lomitapide:

- Orphan drug
- Reduces LDL-C levels by ~40%
- Microsomal triglyceride transfer protein (MTP) inhibitor
- MTP role: assembly of apoB-containing lipoproteins in liver and intestines and secretion into circulation
- Administered orally
- Black box warning for severe hepatotoxicity


• Mipomersen:

- Orphan drug
- Reduces LDL-C levels by ~25%
- Oligonucleotide inhibitor of apolipoprotein B-100 (ApoB-100) synthesis
- ApoB-100: a main component of VLDL and LDL
- Administered via subcutaneous injection
- Injection site pain and reactions
- Black box warning for severe hepatotoxicity
- No longer available in the US

• Evinacumab:

- Approved in patients \geq 12 years
- Reduces LDL-C by ~50%; Reduces TG by ~55%
- Unknown whether it reduces ASCVD events
- Humanized monoclonal antibody that inhibits angiopoietin-like 3 (ANGPTL3) protein
- ANGPTL3 protein: inhibits lipoprotein lipase (LPL) and endothelial lipase (EL)
- LPL and EL role: lipid metabolism; leading to decreased LDL, HDL, and TG
- Administered as an IV infusion every 4 weeks
- Infusion-site reactions, influenza-like illness, rhinorrhea

Hypertriglyceridemia

- Elevated TG levels are strongly associated with ASCVD risk
- Lifestyle interventions: for all patients; 5% 10% reduction in body weight, reducing sugar and refined CHOs, increasing physical activity, restricting alcohol, smoking cessation
- Addressing secondary causes: DM, CKD, drugs (protease inhibitors, atypical antipsychotics...)
- **Statins**: First-line agents (if TGs remain elevated after addressing the above two); reduce TG levels by up to 30% at higher doses; reduce LDL-C
- **Fibrates**: Effectively lower TG levels; not routinely used for borderline-high TG levels; no evidence in reducing ASCVD risk
- Omega-3 PUFA: Significantly lower TG levels at higher doses (2 4 g/d); only EPA prescription product is indicated for borderline-high TG levels and to reduce ASCVD risk

Severe hypertriglyceridemia

- Fasting TG levels > 500 mg/dL
- Mostly a combination of genetic and acquired factors (e.g. DM)
- Large TG-rich chylomicrons (hyperchylomicronemia) occlude pancreatic capillaries → Ischemic damage + Release of lipase → Production of free fatty acids → Release of inflammatory mediators and free radicals → Inflammation, edema, necrosis → Pancreatitis
- Management:
 - Dietary fat restriction
 - Patients with ASCVD risk < 7.5%: Fibrates and omega-3 PUFA as first-line agents (effective in lowering TG)
 - Patients with ASCVD risk > 7.5%: Statins as first-line agents
 - Patients with ASCVD risk ≥ 7.5% & persistent TGs > 500 mg/dL despite statin therapy: Statin + omega-3 PUFA or fibrate
- Success in treatment:
 - Reducing TGs < 500 mg/dL
 - Preventing pancreatitis

Low HDL-C

CETP

Cholesterol ester in transit

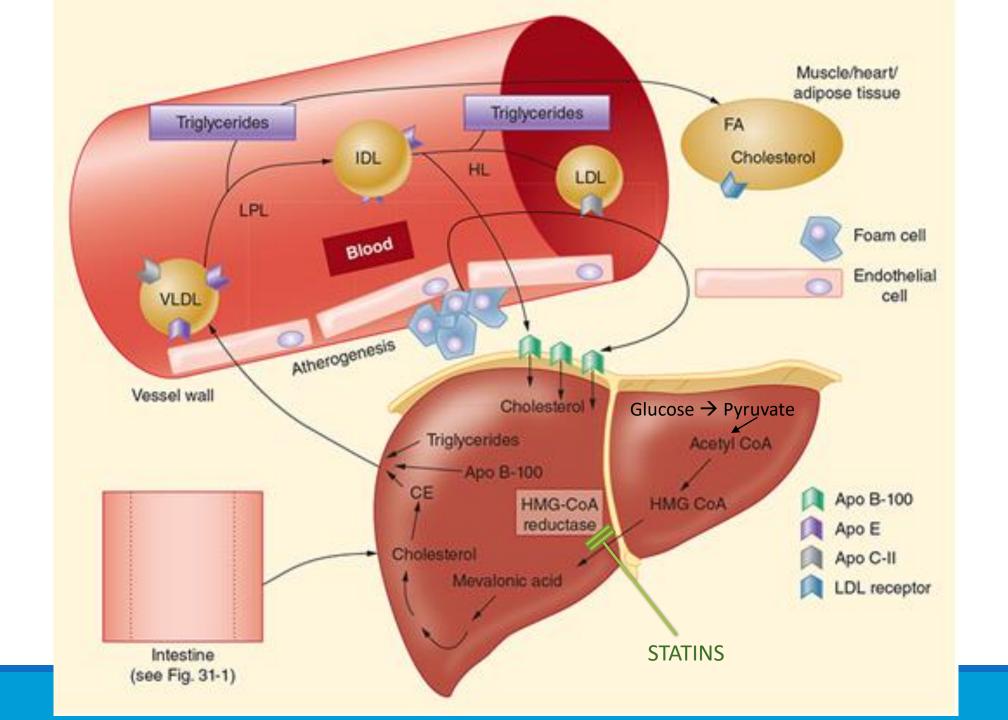
HDL

CETP promotes the transfer of cholesterol esters from HDLs to LDLs

- Low HDL-C is a strong independent risk predictor of ASCVD
- <u>Possible causes</u>: Diabetes, physical inactivity, cigarette smoking, high CHO intake, drugs
- No evidence that increasing HDL-C reduces ASCVD risk
- No specific goal for HDL-C raising (the primary target remains LDL-C)

Management:

- Lifestyle modification: The preferred approach; smoking cessation, increasing physical activity
- **Niacin**: Can increase HDL-C > other lipid-lowering agents (immediate-release > sustained-release)
- Cholesterol ester transfer protein (CETP) inhibitors: Can increase HDL-C up to 135%
- Although alcohol consumption increases HDL-C, it is not recommended


Lipid-lowering therapies

- Medications primarily lowering atherogenic cholesterol:
 - 3-Hydroxy-3-MethylGlutaryl-Coenzyme A (HMG-CoA) Reductase Inhibitors (Statins)
 - Cholesterol Absorption Inhibitors
 - Bile Acid Sequestrants
 - Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitors
 - Adenosine Triphosphate-Citrate Lyase (ACL) Inhibitors
- Medications primarily lowering triglycerides:
 - Fibric Acid Derivatives (Fibrates)
 - Omega-3 Polyunsaturated Fatty Acids (PUFAs)
 - Nicotinic Acid (Niacin)

Lipid-lowering therapies Statins

- First-line lipid-lowering therapies for dyslipidemia:
 - Evidence on decreasing the risk of first CV events (primary prevention)
 - Evidence on decreasing the risk of recurrent CV events (secondary prevention)
- Effects on lipids:
 - Significantly reduce LDL-C levels (20% 60%)
 - Modestly increase HDL-C levels (6% 12%)
 - Decrease TG levels (10% 29%)
- Mechanism of action:
 - Inhibit the rate-limiting step in cholesterol de novo biosynthesis →
 - Enhance LDL catabolism through LDL receptors

Lipid-lowering therapies Statins

Statin selection:

- ASCVD risk
- Indicated intensity

Order of LDL-C lowering potency:

Rosuvastatin > Atorvastatin > Pitavastatin > Simvastatin > Lovastatin > Pravastatin > Fluvastatin

Plasma half-life:

- Relatively short (1 3 hours) for most statins
- Longer for rosuvastatin, atorvastatin, and pitavastatin → May account for their potency

Adverse effects:

- Generally, well tolerated; Low discontinuation rates due to adverse effects
- Statin-associated muscle symptoms (SAMS)
- Mild elevations in serum transaminase levels (mainly ALT)
- Small increased risk of new-onset diabetes

TABLE 32-5

Intensity of Statin Therapy by Drug and Daily Dose

High-Intensity Statin Therapy	Moderate-Intensity Statin Therapy	Low-Intensity Statin Therapy
Lowers LDL-C on average by ≥50%	Lowers LDL-C on average by 30% to <50%	Lowers LDL-C on average by <30%
Atorvastatin 40-80 mg	Atorvastatin 10-20 mg	Simvastatin 10 mg
Rosuvastatin 20-40 mg	Rosuvastatin 5-10 mg	Pravastatin 10-20 mg
	Simvastatin 20-40 mg	Lovastatin 20 mg
	Pravastatin 40-80 mg	Fluvastatin 20-40 mg
	Lovastatin 40 mg	Pitavastatin 1 mg
	Fluvastatin XL 80 mg	
	Fluvastatin 40 mg BID	
	Pitavastatin 2-4 mg	

^a Simvastatin is not recommended by the FDA to be initiated at 80 mg/day due to increased risk of myopathy and rarely rhabdomyolysis.

FDA, Food and Drug Administration; RCT, randomized clinical trials.

Boldface type indicates medications that have cardiovascular outcome data from RCTs when given in the specified dose.

Lipid-lowering therapies Statins: ADRs (SAMS)

- ~ 10% 25% of statin users
- Frequently reported as a reason for statin discontinuation
- Various definitions; Subjective clinical assessment
- Myalgia: Bilateral muscle achiness, weakness, or cramps affecting larger muscles (e.g. thighs, back)
 - The most reported muscle-related adverse effect with statin therapy
- Myopathy: A general term for any muscle-related symptoms
 - However, often used interchangeably with myalgia
- Rhabdomyolysis: Rapid breakdown of skeletal muscle \rightarrow CK elevations > 10 times the upper limit of normal
 - The most concerning of SAMS, but very rare (0.1% of patients)
 - Release of myoglobin (and other proteins and electrolytes) from damaged muscles → Systemic complications (e.g. AKI)
 - Dark or "tea-colored" urine, nausea, vomiting, confusion, coma, cardiac arrhythmias, electrolyte disturbances, death
 - Non-statin causes: extreme physical exercise, metabolism disorders (e.g. DKA), drugs (e.g. colchicine), toxins, infection

Lipid-lowering therapies Statins: ADRs (SAMS)

- Risk factors for SAMS development:
 - Elderly, female, low BMI, frequent heavy exercise, comorbidities (kidney disease, hypothyroidism), DDIs
- ~ 80% of all medications are metabolized by hepatic CYP450 (mainly CYP3A4)
- All statins (except pravastatin) are metabolized by hepatic CYP450
 - Lovastatin, simvastatin, and atorvastatin are predominantly metabolized by CYP3A4 → More significant DDIs
 - Fluvastatin, pitavastatin, and rosuvastatin are predominantly metabolized by other CYP isoenzymes (CYP2C8, CYP2C9, CYP2C19)
- Drugs that compete with statins for CYP450 or inhibit CYP450 increase statin levels & SAMS risk
 - e.g. verapamil, gemfibrozil
- Patients with multiple risk factors: Start low and Titrate slow (to the desired potency)

Lipid-lowering therapies Statins: ADRs (SAMS)

- Discontinue statin if intolerable symptoms
- If symptoms resolve, initiate a different statin at a lower dose
 - Some statins (e.g. rosuvastatin) are better tolerated than others (e.g. simvastatin)
- If symptoms do not resolve, identify other potential causes of muscle pain
 - e.g. hypothyroidism, vitamin D deficiency
- Alternative dosing strategies using statins with long half-lives
 - e.g. atorvastatin, rosuvastatin, pitavastatin QOD
- Non-statin therapies if patients fail multiple statins
- CK measurement prompted by patient symptoms (routine monitoring not recommended)
- Assure patients that statins are effective and safe, and SAMS is reversible with statin discontinuation

Lipid-lowering therapies Statins: ADRs (Serum transaminase elevation)

- Most liver enzymes are not a specific measure of liver function
- No causal relationship between statin use and liver failure
 - Statins may be initiated in chronic liver disease, compensated cirrhosis, non-alcoholic fatty liver disease
 - Statins are contraindicated in decompensated cirrhosis, acute liver failure
- Routine periodic monitoring of liver enzymes is not required
 - Measure at baseline and if patients have S/S suggestive of liver injury (to assess change over time)
- Other potential causes for elevated liver enzymes:
 - Excessive alcohol intake, infection, medications...

Lipid-lowering therapies Statins: ADRs (New-onset diabetes)

• Risk factors:

- Higher doses of statins
- Risk factors for DM: obesity, metabolic syndrome, impaired fasting glucose...

- Unknown mechanism:
 - Disruption of cholesterol-sensitive cellular functions that affect insulin secretion and sensitivity?

• Benefit of statin therapy greatly outweighs the Risk of new-onset diabetes

Lipid-lowering therapies Cholesterol absorption inhibitors

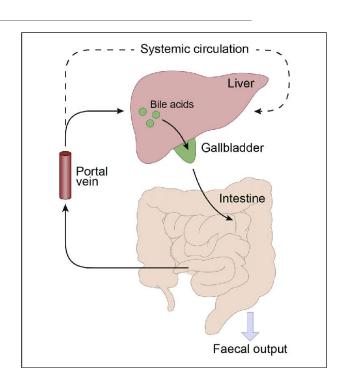
- Ezetimibe
- Adjunct therapy with statin
 - Monotherapy: modest reduction in LDL-C (15% 24%)
 - Combination with statin: higher reduction in LDL-C, lower risk of recurrent CV events

• MOA:

- Inhibiting Niemann-pick C1-like 1 (NPC1L1) protein
- NPC1L1 role: mediating intestinal cholesterol absorption (and delivery to liver), inhibiting hepatobiliary cholesterol excretion

• Adverse effects:

- · Generally, well tolerated
- Mild GI complaints (diarrhea)
- Myalgia and mild ALT elevations when used in combination with statins
- No effects on CYP450



Lipid-lowering therapies Bile acid sequestrants

- Colesevelam, Colestipol, Cholestyramine
- Adjunct therapy with statin
 - Monotherapy: modest reduction in LDL-C (13% 20%) and CV events
 - Combination with statin: no data
- Colesevelam is approved for type 2 DM
 - Enhancing incretins secretion (GIP, GLP-1) and β -cell function

• MOA:

- Cholesterol is a major precursor of bile acids
- Binding bile acids in the intestinal lumen \rightarrow Fecal excretion of bile acids \rightarrow
- Decreased enterohepatic circulation of bile acids → Increased hepatic synthesis of bile acids from cholesterol → Depleted hepatic cholesterol → Increased number of hepatic LDL-R to bring in cholesterol from blood → Decreased circulating LDL-C

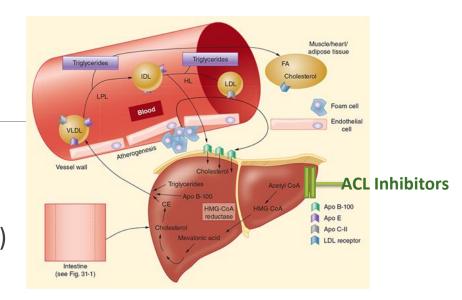
Lipid-lowering therapies Bile acid sequestrants: ADRs

- Poor tolerability
 - Reserved for those unable to tolerate ezetimibe who need additional LDL lowering despite maximally tolerated statin
- GI complaints
 - Early powder formulations 'cholestyramine' > Tablet forms 'colesevelam' (fewer DC rates)
 - Constipation, bloating, fullness, nausea, flatulence
- Increased hepatic VLDL production (contraindicated when TG > 300 mg/dL)
- Impaired absorption of fat-soluble vitamins and drugs
 - e.g. warfarin, levothyroxine, phenytoin
 - Take other medications 1 hour before or 4 hours after BAS
- No fetus risk (not systemically absorbed)
 - First-line agents during pregnancy

Lipid-lowering therapies PCSK9 inhibitors

- Alirocumab, Evolocumab
- Monotherapy: approved for familial hypercholesterolemia
- Combination with statin: reduces LDL-C by up to 60% (potent) and recurrent CV events
- MOA:
 - PCSK9 binds to and degrades hepatic LDL-R
 - Inhibiting PCSK9 → Increased available hepatic LDL-R → Increased LDL-C clearance from circulation
- SQ administration, Q 2 weeks or once monthly
- Adverse effects:
 - Favorable safety profile
 - Injection site reactions (most common)
 - 'Flu-like' symptoms

Lipid-lowering therapies PCSK9 inhibitors


- Inclisiran
- Combination with statin: reduces LDL-C by ~ 50% (approved for familial hypercholesterolemia)
- MOA:
 - Small interfering RNA molecule → Inhibiting messenger RNA → Reducing synthesis of PCSK9
- SQ administration, Q 6 months
- Adverse effects:
 - Injection site reactions (most common, transient, mild)

Lipid-lowering therapies ACL inhibitors

- Bempedoic acid
- Monotherapy: modest reduction in LDL-C (15% 20%)
- Combination with statin: modest reduction in LDL-C (15% 20%)
- Combination with ezetimibe: reduces LDL-C by 36%

• MOA:

- ACL: Enzyme responsible for generating Acetyl CoA (needed for cholesterol de novo biosynthesis)
- ACL inhibition → Depletion of hepatic Acetyl CoA → Depletion of hepatic cholesterol → Overexpression of LDL-R → Decreased circulating LDL-C
- Oral administration
- <u>Indication</u>: Patients not achieving desired treatment goals on maximally tolerated statin + ezetimibe who prefer non-injectable therapy

Lipid-lowering therapies ACL inhibitors: ADRs

- Generally, well tolerated
- Fewer muscle symptoms compared to statins
- Hyperuricemia (acute gout)
 - Inhibit the renal tubular organic anion transporter 2 (OAT2) responsible for uric acid secretion
- Tendon rupture
 - Rare
 - Risk factors: age > 60 years, concurrent use of corticosteroids or fluoroquinolones, renal failure, history of tendon disorders

Lipid-lowering therapies Fibrates

- Gemfibrozil, Fenofibrate
- Monotherapy:
 - Reduce TGs by 20% 50% (potent) and CV events
 - Increase HDL by 10% 15%
- Combination with statin: Less evidence
- <u>MOA</u>:
 - Gemfibrozil: Increasing LPL activity; Decreasing synthesis/secretion of VLDL from liver into plasma
 - Fenofibrate: Peroxisome proliferator-activated receptor α (PPAR α) agonist \rightarrow Inhibiting apoprotein C-III (an inhibitor of LPL) \rightarrow Increasing LPL activity
- Indication: TG levels > 500 mg/dL to reduce the risk of acute pancreatitis

Lipid-lowering therapies Fibrates: ADRs

- Generally, well tolerated
- Modest rise in LDL-C
- GI complaints
- Transient elevations in transaminase levels
- Gallstone formation (rare)
- Worsening renal function 'fenofibrate' (transient, self-limiting)
- Enhancing warfarin effect 'fenofibrate' (closely monitor INR)
- Muscle-related adverse effects (more common when combined with statins)
 - Gemfibrozil has potent effects on CYP450 enzymes and renal transporters → Significantly increases serum statin levels and risk of SAMS
 - Gemfibrozil should not be initiated in patients receiving statin therapy (fenofibrate is favored)

Lipid-lowering therapies PUFAs

- EPA, DHA
- Monotherapy: high doses (2 4 g/day) significantly reduce TG and VLDL levels (20% 50%)
- Combination with statin: EPA reduces CV risk

• MOA:

- Increasing hepatic oxidation of free fatty acids
- Activating PPAR $\alpha \rightarrow$ Inhibiting apoprotein C-III (an inhibitor of LPL) \rightarrow Increasing LPL activity
- Increasing LDL hydrolysis (EPA only)

Product quality:

- Prescription omega-3 PUFA products (~ 1 g EPA/DHA per capsule) vs.
- OTC "fish oil" supplement products (often < 300 mg EPA/DHA per capsule; not regulated by FDA)

Lipid-lowering therapies PUFAs: ADRs

- GI complaints (abdominal pain)
- Caution in patients with allergy to fish
- Prolong bleeding time (caution when used concomitantly with antiplatelets/anticoagulants)
- Minimal drug-drug interactions
- Atrial flutter/fibrillation

Lipid-lowering therapies Niacin

- Monotherapy:
 - Increases HDL-C (5% 30%)
 - Lowers TG (20% 50%)
 - Lowers LDL-C modestly (5% 20%)
- Combination with statin: does not improve CV outcomes

• <u>MOA</u>:

- Increasing HDL-C: reducing HDL catabolism and hepatic removal of HDL apoA-I
- Decreasing TGs: enhancing LPL and inhibiting the release of free fatty acids from adipose tissue to plasma
- Decreasing LDL-C: reducing the hepatic synthesis of VLDL, and subsequently LDL

Lipid-lowering therapies Niacin: ADRs

- Poorly tolerated
- Cutaneous flushing, itching, pruritus
 - Mainly immediate-release products; reduced by taking niacin with meals, slowly titrating the dose upward, using extended-release products
 - Mediated by PGs; reduced by administering aspirin 325 mg shortly before niacin
 - Increased by concomitant alcohol and hot beverages; avoid at time of ingestion
- Hepatotoxicity, elevated liver function tests (often transient and mild with doses < 3 g/day)
- · Hyperuricemia, hyperglycemia
- Contraindicated in active liver disease and active peptic ulcer disease

Lipid-Lowering Drug Class	Adverse Effects		Contraindications
	Common/possible (1%- 10%)	Rare/unlikely (<1%)	
Statins	 Statin associated muscle symptoms (myalgia/myopathy) New-onset diabetes mellitus Transient, mild elevation in transaminase levels 	Rhabdomyolysis Severe hepatotoxicity	 Pregnancy/breastfeeding (No More! Decompensated cirrhosis Acute liver failure
Cholesterol absorption inhibitors	 GI adverse effects Myalgias (when used with statin) Elevated transaminase levels (when used with statin) 	Thrombocytopenia	 Pregnancy/breastfeeding Acute liver failure
Bile acid sequestrants	GI adverse effects and/or obstruction Impaired absorption of fat-soluble vitamins Reduced bioavailability of select drugs	Ileus Cholecystitis Severe hypertriglyceridemia	History of bowel obstruction Fasting TG are 300 mg/dL or higher

Lipid-Lowering Drug Class	Adverse Effects		Contraindications
	Common/possible (1%- 10%)	Rare/unlikely (<1%)	
ACL inhibitors	Hyperuricemia	Increased risk of tendon rupture Increased risk of benign prostate hyperplasia	
PCSK9 mAbs	Injection-site reactions Flu-like symptoms post-injection		Hypersensitivity reaction to alirocumab or evolocumab
Inclisiran	Injection-site reactions		Pregnancy/breastfeeding

Lipid-Lowering Drug Class	Adverse Effects		Contraindications
	Common/possible (1%- 10%)	Rare/unlikely (<1%)	
Fibrates	 GI adverse effects Transient elevation in transaminases Myalgias (especially when used with statin) Mild increase in serum creatinine 	Increased risk of gallstones	 Pre-existing gallbladder disease CrCl of 30 mL/min (0.5 mL/s) or lower
Omega-3 PUFA	 GI adverse effects Eructation Increased risk of bleeding when used with antiplatelets or anticoagulants Increased risk of atrial fibrillation or flutter 		Caution in patients with allergy or sensitivity to fish and/or shellfish
Niacin	 Dermatologic effects (flushing/itching) Increased transaminases Hyperuricemia Hyperglycemia 	 Increased risk of atrial fibrillation or flutter Rhabdomyolysis (with statin) Hepatotoxicity (with statin) 	 Active peptic ulcer Arterial hemorrhage Persistently elevated transaminase levels

Special populations Elderly

- ASCVD risk increases with age
- Benefit of moderate-high intensity statin for secondary prevention > primary prevention
 - Especially in those > 75 years
- Higher risks of statin (and other antilipemic agents) in older adults:
 - Changes in body composition, renal function...
 - More prone to developing SAMS → Risk of falls and functional deterioration?
 - Cognitive decline?
 - Cataracts?
 - New-onset type 2 diabetes
- <u>Factors favoring discontinuing statins in adults > 75 years taking them for primary prevention</u>:
 - Worsening physical or cognitive function
 - Worsening or multi comorbidities
 - Advancing frailty
 - Reduced life expectancy

Special populations Pregnancy/Breastfeeding

- Pregnancy is associated with a progressive rise in cholesterol and TG levels
- No enough efficacy/safety data of antilipemic agents in pregnant women
- Increased intake of omega-3 PUFA (mainly DHA) is important for fetal brain development
- Statins are no longer contraindicated in pregnancy
 - Advise most pregnant patients to DC statin
 - Advise non-pregnant young women who use statin and do not plan to become pregnant to use contraception method
 - Advise non-pregnant young women who use statin and plan to become pregnant to DC statin 1 2 months before attempting pregnancy
- Statins are not recommended while breast feeding
- Treatment:
 - Dietary therapy (mainstay of treatment; nutritionally balanced diet)
 - Consider BAS if pregnant patient is at high risk of CV events or has FH
 - Statins in select pregnant patients (e.g. established CV disease, homozygous FH)

Special populations Diabetes

- Diabetic dyslipidemia: high TGs, low HDL, modestly elevated LDL (dense, highly atherogenic)
- Diabetes is a major risk factor for ASCVD
- Statins are first-line therapy for diabetic dyslipidemia:
 - Evidence in reducing ASCVD events and mortality
- Statin intensity in diabetic dyslipidemia:
 - Primary prevention: Moderate- or High- intensity statin (optional 10-year risk score to determine intensity)
 - Secondary prevention: High-intensity statin

Special populations Diabetes

• Fenofibrate:

Reduces the progression of diabetic retinopathy

• BAS (Colesevelam):

- Approved for both glycemic and lipid control
- Can exacerbate hypertriglyceridemia (common in diabetes)

• Niacin:

- Modestly increases FPG (~ 4% 5%) and HbA1c (~ 0.25%)
- Should not be routinely used in diabetics

Special populations Kidney disease

- Dyslipidemia is highly prevalent among patients with kidney disease
- Dyslipidemia pattern: high TG, slightly elevated TC and LDL-C, low HDL-C
- Possible mechanisms:
 - Deficiency in apolipoprotein C-II and LPL (both enhance TG hydrolysis)
 - Loss of carnitine during hemodialysis (carnitine enhances FA oxidation)
 - Use of acetate buffer during hemodialysis (acetate is a precursor to FA synthesis)
 - Decreased activity of lecithin-cholesterol acyltransferase (LCAT) during hemodialysis (LCAT transports cholesterol from peripheral tissues to liver for elimination)
- Dialysis does not correct the lipid abnormalities
- Renal transplantation:
 - May correct lipid abnormalities
 - May aggravate lipid abnormalities as a result of immunosuppressants (corticosteroids, cyclosporine...)

Special populations Kidney disease

- Statins effectively reduce LDL-C, but less evidence on CV event reduction
- Moderate-intensity statins are preferred to minimize adverse effects (SAMS)
- <u>Ezetimibe + statin</u>: Reduce CV events in advanced kidney disease
- Other non-statin therapies: Routine use is not recommended (lack of efficacy data, safety concerns)
- Patients on hemodialysis: Rosuvastatin failed to prevent CV events
 - Do not initiate statins in hemodialysis patients
 - Continue statins if patients were already on statins before hemodialysis
- <u>Kidney transplant recipients</u>: At high risk of future CV events
 - Statin should be given
 - Potential for DDI (statin-cyclosporine) → Choose less-interacting statin (pravastatin, fluvastatin)

Special populations Chronic inflammatory disorders

- Chronic inflammation and immune activation →
- Atherosclerosis development and progression →
- ASCVD risk
- 3 6 months trial of lifestyle interventions → Estimate 10-year ASCVD risk
 - If 10-year ASCVD risk $\geq 5\%$ \rightarrow May initiate moderate-intensity statin
- Anti-inflammatory therapies may affect lipid levels and ASCVD risk
 - e.g. tociluzimab and methotrexate used in RA (mixed results)

Evaluation of therapeutic outcomes

- Short-term evaluation:
 - Complete lipid panel 4 12 weeks after initiation of lipid-lowering therapy or following dose adjustment
- Long-term evaluation:
 - Complete lipid panel Q 3 12 months to ensure adherence to therapy and maintenance of desired LDL levels
- Non-fasting lipid panel is generally acceptable
- Fasting lipid panel is preferred in hypertriglyceridemia to minimize interference from chylomicrons
- Other monitoring parameters:
 - Lesions regression in patients with xanthomas
 - Modifiable risk factors (hypertension, smoking, lack of exercise, weight, poor diet, blood glucose in diabetics)

Evaluation of therapeutic outcomes

• Statins:

- Routine monitoring of hepatic function and CK levels is not recommended
- Periodic monitoring of HbA1c in patients at high risk for developing diabetes

• Niacin:

- Monitor hepatic function tests at baseline, after each dosage increase, and Q 6 months thereafter
- Periodic monitoring of HbA1c in diabetics
- Patients on lipid-lowering therapy for secondary prevention:
 - Monitor CV symptoms (e.g. angina, intermittent claudication)