
ENCS2340 | Section 2 | Fall 2024/2025 Chapter 3-4 Extra Exercises - 01

 Show logic diagrams for implementing the logic circuit shown (<u>without any modification</u>) using each of the following:

a. NAND gates Only b. NOR gates Only

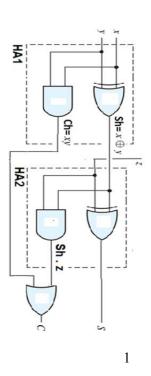
Assume that both the variables and their complements <u>are readily</u> <u>available</u>.

- 2. Given $F(w, x, y, z) = \Sigma(0, 2, 5, 7, 8, 10, 13, 15)$
 - a. Using K-maps, verify that the following are optimized SOP implementations of F and F'

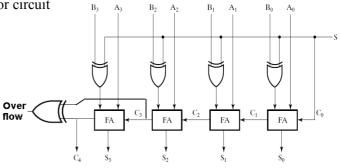
$$F = xz + \overline{x}\overline{z}$$
 , $\overline{F} = x\overline{z} + \overline{x}z$

b. Use the results in (a) to implement F in each of the following 2-level forms (Give a logic diagram in each case, assuming that both the variables and their complements <u>are readily available</u>):

i. NAND-AND	ii. NOR-OR
iii. NAND-NAND	iv. NOR-NOR
v. AND-OR	vi. AND-NOR
vii. OR-NAND	viii. OR-AND


- 3. We would like to design a combinational circuit that counts the number of 0s in a 4-bit binary input X (=X3X2X1X0). The output representing the number of 0s is Y (=...Y1Y0). X0 and Y0 are the LSBs.
 - a. Give the truth table for the circuit
 - b. Give an optimized SOP expression for each of circuit outputs using K-maps if required.
- 4. In the full adder (FA) circuit shown opposite, let propagation delays for the various gates be as follows: OR: 2.5 ns, AND: 2 ns, XOR: 5.5 ns.
 - 4.1. We would like to use the FA given as a building block to implement:
 - a. A 1-bit adder
 - b. A 2-bit ripple-carry adder

The two inputs to an adder are A = ...A1A0 and B = ...B1B0 and an input carry Cin = 0. The Outputs are sum S = ...S1S0 and an end carry Cout.


For each of the two cases above:

Mark the critical propagation delay path on a circuit diagram of the adder.Calculate the time delay for the adder in ns (based on the critical path).

4.2. Calculate the throughput rate (= number of additions per second) for the 2-bit adder.

5. For the 4-bit 2's complement adder/subtractor circuit shown opposite:

<u>Show all work required</u> to perform the following operations <u>in the 2's complement notation</u> **and then** complete the missing information in the table below:

	Inputs		Output		Overflow	Is the result	
	Α	В	Subtract/ $\overline{\text{Add}}$ [O/P = (A-B) or (A+B)]	C4	S (binary)	Occurred? (Yes/No)	correct? (Yes/No)
а	0010	0101	0				
b	1100	1011	1				
c	0111	1101	0				
d	1100	0110	1				

STUDENTS-HUB.com