
Data Structures
COMP242

Ala’ Hasheesh
ahashesh@birzeit.edu

Hashing

1Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Properties)

2

1. Constant time access O(1). Or almost constant depending on the implementation!
Depending on the implementation this can grow to O(logn) or O(n)!

2. Hash Table: is an array of fixed size n (usually n is a prime).

3. General Idea is to map a key (i.e., our object) to an index and insert it into the table!

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Example)

3

0

1

2

3

4

5

6

Hash Table

Assume Table size is 7.

Hash Function OutputInput Space
(Key Space)

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Example)

4

0

1

2

3

4

5

6

Hash Table

Assume Table size is 7.

Hash Function OutputInput

“Hello World!”

Input Space
(Key Space)

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Example)

5

0

1

2

3

4

5

6

Hash Table

Assume Table size is 7.

Hash Function OutputInput

2

“Hello World!”

Input Space
(Key Space)

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Example)

6

0

1

2 Hello World!

3

4

5

6

Hash Table

Assume Table size is 7.

Hash Function OutputInput

2

“Hello World!”

Input Space
(Key Space)

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Example)

7

0

1

2 Hello World!

3

4

5

6

Hash Table

Assume Table size is 7.

Hash Function OutputInput

2

“Banana”

“Hello World!”

Input Space
(Key Space)

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Example)

8

0

1

2 Hello World!

3 Banana

4

5

6

Hash Table

Assume Table size is 7.

Hash Function OutputInput

2

3

“Banana”

“Hello World!”

Input Space
(Key Space)

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Definitions)

9

0

1
…

n-1

Hash Table

1. Constant time access O(1). Or almost constant depending on the implementation!
Depending on the implementation this can grow to O(logn) or O(n)!

2. Hash Table: is an array of fixed size n (usually n is a prime).

3. General Idea is to map a key to an index and insert it into the table!

4. Hash Function: is a special function than maps our element to another value.
In a hash table, hash function will map the input into a value in the range
[0 – n). From 0 to (n - 1)

5. Hash Function in general maps values from one range (big) to another (small).
One way to bound its values into [0 - n-1] is to use mod!

x % n will always produce values in the range [0 - n-1]
Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Hash Function)

10

0

1
…

n-1

Hash Table

1. Don’t use the element directly (even if it’s an integer).

2. Map the element using the hash function into the range [0 - n-1]

3. In other words, given an array of size n, we use a hash function h(k) to map
Input x into some index in the array!

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Hash Function)

11

0

1
…

n-1

Hash Table

1. Don’t use the element directly (even if it’s an integer).

2. Map the element using the hash function into the range [0 - n-1]

3. In other words, given an array of size n, we use a hash function h(k) to map
Input x into some index in the array!

4. Mapping is not unique and different inputs can map to the same index!

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Hash Function)

12

0

1
…

n-1

Hash Table

1. Don’t use the element directly (even if it’s an integer).

2. Map the element using the hash function into the range [0 - n-1]

3. In other words, given an array of size n, we use a hash function h(k) to map
Input x into some index in the array!

4. Mapping is not unique and different inputs can map to the same index!

5. Good hash functions produce unique output (most of the time!).

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Hash Function)

13

0

1
…

n-1

Hash Table

1. Don’t use the element directly (even if it’s an integer).

2. Map the element using the hash function into the range [0 - n-1]

3. In other words, given an array of size n, we use a hash function h(k) to map
Input x into some index in the array!

4. Mapping is not unique and different inputs can map to the same index!

5. Good hash functions produce unique output (most of the time!).

6. When two inputs are mapped into the same output (same index)
we call that a Collision.

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing

14

0

1
…

n-1

Hash Table

• Hash an input (any input of any type) and produce an index as an output!

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing

15

0

1
…

n-1

Hash Table

• Hash an input (any input of any type) and produce an index as an output!

• If the hash function is good with unique output this will
give O(1) access time. Which is a great improvement over O(logn).

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing

16

0

1
…

n-1

Hash Table

• Hash an input (any input of any type) and produce an index as an output!

• If the hash function is good with unique output this will
give O(1) access time. Which is a great improvement over O(logn).

• The main challenge is to find a good hashing function and storage strategy.

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing

17

0

1
…

n-1

Hash Table

• Hash an input (any input of any type) and produce an index as an output!

• If the hash function is good with unique output this will
give O(1) access time. Which is a great improvement over O(logn).

• The main challenge is to find a good hashing function and storage strategy.

• Space (We want to utilize the array to its fullest)

• Collisions and uniqueness of the output.

• Running time of the hash function itself!

Uploaded By: anonymousSTUDENTS-HUB.com

Example

18

Hash Table

• Key Space (i.e., Input Space) is integers.

• Table Size (i.e., n) is 10.

• Hash Function is the module operator (%).
ℎ 𝑥 = 𝑥	%	𝑛 = 𝑥	%	10

• We want to insert the following numbers:

15, 17, 229, 11, 320, 353

0

1

2

3

4

5

6

7

8

9

Uploaded By: anonymousSTUDENTS-HUB.com

Example

19

Hash Table

Insert 15, 17, 229, 11, 320, 353

0

1

2

3

4

5

6

7

8

9

Uploaded By: anonymousSTUDENTS-HUB.com

Example

20

Hash Table

Insert 15, 17, 229, 11, 320, 353

ℎ 15 = 15	%	10 = 5

0

1

2

3

4

5 15

6

7

8

9

Uploaded By: anonymousSTUDENTS-HUB.com

Example

21

Hash Table

Insert 15, 17, 229, 11, 320, 353

ℎ 17 = 17	%	10 = 7

0

1

2

3

4

5 15

6

7 17

8

9

Uploaded By: anonymousSTUDENTS-HUB.com

Example

22

Hash Table

Insert 15, 17, 229, 11, 320, 353

ℎ 229 = 229	%	10 = 9

0

1

2

3

4

5 15

6

7 17

8

9 229

Uploaded By: anonymousSTUDENTS-HUB.com

Example

23

Hash Table

Insert 15, 17, 229, 11, 320, 353

ℎ 11 = 11	%	10 = 1

0

1 11

2

3

4

5 15

6

7 17

8

9 229

Uploaded By: anonymousSTUDENTS-HUB.com

Example

24

Hash Table

Insert 15, 17, 229, 11, 320, 353

ℎ 320 = 320	%	10 = 0

0 320

1 11

2

3

4

5 15

6

7 17

8

9 229

Uploaded By: anonymousSTUDENTS-HUB.com

Example

25

Hash Table

Insert 15, 17, 229, 11, 320, 353

ℎ 353 = 353	%	10 = 3

0 320

1 11

2

3 353

4

5 15

6

7 17

8

9 229

Uploaded By: anonymousSTUDENTS-HUB.com

Example

26

Hash Table

Insert 15, 17, 229, 11, 320, 353

ℎ 353 = 353	%	10 = 3

0 320

1 11

2

3 353

4

5 15

6

7 17

8

9 229

What will happen if we try to insert (320, 110, 10, 2000)

Uploaded By: anonymousSTUDENTS-HUB.com

Example

27

Hash Table

Insert 15, 17, 229, 11, 320, 353

ℎ 353 = 353	%	10 = 3

0 320

1 11

2

3 353

4

5 15

6

7 17

8

9 229

What will happen if we try to insert (320, 110, 10, 2000)

All of them will map to 0! (Collisions)

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Collisions

28

Hash Table

0

1

2

3

4

5

6

7

8

9

• Collisions happen when multiple keys (i.e., items are mapped to the same value)

ℎ 𝑥 = 𝑥	%	10
ℎ 10 = 10	%	10 = 0
ℎ 320 = 320	%	10 = 0
ℎ 1700 = 1700	%	10 = 0

• The main issue is that we can’t store multiple items in the same cell (i.e., bucket)

• Our choice of the hash function is what determines the number of collisions.

• Choosing a bad hash function will give lots of collisions.

• Even good hash functions will produce some collisions.

• We need to handle collisions even if our hash function is almost perfect (very rare collisions).

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Collisions

29

Hash Table

0

1

2

3

4

5

6

7

8

9

We have two main ways to deal with collisions:

1. Open Hashing (Separate Chaining): Each cell/bucket in the table is a linked list.

2. Closed Hashing (Open Addressing): We recompute the hash value according to a rule.

1. Linear Probing
2. Quadratic Probing
3. Double Hashing

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Open Hashing (Separate Chaining)

30

• Keep a list of keys/items that map into the same value! (Array of linked lists)
• Buckets point to the first element.
• New elements are inserted to the end of the list.

• Advantages (Pros)
• Better space utilization for large number of items.
• Simple collision handling - Just append or search the list.
• We can store more items than the hash table size (overflow).

• Disadvantages (Cons)
• If we have a bad hash function (lots of collisions) the worst cast running time.

Would increase to O(n). In other words, almost all elements will be in a single bucket!
• Do we use single or double linked lists?
• Bad Cache performance (due to implementation of linked list).
• Difficulty in rehashing (We will talk about this later!)

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Open Hashing (Separate Chaining)

31

Hash Table

0

1

2

3

4

5

6

7

8

9

• Key Space (i.e., Input Space) is integers.

• Table Size (i.e., n) is 10.

• Hash Function is the module operator (%).
ℎ 𝑥 = 𝑥	%	𝑛 = 𝑥	%	10

• We want to insert the following numbers:

20, 15, 11, 35, 12, 40, 64, 4, 81, 9

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Open Hashing (Separate Chaining)

32

Hash Table

0

1

2

3

4

5

6

7

8

9

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9

ℎ 20 = 20	%	10 = 0

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Open Hashing (Separate Chaining)

33

Hash Table

0

1

2

3

4

5

6

7

8

9

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9

ℎ 20 = 20	%	10 = 0

20

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Open Hashing (Separate Chaining)

34

Hash Table

0

1

2

3

4

5

6

7

8

9

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9

ℎ 15 = 15	%	10 = 5

20

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Open Hashing (Separate Chaining)

35

Hash Table

0

1

2

3

4

5

6

7

8

9

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9

ℎ 15 = 15	%	10 = 5

20

15

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Open Hashing (Separate Chaining)

36

Hash Table

0

1

2

3

4

5

6

7

8

9

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9

ℎ 11 = 11	%	10 = 1

20

15

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Open Hashing (Separate Chaining)

37

Hash Table

0

1

2

3

4

5

6

7

8

9

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9

ℎ 11 = 11	%	10 = 1

20

15

11

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Open Hashing (Separate Chaining)

38

Hash Table

0

1

2

3

4

5

6

7

8

9

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9

ℎ 35 = 35	%	10 = 5

20

15

11

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Open Hashing (Separate Chaining)

39

Hash Table

0

1

2

3

4

5

6

7

8

9

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9

ℎ 35 = 35	%	10 = 5

20

15

11

35

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Open Hashing (Separate Chaining)

40

Hash Table

0

1

2

3

4

5

6

7

8

9

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9

ℎ 12 = 12	%	10 = 2

20

15

11

35

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Open Hashing (Separate Chaining)

41

Hash Table

0

1

2

3

4

5

6

7

8

9

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9

ℎ 12 = 12	%	10 = 2

20

15

11

35

12

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Open Hashing (Separate Chaining)

42

Hash Table

0

1

2

3

4

5

6

7

8

9

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9

ℎ 40 = 40	%	10 = 0

20

15

11

35

12

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Open Hashing (Separate Chaining)

43

Hash Table

0

1

2

3

4

5

6

7

8

9

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9

ℎ 40 = 40	%	10 = 0

20

15

11

35

12

40

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Open Hashing (Separate Chaining)

44

Hash Table

0

1

2

3

4

5

6

7

8

9

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9

ℎ 64 = 64	%	10 = 4

20

15

11

35

12

40

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Open Hashing (Separate Chaining)

45

Hash Table

0

1

2

3

4

5

6

7

8

9

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9

ℎ 64 = 64	%	10 = 4

20

15

11

35

12

40

64

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Open Hashing (Separate Chaining)

46

Hash Table

0

1

2

3

4

5

6

7

8

9

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9

ℎ 4 = 4	%	10 = 4

20

15

11

35

12

40

64

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Open Hashing (Separate Chaining)

47

Hash Table

0

1

2

3

4

5

6

7

8

9

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9

ℎ 4 = 4	%	10 = 4

20

15

11

35

12

40

64 4

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Open Hashing (Separate Chaining)

48

Hash Table

0

1

2

3

4

5

6

7

8

9

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9

ℎ 81 = 81	%	10 = 1

20

15

11

35

12

40

64 4

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Open Hashing (Separate Chaining)

49

Hash Table

0

1

2

3

4

5

6

7

8

9

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9

ℎ 81 = 81	%	10 = 1

20

15

11

35

12

40

64 4

81

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Open Hashing (Separate Chaining)

50

Hash Table

0

1

2

3

4

5

6

7

8

9

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9

ℎ 9 = 9	%	10 = 9

20

15

11

35

12

40

64 4

81

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Open Hashing (Separate Chaining)

51

Hash Table

0

1

2

3

4

5

6

7

8

9

20 40

11 81

12

64 4

15 35

9

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)

52

We will explain three common strategies:

1. Linear Probing
2. Quadratic Probing
3. Double hashing

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Linear Probing

53

We resolve conflicts by sequentially scanning an array (with wraparound) until we find an empty cell.

Example: Assume hash function is given by

h 𝑥 = 𝑥	%	10

Then when a collision occurs, we apply the following

h! 𝑥 = ℎ 𝑥 + 𝑓 𝑖 %	𝑛, 𝑖 ≥ 0	

Usually in linear probing, we use

f 𝑖 = 𝑖, 𝑖 ≥ 0	 Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Linear Probing

54

h! 𝑥 = ℎ 𝑥 + 0 %	𝑛

h" 𝑥 = ℎ 𝑥 + 1 %	𝑛

h# 𝑥 = ℎ 𝑥 + 2 %	𝑛

…

h$ 𝑥 = ℎ 𝑥 + 𝑖 %	𝑛

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Linear Probing

55

Hash Table

• Key Space (i.e., Input Space) is integers.

• Table Size (i.e., n) is 10.

• Hash Function is the module operator (%).
ℎ 𝑥 = 𝑥	%	𝑛 = 𝑥	%	10

• We want to insert the following numbers:

89, 18, 49, 58, 69

0

1

2

3

4

5

6

7

8

9

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Linear Probing

56

Hash Table

Insert 89, 18, 49, 58, 69

0

1

2

3

4

5

6

7

8

9

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Linear Probing

57

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 89 = 89	%	10 = 9

0

1

2

3

4

5

6

7

8

9

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Linear Probing

58

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 89 = 89	%	10 = 9

0

1

2

3

4

5

6

7

8

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Linear Probing

59

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 18 = 18	%	10 = 8

0

1

2

3

4

5

6

7

8

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Linear Probing

60

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 18 = 18	%	10 = 8

0

1

2

3

4

5

6

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Linear Probing

61

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 49 = 49	%	10 = 9

Collision!

0

1

2

3

4

5

6

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Linear Probing

62

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 49 = 49	%	10 = 9

Collision!

⇒ ℎ 49 + 1 %10 = 9 + 1 %	10 = 10	%	10 = 0

0

1

2

3

4

5

6

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Linear Probing

63

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 49 = 49	%	10 = 9

Collision!

⇒ ℎ 49 + 1 %10 = 9 + 1 %	10 = 10	%	10 = 0

0 49

1

2

3

4

5

6

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Linear Probing

64

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 58 = 58	%	10 = 8

Collision!

0 49

1

2

3

4

5

6

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Linear Probing

65

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 58 = 58	%	10 = 8

Collision!

⇒ ℎ 58 + 1 	%	10 = 8 + 1 %	10 = 9	%	10 = 9

0 49

1

2

3

4

5

6

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Linear Probing

66

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 58 = 58	%	10 = 8

Collision!

⇒ ℎ 58 + 1 	%	10 = 8 + 1 %	10 = 9	%	10 = 9
⇒ ℎ 58 + 2 	%	10 = 8 + 2 %	10 = 10	%	10 = 0

0 49

1

2

3

4

5

6

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Linear Probing

67

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 58 = 58	%	10 = 8

Collision!

⇒ ℎ 58 + 1 	%	10 = 8 + 1 %	10 = 9	%	10 = 9
⇒ ℎ 58 + 2 	%	10 = 8 + 2 %	10 = 10	%	10 = 0
⇒ ℎ 58 + 3 	%	10 = 8 + 3 %	10 = 11	%	10 = 1

0 49

1

2

3

4

5

6

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Linear Probing

68

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 58 = 58	%	10 = 8

Collision!

⇒ ℎ 58 + 1 	%	10 = 8 + 1 %	10 = 9	%	10 = 9
⇒ ℎ 58 + 2 	%	10 = 8 + 2 %	10 = 10	%	10 = 0
⇒ ℎ 58 + 3 	%	10 = 8 + 3 %	10 = 11	%	10 = 1

0 49

1 58

2

3

4

5

6

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Linear Probing

69

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 69 = 69	%	10 = 9

Collision!

0 49

1 58

2

3

4

5

6

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Linear Probing

70

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 69 = 69	%	10 = 9

Collision!

⇒ ℎ 69 + 1 	%	10 = 9 + 1 %	10 = 10	%	10 = 0

0 49

1 58

2

3

4

5

6

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Linear Probing

71

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 69 = 69	%	10 = 9

Collision!

⇒ ℎ 69 + 1 	%	10 = 9 + 1 %	10 = 10	%	10 = 0
⇒ ℎ 69 + 2 	%	10 = 9 + 2 %	10 = 11	%	10 = 1

0 49

1 58

2

3

4

5

6

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Linear Probing

72

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 69 = 69	%	10 = 9

Collision!

⇒ ℎ 69 + 1 	%	10 = 9 + 1 %	10 = 10	%	10 = 0
⇒ ℎ 69 + 2 	%	10 = 9 + 2 %	10 = 11	%	10 = 1
⇒ ℎ 69 + 3 	%	10 = 9 + 3 %	10 = 12	%	10 = 2

0 49

1 58

2

3

4

5

6

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Linear Probing

73

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 69 = 69	%	10 = 9

Collision!

⇒ ℎ 69 + 1 	%	10 = 9 + 1 %	10 = 10	%	10 = 0
⇒ ℎ 69 + 2 	%	10 = 9 + 2 %	10 = 11	%	10 = 1
⇒ ℎ 69 + 3 	%	10 = 9 + 3 %	10 = 12	%	10 = 2

0 49

1 58

2 69

3

4

5

6

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Linear Probing

74

Insert 89, 18, 49, 58, 69

0

1

2

3

4

5

6

7

8

9 89

18

89

49

18

89

49

58

18

89

49

58

69

18

89

Insert 89 Insert 18 Insert 49 Insert 58 Insert 69 Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Linear Probing

75

Advantages (Pros)

1. Simplicity: Very simple to implement.

2. Very Efficient for cache use (Items are near each other)

3. We don’t need additional memory.

4. Guaranteed to find a spot.

5. We can mark cells as deleted and reuse them!

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Linear Probing

76

Disadvantages (Cons)

1. Clustering: Data is stored after each other (bad for search performance).

2. Not good for large amount of data.

3. Data is not distributed uniformly to buckets.

4. Delete performance and operation can take a hit.

5. If the hash function is bad it can result in even worse running time!

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

77

We resolve conflicts by sequentially scanning an array (with wraparound) until we find an empty cell.

Example: Assume hash function is given by

h 𝑥 = 𝑥	%	10

Then when a collision occurs, we apply the following

h! 𝑥 = ℎ 𝑥 + 𝑖" %	𝑛, 𝑖 ≥ 0	

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

78

h! 𝑥 = ℎ 𝑥 + 0# %	𝑛

h" 𝑥 = ℎ 𝑥 + 1# %	𝑛

h# 𝑥 = ℎ 𝑥 + 2# %	𝑛

…

h$ 𝑥 = ℎ 𝑥 + 𝑖# %	𝑛

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

79

Hash Table

• Key Space (i.e., Input Space) is integers.

• Table Size (i.e., n) is 10.

• Hash Function is the module operator (%).
ℎ 𝑥 = 𝑥	%	𝑛 = 𝑥	%	10

• We want to insert the following numbers:

89, 18, 49, 58, 69

0

1

2

3

4

5

6

7

8

9

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

80

Hash Table

Insert 89, 18, 49, 58, 69

0

1

2

3

4

5

6

7

8

9

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

81

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 89 = 89	%	10 = 9

0

1

2

3

4

5

6

7

8

9

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

82

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 89 = 89	%	10 = 9

0

1

2

3

4

5

6

7

8

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

83

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 18 = 18	%	10 = 8

0

1

2

3

4

5

6

7

8

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

84

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 18 = 18	%	10 = 8

0

1

2

3

4

5

6

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

85

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 49 = 49	%	10 = 9

Collision!

0

1

2

3

4

5

6

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

86

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 49 = 49	%	10 = 9

Collision!

⇒ ℎ 49 + 1" %10 = 9 + 1 %	10 = 10	%	10 = 0

0

1

2

3

4

5

6

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

87

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 49 = 49	%	10 = 9

Collision!

⇒ ℎ 49 + 1" %10 = 9 + 1 %	10 = 10	%	10 = 0

0 49

1

2

3

4

5

6

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

88

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 58 = 58	%	10 = 8

Collision!

0 49

1

2

3

4

5

6

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

89

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 58 = 58	%	10 = 8

Collision!

⇒ ℎ 58 + 1" 	%	10 = 8 + 1 %	10 = 9	%	10 = 9

0 49

1

2

3

4

5

6

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

90

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 58 = 58	%	10 = 8

Collision!

⇒ ℎ 58 + 1" 	%	10 = 8 + 1 %	10 = 9	%	10 = 9
⇒ ℎ 58 + 2" 	%	10 = 8 + 4 %	10 = 12	%	10 = 2

0 49

1

2

3

4

5

6

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

91

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 58 = 58	%	10 = 8

Collision!

⇒ ℎ 58 + 1" 	%	10 = 8 + 1 %	10 = 9	%	10 = 9
⇒ ℎ 58 + 2" 	%	10 = 8 + 4 %	10 = 12	%	10 = 2

0 49

1

2 58

3

4

5

6

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

92

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 69 = 69	%	10 = 9

Collision!

0 49

1

2 58

3

4

5

6

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

93

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 69 = 69	%	10 = 9

Collision!

⇒ ℎ 69 + 1" 	%	10 = 9 + 1 %	10 = 10	%	10 = 0

0 49

1

2 58

3

4

5

6

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

94

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 69 = 69	%	10 = 9

Collision!

⇒ ℎ 69 + 1" 	%	10 = 9 + 1 %	10 = 10	%	10 = 0
⇒ ℎ 69 + 2" 	%	10 = 9 + 4 %	10 = 13	%	10 = 3

0 49

1

2 58

3

4

5

6

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

95

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 69 = 69	%	10 = 9

Collision!

⇒ ℎ 69 + 1" 	%	10 = 9 + 1 %	10 = 10	%	10 = 0
⇒ ℎ 69 + 2" 	%	10 = 9 + 4 %	10 = 13	%	10 = 3

0 49

1

2 58

3 69

4

5

6

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

96

Hash Table

0 49

1

2 58

3 69

4

5

6

7

8 18

9 89

Rule

If quadratic probing is used, and the table size is prime, then a
new element can always be inserted if the table is at least half
empty.

Table Size = the first prime > 2 * n

ℎ 𝑥 = 𝑥	%	𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒

Proof

Refer to the book

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

97

Counter Example

• Key Space (i.e., Input Space) is integers.

• Table Size (i.e., n) is 16.

• Hash Function is the module operator (%).
ℎ 𝑥 = 𝑥	%	𝑛 = 𝑥	%	16

• We want to insert the following numbers:

0, 1, 4, 9, 16

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

98

Insert 0, 1, 4, 9, 16

• ℎ 0 = 0	%	16 = 0

• ℎ 1 = 1	%	16 = 1

• ℎ 4 = 4	%	16 = 4

• ℎ 9 = 9	%	16 = 9

• ℎ 16 = 16	%	16 = 0
• ℎ 16 = (0 + 1)	%	16 = 1
• ℎ 16 = (0 + 2")	%	16 = 4
• ℎ 16 = 0 + 3" 	%	16 = 9
• ℎ 16 = (0 + 4")	%	16 = 0
• ℎ 16 = 0 + 5" %	16 = 9
• ℎ 16 = (0 + 6")	%	16 = 4

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Double Hashing

99

We resolve conflicts by sequentially scanning an array (with wraparound) until we find an empty cell.

Example: Assume hash functions are given by

ℎ# 𝑥 = 𝑥	%	10
ℎ" 𝑥 = 7 − (𝑥	%	7)

Then when a collision occurs, we apply the following

h! 𝑥 = ℎ# 𝑥 + 𝑖 ∗ ℎ" (𝑥) %	𝑛, 𝑖 ≥ 0	

Good choice for ℎ" is to choose a prime R < Table Size

ℎ" 𝑥 = 𝑅 − (𝑥	%	𝑅)
Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Double Hashing

100

h! 𝑥 = ℎ" 𝑥 + 0 ∗ ℎ#(𝑥) %	𝑛

h" 𝑥 = ℎ" 𝑥 + 1 ∗ ℎ#(𝑥) %	𝑛

h# 𝑥 = ℎ" 𝑥 + 2 ∗ ℎ#(𝑥) %	𝑛

…

h$ 𝑥 = ℎ" 𝑥 + 𝑖 ∗ ℎ#(𝑥) %	𝑛

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Double Hashing

101

Hash Table

• Key Space (i.e., Input Space) is integers.

• Table Size (i.e., n) is 10.

• Hash Functions are:
ℎ# 𝑥 = 𝑥	%	𝑛 = 𝑥	%	10

ℎ" 𝑥 = 7	 − 𝑥	%	7

• We want to insert the following numbers:

89, 18, 49, 58, 69

0

1

2

3

4

5

6

7

8

9

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Double Hashing

102

Hash Table

Insert 89, 18, 49, 58, 69

0

1

2

3

4

5

6

7

8

9

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Double Hashing

103

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 89 = 89	%	10 = 9

0

1

2

3

4

5

6

7

8

9

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Double Hashing

104

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 89 = 89	%	10 = 9

0

1

2

3

4

5

6

7

8

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Double Hashing

105

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 18 = 18	%	10 = 8

0

1

2

3

4

5

6

7

8

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Double Hashing

106

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 18 = 18	%	10 = 8

0

1

2

3

4

5

6

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Double Hashing

107

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 49 = 49	%	10 = 9

Collision!

0

1

2

3

4

5

6

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Double Hashing

108

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 49 = 49	%	10 = 9

Collision!

⇒ ℎ" 49 + 1 ∗ ℎ#(49) %10 = 9 + (7 − 49	%	7) %	10 = (9 + 7)	%	10 = 6

0

1

2

3

4

5

6

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Double Hashing

109

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 49 = 49	%	10 = 9

Collision!

⇒ ℎ" 49 + 1 ∗ ℎ#(49) %10 = 9 + (7 − 49	%	7) %	10 = (9 + 7)	%	10 = 6

0

1

2

3

4

5

6 49

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Double Hashing

110

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 58 = 58	%	10 = 8

Collision!

0

1

2

3

4

5

6 49

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Double Hashing

111

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 58 = 58	%	10 = 8

Collision!

⇒ ℎ" 58 + 1 ∗ ℎ#(58) %10 = 8 + (7 − 58	%	7) %	10 = (8 + 5)	%	10 = 3

0

1

2

3

4

5

6 49

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Double Hashing

112

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 58 = 58	%	10 = 8

Collision!

⇒ ℎ" 58 + 1 ∗ ℎ#(58) %10 = 8 + (7 − 58	%	7) %	10 = (8 + 5)	%	10 = 3

0

1

2

3 58

4

5

6 49

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Double Hashing

113

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 69 = 69	%	10 = 9

Collision!

0

1

2

3 58

4

5

6 49

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Double Hashing

114

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 69 = 69	%	10 = 9

Collision!

⇒ ℎ" 69 + 1 ∗ ℎ#(69) %10 = 9 + (7 − 69	%	7) %	10 = (9 + 1)	%	10 = 0

0

1

2

3 58

4

5

6 49

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Closed Hashing (Open Addressing)
Double Hashing

115

Hash Table

Insert 89, 18, 49, 58, 69

ℎ 69 = 69	%	10 = 9

Collision!

⇒ ℎ" 69 + 1 ∗ ℎ#(69) %10 = 9 + (7 − 69	%	7) %	10 = (9 + 1)	%	10 = 0

0 69

1

2

3 58

4

5

6 49

7

8 18

9 89

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Load Factor

116

Let N = number of items we want to store in the table

𝐿𝑜𝑎𝑑	𝐹𝑎𝑐𝑡𝑜𝑟 𝜆 =
N

Table	Size

Example

Table Size = 50, N = 5 then λ = 0.1

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Rehashing

117

Rehashing is the process of transferring items into a bigger table (i.e., array) when load factor (λ)
exceeds a particular value (usually half the size). In other words, we build/create another table and
transfer items to it!

A good choice for the size of the new table is:

𝑁𝑒𝑤	𝑆𝑖𝑧𝑒 = 𝐹𝑖𝑟𝑠𝑡	𝑃𝑟𝑖𝑚𝑒 > 2	 ∗ 𝑂𝑙𝑑	𝑆𝑖𝑧𝑒

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Rehashing

118

Rehashing is the process of transferring items into a bigger table (i.e., array) when load factor (λ)
exceeds a particular value (usually half the size). In other words, we build/create another table and
transfer items to it!

A good choice for the size of the new table is:

𝑁𝑒𝑤	𝑆𝑖𝑧𝑒 = 𝐹𝑖𝑟𝑠𝑡	𝑃𝑟𝑖𝑚𝑒 > 2	 ∗ 𝑂𝑙𝑑	𝑆𝑖𝑧𝑒

When load factor (λ) gets large, number of collisions increases (number of probes increase), so inserting new
items/searching for items takes longer time. Moreover, inserting might fail!

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Rehashing

119

Rehashing is the process of transferring items into a bigger table (i.e., array) when load factor (λ)
exceeds a particular value (usually half the size). In other words, we build/create another table and
transfer items to it!

A good choice for the size of the new table is:

𝑁𝑒𝑤	𝑆𝑖𝑧𝑒 = 𝐹𝑖𝑟𝑠𝑡	𝑃𝑟𝑖𝑚𝑒 > 2	 ∗ 𝑂𝑙𝑑	𝑆𝑖𝑧𝑒

When load factor (λ) gets large, number of collisions increases (number of probes increase), so inserting new
items/searching for items takes longer time. Moreover, inserting might fail!

We usually rehash when:

• First insert fails.
• Table is half full (λ = 0.5), in other words, when load factor is 50%
• When load factor is 75%

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Rehashing

120

0 4

1

2 2

3

4 9

Assume we are using Linear Probing with ℎ 𝑥 = 𝑥	%	5

Insert 9, 4, 2

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Rehashing

121

0 4

1

2 2

3

4 9

Assume we are using Linear Probing with ℎ 𝑥 = 𝑥	%	5

Insert 9, 4, 2

0

1

2

3

4

5

6

7

8

9

10

𝑁𝑒𝑤	𝑆𝑖𝑧𝑒 = 𝐹𝑖𝑟𝑠𝑡	𝑃𝑟𝑖𝑚𝑒 > 2	 ∗ 𝑂𝑙𝑑	𝑆𝑖𝑧𝑒

𝑁𝑒𝑤	𝑆𝑖𝑧𝑒 = 𝐹𝑖𝑟𝑠𝑡	𝑃𝑟𝑖𝑚𝑒 > 2	 ∗ 5

𝑁𝑒𝑤	𝑆𝑖𝑧𝑒 = 𝐹𝑖𝑟𝑠𝑡	𝑃𝑟𝑖𝑚𝑒 > 10

𝑁𝑒𝑤	𝑆𝑖𝑧𝑒 = 11

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Rehashing

122

0 4

1

2 2

3

4 9

Assume we are using Linear Probing with ℎ 𝑥 = 𝑥	%	5

Insert 9, 4, 2

0

1

2 2

3

4 4

5

6

7

8

9 9

10

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Key Space

123

What if input is String and not integers?

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Key Space

124

What if input is String and not integers?

1. ℎ 𝑥 = ∑$%!&'"𝐴𝑆𝐶𝐼𝐼 𝑥$ %𝑁

tea, eat and all anagrams will cause collisions

2. ℎ 𝑥 = ∑$%!# 𝐴𝑆𝐶𝐼𝐼 𝑥$ 	 ∗ 27$ %𝑁

tea, team and all words with the same 3 first character's cause collisions

3. ℎ 𝑥 = ∑$%!&'"𝐴𝑆𝐶𝐼𝐼 𝑥$ ∗ 32$ %𝑁

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Key Space

125

int h1(String s) {
 int answer = 0;
 for (int i = 0; i < s.length(); i++) {
 answer += s.charAt(i);
 }

 return answer;
}

int h2(String s) {
 int answer = 0;
 for (int i = 0; i <= 2 && i < s.length(); i++) {
 answer += s.charAt(i) * (int)Math.pow(27, i);
 }

 return answer;
}

int h3(String s) {
 int answer = 0;
 for (int i = 0; i < s.length(); i++) {
 answer += s.charAt(i) * (int)Math.pow(32, i);
 }

 return answer;
}

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Key Space

126

How to make 32$ better and why we choose it?

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Key Space

127

How to make 32$ better and why we choose it?

𝑦 = 𝑥 ∗ 2& = 𝑥 ≪ 𝑛 (Shift left)

 𝑦 = (
#!
= 𝑥 ≫ 𝑛 (Shift Right)

32$ = 2)$ = 2 ≪ 5𝑖 (This is very quick!)

ℎ 𝑥 = `
$%!

&'"

𝐴𝑆𝐶𝐼𝐼 𝑥$ ∗ 32$ %𝑁

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Key Space

128

Assume we have “Milk”

ℎ 𝑥 = `
$%!

&'"

𝐴𝑆𝐶𝐼𝐼 𝑥$ ∗ 32$ %𝑁

ℎ 𝑥 = 𝐴𝑆𝐶𝐼𝐼 𝑀 ∗ 32! + 𝐴𝑆𝐶𝐼𝐼 𝑖 ∗ 32" + 𝐴𝑆𝐶𝐼𝐼 𝑙 ∗ 32# + 𝐴𝑆𝐶𝐼𝐼 𝑘 ∗ 32*

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Key Space

129

Assume we have “Milk”

ℎ 𝑥 = `
$%!

&'"

𝐴𝑆𝐶𝐼𝐼 𝑥$ ∗ 32$ %𝑁

ℎ 𝑥 = 𝐴𝑆𝐶𝐼𝐼 𝑀 ∗ 32! + 𝐴𝑆𝐶𝐼𝐼 𝑖 ∗ 32" + 𝐴𝑆𝐶𝐼𝐼 𝑙 ∗ 32# + 𝐴𝑆𝐶𝐼𝐼 𝑘 ∗ 32*

Horner’s Rule

𝑎𝑥) + 𝑏𝑥+ + 𝑐𝑥* + 𝑑𝑥# + 𝑒𝑥 + 𝑓

((𝑎𝑥 + 𝑏 𝑥 + 𝑐 𝑥 + 𝑑)𝑥 + 𝑒)𝑥 + 𝑓

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Key Space

130

Assume we have “Milk”

ℎ 𝑥 = `
$%!

&'"

𝐴𝑆𝐶𝐼𝐼 𝑥$ ∗ 32$ %𝑁

int hash(String s) {
 int answer = 0;
 for (int i = 0; i < s.length(); i++) {
 answer = (answer * 32) + s.charAt(i);
 }

 return answer;
}

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Key Space

131

Assume we have “Milk”

ℎ 𝑥 = `
$%!

&'"

𝐴𝑆𝐶𝐼𝐼 𝑥$ ∗ 32$ %𝑁

int hash(String s) {
 int answer = 0;
 for (int i = 0; i < s.length(); i++) {
 answer = (answer << 5) + s.charAt(i);
 }

 return answer;
}

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing - Key Space

132

Any Questions?

Uploaded By: anonymousSTUDENTS-HUB.com

