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Hashing (Properties)

2

1. Constant time access O(1). Or almost constant depending on the implementation!
Depending on the implementation this can grow to O(logn) or O(n)!

2. Hash Table: is an array of fixed size n (usually n is a prime).

3. General Idea is to map a key (i.e., our object) to an index and insert it into the table!
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Hashing (Definitions)
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Hash Table

1. Constant time access O(1). Or almost constant depending on the implementation!
Depending on the implementation this can grow to O(logn) or O(n)!

2. Hash Table: is an array of fixed size n (usually n is a prime).

3. General Idea is to map a key to an index and insert it into the table!

4. Hash Function: is a special function than maps our element to another value.
In a hash table, hash function will map the input into a value in the range
[0 – n). From 0 to (n - 1)

5. Hash Function in general maps values from one range (big) to another (small).
One way to bound its values into [0 - n-1] is to use mod!

x % n will always produce values in the range [0 - n-1]
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Hashing (Hash Function)
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0

1
…

n-1

Hash Table

1. Don’t use the element directly (even if it’s an integer).

2. Map the element using the hash function into the range [0 - n-1]

3. In other words, given an array of size n, we use a hash function h(k) to map
Input x into some index in the array!
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Hash Table

1. Don’t use the element directly (even if it’s an integer).

2. Map the element using the hash function into the range [0 - n-1]

3. In other words, given an array of size n, we use a hash function h(k) to map
Input x into some index in the array!

4. Mapping is not unique and different inputs can map to the same index!
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Hash Table

1. Don’t use the element directly (even if it’s an integer).

2. Map the element using the hash function into the range [0 - n-1]

3. In other words, given an array of size n, we use a hash function h(k) to map
Input x into some index in the array!

4. Mapping is not unique and different inputs can map to the same index!

5. Good hash functions produce unique output (most of the time!).
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0

1
…

n-1

Hash Table

1. Don’t use the element directly (even if it’s an integer).

2. Map the element using the hash function into the range [0 - n-1]

3. In other words, given an array of size n, we use a hash function h(k) to map
Input x into some index in the array!

4. Mapping is not unique and different inputs can map to the same index!

5. Good hash functions produce unique output (most of the time!).

6. When two inputs are mapped into the same output (same index)
we call that a Collision.
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Hash Table

• Hash an input (any input of any type) and produce an index as an output!
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0

1
…

n-1

Hash Table

• Hash an input (any input of any type) and produce an index as an output!

• If the hash function is good with unique output this will 
give O(1) access time. Which is a great improvement over O(logn).
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Hash Table

• Hash an input (any input of any type) and produce an index as an output!

• If the hash function is good with unique output this will 
give O(1) access time. Which is a great improvement over O(logn).

• The main challenge is to find a good hashing function and storage strategy.
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17

0

1
…

n-1

Hash Table

• Hash an input (any input of any type) and produce an index as an output!

• If the hash function is good with unique output this will 
give O(1) access time. Which is a great improvement over O(logn).

• The main challenge is to find a good hashing function and storage strategy.

• Space (We want to utilize the array to its fullest)

• Collisions and uniqueness of the output.

• Running time of the hash function itself!
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Hash Table

• Key Space (i.e., Input Space) is integers.

• Table Size (i.e., n) is 10.

• Hash Function is the module operator (%).
ℎ 𝑥 = 𝑥	%	𝑛 = 𝑥	%	10

• We want to insert the following numbers:

15, 17, 229, 11, 320, 353
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Insert 15, 17, 229, 11, 320, 353
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Hash Table

Insert 15, 17, 229, 11, 320, 353

ℎ 15 = 15	%	10 = 5
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Hash Table

Insert 15, 17, 229, 11, 320, 353

ℎ 17 = 17	%	10 = 7
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Hash Table

Insert 15, 17, 229, 11, 320, 353

ℎ 229 = 229	%	10 = 9
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Hash Table

Insert 15, 17, 229, 11, 320, 353

ℎ 11 = 11	%	10 = 1
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7 17
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9 229
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Hash Table

Insert 15, 17, 229, 11, 320, 353

ℎ 320 = 320	%	10 = 0

0 320

1 11
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5 15
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9 229
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Hash Table

Insert 15, 17, 229, 11, 320, 353

ℎ 353 = 353	%	10 = 3

0 320

1 11

2

3 353

4

5 15

6

7 17

8

9 229
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Hash Table

Insert 15, 17, 229, 11, 320, 353

ℎ 353 = 353	%	10 = 3

0 320

1 11

2

3 353

4

5 15

6

7 17

8

9 229

What will happen if we try to insert (320, 110, 10, 2000)
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Hash Table

Insert 15, 17, 229, 11, 320, 353

ℎ 353 = 353	%	10 = 3

0 320

1 11

2

3 353

4

5 15

6

7 17

8

9 229

What will happen if we try to insert (320, 110, 10, 2000)

All of them will map to 0! (Collisions)
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Hashing - Collisions
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Hash Table
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• Collisions happen when multiple keys (i.e., items are mapped to the same value)

ℎ 𝑥 = 𝑥	%	10 
ℎ 10 = 10	%	10 = 0 
ℎ 320 = 320	%	10 = 0 
ℎ 1700 = 1700	%	10 = 0 

• The main issue is that we can’t store multiple items in the same cell (i.e., bucket)

• Our choice of the hash function is what determines the number of collisions.

• Choosing a bad hash function will give lots of collisions.

• Even good hash functions will produce some collisions.

• We need to handle collisions even if our hash function is almost perfect (very rare collisions).
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Hash Table
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We have two main ways to deal with collisions:

1. Open Hashing (Separate Chaining): Each cell/bucket in the table is a linked list.

2. Closed Hashing (Open Addressing): We recompute the hash value according to a rule.

1. Linear Probing
2. Quadratic Probing
3. Double Hashing 
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Hashing - Open Hashing (Separate Chaining)
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• Keep a list of keys/items that map into the same value! (Array of linked lists)
• Buckets point to the first element.
• New elements are inserted to the end of the list.

• Advantages (Pros)
• Better space utilization for large number of items.
• Simple collision handling - Just append or search the list.
• We can store more items than the hash table size (overflow).

• Disadvantages (Cons)
• If we have a bad hash function (lots of collisions) the worst cast running time.

Would increase to O(n). In other words, almost all elements will be in a single bucket!
• Do we use single or double linked lists?
• Bad Cache performance (due to implementation of linked list).
• Difficulty in rehashing (We will talk about this later!)
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31

Hash Table
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• Key Space (i.e., Input Space) is integers.

• Table Size (i.e., n) is 10.

• Hash Function is the module operator (%).
ℎ 𝑥 = 𝑥	%	𝑛 = 𝑥	%	10

• We want to insert the following numbers:

20, 15, 11, 35, 12, 40, 64, 4, 81, 9
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Hash Table
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Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9 

ℎ 20 = 20	%	10 = 0
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Hash Table
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Hash Table
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20 40

11 81

12

64 4

15 35

9

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9 
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We will explain three common strategies:

1. Linear Probing
2. Quadratic Probing 
3. Double hashing
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Hashing - Closed Hashing (Open Addressing)
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We resolve conflicts by sequentially scanning an array (with wraparound) until we find an empty cell.

Example: Assume hash function is given by

h 𝑥 = 𝑥	%	10

Then when a collision occurs, we apply the following

h! 𝑥 = ℎ 𝑥 + 𝑓 𝑖 %	𝑛, 𝑖 ≥ 0	

Usually in linear probing, we use

f 𝑖 = 𝑖, 𝑖 ≥ 0	 Uploaded By: anonymousSTUDENTS-HUB.com
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h! 𝑥 = ℎ 𝑥 + 0 %	𝑛

h" 𝑥 = ℎ 𝑥 + 1 %	𝑛

h# 𝑥 = ℎ 𝑥 + 2 %	𝑛

…

h$ 𝑥 = ℎ 𝑥 + 𝑖 %	𝑛
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Hash Table

• Key Space (i.e., Input Space) is integers.

• Table Size (i.e., n) is 10.

• Hash Function is the module operator (%).
ℎ 𝑥 = 𝑥	%	𝑛 = 𝑥	%	10

• We want to insert the following numbers:

89, 18, 49, 58, 69
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8

9
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Hash Table

Insert 89, 18, 49, 58, 69

0

1

2

3

4

5

6

7

8

9

Uploaded By: anonymousSTUDENTS-HUB.com
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 89 = 89	%	10 = 9
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7
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9
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 89 = 89	%	10 = 9

0

1

2

3

4

5

6

7

8

9 89
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59

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 18 = 18	%	10 = 8
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5

6

7

8

9 89
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 18 = 18	%	10 = 8

0

1

2

3

4

5

6

7

8 18

9 89
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Linear Probing
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 49 = 49	%	10 = 9

Collision!

0

1
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4

5

6

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com



Hashing - Closed Hashing (Open Addressing)
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 49 = 49	%	10 = 9

Collision!

⇒ ℎ 49 + 1 %10 = 9 + 1 %	10 = 10	%	10 = 0

0

1

2

3

4

5

6

7

8 18

9 89
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 49 = 49	%	10 = 9

Collision!

⇒ ℎ 49 + 1 %10 = 9 + 1 %	10 = 10	%	10 = 0

0 49

1

2

3

4

5

6

7

8 18

9 89
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Hashing - Closed Hashing (Open Addressing)
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 58 = 58	%	10 = 8

Collision!

0 49

1

2

3

4

5

6

7

8 18

9 89
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Hashing - Closed Hashing (Open Addressing)
Linear Probing
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 58 = 58	%	10 = 8

Collision!

⇒ ℎ 58 + 1 	%	10 = 8 + 1 %	10 = 9	%	10 = 9

0 49

1

2

3

4

5

6

7

8 18

9 89
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Hashing - Closed Hashing (Open Addressing)
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 58 = 58	%	10 = 8

Collision!

⇒ ℎ 58 + 1 	%	10 = 8 + 1 %	10 = 9	%	10 = 9
⇒ ℎ 58 + 2 	%	10 = 8 + 2 %	10 = 10	%	10 = 0

0 49

1

2

3

4

5

6

7

8 18

9 89
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Hashing - Closed Hashing (Open Addressing)
Linear Probing
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 58 = 58	%	10 = 8

Collision!

⇒ ℎ 58 + 1 	%	10 = 8 + 1 %	10 = 9	%	10 = 9
⇒ ℎ 58 + 2 	%	10 = 8 + 2 %	10 = 10	%	10 = 0
⇒ ℎ 58 + 3 	%	10 = 8 + 3 %	10 = 11	%	10 = 1

0 49

1

2

3

4

5

6

7

8 18

9 89
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Hashing - Closed Hashing (Open Addressing)
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 58 = 58	%	10 = 8

Collision!

⇒ ℎ 58 + 1 	%	10 = 8 + 1 %	10 = 9	%	10 = 9
⇒ ℎ 58 + 2 	%	10 = 8 + 2 %	10 = 10	%	10 = 0
⇒ ℎ 58 + 3 	%	10 = 8 + 3 %	10 = 11	%	10 = 1

0 49

1 58

2

3

4

5

6

7

8 18

9 89
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 69 = 69	%	10 = 9

Collision!

0 49

1 58

2

3

4

5

6

7

8 18

9 89
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 69 = 69	%	10 = 9

Collision!

⇒ ℎ 69 + 1 	%	10 = 9 + 1 %	10 = 10	%	10 = 0

0 49

1 58

2

3

4

5

6

7

8 18

9 89
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 69 = 69	%	10 = 9

Collision!

⇒ ℎ 69 + 1 	%	10 = 9 + 1 %	10 = 10	%	10 = 0
⇒ ℎ 69 + 2 	%	10 = 9 + 2 %	10 = 11	%	10 = 1

0 49

1 58

2

3

4

5

6

7

8 18

9 89
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 69 = 69	%	10 = 9

Collision!

⇒ ℎ 69 + 1 	%	10 = 9 + 1 %	10 = 10	%	10 = 0
⇒ ℎ 69 + 2 	%	10 = 9 + 2 %	10 = 11	%	10 = 1
⇒ ℎ 69 + 3 	%	10 = 9 + 3 %	10 = 12	%	10 = 2

0 49

1 58

2

3

4

5

6

7

8 18

9 89
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 69 = 69	%	10 = 9

Collision!

⇒ ℎ 69 + 1 	%	10 = 9 + 1 %	10 = 10	%	10 = 0
⇒ ℎ 69 + 2 	%	10 = 9 + 2 %	10 = 11	%	10 = 1
⇒ ℎ 69 + 3 	%	10 = 9 + 3 %	10 = 12	%	10 = 2

0 49

1 58

2 69

3

4

5

6

7

8 18

9 89
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Insert 89, 18, 49, 58, 69

0

1

2

3

4

5

6

7

8

9 89

18

89

49

18

89

49

58

18

89

49

58

69

18

89
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Advantages (Pros)

1. Simplicity: Very simple to implement.

2. Very Efficient for cache use (Items are near each other)

3. We don’t need additional memory.

4. Guaranteed to find a spot.

5. We can mark cells as deleted and reuse them!
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Disadvantages (Cons)

1. Clustering: Data is stored after each other (bad for search performance).

2. Not good for large amount of data.

3. Data is not distributed uniformly to buckets.

4. Delete performance and operation can take a hit.

5. If the hash function is bad it can result in even worse running time!
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We resolve conflicts by sequentially scanning an array (with wraparound) until we find an empty cell.

Example: Assume hash function is given by

h 𝑥 = 𝑥	%	10

Then when a collision occurs, we apply the following

h! 𝑥 = ℎ 𝑥 + 𝑖" %	𝑛, 𝑖 ≥ 0	
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h! 𝑥 = ℎ 𝑥 + 0# %	𝑛

h" 𝑥 = ℎ 𝑥 + 1# %	𝑛

h# 𝑥 = ℎ 𝑥 + 2# %	𝑛

…

h$ 𝑥 = ℎ 𝑥 + 𝑖# %	𝑛
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Hash Table

• Key Space (i.e., Input Space) is integers.

• Table Size (i.e., n) is 10.

• Hash Function is the module operator (%).
ℎ 𝑥 = 𝑥	%	𝑛 = 𝑥	%	10

• We want to insert the following numbers:

89, 18, 49, 58, 69

0

1

2

3

4

5

6

7

8

9
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Hash Table

Insert 89, 18, 49, 58, 69

0

1

2

3

4

5

6

7

8

9
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 89 = 89	%	10 = 9

0

1

2

3

4

5

6

7

8

9
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 89 = 89	%	10 = 9

0

1

2

3

4

5

6

7

8

9 89
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 18 = 18	%	10 = 8

0

1

2

3

4

5

6

7

8

9 89
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 18 = 18	%	10 = 8

0

1

2

3

4

5

6

7

8 18

9 89
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 49 = 49	%	10 = 9

Collision!

0

1

2

3

4

5

6

7

8 18

9 89
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 49 = 49	%	10 = 9

Collision!

⇒ ℎ 49 + 1" %10 = 9 + 1 %	10 = 10	%	10 = 0

0

1

2

3

4

5

6

7

8 18

9 89
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 49 = 49	%	10 = 9

Collision!

⇒ ℎ 49 + 1" %10 = 9 + 1 %	10 = 10	%	10 = 0

0 49

1

2

3

4

5

6

7

8 18

9 89
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 58 = 58	%	10 = 8

Collision!

0 49

1

2

3

4

5

6

7

8 18

9 89
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 58 = 58	%	10 = 8

Collision!

⇒ ℎ 58 + 1" 	%	10 = 8 + 1 %	10 = 9	%	10 = 9

0 49

1

2

3

4

5

6

7

8 18

9 89
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 58 = 58	%	10 = 8

Collision!

⇒ ℎ 58 + 1" 	%	10 = 8 + 1 %	10 = 9	%	10 = 9
⇒ ℎ 58 + 2" 	%	10 = 8 + 4 %	10 = 12	%	10 = 2

0 49

1

2

3

4

5

6

7

8 18

9 89
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 58 = 58	%	10 = 8

Collision!

⇒ ℎ 58 + 1" 	%	10 = 8 + 1 %	10 = 9	%	10 = 9
⇒ ℎ 58 + 2" 	%	10 = 8 + 4 %	10 = 12	%	10 = 2

0 49

1

2 58

3

4

5

6

7

8 18

9 89
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 69 = 69	%	10 = 9

Collision!

0 49

1

2 58

3

4

5

6

7

8 18

9 89
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 69 = 69	%	10 = 9

Collision!

⇒ ℎ 69 + 1" 	%	10 = 9 + 1 %	10 = 10	%	10 = 0

0 49

1

2 58

3

4

5

6

7

8 18

9 89
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 69 = 69	%	10 = 9

Collision!

⇒ ℎ 69 + 1" 	%	10 = 9 + 1 %	10 = 10	%	10 = 0
⇒ ℎ 69 + 2" 	%	10 = 9 + 4 %	10 = 13	%	10 = 3

0 49

1

2 58

3

4

5

6

7

8 18

9 89
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 69 = 69	%	10 = 9

Collision!

⇒ ℎ 69 + 1" 	%	10 = 9 + 1 %	10 = 10	%	10 = 0
⇒ ℎ 69 + 2" 	%	10 = 9 + 4 %	10 = 13	%	10 = 3

0 49

1

2 58

3 69

4

5

6

7

8 18

9 89
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Hash Table

0 49

1

2 58

3 69

4

5

6

7

8 18

9 89

Rule

If quadratic probing is used, and the table size is prime, then a 
new element can always be inserted if the table is at least half 
empty.

Table Size = the first prime > 2 * n

ℎ 𝑥 = 𝑥	%	𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒

Proof

Refer to the book
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Counter Example

• Key Space (i.e., Input Space) is integers.

• Table Size (i.e., n) is 16.

• Hash Function is the module operator (%).
ℎ 𝑥 = 𝑥	%	𝑛 = 𝑥	%	16

• We want to insert the following numbers:

0, 1, 4, 9, 16
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Insert 0, 1, 4, 9, 16

• ℎ 0 = 0	%	16 = 0

• ℎ 1 = 1	%	16 = 1

• ℎ 4 = 4	%	16 = 4

• ℎ 9 = 9	%	16 = 9

• ℎ 16 = 16	%	16 = 0
• ℎ 16 = (0 + 1)	%	16 = 1
• ℎ 16 = (0 + 2")	%	16 = 4
• ℎ 16 = 0 + 3" 	%	16 = 9
• ℎ 16 = (0 + 4")	%	16 = 0
• ℎ 16 = 0 + 5" %	16 = 9
• ℎ 16 = (0 + 6")	%	16 = 4
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We resolve conflicts by sequentially scanning an array (with wraparound) until we find an empty cell.

Example: Assume hash functions are given by

ℎ# 𝑥 = 𝑥	%	10
ℎ" 𝑥 = 7 − (𝑥	%	7)

Then when a collision occurs, we apply the following

h! 𝑥 = ℎ# 𝑥 + 𝑖 ∗ ℎ" (𝑥) %	𝑛, 𝑖 ≥ 0	

Good choice for ℎ" is to choose a prime R < Table Size

ℎ" 𝑥 = 𝑅 − (𝑥	%	𝑅)
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h! 𝑥 = ℎ" 𝑥 + 0 ∗ ℎ#(𝑥) %	𝑛

h" 𝑥 = ℎ" 𝑥 + 1 ∗ ℎ#(𝑥) %	𝑛

h# 𝑥 = ℎ" 𝑥 + 2 ∗ ℎ#(𝑥) %	𝑛

…

h$ 𝑥 = ℎ" 𝑥 + 𝑖 ∗ ℎ#(𝑥) %	𝑛
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Hash Table

• Key Space (i.e., Input Space) is integers.

• Table Size (i.e., n) is 10.

• Hash Functions are:
ℎ# 𝑥 = 𝑥	%	𝑛 = 𝑥	%	10

ℎ" 𝑥 = 7	 − 𝑥	%	7

• We want to insert the following numbers:

89, 18, 49, 58, 69

0

1

2

3

4

5

6

7

8

9
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Hash Table

Insert 89, 18, 49, 58, 69

0

1

2

3

4

5

6

7

8

9
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 89 = 89	%	10 = 9

0

1

2

3

4

5

6

7

8

9
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 89 = 89	%	10 = 9

0

1

2

3

4

5

6

7

8

9 89
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 18 = 18	%	10 = 8

0

1

2

3

4

5

6

7

8

9 89
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 18 = 18	%	10 = 8

0

1

2

3

4

5

6

7

8 18

9 89
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 49 = 49	%	10 = 9

Collision!

0

1

2

3

4

5

6

7

8 18

9 89
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 49 = 49	%	10 = 9

Collision!

⇒ ℎ" 49 + 1 ∗ ℎ#(49) %10 = 9 + (7 − 49	%	7) %	10 = (9 + 7)	%	10 = 6

0

1

2

3

4

5

6

7

8 18

9 89
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 49 = 49	%	10 = 9

Collision!

⇒ ℎ" 49 + 1 ∗ ℎ#(49) %10 = 9 + (7 − 49	%	7) %	10 = (9 + 7)	%	10 = 6

0

1

2

3

4

5

6 49

7

8 18

9 89
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 58 = 58	%	10 = 8

Collision!

0

1

2

3

4

5

6 49

7

8 18

9 89
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 58 = 58	%	10 = 8

Collision!

⇒ ℎ" 58 + 1 ∗ ℎ#(58) %10 = 8 + (7 − 58	%	7) %	10 = (8 + 5)	%	10 = 3

0

1

2

3

4

5

6 49

7

8 18

9 89
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 58 = 58	%	10 = 8

Collision!

⇒ ℎ" 58 + 1 ∗ ℎ#(58) %10 = 8 + (7 − 58	%	7) %	10 = (8 + 5)	%	10 = 3

0

1

2

3 58

4

5

6 49

7

8 18

9 89
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 69 = 69	%	10 = 9

Collision!

0

1

2

3 58

4

5

6 49

7

8 18

9 89
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 69 = 69	%	10 = 9

Collision!

⇒ ℎ" 69 + 1 ∗ ℎ#(69) %10 = 9 + (7 − 69	%	7) %	10 = (9 + 1)	%	10 = 0

0

1

2

3 58

4

5

6 49

7

8 18

9 89
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Hash Table

Insert 89, 18, 49, 58, 69

ℎ 69 = 69	%	10 = 9

Collision!

⇒ ℎ" 69 + 1 ∗ ℎ#(69) %10 = 9 + (7 − 69	%	7) %	10 = (9 + 1)	%	10 = 0

0 69

1

2

3 58

4

5

6 49

7

8 18

9 89
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Let N = number of items we want to store in the table

𝐿𝑜𝑎𝑑	𝐹𝑎𝑐𝑡𝑜𝑟 𝜆 =
N

Table	Size

Example

Table Size = 50, N = 5 then λ = 0.1
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Rehashing is the process of transferring items into a bigger table (i.e., array) when load factor (λ) 
exceeds a particular value (usually half the size). In other words, we build/create another table and 
transfer items to it!

A good choice for the size of the new table is:

𝑁𝑒𝑤	𝑆𝑖𝑧𝑒 = 𝐹𝑖𝑟𝑠𝑡	𝑃𝑟𝑖𝑚𝑒 > 2	 ∗ 𝑂𝑙𝑑	𝑆𝑖𝑧𝑒
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Rehashing is the process of transferring items into a bigger table (i.e., array) when load factor (λ) 
exceeds a particular value (usually half the size). In other words, we build/create another table and 
transfer items to it!

A good choice for the size of the new table is:

𝑁𝑒𝑤	𝑆𝑖𝑧𝑒 = 𝐹𝑖𝑟𝑠𝑡	𝑃𝑟𝑖𝑚𝑒 > 2	 ∗ 𝑂𝑙𝑑	𝑆𝑖𝑧𝑒

When load factor (λ) gets large, number of collisions increases (number of probes increase), so inserting new 
items/searching for items takes longer time. Moreover, inserting might fail!
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Rehashing is the process of transferring items into a bigger table (i.e., array) when load factor (λ) 
exceeds a particular value (usually half the size). In other words, we build/create another table and 
transfer items to it!

A good choice for the size of the new table is:

𝑁𝑒𝑤	𝑆𝑖𝑧𝑒 = 𝐹𝑖𝑟𝑠𝑡	𝑃𝑟𝑖𝑚𝑒 > 2	 ∗ 𝑂𝑙𝑑	𝑆𝑖𝑧𝑒

When load factor (λ) gets large, number of collisions increases (number of probes increase), so inserting new 
items/searching for items takes longer time. Moreover, inserting might fail!

We usually rehash when:

• First insert fails.
• Table is half full (λ = 0.5), in other words, when load factor is 50%
• When load factor is 75%
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0 4

1

2 2

3

4 9

Assume we are using Linear Probing with ℎ 𝑥 = 𝑥	%	5

Insert 9, 4, 2
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0 4

1

2 2

3

4 9

Assume we are using Linear Probing with ℎ 𝑥 = 𝑥	%	5

Insert 9, 4, 2

0

1

2

3

4

5

6

7

8

9

10

𝑁𝑒𝑤	𝑆𝑖𝑧𝑒 = 𝐹𝑖𝑟𝑠𝑡	𝑃𝑟𝑖𝑚𝑒 > 2	 ∗ 𝑂𝑙𝑑	𝑆𝑖𝑧𝑒

𝑁𝑒𝑤	𝑆𝑖𝑧𝑒 = 𝐹𝑖𝑟𝑠𝑡	𝑃𝑟𝑖𝑚𝑒 > 2	 ∗ 5

𝑁𝑒𝑤	𝑆𝑖𝑧𝑒 = 𝐹𝑖𝑟𝑠𝑡	𝑃𝑟𝑖𝑚𝑒 > 10

𝑁𝑒𝑤	𝑆𝑖𝑧𝑒 = 11
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0 4

1

2 2

3

4 9

Assume we are using Linear Probing with ℎ 𝑥 = 𝑥	%	5

Insert 9, 4, 2

0

1

2 2

3

4 4

5

6

7

8

9 9

10
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What if input is String and not integers?
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What if input is String and not integers?

1. ℎ 𝑥 = ∑$%!&'"𝐴𝑆𝐶𝐼𝐼 𝑥$ %𝑁

tea, eat and all anagrams will cause collisions 

2. ℎ 𝑥 = ∑$%!# 𝐴𝑆𝐶𝐼𝐼 𝑥$ 	 ∗ 27$ %𝑁

tea, team and all words with the same 3 first character's cause collisions

3. ℎ 𝑥 = ∑$%!&'"𝐴𝑆𝐶𝐼𝐼 𝑥$ ∗ 32$ %𝑁
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int h1(String s) {
    int answer = 0;
    for (int i = 0; i < s.length(); i++) {
        answer += s.charAt(i);
    }

    return answer;
}

int h2(String s) {
    int answer = 0;
    for (int i = 0; i <= 2 && i < s.length(); i++) {
        answer += s.charAt(i) * (int)Math.pow(27, i);
    }

    return answer;
}

int h3(String s) {
    int answer = 0;
    for (int i = 0; i < s.length(); i++) {
        answer += s.charAt(i) * (int)Math.pow(32, i);
    }

    return answer;
}
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How to make 32$  better and why we choose it?
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How to make 32$  better and why we choose it?

𝑦 = 𝑥 ∗ 2& = 𝑥 ≪ 𝑛 (Shift left)

 𝑦 = (
#!
= 𝑥 ≫ 𝑛 (Shift Right)

32$ = 2)$ = 2 ≪ 5𝑖 (This is very quick!)

ℎ 𝑥 = `
$%!

&'"

𝐴𝑆𝐶𝐼𝐼 𝑥$ ∗ 32$ %𝑁
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Assume we have “Milk”

ℎ 𝑥 = `
$%!

&'"

𝐴𝑆𝐶𝐼𝐼 𝑥$ ∗ 32$ %𝑁

ℎ 𝑥 = 𝐴𝑆𝐶𝐼𝐼 𝑀 ∗ 32! + 𝐴𝑆𝐶𝐼𝐼 𝑖 ∗ 32" + 𝐴𝑆𝐶𝐼𝐼 𝑙 ∗ 32# + 𝐴𝑆𝐶𝐼𝐼 𝑘 ∗ 32*
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Assume we have “Milk”

ℎ 𝑥 = `
$%!

&'"

𝐴𝑆𝐶𝐼𝐼 𝑥$ ∗ 32$ %𝑁

ℎ 𝑥 = 𝐴𝑆𝐶𝐼𝐼 𝑀 ∗ 32! + 𝐴𝑆𝐶𝐼𝐼 𝑖 ∗ 32" + 𝐴𝑆𝐶𝐼𝐼 𝑙 ∗ 32# + 𝐴𝑆𝐶𝐼𝐼 𝑘 ∗ 32*

Horner’s Rule

𝑎𝑥) + 𝑏𝑥+ + 𝑐𝑥* + 𝑑𝑥# + 𝑒𝑥 + 𝑓

(( 𝑎𝑥 + 𝑏 𝑥 + 𝑐 𝑥 + 𝑑)𝑥 + 𝑒)𝑥 + 𝑓
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Assume we have “Milk”

ℎ 𝑥 = `
$%!

&'"

𝐴𝑆𝐶𝐼𝐼 𝑥$ ∗ 32$ %𝑁

int hash(String s) {
    int answer = 0;
    for (int i = 0; i < s.length(); i++) {
        answer = (answer * 32) + s.charAt(i);
    }
    
    return answer;
}
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Assume we have “Milk”

ℎ 𝑥 = `
$%!

&'"

𝐴𝑆𝐶𝐼𝐼 𝑥$ ∗ 32$ %𝑁

int hash(String s) {
    int answer = 0;
    for (int i = 0; i < s.length(); i++) {
        answer = (answer << 5) + s.charAt(i);
    }
    
    return answer;
}
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Any Questions?
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