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Hashing (Properties)

1. Constant time access O(1). Or almost constant depending on the implementation!
Depending on the implementation this can grow to O(logn) or O(n)!

2. Hash Table: is an array of fixed size n (usually n is a prime).

3. General Idea is to map a key (i.e., our object) to an index and insert it into the table!
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Hashing (Example)

Assume Table size is 7.

Input Space

Hash Function » QOutput

(Key Space)

ol W IN =L O

Hash Table
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Hashing (Example)

Assume Table size is 7.

“Hello World!”

Input Space

» Qutput

(Key Space)

ol W IN =L O

Hash Table
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Hashing (Example)

Assume Table size is 7.

“Hello World!”

Input Space

» Qutput

(Key Space)

ol W IN =L O

Hash Table
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Hashing (Example)

Assume Table size is 7.

0
“Hello World!” 1
2 2 | Hello World!

Input Space » Output 3
(Key Space) 4
5

6

Hash Table
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Hashing (Example)

Assume Table size is 7.

0
“Hello World!” 1
2 2 | Hello World!

Input Space » Output 3
(Key Space) 4
5

6

Hash Table
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Hashing (Example)

Assume Table size is 7.

0
“Hello World!” 1
) 2 Hello World!

Input Space » Output 3 Banana
(Key Space) 3 1
5
6

Hash Table
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Hashing (Definitions)

1. Constant time access O(1). Or almost constant depending on the implementation!
Depending on the implementation this can grow to O(logn) or O(n)!

0
2. Hash Table: is an array of fixed size n (usually n is a prime). 1
3. General Idea is to map a key to an index and insert it into the table!
4. Hash Function: is a special function than maps our element to another value.
In a hash table, hash function will map the input into a value in the range
[0—n). FromOto (n-1) -1
5. Hash Function in general maps values from one range (big) to another (small). Hash Table

One way to bound its values into [0 - n-1] is to use mod!

X % n will always produce values in the range [0 - n-1]
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Hashing (Hash Function)

1. Don’t use the element directly (even if it’s an integer).
2. Map the element using the hash function into the range [0 - n-1] 0

3. In other words, given an array of size n, we use a hash function h(k) to map
Input x into some index in the array!

n-1

Hash Table
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Hashing (Hash Function)

1. Don’t use the element directly (even if it’s an integer).
2. Map the element using the hash function into the range [0 - n-1] 0

3. In other words, given an array of size n, we use a hash function h(k) to map
Input x into some index in the array!

4. Mapping is not unique and different inputs can map to the same index!

n-1

Hash Table
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Hashing (Hash Function)

1. Don’t use the element directly (even if it’s an integer).
2. Map the element using the hash function into the range [0 - n-1] 0

3. In other words, given an array of size n, we use a hash function h(k) to map
Input x into some index in the array!

4. Mapping is not unique and different inputs can map to the same index!
5. Good hash functions produce unique output (most of the time!). -1

Hash Table
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Hashing (Hash Function)

1. Don’t use the element directly (even if it’s an integer).
2. Map the element using the hash function into the range [0 - n-1] 0

3. In other words, given an array of size n, we use a hash function h(k) to map
Input x into some index in the array!

4. Mapping is not unique and different inputs can map to the same index!
5. Good hash functions produce unique output (most of the time!). -1

6. When two inputs are mapped into the same output (same index) Hash Table
we call that a Collision.
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Hashing

 Hash an input (any input of any type) and produce an index as an output!

n-1

Hash Table
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Hashing

 Hash an input (any input of any type) and produce an index as an output!

 If the hash function is good with unique output this will 0
give O(1) access time. Which is a great improvement over O(logn). 1
n-1

Hash Table
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Hashing

 Hash an input (any input of any type) and produce an index as an output!

 If the hash function is good with unique output this will 0
give O(1) access time. Which is a great improvement over O(logn). 1

« The main challenge is to find a good hashing function and storage strategy.

n-1

Hash Table
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Hashing

 Hash an input (any input of any type) and produce an index as an output!

 If the hash function is good with unique output this will 0
give O(1) access time. Which is a great improvement over O(logn). 1

« The main challenge is to find a good hashing function and storage strategy.
 Space (We want to utilize the array to its fullest)
 Collisions and unigueness of the output. -1

*  Running time of the hash function itself! Hash Table
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Example

« Key Space (i.e., Input Space) is integers.

 Table Size (i.e., n) is 10.

* Hash Function is the module operator (%).
h(x) =x%n=x%10

e  We want to insert the following numbers:

15,17, 229, 11, 320, 353

O (00 N ol | W IN|F-|[O

Hash Table
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Example

Insert 15, 17, 229, 11, 320, 353

O (00 N ol | W IN|F-|[O

Hash Table
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Example

l 0
Insert 15, 17, 229, 11, 320, 353 1
2
3
h(15) = 15%10 = 5 !
5 15
6
7
8
9
Hash Table
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Example

1 0
Insert 15, 17, 229, 11, 320, 353 1
2
3
h(17) = 17 % 10 = 7 4
5 15
6
7 17
8
9
Hash Table
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Example

l 0
Insert 15, 17, 229, 11, 320, 353 1
2
3
h(229) = 229 % 10 = 9 .
5 15
6
7 17
8
9 229
Hash Table
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Example

| 5
Insert 15, 17, 229, 11, 320, 353 1 11
2
3
h(11) = 11 %10 = 1 4
5 15
6
7 17
8
9 229
Hash Table
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Example

l 0 320
Insert 15, 17, 229, 11, 320, 353 1 11
2
3
h(320) = 320 % 10 = 0 N
5 15
6
7 17
8
9 229
Hash Table
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Example

320
11

l

Insert 15, 17, 229, 11, 320, 353

353

h(353) = 353 % 10 = 3
15

17

O (00 N ol | W IN|F-|[O

229

Hash Table
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Example

320
11

l

Insert 15, 17, 229, 11, 320, 353

353

h(353) = 353 % 10 = 3

15

17

O (00 N ol | W IN|F-|[O

229

. _ . Hash Table
What will happen if we try to insert (320, 110, 10, 2000)
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Example

320
11

l

Insert 15, 17, 229, 11, 320, 353

353

h(353) = 353 % 10 = 3

15

17

O (00 N ol | W IN|F-|[O

229

. _ . Hash Table
What will happen if we try to insert (320, 110, 10, 2000)

All of them will map to 0! (Collisions)
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Hashing - Collisions

0
» Collisions happen when multiple keys (i.e., items are mapped to the same value) 0
h(x) =x%10 2
h(10) =10% 10 =0 3
h(320) =320%10=0
h(1700) = 1700 % 10 = 0 .
5
* The main issue is that we can’t store multiple items in the same cell (i.e., bucket) 6
* Our choice of the hash function is what determines the number of collisions. 7
8
* Choosing a bad hash function will give lots of collisions. 9
e Even good hash functions will produce some collisions. Hash Table

* We need to handle collisions even if our hash function is almost perfect (very rare collisions).
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Hashing - Collisions

We have two main ways to deal with collisions:

1. Open Hashing (Separate Chaining): Each cell/bucket in the table is a linked list.

2. Closed Hashing (Open Addressing): We recompute the hash value according to a rule.

1. Linear Probing
2. Quadratic Probing
3. Double Hashing

O (00 N ol | W IN|F-|[O

Hash Table
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Hashing - Open Hashing (Separate Chaining)

* Keep a list of keys/items that map into the same value! (Array of linked lists)
* Buckets point to the first element.

e New elements are inserted to the end of the list.

* Advantages (Pros)
* Better space utilization for large number of items.
e Simple collision handling - Just append or search the list.
* We can store more items than the hash table size (overflow).

* Disadvantages (Cons)
* If we have a bad hash function (lots of collisions) the worst cast running time.
Would increase to O(n). In other words, almost all elements will be in a single bucket!
Do we use single or double linked lists?

* Bad Cache performance (due to implementation of linked list).
e Difficulty in rehashing (We will talk about this later!)
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Hashing - Open Hashing (Separate Chaining)

« Key Space (i.e., Input Space) is integers. 0
1
 Table Size (i.e., n) is 10. )
* Hash Function is the module operator (%). 3
h(x) =x%n=x%10 4
5
*  We want to insert the following numbers: 6
7
20, 15, 11, 35,12,40, 64,4, 81,9 o
9

Hash Table
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Hashing - Open Hashing (Separate Chaining)

Insert 20, 15, 11, 35, 12,40, 64, 4,81, 9 0
‘ 1
2
h(20) =20%10=0 3
4
5
6
7
8
9
Hash Table
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Hashing - Open Hashing (Separate Chaining)

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9 0 —>m-
‘ 1
2
h(20) =20%10=0 3
4
5
6
7
8
9
Hash Table
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Hashing - Open Hashing (Separate Chaining)

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9 0 —>m-
‘ 1
2
h(15) =15% 10 =5 3
4
5
6
7
8
9
Hash Table
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Hashing - Open Hashing (Separate Chaining)

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9 0 —>m-
l 1
2
h(15) =15% 10 =5 3
4
5
6
7
8
9
Hash Table
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Hashing - Open Hashing (Separate Chaining)

Insert 20, 15, 11, 35, 12,40, 64, 4,81, 9 0 _’m-
‘ 1
2
h(11) =11% 10 =1 3
4
5
6
7
8
9
Hash Table
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Hashing - Open Hashing (Separate Chaining)

Insert 20, 15, 11, 35, 12,40, 64,4, 81,9 0 _’m-
| R
2
h(11) =11% 10 =1 3
4
5 —’E-
6
7
8
9
Hash Table
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Hashing - Open Hashing (Separate Chaining)

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9 0 —>m-
| L
2
h(35) =35%10 =5 3
4
5 —’E-
6
7
8
9
Hash Table
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Hashing - Open Hashing (Separate Chaining)

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9 0 _’m-
| L[ .
2
h(35) =35%10=75 3
4
5 ——Ell—EI
6
7
8
9
Hash Table
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Hashing - Open Hashing (Separate Chaining)

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9 0 _’m-
| L[ .
2
h(12) =12% 10 =2 3
4
5 ——Ell—EI
6
7
8
9
Hash Table
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Hashing - Open Hashing (Separate Chaining)

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9 0 _’m-
| D
2 | -
h(12) =12% 10 =2 3
4
5 ——Ell—EI
6
7
8
9
Hash Table
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Hashing - Open Hashing (Separate Chaining)

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9 0 _’m-
| D
2 | -
h(40) =40%10=0 3
4
5 ——Ell—EI
6
7
8
9
Hash Table
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Hashing - Open Hashing (Separate Chaining)

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9 0 _’m-_’m-
| .
2 | -
h(40) =40%10=0 3
4
5 ——Ell—EI
6
7
8
9
Hash Table

STUDENTS-HUB.com Uploaded By: anofiymous



Hashing - Open Hashing (Separate Chaining)

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9 0 —>m-—>m-
| [ .
: |
h(64) = 64 % 10 = 4 3
4
5 ——ElI—E1
6
7
8
9
Hash Table
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Hashing - Open Hashing (Separate Chaining)

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81,9 0 —>m-—’m-
| L —
2 | —
h(64) = 64 % 10 = 4 3
4 _’m-
5 _’-_’E-
6
7
8
9
Hash Table
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Hashing - Open Hashing (Separate Chaining)

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81,9 0 —>m-—’m-
| L —
2 | —
h(4) =4% 10 =4 3
4 _’m-
5 _’-_’E-
6
7
8
9
Hash Table
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Hashing - Open Hashing (Separate Chaining)

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81,9 0 —>m-—’m-
| L —
2 | —
h(4) =4% 10 =4 3
4 ——E1I— KNI
5 _’-_’E-
6
7
8
9
Hash Table
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Hashing - Open Hashing (Separate Chaining)

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81,9 0 —>m-—’m-
| L —
2 | —
h(81) =81%10=1 3
4 ——E1I— KNI
5 _’-_’E-
6
7
8
9
Hash Table
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Hashing - Open Hashing (Separate Chaining)

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81,9 0 —>m-—’m-
| 1|

2 | —

h(81) =81%10=1 3
4 ——E1I— KNI
5 _’-_’E-
6
7
8
9
Hash Table
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Hashing - Open Hashing (Separate Chaining)

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9 0 —m-—m-
| L —
: |
h(9)=9%10=9 3
4 —E1I—
5 _’-_’E-
6
7
8
9
Hash Table
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Hashing - Open Hashing (Separate Chaining)

Insert 20, 15, 11, 35, 12, 40, 64, 4, 81, 9 0 _’m-_’m-
T I .
2 —— 1
3
4 ——E1I— K
5 —— Bl —EI
6
7
8
9 —— K
Hash Table
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Hashing - Closed Hashing (Open Addressing)

We will explain three common strategies:
1. Linear Probing

2. Quadratic Probing
3. Double hashing
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Hashing - Closed Hashing (Open Addressing)
Linear Probing

We resolve conflicts by sequentially scanning an array (with wraparound) until we find an empty cell.

Example: Assume hash function is given by
h(x) = x % 10
Then when a collision occurs, we apply the following
b (x) = (h() + (D)%,
Usually in linear probing, we use

STUDENTS-HUB.com f(i) =i, i>0
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Hashing - Closed Hashing (Open Addressing)
Linear Probing

h(x) = (h(x) + 0)% n
hi(x) = (h(x) + D%n

h?(x) = (h(x) + 2)%n

hi(x) = (h(x) + )% n
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Hashing - Closed Hashing (Open Addressing)
Linear Probing

« Key Space (i.e., Input Space) is integers.

 Table Size (i.e., n) is 10.

 Hash Function is the module operator (%).
h(x) =x%n=x%10

e  We want to insert the following numbers:

89, 18, 49, 58, 69

O (00 N ol W |IN|F-|[O

Hash Table
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Hashing - Closed Hashing (Open Addressing)
Linear Probing

Insert 89, 18, 49, 58, 69

O (00 N ol W |IN|F-|[O

Hash Table
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Hashing - Closed Hashing (Open Addressing)
Linear Probing

Insert 89, 18, 49, 58, 69

|

h(89) =89 % 10 =9

O (00 N ol W |IN|F-|[O

Hash Table
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Hashing - Closed Hashing (Open Addressing)
Linear Probing

Insert 89, 18, 49, 58, 69

|

h(89) =89 % 10 =9

O (00 N ol W |IN|F-|[O

89

Hash Table
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Hashing - Closed Hashing (Open Addressing)
Linear Probing

0
Insert 89, 18, 49, 58, 69 1
2
| :
4
h(18) = 18 % 10 = 8 >
6
7
8

9 89

Hash Table
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Hashing - Closed Hashing (Open Addressing)
Linear Probing

0
Insert 89, 18, 49, 58, 69 1
2
| :
4
h(18) = 18 % 10 = 8 >
6
7

8 18

9 89

Hash Table
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Hashing - Closed Hashing (Open Addressing)

Insert 89, 18, 49, 58, 69

|

h(49) =49% 10=9

Collision!

STUDENTS-HUB.com

Linear Probing

0
1
2
3
4
5
6
7
8 18
9 89
Hash Table
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Hashing - Closed Hashing (Open Addressing)
Linear Probing

0

Insert 89, 18, 49, 58, 69 1

‘ 2

3

4

h(49) =499% 10 =9 >

6

Collision! 7
8 18
= (h(49)+1D)%10=09+1)%10=10%10=0 5 Tas

Hash Table
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Hashing - Closed Hashing (Open Addressing)
Linear Probing

0 49
Insert 89, 18, 49, 58, 69 1
‘ 2
3
4
h(49) =499% 10 =9 >
6
Collision! 7
8 18
= (h(49)+1D)%10=09+1)%10=10%10=0 5 Tas
Hash Table
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Hashing - Closed Hashing (Open Addressing)
Linear Probing

0 49
Insert 89, 18, 49, 58, 69 1
‘ 2
3
4
h(58) =58% 10 = 8 >
6
Collision! 7
8 18
9 89
Hash Table
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Hashing - Closed Hashing (Open Addressing)
Linear Probing

0 49
Insert 89, 18, 49, 58, 69 1
‘ 2
3
4
h(58) =58% 10 = 8 >
6
Collision! 7
8 18
> MG+ %10=B8+1)%10=9%10=9 ¥ 5 Tas
Hash Table
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Hashing - Closed Hashing (Open Addressing)
Linear Probing

0 49

Insert 89, 18, 49, 58, 69 1

‘ 2

3

4

h(58) =58% 10 = 8 >

6

Collision! 7
8 18

= (h(58)+1) % 10=(8+1)% 10=9%10=9 &
= (h(58) +2)% 10 = (8+2)% 10 =10% 10 = 0 ¢ S
Hash Table
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Hashing - Closed Hashing (Open Addressing)
Linear Probing

0 49
Insert 89, 18, 49, 58, 69 1
‘ 2
3
4
h(58) =58% 10 = 8 >
6
Collision! 7
8 18
= (h(58)+1)%10=(8+1)%10=9%10=9 R
= (h(58)+2) %10 = (8+2)%10=10%10 = 0 ¢ S
= (h(58) +3) % 10 = (8 +3)% 10 = 11 % 10 = 1 Hash Table
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Hashing - Closed Hashing (Open Addressing)
Linear Probing

0 49
Insert 89, 18, 49, 58, 69 1 58
‘ 2
3
4
h(58) =58% 10 = 8 >
6
Collision! v
8 18
= (h(58)+1)%10=(8+1)%10=9%10=9 ¥
= (h(58) +2) %10 = (8 +2)% 10 =10%10 =0 3% 2|2
= (h(58)+3)%10=(8+3)%10=11%10=1 Hash Table
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Hashing - Closed Hashing (Open Addressing)
Linear Probing

0 49
Insert 89, 18, 49, 58, 69 1 58
‘ 2
3
4
h(69) =69% 10 =9 >
6
Collision! v
8 18
9 89
Hash Table
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Hashing - Closed Hashing (Open Addressing)
Linear Probing

0 49
Insert 89, 18, 49, 58, 69 1 58
‘ 2
3
4
h(69) =69% 10 =9 >
6
Collision! v
8 18
> Mh6)+1)%10=09+1D)%10=10%10=0% 5 29
Hash Table
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Hashing - Closed Hashing (Open Addressing)
Linear Probing

0 |49
Insert 89, 18, 49, 58, 69 1 58
‘ 2
3
4
h(69) =69% 10 =9 >
6
Collision! v
8 |18
> Mh6)+1)%10=09+1D)%10=10%10=0%
> (69 +2)%10=(9+2)%10=11%10=1 % 9 |89
Hash Table
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Hashing - Closed Hashing (Open Addressing)
Linear Probing

0 49
Insert 89, 18, 49, 58, 69 1 58
‘ 2
3
4
h(69) =69% 10 =9 >
6
Collision! v
8 18
= (h(69)+1)%10=(9+1)%10=10%10=03¢
> (69 +2)%10=(9+2)%10=11%10=1 % 9 |89
= (h(69)+3)%10=(94+3)% 10 =12% 10 = 2 Hash Table
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Hashing - Closed Hashing (Open Addressing)
Linear Probing

0 |49
Insert 89, 18, 49, 58, 69 1 58
‘ 2 |69
3
4
h(69) =69% 10 =9 >
6
Collision! v
8 |18
= (h(69)+1D)%10=09+1D)%10=10%10=0%
> (69 +2)%10=(9+2)%10=11%10=1 % 9 |89
= (h(69)+3)%10=09+3)%10=12%10 = 2 Hash Table
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Hashing - Closed Hashing (Open Addressing)
Linear Probing

Insert 89, 18, 49, 58, 69

0 49 49 49
1 58 58
2 69
3
4
5
6
7
8 18 18 18 18
9 |89 89 89 89 89
STUDENPSS-f9B comlinsert 18 Insert 49 Insert 58 Insert 69 Uploaded By: anoh‘*ymous



Hashing - Closed Hashing (Open Addressing)
Linear Probing

Advantages (Pros)

1. Simplicity: Very simple to implement.

2. Very Efficient for cache use (Iltems are near each other)
3. We don’t need additional memory.

4. Guaranteed to find a spot.

5. We can mark cells as deleted and reuse them!
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Hashing - Closed Hashing (Open Addressing)
Linear Probing

Disadvantages (Cons)

1. Clustering: Data is stored after each other (bad for search performance).
2. Not good for large amount of data.

3. Datais not distributed uniformly to buckets.

4. Delete performance and operation can take a hit.

5. If the hash function is bad it can result in even worse running time!
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Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

We resolve conflicts by sequentially scanning an array (with wraparound) until we find an empty cell.

Example: Assume hash function is given by
h(x) = x % 10
Then when a collision occurs, we apply the following

h'(x) = (h(x) +i®)%n, =0
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Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

h(x) = (h(x) + 09)% n
hi(x) = (h(x) + 1)%n

h?(x) = (h(x) + 29)%n

hi(x) = (h(x) +i>)%n
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Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

« Key Space (i.e., Input Space) is integers.

 Table Size (i.e., n) is 10.

 Hash Function is the module operator (%).
h(x) =x%n=x%10

e  We want to insert the following numbers:

89, 18, 49, 58, 69

O (00 N ol W |IN|F-|[O

Hash Table
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Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

Insert 89, 18, 49, 58, 69

O (00 N ol W |IN|F-|[O

Hash Table
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Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

Insert 89, 18, 49, 58, 69

|

h(89) =89%10=9

O (00 N ol W |IN|F-|[O

Hash Table
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Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

Insert 89, 18, 49, 58, 69

|

h(89) =89%10=9

O (00 N ol W |IN|F-|[O

89

Hash Table
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Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

0
Insert 89, 18, 49, 58, 69 1
2
| :
4
h(18) = 18 % 10 = 8 >
6
7
8

9 89

Hash Table
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Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

0
Insert 89, 18, 49, 58, 69 1
2
| :
4
h(18) = 18 % 10 = 8 >
6
7

8 18

9 89

Hash Table
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Hashing - Closed Hashing (Open Addressing)

Insert 89, 18, 49, 58, 69

|

h(49) =49% 10=9

Collision!

STUDENTS-HUB.com

Quadratic Probing

0
1
2
3
4
5
6
7
8 18
9 89
Hash Table
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Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

0

Insert 89, 18, 49, 58, 69 1

‘ 2

3

4

h(49) =49%10 =9 >

6

Collision! 7
8 18
= (h(49) +1)%10= 9+ 1% 10=10% 10 =0 -

Hash Table
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Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

0 49
Insert 89, 18, 49, 58, 69 1
‘ 2
3
4
h(49) =49% 10 =9 >
6
Collision! 7
8 18
= (h(49) +1)%10 =9+ 1D%10=10%10=0 -
Hash Table
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Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

0 49
Insert 89, 18, 49, 58, 69 1
‘ 2
3
4
h(58) =58% 10 = 8 >
6
Collision! 7
8 18
9 89
Hash Table
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Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

0 49
Insert 89, 18, 49, 58, 69 1
‘ 2
3
4
h(58) =58% 10 = 8 5
6
Collision! 7
8 18
= (h(58)+ 1) % 10=8+1)%10=9%10=9% A
Hash Table
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Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

0 49

Insert 89, 18, 49, 58, 69 1

‘ 2

3

4

h(58) =58% 10 = 8 >

6

Collision! 7
8 18

= (hG8)+1)%10=B+1D%10=9%10=9%
= (h(58) +22) % 10 = (8 + 4)% 10 = 12 % 10 = 2 S
Hash Table
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Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

0 49

Insert 89, 18, 49, 58, 69 1
‘ 2 58

3

4

h(58) =58% 10 = 8 >

6

Collision! 7
8 18

= (hG8)+1)%10=B+1D%10=9%10=9%
= (h(58) +22) % 10 = (8 + 4)% 10 = 12 % 10 = 2 S
Hash Table
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Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

0 49
Insert 89, 18, 49, 58, 69 1
I 2 58
3
4
h(69) =69% 10 =9 >
6
Collision! 7
8 18
9 89
Hash Table

STUDENTS-HUB.com Uploaded By: anofiymous



Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

0 49

Insert 89, 18, 49, 58, 69 1
‘ 2 58

3

4

h(69) =69% 10 =9 >

6

Collision! 7
8 18
= (h(69)+1) % 10=(09+1)% 10 =10 % 10 = 03¢ A

Hash Table
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Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

0 49

Insert 89, 18, 49, 58, 69 1
‘ 2 |58

3

4

h(69) =69% 10 =9 >

6

Collision! 7
8 18

= (h(69)+1) % 10=(09+1)% 10 =10 % 10 = 03¢
= (h(69) +22) %10 = (9 +4)% 10 = 13 % 10 = 3 S
Hash Table
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Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

0 49

Insert 89, 18, 49, 58, 69 1
‘ 2 |58
3 69

4

h(69) =69% 10 =9 >

6

Collision! 7
8 18

= (h(69)+1) % 10=(09+1)% 10 =10 % 10 = 03¢
= (h(69) +22) %10 = (9 +4)% 10 = 13 % 10 = 3 S
Hash Table
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Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

0 49
1
Rule 2 |58
3 69
If quadratic probing is used, and the table size is prime, then a 4
new element can always be inserted if the table is at least half
empty. 5
6
Table Size = the first prime >2 * n .
h(x) = x % TableSize 8 18
9 89
Proof
Hash Table

Refer to the book
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Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

Counter Example
« Key Space (i.e., Input Space) is integers.
 Table Size (i.e., n) is 16.

 Hash Function is the module operator (%).
h(x) =x%n=x%16

e  We want to insert the following numbers:

0,1,4,9, 16
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Hashing - Closed Hashing (Open Addressing)
Quadratic Probing

Insert O, 1, 4,9, 16 . h(16) =16% 16 =0
h(16) =(0+1)% 16 =1
« h(0)=0%16=0 « h(16)=(0+29)% 16 =4
« h(16)=(0+3>)%16=9
- h(1)=1%16=1 « h(16)=(0+4)%16=0
« h(16)=(0+5%)%16=9
« h(4)=4%16 =4 « h(16)=(0+6%) %16 =4

* h(9)=9%16=9
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Hashing - Closed Hashing (Open Addressing)
Double Hashing

We resolve conflicts by sequentially scanning an array (with wraparound) until we find an empty cell.
Example: Assume hash functions are given by

hl(X) =x % 10
h,(x) =7 — (x%7)

Then when a collision occurs, we apply the following
h'(x) = (hiy(x) +i=*h, (x))%n, 1 =0
Good choice for h, is to choose a prime R < Table Size

h,(x) =R —(x%R)
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Hashing - Closed Hashing (Open Addressing)
Double Hashing

h%(x) = (hy(x) + 0 % hy(x))% n
h*(x) = (hy(x) + 1 x hy(x))%

h?(x) = (hy(x) + 2 * hy(x))% n

hi(x) = (hy(x) + i % hy(x))% 1
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Hashing - Closed Hashing (Open Addressing)
Double Hashing

0
« Key Space (i.e., Input Space) is integers. 1
2
 Table Size (i.e., n) is 10. 3
) 4
 Hash Functions are:
hi(x) =x%n=x%10 >
6
hy(x) =7 — (x%7) 7
8
* We want to insert the following numbers: ]
89, 18, 49, 58, 69 Hash Table
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Hashing - Closed Hashing (Open Addressing)
Double Hashing

Insert 89, 18, 49, 58, 69

O (00 N ol W |IN|F-|[O

Hash Table
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Hashing - Closed Hashing (Open Addressing)
Double Hashing

Insert 89, 18, 49, 58, 69

|

h(89) =89 % 10 =9

O (00 N ol W |IN|F-|[O

Hash Table
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Hashing - Closed Hashing (Open Addressing)
Double Hashing

Insert 89, 18, 49, 58, 69

|

h(89) =89 % 10 =9

O (00 N ol W |IN|F-|[O

89

Hash Table
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Hashing - Closed Hashing (Open Addressing)
Double Hashing

0
Insert 89, 18, 49, 58, 69 1
2
| :
4
h(18) = 18 % 10 = 8 >
6
7
8

9 89

Hash Table
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Hashing - Closed Hashing (Open Addressing)
Double Hashing

0
Insert 89, 18, 49, 58, 69 1
2
| :
4
h(18) = 18 % 10 = 8 >
6
7

8 18

9 89

Hash Table
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Hashing - Closed Hashing (Open Addressing)

Insert 89, 18, 49, 58, 69

|

h(49) =49% 10=9

Collision!

STUDENTS-HUB.com

Double Hashing

0
1
2
3
4
5
6
7
8 18
9 89
Hash Table
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Hashing - Closed Hashing (Open Addressing)
Double Hashing

0
Insert 89, 18, 49, 58, 69 1
‘ 2
3
4
h(49) =499% 10 =9 >
6
Collision! 7
8 |18
= (hy(49) + 1% h,(49)%10 = 9+ (7—49% 7)% 10 = (9+7) % 10 = 6
9 |89
Hash Table
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Hashing - Closed Hashing (Open Addressing)
Double Hashing

0
Insert 89, 18, 49, 58, 69 1
‘ 2
3
4
h(49) =499% 10 =9 >
6 |49
Collision! 7
8 |18
= (hy(49) + 1% h,(49)%10 = 9+ (7—49% 7)% 10 = (9+7) % 10 = 6
9 |89
Hash Table
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Hashing - Closed Hashing (Open Addressing)
Double Hashing

0
Insert 89, 18, 49, 58, 69 1
‘ 2
3
4
h(58) =58% 10 = 8 >
6 49
Collision! 7
8 18
9 89
Hash Table
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Hashing - Closed Hashing (Open Addressing)
Double Hashing

0
Insert 89, 18, 49, 58, 69 1
‘ 2
3
4
h(58) =58% 10 = 8 5
6 49
Collision! 7
8 18
= (h,(58) + 1 % h,(58))%10 = (8 + (7 —58 % 7))% 10 = (8 + 5) % 10 = 3
9 89
Hash Table
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Hashing - Closed Hashing (Open Addressing)
Double Hashing

0
Insert 89, 18, 49, 58, 69 1
‘ 2
3 58
4
h(58) =58% 10 = 8 5
6 49
Collision! 7
8 18
= (h,(58) + 1 % h,(58))%10 = (8 + (7 —58 % 7))% 10 = (8 + 5) % 10 = 3
9 89
Hash Table
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Hashing - Closed Hashing (Open Addressing)
Double Hashing

0
Insert 89, 18, 49, 58, 69 1
‘ 2
3 58
4
h(69) =69% 10 =9 >
6 49
Collision! 7
8 18
9 89
Hash Table
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Hashing - Closed Hashing (Open Addressing)
Double Hashing

0
Insert 89, 18, 49, 58, 69 1
‘ 2
3 |58
4
h(69) =69% 10 =9 >
6 |49
Collision! 7
8 |18
= (hy(69) + 1% h,(69)%10= (9 + (7—69%7)% 10 = (9+1) % 10 = 0
9 |89
Hash Table
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Hashing - Closed Hashing (Open Addressing)
Double Hashing

0 |69
Insert 89, 18, 49, 58, 69 1
‘ 2
3 |58
4
h(69) =69% 10 =9 >
6 |49
Collision! 7
8 |18
= (hy(69) + 1% h,(69)%10= (9 + (7—69%7)% 10 = (9+1) % 10 = 0
9 |89
Hash Table
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Hashing - Load Factor

Let N = number of items we want to store in the table

N
Table Size

Load Factor (1) =

Example

Table Size =50, N=5thenA=0.1
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Hashing - Rehashing

Rehashing is the process of transferring items into a bigger table (i.e., array) when load factor (A)
exceeds a particular value (usually half the size). In other words, we build/create another table and

transfer items to it!
A good choice for the size of the new table is:

New Size = First Prime > 2 * 0ld Size
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Hashing - Rehashing

Rehashing is the process of transferring items into a bigger table (i.e., array) when load factor (A)
exceeds a particular value (usually half the size). In other words, we build/create another table and

transfer items to it!
A good choice for the size of the new table is:

New Size = First Prime > 2 * 0ld Size

When load factor (A) gets large, number of collisions increases (number of probes increase), so inserting new
items/searching for items takes longer time. Moreover, inserting might fail!
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Hashing - Rehashing

Rehashing is the process of transferring items into a bigger table (i.e., array) when load factor (A)
exceeds a particular value (usually half the size). In other words, we build/create another table and
transfer items to it!

A good choice for the size of the new table is:

New Size = First Prime > 2 * 0ld Size

When load factor (A) gets large, number of collisions increases (number of probes increase), so inserting new
items/searching for items takes longer time. Moreover, inserting might fail!

We usually rehash when:
* First insert fails.

e Table is half full (A =0.5), in other words, when load factor is 50%
* When load factor is 75%
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Hashing - Rehashing

Assume we are using Linear Probing with h(x) = x % 5

0 4

1

2 2

3

4 9
Insert 9, 4, 2
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Hashing - Rehashing

0
Assume we are using Linear Probing with h(x) = x % 5 1
2
0 4
3
1
; ; New Size = First Prime > 2 = 0ld Size 4
5
3 New Size = First Prime > 2 %5 c
4 9
New Size = First Prime > 10 7
8
New Size = 11
9
10
Insert 9, 4, 2
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Hashing - Rehashing

0
Assume we are using Linear Probing with h(x) = x % 5 1

2 2
0 4

3
1

4 4
2 2

5
3

6
4 9

7

8

9 9

10

Insert 9, 4, 2
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Hashing - Key Space

What if input is String and not integers?
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Hashing - Key Space

What if input is String and not integers?
1. h(x) = (X125 ASCII(x;))%N
tea, eat and all anagrams will cause collisions
2. h(x) = (X2, ASCI (x;) * 27" )%N
tea, team and all words with the same 3 first character's cause collisions

3. h(x) = (TP ASCII(x;) = 321)%N
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Hashing - Key Space

int h1(String s) { int h3(String s) {
int answer = 0; int answer = 0;
for (inti=0;i<s.length(); i++) { for (inti=0;i<s.length(); i++) {
answer += s.charAt(i); answer += s.charAt(i) * (int)Math.pow(32, i);
} }
return answer; return answer;
} }

int h2(String s) {
int answer = 0;
for (inti=0;i<=2 &&i<s.length(); i++) {
answer += s.charAt(i) * (int)Math.pow(27, i);
}

return answer;

}
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Hashing - Key Space

How to make 32! better and why we choose it?
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Hashing - Key Space

How to make 32! better and why we choose it?

y = x * 2" = x K n (Shift left)

X

y=m=X > n (Shift Right)

32! = 25! = 2 & 5i (This is very quick!)

h(x) = (2 ASCII(x;) * 32i> %N

1=0

STUDENTS-HUB.com
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Hashing - Key Space

Assume we have “Milk”

n-—1
h(x) = (Z ASCII(x;) * 32i> %N
=0

h(x) = ASCII(M) = 32° + ASCII(i) * 321 + ASCII(]) * 32% + ASCII(k) = 323
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Hashing - Key Space

Assume we have “Milk”

n-—1
h(x) = (Z ASCII(x;) * 32i> %N
=0

h(x) = ASCII(M) = 32° + ASCII(i) * 321 + ASCII(]) * 32% + ASCII(k) = 323
Horner’s Rule

ax®> + bx*+cx3+dx*+ex+f

((((ax + b)x + c)x +d)x+e)x+f
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Hashing - Key Space
Assume we have “Milk”

1=0

n-—1
h(x) = ( ASCII(x;) * 32i> %N

int hash(String s) {
int answer = 0;
for (inti=0;i<s.length(); i++) {
answer = (answer * 32) + s.charAt(i);

}

return answer;

}
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Hashing - Key Space
Assume we have “Milk”

1=0

n-—1
h(x) = ( ASCII(x;) * 32i> %N

int hash(String s) {
int answer = 0;
for (inti=0;i<s.length(); i++) {
answer = (answer << 5) + s.charAt(i);

}

return answer;

}
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Hashing - Key Space

Any Questions?
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