
Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 09

Recursion

Loading…

Chapter Objectives:

1. How recursion is used as a problem solving tool.

2. Trace recursive functions.

3. Implement mathematical functions with recursive definitions as C functions.

4. Use recursion to solve problems involving arrays and strings.

5. Learn a recursive sort function

And more….

➢ A recursive function is:
● A function that calls itself.
● A function f1 is also recursive if it calls a function f2 , which under some

circumstances calls f1 (1).

➢ The ability to invoke itself enables a recursive function to be repeated with

different parameter values.

➢ You can use recursion as an alternative to iteration (looping) (2)

RECURSIVE
FUNCTIONS

Loading…

Problems that lend themselves to a recursive solution have the following characteristics:

● One or more simple cases of the problem have a straightforward, non-recursive
solution.

● The other cases can be redefined in terms of problems that are closer to the simple

cases.

● By applying this redefinition process every time the recursive function is called,
eventually the problem is reduced entirely to simple cases, which are relatively easy to
solve.

9.1 THE NATURE OF RECURSION

The recursive algorithms that we write will generally consist of an if statement with the
following form (1):

9.1 THE NATURE OF RECURSION

if this is a simple case
 solve it
else
 redefine the problem using recursion

● EXAMPLE 9.1: solve the problem of multiplying 6 by 3:

9.1 THE NATURE OF RECURSION

1. Multiply 6 by 2.
2. Add 6 to the result of problem 1.

1. Multiply 6 by 2.

 1.1 Multiply 6 by 1.

 1.2 Add 6 to the result of problem 1.1.

2. Add 6 to the result of problem 1.

9.1 THE NATURE OF RECURSION

● EXAMPLE 9.2, Figure 9.4

➢ Figure 9.5

9.2 TRACING A RECURSIVE FUNCTION

➢ EXAMPLE 9.3, Figure 9.6

TRACING A VOID FUNCTION THAT IS RECURSIVE

Loading…

TRACING A VOID FUNCTION THAT IS RECURSIVE

PARAMETER AND LOCAL VARIABLE
STACKS

PARAMETER AND LOCAL VARIABLE
STACKS

➢ Doing a trace by hand of multiple calls to a recursive function is helpful in
understanding how recursion works but less useful when trying to develop a recursive
algorithm.

➢ During algorithm development, it is best to trace a specific case (1)

➢ Then the hand trace can check whether this value is manipulated properly to produce

a correct function result for the case under consideration.

➢ The function can be made to trace itself by inserting debugging print statements
showing entry to and exit from the function. (2)

➢ FIGURE 9.9, p.531 (3)

WHEN AND HOW TO TRACE RECURSIVE
FUNCTIONS

➢ Example: factorial of a number n (n!).

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Factorial with recursion

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ 0! is 1 (1)

➢ n! is n X (n − 1)!, for n > 0

4! is 4 X 3!

4 X 3 X 2 X 1 = 24

Figure9.11

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ EXAMPLE 9.6: Finding the Greatest common divisor.

• The greatest common divisor of two integers is the largest integer that
divides them both evenly.

➢ Figure 9.14.

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Algorithm for finding gcd: (1)

o gcd(x , y) is y if y divides x evenly

o gcd(x , y) is gcd(y , remainder of x divided by y) otherwise

CASE STUDY (Homework)
P.538 – 544

Finding Capital Letters in a String &
Recursive Selection Sort

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ In general, if there are recursive and iterative solutions to the same problem, the
recursive solution will require more time and space because of the extra function
calls.

➢ Although recursion was not really needed to solve the simpler problems in this

section, it was extremely useful in formulating algorithms to problems.

➢ For certain problems, recursion leads naturally to solutions that are much easier to
read and understand than their iterative counterparts.

COMPARISON OF ITERATIVE AND RECURSIVE
FUNCTIONS

➢ The most common problem with a recursive function is that it may not terminate
properly. (1)

➢ Frequently, a run-time error message noting stack overflow or an access violation

is an indicator that a recursive function is not terminating.

➢ Make sure that you identify all simple cases and provide a terminating condition for
each one.

➢ Also, be sure that each recursive step redefines the problem in terms of arguments

that are closer to simple cases so that repeated recursive calls will eventually lead to
simple cases only.

9.7 COMMON PROGRAMMING
ERRORS

➢ The recopying of large arrays or other data structures can quickly consume all
available memory. (1)

➢ It is also a good idea to introduce a nonrecursive function to handle preliminaries

and call the recursive function when there is error checking. (2)

➢ Sometimes, it is difficult to observe the output produced when running recursive
functions that you have made self-tracing. (3)

9.7 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 09

Recursion

Loading…

Chapter Objectives:

1. How recursion is used as a problem solving tool.

2. Trace recursive functions.

3. Implement mathematical functions with recursive definitions as C functions.

4. Use recursion to solve problems involving arrays and strings.

5. Learn a recursive sort function

And more….

➢ A recursive function is:
● A function that calls itself.
● A function f1 is also recursive if it calls a function f2 , which under some

circumstances calls f1 (1).

➢ The ability to invoke itself enables a recursive function to be repeated with

different parameter values.

➢ You can use recursion as an alternative to iteration (looping) (2)

RECURSIVE
FUNCTIONS

Loading…

Problems that lend themselves to a recursive solution have the following characteristics:

● One or more simple cases of the problem have a straightforward, non-recursive
solution.

● The other cases can be redefined in terms of problems that are closer to the simple

cases.

● By applying this redefinition process every time the recursive function is called,
eventually the problem is reduced entirely to simple cases, which are relatively easy to
solve.

9.1 THE NATURE OF RECURSION

The recursive algorithms that we write will generally consist of an if statement with the
following form (1):

9.1 THE NATURE OF RECURSION

if this is a simple case
 solve it
else
 redefine the problem using recursion

● EXAMPLE 9.1: solve the problem of multiplying 6 by 3:

9.1 THE NATURE OF RECURSION

1. Multiply 6 by 2.
2. Add 6 to the result of problem 1.

1. Multiply 6 by 2.

 1.1 Multiply 6 by 1.

 1.2 Add 6 to the result of problem 1.1.

2. Add 6 to the result of problem 1.

9.1 THE NATURE OF RECURSION

● EXAMPLE 9.2, Figure 9.4

➢ Figure 9.5

9.2 TRACING A RECURSIVE FUNCTION

➢ EXAMPLE 9.3, Figure 9.6

TRACING A VOID FUNCTION THAT IS RECURSIVE

Loading…

TRACING A VOID FUNCTION THAT IS RECURSIVE

PARAMETER AND LOCAL VARIABLE
STACKS

PARAMETER AND LOCAL VARIABLE
STACKS

➢ Doing a trace by hand of multiple calls to a recursive function is helpful in
understanding how recursion works but less useful when trying to develop a recursive
algorithm.

➢ During algorithm development, it is best to trace a specific case (1)

➢ Then the hand trace can check whether this value is manipulated properly to produce

a correct function result for the case under consideration.

➢ The function can be made to trace itself by inserting debugging print statements
showing entry to and exit from the function. (2)

➢ FIGURE 9.9, p.531 (3)

WHEN AND HOW TO TRACE RECURSIVE
FUNCTIONS

➢ Example: factorial of a number n (n!).

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Factorial with recursion

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ 0! is 1 (1)

➢ n! is n X (n − 1)!, for n > 0

4! is 4 X 3!

4 X 3 X 2 X 1 = 24

Figure9.11

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ EXAMPLE 9.6: Finding the Greatest common divisor.

• The greatest common divisor of two integers is the largest integer that
divides them both evenly.

➢ Figure 9.14.

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Algorithm for finding gcd: (1)

o gcd(x , y) is y if y divides x evenly

o gcd(x , y) is gcd(y , remainder of x divided by y) otherwise

CASE STUDY (Homework)
P.538 – 544

Finding Capital Letters in a String &
Recursive Selection Sort

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ In general, if there are recursive and iterative solutions to the same problem, the
recursive solution will require more time and space because of the extra function
calls.

➢ Although recursion was not really needed to solve the simpler problems in this

section, it was extremely useful in formulating algorithms to problems.

➢ For certain problems, recursion leads naturally to solutions that are much easier to
read and understand than their iterative counterparts.

COMPARISON OF ITERATIVE AND RECURSIVE
FUNCTIONS

➢ The most common problem with a recursive function is that it may not terminate
properly. (1)

➢ Frequently, a run-time error message noting stack overflow or an access violation

is an indicator that a recursive function is not terminating.

➢ Make sure that you identify all simple cases and provide a terminating condition for
each one.

➢ Also, be sure that each recursive step redefines the problem in terms of arguments

that are closer to simple cases so that repeated recursive calls will eventually lead to
simple cases only.

9.7 COMMON PROGRAMMING
ERRORS

➢ The recopying of large arrays or other data structures can quickly consume all
available memory. (1)

➢ It is also a good idea to introduce a nonrecursive function to handle preliminaries

and call the recursive function when there is error checking. (2)

➢ Sometimes, it is difficult to observe the output produced when running recursive
functions that you have made self-tracing. (3)

9.7 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 09

Recursion

Loading…

Chapter Objectives:

1. How recursion is used as a problem solving tool.

2. Trace recursive functions.

3. Implement mathematical functions with recursive definitions as C functions.

4. Use recursion to solve problems involving arrays and strings.

5. Learn a recursive sort function

And more….

➢ A recursive function is:
● A function that calls itself.
● A function f1 is also recursive if it calls a function f2 , which under some

circumstances calls f1 (1).

➢ The ability to invoke itself enables a recursive function to be repeated with

different parameter values.

➢ You can use recursion as an alternative to iteration (looping) (2)

RECURSIVE
FUNCTIONS

Loading…

Problems that lend themselves to a recursive solution have the following characteristics:

● One or more simple cases of the problem have a straightforward, non-recursive
solution.

● The other cases can be redefined in terms of problems that are closer to the simple

cases.

● By applying this redefinition process every time the recursive function is called,
eventually the problem is reduced entirely to simple cases, which are relatively easy to
solve.

9.1 THE NATURE OF RECURSION

The recursive algorithms that we write will generally consist of an if statement with the
following form (1):

9.1 THE NATURE OF RECURSION

if this is a simple case
 solve it
else
 redefine the problem using recursion

● EXAMPLE 9.1: solve the problem of multiplying 6 by 3:

9.1 THE NATURE OF RECURSION

1. Multiply 6 by 2.
2. Add 6 to the result of problem 1.

1. Multiply 6 by 2.

 1.1 Multiply 6 by 1.

 1.2 Add 6 to the result of problem 1.1.

2. Add 6 to the result of problem 1.

9.1 THE NATURE OF RECURSION

● EXAMPLE 9.2, Figure 9.4

➢ Figure 9.5

9.2 TRACING A RECURSIVE FUNCTION

➢ EXAMPLE 9.3, Figure 9.6

TRACING A VOID FUNCTION THAT IS RECURSIVE

Loading…

TRACING A VOID FUNCTION THAT IS RECURSIVE

PARAMETER AND LOCAL VARIABLE
STACKS

PARAMETER AND LOCAL VARIABLE
STACKS

➢ Doing a trace by hand of multiple calls to a recursive function is helpful in
understanding how recursion works but less useful when trying to develop a recursive
algorithm.

➢ During algorithm development, it is best to trace a specific case (1)

➢ Then the hand trace can check whether this value is manipulated properly to produce

a correct function result for the case under consideration.

➢ The function can be made to trace itself by inserting debugging print statements
showing entry to and exit from the function. (2)

➢ FIGURE 9.9, p.531 (3)

WHEN AND HOW TO TRACE RECURSIVE
FUNCTIONS

➢ Example: factorial of a number n (n!).

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Factorial with recursion

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ 0! is 1 (1)

➢ n! is n X (n − 1)!, for n > 0

4! is 4 X 3!

4 X 3 X 2 X 1 = 24

Figure9.11

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ EXAMPLE 9.6: Finding the Greatest common divisor.

• The greatest common divisor of two integers is the largest integer that
divides them both evenly.

➢ Figure 9.14.

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Algorithm for finding gcd: (1)

o gcd(x , y) is y if y divides x evenly

o gcd(x , y) is gcd(y , remainder of x divided by y) otherwise

CASE STUDY (Homework)
P.538 – 544

Finding Capital Letters in a String &
Recursive Selection Sort

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ In general, if there are recursive and iterative solutions to the same problem, the
recursive solution will require more time and space because of the extra function
calls.

➢ Although recursion was not really needed to solve the simpler problems in this

section, it was extremely useful in formulating algorithms to problems.

➢ For certain problems, recursion leads naturally to solutions that are much easier to
read and understand than their iterative counterparts.

COMPARISON OF ITERATIVE AND RECURSIVE
FUNCTIONS

➢ The most common problem with a recursive function is that it may not terminate
properly. (1)

➢ Frequently, a run-time error message noting stack overflow or an access violation

is an indicator that a recursive function is not terminating.

➢ Make sure that you identify all simple cases and provide a terminating condition for
each one.

➢ Also, be sure that each recursive step redefines the problem in terms of arguments

that are closer to simple cases so that repeated recursive calls will eventually lead to
simple cases only.

9.7 COMMON PROGRAMMING
ERRORS

➢ The recopying of large arrays or other data structures can quickly consume all
available memory. (1)

➢ It is also a good idea to introduce a nonrecursive function to handle preliminaries

and call the recursive function when there is error checking. (2)

➢ Sometimes, it is difficult to observe the output produced when running recursive
functions that you have made self-tracing. (3)

9.7 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 09

Recursion

Loading…

Chapter Objectives:

1. How recursion is used as a problem solving tool.

2. Trace recursive functions.

3. Implement mathematical functions with recursive definitions as C functions.

4. Use recursion to solve problems involving arrays and strings.

5. Learn a recursive sort function

And more….

➢ A recursive function is:
● A function that calls itself.
● A function f1 is also recursive if it calls a function f2 , which under some

circumstances calls f1 (1).

➢ The ability to invoke itself enables a recursive function to be repeated with

different parameter values.

➢ You can use recursion as an alternative to iteration (looping) (2)

RECURSIVE
FUNCTIONS

Loading…

Problems that lend themselves to a recursive solution have the following characteristics:

● One or more simple cases of the problem have a straightforward, non-recursive
solution.

● The other cases can be redefined in terms of problems that are closer to the simple

cases.

● By applying this redefinition process every time the recursive function is called,
eventually the problem is reduced entirely to simple cases, which are relatively easy to
solve.

9.1 THE NATURE OF RECURSION

The recursive algorithms that we write will generally consist of an if statement with the
following form (1):

9.1 THE NATURE OF RECURSION

if this is a simple case
 solve it
else
 redefine the problem using recursion

● EXAMPLE 9.1: solve the problem of multiplying 6 by 3:

9.1 THE NATURE OF RECURSION

1. Multiply 6 by 2.
2. Add 6 to the result of problem 1.

1. Multiply 6 by 2.

 1.1 Multiply 6 by 1.

 1.2 Add 6 to the result of problem 1.1.

2. Add 6 to the result of problem 1.

9.1 THE NATURE OF RECURSION

● EXAMPLE 9.2, Figure 9.4

➢ Figure 9.5

9.2 TRACING A RECURSIVE FUNCTION

➢ EXAMPLE 9.3, Figure 9.6

TRACING A VOID FUNCTION THAT IS RECURSIVE

Loading…

TRACING A VOID FUNCTION THAT IS RECURSIVE

PARAMETER AND LOCAL VARIABLE
STACKS

PARAMETER AND LOCAL VARIABLE
STACKS

➢ Doing a trace by hand of multiple calls to a recursive function is helpful in
understanding how recursion works but less useful when trying to develop a recursive
algorithm.

➢ During algorithm development, it is best to trace a specific case (1)

➢ Then the hand trace can check whether this value is manipulated properly to produce

a correct function result for the case under consideration.

➢ The function can be made to trace itself by inserting debugging print statements
showing entry to and exit from the function. (2)

➢ FIGURE 9.9, p.531 (3)

WHEN AND HOW TO TRACE RECURSIVE
FUNCTIONS

➢ Example: factorial of a number n (n!).

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Factorial with recursion

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ 0! is 1 (1)

➢ n! is n X (n − 1)!, for n > 0

4! is 4 X 3!

4 X 3 X 2 X 1 = 24

Figure9.11

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ EXAMPLE 9.6: Finding the Greatest common divisor.

• The greatest common divisor of two integers is the largest integer that
divides them both evenly.

➢ Figure 9.14.

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Algorithm for finding gcd: (1)

o gcd(x , y) is y if y divides x evenly

o gcd(x , y) is gcd(y , remainder of x divided by y) otherwise

CASE STUDY (Homework)
P.538 – 544

Finding Capital Letters in a String &
Recursive Selection Sort

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ In general, if there are recursive and iterative solutions to the same problem, the
recursive solution will require more time and space because of the extra function
calls.

➢ Although recursion was not really needed to solve the simpler problems in this

section, it was extremely useful in formulating algorithms to problems.

➢ For certain problems, recursion leads naturally to solutions that are much easier to
read and understand than their iterative counterparts.

COMPARISON OF ITERATIVE AND RECURSIVE
FUNCTIONS

➢ The most common problem with a recursive function is that it may not terminate
properly. (1)

➢ Frequently, a run-time error message noting stack overflow or an access violation

is an indicator that a recursive function is not terminating.

➢ Make sure that you identify all simple cases and provide a terminating condition for
each one.

➢ Also, be sure that each recursive step redefines the problem in terms of arguments

that are closer to simple cases so that repeated recursive calls will eventually lead to
simple cases only.

9.7 COMMON PROGRAMMING
ERRORS

➢ The recopying of large arrays or other data structures can quickly consume all
available memory. (1)

➢ It is also a good idea to introduce a nonrecursive function to handle preliminaries

and call the recursive function when there is error checking. (2)

➢ Sometimes, it is difficult to observe the output produced when running recursive
functions that you have made self-tracing. (3)

9.7 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 09

Recursion

Loading…

Chapter Objectives:

1. How recursion is used as a problem solving tool.

2. Trace recursive functions.

3. Implement mathematical functions with recursive definitions as C functions.

4. Use recursion to solve problems involving arrays and strings.

5. Learn a recursive sort function

And more….

➢ A recursive function is:
● A function that calls itself.
● A function f1 is also recursive if it calls a function f2 , which under some

circumstances calls f1 (1).

➢ The ability to invoke itself enables a recursive function to be repeated with

different parameter values.

➢ You can use recursion as an alternative to iteration (looping) (2)

RECURSIVE
FUNCTIONS

Loading…

Problems that lend themselves to a recursive solution have the following characteristics:

● One or more simple cases of the problem have a straightforward, non-recursive
solution.

● The other cases can be redefined in terms of problems that are closer to the simple

cases.

● By applying this redefinition process every time the recursive function is called,
eventually the problem is reduced entirely to simple cases, which are relatively easy to
solve.

9.1 THE NATURE OF RECURSION

The recursive algorithms that we write will generally consist of an if statement with the
following form (1):

9.1 THE NATURE OF RECURSION

if this is a simple case
 solve it
else
 redefine the problem using recursion

● EXAMPLE 9.1: solve the problem of multiplying 6 by 3:

9.1 THE NATURE OF RECURSION

1. Multiply 6 by 2.
2. Add 6 to the result of problem 1.

1. Multiply 6 by 2.

 1.1 Multiply 6 by 1.

 1.2 Add 6 to the result of problem 1.1.

2. Add 6 to the result of problem 1.

9.1 THE NATURE OF RECURSION

● EXAMPLE 9.2, Figure 9.4

➢ Figure 9.5

9.2 TRACING A RECURSIVE FUNCTION

➢ EXAMPLE 9.3, Figure 9.6

TRACING A VOID FUNCTION THAT IS RECURSIVE

Loading…

TRACING A VOID FUNCTION THAT IS RECURSIVE

PARAMETER AND LOCAL VARIABLE
STACKS

PARAMETER AND LOCAL VARIABLE
STACKS

➢ Doing a trace by hand of multiple calls to a recursive function is helpful in
understanding how recursion works but less useful when trying to develop a recursive
algorithm.

➢ During algorithm development, it is best to trace a specific case (1)

➢ Then the hand trace can check whether this value is manipulated properly to produce

a correct function result for the case under consideration.

➢ The function can be made to trace itself by inserting debugging print statements
showing entry to and exit from the function. (2)

➢ FIGURE 9.9, p.531 (3)

WHEN AND HOW TO TRACE RECURSIVE
FUNCTIONS

➢ Example: factorial of a number n (n!).

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Factorial with recursion

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ 0! is 1 (1)

➢ n! is n X (n − 1)!, for n > 0

4! is 4 X 3!

4 X 3 X 2 X 1 = 24

Figure9.11

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ EXAMPLE 9.6: Finding the Greatest common divisor.

• The greatest common divisor of two integers is the largest integer that
divides them both evenly.

➢ Figure 9.14.

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Algorithm for finding gcd: (1)

o gcd(x , y) is y if y divides x evenly

o gcd(x , y) is gcd(y , remainder of x divided by y) otherwise

CASE STUDY (Homework)
P.538 – 544

Finding Capital Letters in a String &
Recursive Selection Sort

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ In general, if there are recursive and iterative solutions to the same problem, the
recursive solution will require more time and space because of the extra function
calls.

➢ Although recursion was not really needed to solve the simpler problems in this

section, it was extremely useful in formulating algorithms to problems.

➢ For certain problems, recursion leads naturally to solutions that are much easier to
read and understand than their iterative counterparts.

COMPARISON OF ITERATIVE AND RECURSIVE
FUNCTIONS

➢ The most common problem with a recursive function is that it may not terminate
properly. (1)

➢ Frequently, a run-time error message noting stack overflow or an access violation

is an indicator that a recursive function is not terminating.

➢ Make sure that you identify all simple cases and provide a terminating condition for
each one.

➢ Also, be sure that each recursive step redefines the problem in terms of arguments

that are closer to simple cases so that repeated recursive calls will eventually lead to
simple cases only.

9.7 COMMON PROGRAMMING
ERRORS

➢ The recopying of large arrays or other data structures can quickly consume all
available memory. (1)

➢ It is also a good idea to introduce a nonrecursive function to handle preliminaries

and call the recursive function when there is error checking. (2)

➢ Sometimes, it is difficult to observe the output produced when running recursive
functions that you have made self-tracing. (3)

9.7 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 09

Recursion

Loading…

Chapter Objectives:

1. How recursion is used as a problem solving tool.

2. Trace recursive functions.

3. Implement mathematical functions with recursive definitions as C functions.

4. Use recursion to solve problems involving arrays and strings.

5. Learn a recursive sort function

And more….

➢ A recursive function is:
● A function that calls itself.
● A function f1 is also recursive if it calls a function f2 , which under some

circumstances calls f1 (1).

➢ The ability to invoke itself enables a recursive function to be repeated with

different parameter values.

➢ You can use recursion as an alternative to iteration (looping) (2)

RECURSIVE
FUNCTIONS

Loading…

Problems that lend themselves to a recursive solution have the following characteristics:

● One or more simple cases of the problem have a straightforward, non-recursive
solution.

● The other cases can be redefined in terms of problems that are closer to the simple

cases.

● By applying this redefinition process every time the recursive function is called,
eventually the problem is reduced entirely to simple cases, which are relatively easy to
solve.

9.1 THE NATURE OF RECURSION

The recursive algorithms that we write will generally consist of an if statement with the
following form (1):

9.1 THE NATURE OF RECURSION

if this is a simple case
 solve it
else
 redefine the problem using recursion

● EXAMPLE 9.1: solve the problem of multiplying 6 by 3:

9.1 THE NATURE OF RECURSION

1. Multiply 6 by 2.
2. Add 6 to the result of problem 1.

1. Multiply 6 by 2.

 1.1 Multiply 6 by 1.

 1.2 Add 6 to the result of problem 1.1.

2. Add 6 to the result of problem 1.

9.1 THE NATURE OF RECURSION

● EXAMPLE 9.2, Figure 9.4

➢ Figure 9.5

9.2 TRACING A RECURSIVE FUNCTION

➢ EXAMPLE 9.3, Figure 9.6

TRACING A VOID FUNCTION THAT IS RECURSIVE

Loading…

TRACING A VOID FUNCTION THAT IS RECURSIVE

PARAMETER AND LOCAL VARIABLE
STACKS

PARAMETER AND LOCAL VARIABLE
STACKS

➢ Doing a trace by hand of multiple calls to a recursive function is helpful in
understanding how recursion works but less useful when trying to develop a recursive
algorithm.

➢ During algorithm development, it is best to trace a specific case (1)

➢ Then the hand trace can check whether this value is manipulated properly to produce

a correct function result for the case under consideration.

➢ The function can be made to trace itself by inserting debugging print statements
showing entry to and exit from the function. (2)

➢ FIGURE 9.9, p.531 (3)

WHEN AND HOW TO TRACE RECURSIVE
FUNCTIONS

➢ Example: factorial of a number n (n!).

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Factorial with recursion

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ 0! is 1 (1)

➢ n! is n X (n − 1)!, for n > 0

4! is 4 X 3!

4 X 3 X 2 X 1 = 24

Figure9.11

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ EXAMPLE 9.6: Finding the Greatest common divisor.

• The greatest common divisor of two integers is the largest integer that
divides them both evenly.

➢ Figure 9.14.

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Algorithm for finding gcd: (1)

o gcd(x , y) is y if y divides x evenly

o gcd(x , y) is gcd(y , remainder of x divided by y) otherwise

CASE STUDY (Homework)
P.538 – 544

Finding Capital Letters in a String &
Recursive Selection Sort

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ In general, if there are recursive and iterative solutions to the same problem, the
recursive solution will require more time and space because of the extra function
calls.

➢ Although recursion was not really needed to solve the simpler problems in this

section, it was extremely useful in formulating algorithms to problems.

➢ For certain problems, recursion leads naturally to solutions that are much easier to
read and understand than their iterative counterparts.

COMPARISON OF ITERATIVE AND RECURSIVE
FUNCTIONS

➢ The most common problem with a recursive function is that it may not terminate
properly. (1)

➢ Frequently, a run-time error message noting stack overflow or an access violation

is an indicator that a recursive function is not terminating.

➢ Make sure that you identify all simple cases and provide a terminating condition for
each one.

➢ Also, be sure that each recursive step redefines the problem in terms of arguments

that are closer to simple cases so that repeated recursive calls will eventually lead to
simple cases only.

9.7 COMMON PROGRAMMING
ERRORS

➢ The recopying of large arrays or other data structures can quickly consume all
available memory. (1)

➢ It is also a good idea to introduce a nonrecursive function to handle preliminaries

and call the recursive function when there is error checking. (2)

➢ Sometimes, it is difficult to observe the output produced when running recursive
functions that you have made self-tracing. (3)

9.7 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 09

Recursion

Loading…

Chapter Objectives:

1. How recursion is used as a problem solving tool.

2. Trace recursive functions.

3. Implement mathematical functions with recursive definitions as C functions.

4. Use recursion to solve problems involving arrays and strings.

5. Learn a recursive sort function

And more….

➢ A recursive function is:
● A function that calls itself.
● A function f1 is also recursive if it calls a function f2 , which under some

circumstances calls f1 (1).

➢ The ability to invoke itself enables a recursive function to be repeated with

different parameter values.

➢ You can use recursion as an alternative to iteration (looping) (2)

RECURSIVE
FUNCTIONS

Loading…

Problems that lend themselves to a recursive solution have the following characteristics:

● One or more simple cases of the problem have a straightforward, non-recursive
solution.

● The other cases can be redefined in terms of problems that are closer to the simple

cases.

● By applying this redefinition process every time the recursive function is called,
eventually the problem is reduced entirely to simple cases, which are relatively easy to
solve.

9.1 THE NATURE OF RECURSION

The recursive algorithms that we write will generally consist of an if statement with the
following form (1):

9.1 THE NATURE OF RECURSION

if this is a simple case
 solve it
else
 redefine the problem using recursion

● EXAMPLE 9.1: solve the problem of multiplying 6 by 3:

9.1 THE NATURE OF RECURSION

1. Multiply 6 by 2.
2. Add 6 to the result of problem 1.

1. Multiply 6 by 2.

 1.1 Multiply 6 by 1.

 1.2 Add 6 to the result of problem 1.1.

2. Add 6 to the result of problem 1.

9.1 THE NATURE OF RECURSION

● EXAMPLE 9.2, Figure 9.4

➢ Figure 9.5

9.2 TRACING A RECURSIVE FUNCTION

➢ EXAMPLE 9.3, Figure 9.6

TRACING A VOID FUNCTION THAT IS RECURSIVE

Loading…

TRACING A VOID FUNCTION THAT IS RECURSIVE

PARAMETER AND LOCAL VARIABLE
STACKS

PARAMETER AND LOCAL VARIABLE
STACKS

➢ Doing a trace by hand of multiple calls to a recursive function is helpful in
understanding how recursion works but less useful when trying to develop a recursive
algorithm.

➢ During algorithm development, it is best to trace a specific case (1)

➢ Then the hand trace can check whether this value is manipulated properly to produce

a correct function result for the case under consideration.

➢ The function can be made to trace itself by inserting debugging print statements
showing entry to and exit from the function. (2)

➢ FIGURE 9.9, p.531 (3)

WHEN AND HOW TO TRACE RECURSIVE
FUNCTIONS

➢ Example: factorial of a number n (n!).

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Factorial with recursion

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ 0! is 1 (1)

➢ n! is n X (n − 1)!, for n > 0

4! is 4 X 3!

4 X 3 X 2 X 1 = 24

Figure9.11

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ EXAMPLE 9.6: Finding the Greatest common divisor.

• The greatest common divisor of two integers is the largest integer that
divides them both evenly.

➢ Figure 9.14.

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Algorithm for finding gcd: (1)

o gcd(x , y) is y if y divides x evenly

o gcd(x , y) is gcd(y , remainder of x divided by y) otherwise

CASE STUDY (Homework)
P.538 – 544

Finding Capital Letters in a String &
Recursive Selection Sort

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ In general, if there are recursive and iterative solutions to the same problem, the
recursive solution will require more time and space because of the extra function
calls.

➢ Although recursion was not really needed to solve the simpler problems in this

section, it was extremely useful in formulating algorithms to problems.

➢ For certain problems, recursion leads naturally to solutions that are much easier to
read and understand than their iterative counterparts.

COMPARISON OF ITERATIVE AND RECURSIVE
FUNCTIONS

➢ The most common problem with a recursive function is that it may not terminate
properly. (1)

➢ Frequently, a run-time error message noting stack overflow or an access violation

is an indicator that a recursive function is not terminating.

➢ Make sure that you identify all simple cases and provide a terminating condition for
each one.

➢ Also, be sure that each recursive step redefines the problem in terms of arguments

that are closer to simple cases so that repeated recursive calls will eventually lead to
simple cases only.

9.7 COMMON PROGRAMMING
ERRORS

➢ The recopying of large arrays or other data structures can quickly consume all
available memory. (1)

➢ It is also a good idea to introduce a nonrecursive function to handle preliminaries

and call the recursive function when there is error checking. (2)

➢ Sometimes, it is difficult to observe the output produced when running recursive
functions that you have made self-tracing. (3)

9.7 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 09

Recursion

Loading…

Chapter Objectives:

1. How recursion is used as a problem solving tool.

2. Trace recursive functions.

3. Implement mathematical functions with recursive definitions as C functions.

4. Use recursion to solve problems involving arrays and strings.

5. Learn a recursive sort function

And more….

➢ A recursive function is:
● A function that calls itself.
● A function f1 is also recursive if it calls a function f2 , which under some

circumstances calls f1 (1).

➢ The ability to invoke itself enables a recursive function to be repeated with

different parameter values.

➢ You can use recursion as an alternative to iteration (looping) (2)

RECURSIVE
FUNCTIONS

Loading…

Problems that lend themselves to a recursive solution have the following characteristics:

● One or more simple cases of the problem have a straightforward, non-recursive
solution.

● The other cases can be redefined in terms of problems that are closer to the simple

cases.

● By applying this redefinition process every time the recursive function is called,
eventually the problem is reduced entirely to simple cases, which are relatively easy to
solve.

9.1 THE NATURE OF RECURSION

The recursive algorithms that we write will generally consist of an if statement with the
following form (1):

9.1 THE NATURE OF RECURSION

if this is a simple case
 solve it
else
 redefine the problem using recursion

● EXAMPLE 9.1: solve the problem of multiplying 6 by 3:

9.1 THE NATURE OF RECURSION

1. Multiply 6 by 2.
2. Add 6 to the result of problem 1.

1. Multiply 6 by 2.

 1.1 Multiply 6 by 1.

 1.2 Add 6 to the result of problem 1.1.

2. Add 6 to the result of problem 1.

9.1 THE NATURE OF RECURSION

● EXAMPLE 9.2, Figure 9.4

➢ Figure 9.5

9.2 TRACING A RECURSIVE FUNCTION

➢ EXAMPLE 9.3, Figure 9.6

TRACING A VOID FUNCTION THAT IS RECURSIVE

Loading…

TRACING A VOID FUNCTION THAT IS RECURSIVE

PARAMETER AND LOCAL VARIABLE
STACKS

PARAMETER AND LOCAL VARIABLE
STACKS

➢ Doing a trace by hand of multiple calls to a recursive function is helpful in
understanding how recursion works but less useful when trying to develop a recursive
algorithm.

➢ During algorithm development, it is best to trace a specific case (1)

➢ Then the hand trace can check whether this value is manipulated properly to produce

a correct function result for the case under consideration.

➢ The function can be made to trace itself by inserting debugging print statements
showing entry to and exit from the function. (2)

➢ FIGURE 9.9, p.531 (3)

WHEN AND HOW TO TRACE RECURSIVE
FUNCTIONS

➢ Example: factorial of a number n (n!).

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Factorial with recursion

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ 0! is 1 (1)

➢ n! is n X (n − 1)!, for n > 0

4! is 4 X 3!

4 X 3 X 2 X 1 = 24

Figure9.11

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ EXAMPLE 9.6: Finding the Greatest common divisor.

• The greatest common divisor of two integers is the largest integer that
divides them both evenly.

➢ Figure 9.14.

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Algorithm for finding gcd: (1)

o gcd(x , y) is y if y divides x evenly

o gcd(x , y) is gcd(y , remainder of x divided by y) otherwise

CASE STUDY (Homework)
P.538 – 544

Finding Capital Letters in a String &
Recursive Selection Sort

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ In general, if there are recursive and iterative solutions to the same problem, the
recursive solution will require more time and space because of the extra function
calls.

➢ Although recursion was not really needed to solve the simpler problems in this

section, it was extremely useful in formulating algorithms to problems.

➢ For certain problems, recursion leads naturally to solutions that are much easier to
read and understand than their iterative counterparts.

COMPARISON OF ITERATIVE AND RECURSIVE
FUNCTIONS

➢ The most common problem with a recursive function is that it may not terminate
properly. (1)

➢ Frequently, a run-time error message noting stack overflow or an access violation

is an indicator that a recursive function is not terminating.

➢ Make sure that you identify all simple cases and provide a terminating condition for
each one.

➢ Also, be sure that each recursive step redefines the problem in terms of arguments

that are closer to simple cases so that repeated recursive calls will eventually lead to
simple cases only.

9.7 COMMON PROGRAMMING
ERRORS

➢ The recopying of large arrays or other data structures can quickly consume all
available memory. (1)

➢ It is also a good idea to introduce a nonrecursive function to handle preliminaries

and call the recursive function when there is error checking. (2)

➢ Sometimes, it is difficult to observe the output produced when running recursive
functions that you have made self-tracing. (3)

9.7 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 09

Recursion

Loading…

Chapter Objectives:

1. How recursion is used as a problem solving tool.

2. Trace recursive functions.

3. Implement mathematical functions with recursive definitions as C functions.

4. Use recursion to solve problems involving arrays and strings.

5. Learn a recursive sort function

And more….

➢ A recursive function is:
● A function that calls itself.
● A function f1 is also recursive if it calls a function f2 , which under some

circumstances calls f1 (1).

➢ The ability to invoke itself enables a recursive function to be repeated with

different parameter values.

➢ You can use recursion as an alternative to iteration (looping) (2)

RECURSIVE
FUNCTIONS

Loading…

Problems that lend themselves to a recursive solution have the following characteristics:

● One or more simple cases of the problem have a straightforward, non-recursive
solution.

● The other cases can be redefined in terms of problems that are closer to the simple

cases.

● By applying this redefinition process every time the recursive function is called,
eventually the problem is reduced entirely to simple cases, which are relatively easy to
solve.

9.1 THE NATURE OF RECURSION

The recursive algorithms that we write will generally consist of an if statement with the
following form (1):

9.1 THE NATURE OF RECURSION

if this is a simple case
 solve it
else
 redefine the problem using recursion

● EXAMPLE 9.1: solve the problem of multiplying 6 by 3:

9.1 THE NATURE OF RECURSION

1. Multiply 6 by 2.
2. Add 6 to the result of problem 1.

1. Multiply 6 by 2.

 1.1 Multiply 6 by 1.

 1.2 Add 6 to the result of problem 1.1.

2. Add 6 to the result of problem 1.

9.1 THE NATURE OF RECURSION

● EXAMPLE 9.2, Figure 9.4

➢ Figure 9.5

9.2 TRACING A RECURSIVE FUNCTION

➢ EXAMPLE 9.3, Figure 9.6

TRACING A VOID FUNCTION THAT IS RECURSIVE

Loading…

TRACING A VOID FUNCTION THAT IS RECURSIVE

PARAMETER AND LOCAL VARIABLE
STACKS

PARAMETER AND LOCAL VARIABLE
STACKS

➢ Doing a trace by hand of multiple calls to a recursive function is helpful in
understanding how recursion works but less useful when trying to develop a recursive
algorithm.

➢ During algorithm development, it is best to trace a specific case (1)

➢ Then the hand trace can check whether this value is manipulated properly to produce

a correct function result for the case under consideration.

➢ The function can be made to trace itself by inserting debugging print statements
showing entry to and exit from the function. (2)

➢ FIGURE 9.9, p.531 (3)

WHEN AND HOW TO TRACE RECURSIVE
FUNCTIONS

➢ Example: factorial of a number n (n!).

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Factorial with recursion

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ 0! is 1 (1)

➢ n! is n X (n − 1)!, for n > 0

4! is 4 X 3!

4 X 3 X 2 X 1 = 24

Figure9.11

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ EXAMPLE 9.6: Finding the Greatest common divisor.

• The greatest common divisor of two integers is the largest integer that
divides them both evenly.

➢ Figure 9.14.

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Algorithm for finding gcd: (1)

o gcd(x , y) is y if y divides x evenly

o gcd(x , y) is gcd(y , remainder of x divided by y) otherwise

CASE STUDY (Homework)
P.538 – 544

Finding Capital Letters in a String &
Recursive Selection Sort

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ In general, if there are recursive and iterative solutions to the same problem, the
recursive solution will require more time and space because of the extra function
calls.

➢ Although recursion was not really needed to solve the simpler problems in this

section, it was extremely useful in formulating algorithms to problems.

➢ For certain problems, recursion leads naturally to solutions that are much easier to
read and understand than their iterative counterparts.

COMPARISON OF ITERATIVE AND RECURSIVE
FUNCTIONS

➢ The most common problem with a recursive function is that it may not terminate
properly. (1)

➢ Frequently, a run-time error message noting stack overflow or an access violation

is an indicator that a recursive function is not terminating.

➢ Make sure that you identify all simple cases and provide a terminating condition for
each one.

➢ Also, be sure that each recursive step redefines the problem in terms of arguments

that are closer to simple cases so that repeated recursive calls will eventually lead to
simple cases only.

9.7 COMMON PROGRAMMING
ERRORS

➢ The recopying of large arrays or other data structures can quickly consume all
available memory. (1)

➢ It is also a good idea to introduce a nonrecursive function to handle preliminaries

and call the recursive function when there is error checking. (2)

➢ Sometimes, it is difficult to observe the output produced when running recursive
functions that you have made self-tracing. (3)

9.7 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 09

Recursion

Loading…

Chapter Objectives:

1. How recursion is used as a problem solving tool.

2. Trace recursive functions.

3. Implement mathematical functions with recursive definitions as C functions.

4. Use recursion to solve problems involving arrays and strings.

5. Learn a recursive sort function

And more….

➢ A recursive function is:
● A function that calls itself.
● A function f1 is also recursive if it calls a function f2 , which under some

circumstances calls f1 (1).

➢ The ability to invoke itself enables a recursive function to be repeated with

different parameter values.

➢ You can use recursion as an alternative to iteration (looping) (2)

RECURSIVE
FUNCTIONS

Loading…

Problems that lend themselves to a recursive solution have the following characteristics:

● One or more simple cases of the problem have a straightforward, non-recursive
solution.

● The other cases can be redefined in terms of problems that are closer to the simple

cases.

● By applying this redefinition process every time the recursive function is called,
eventually the problem is reduced entirely to simple cases, which are relatively easy to
solve.

9.1 THE NATURE OF RECURSION

The recursive algorithms that we write will generally consist of an if statement with the
following form (1):

9.1 THE NATURE OF RECURSION

if this is a simple case
 solve it
else
 redefine the problem using recursion

● EXAMPLE 9.1: solve the problem of multiplying 6 by 3:

9.1 THE NATURE OF RECURSION

1. Multiply 6 by 2.
2. Add 6 to the result of problem 1.

1. Multiply 6 by 2.

 1.1 Multiply 6 by 1.

 1.2 Add 6 to the result of problem 1.1.

2. Add 6 to the result of problem 1.

9.1 THE NATURE OF RECURSION

● EXAMPLE 9.2, Figure 9.4

➢ Figure 9.5

9.2 TRACING A RECURSIVE FUNCTION

➢ EXAMPLE 9.3, Figure 9.6

TRACING A VOID FUNCTION THAT IS RECURSIVE

Loading…

TRACING A VOID FUNCTION THAT IS RECURSIVE

PARAMETER AND LOCAL VARIABLE
STACKS

PARAMETER AND LOCAL VARIABLE
STACKS

➢ Doing a trace by hand of multiple calls to a recursive function is helpful in
understanding how recursion works but less useful when trying to develop a recursive
algorithm.

➢ During algorithm development, it is best to trace a specific case (1)

➢ Then the hand trace can check whether this value is manipulated properly to produce

a correct function result for the case under consideration.

➢ The function can be made to trace itself by inserting debugging print statements
showing entry to and exit from the function. (2)

➢ FIGURE 9.9, p.531 (3)

WHEN AND HOW TO TRACE RECURSIVE
FUNCTIONS

➢ Example: factorial of a number n (n!).

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Factorial with recursion

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ 0! is 1 (1)

➢ n! is n X (n − 1)!, for n > 0

4! is 4 X 3!

4 X 3 X 2 X 1 = 24

Figure9.11

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ EXAMPLE 9.6: Finding the Greatest common divisor.

• The greatest common divisor of two integers is the largest integer that
divides them both evenly.

➢ Figure 9.14.

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Algorithm for finding gcd: (1)

o gcd(x , y) is y if y divides x evenly

o gcd(x , y) is gcd(y , remainder of x divided by y) otherwise

CASE STUDY (Homework)
P.538 – 544

Finding Capital Letters in a String &
Recursive Selection Sort

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ In general, if there are recursive and iterative solutions to the same problem, the
recursive solution will require more time and space because of the extra function
calls.

➢ Although recursion was not really needed to solve the simpler problems in this

section, it was extremely useful in formulating algorithms to problems.

➢ For certain problems, recursion leads naturally to solutions that are much easier to
read and understand than their iterative counterparts.

COMPARISON OF ITERATIVE AND RECURSIVE
FUNCTIONS

➢ The most common problem with a recursive function is that it may not terminate
properly. (1)

➢ Frequently, a run-time error message noting stack overflow or an access violation

is an indicator that a recursive function is not terminating.

➢ Make sure that you identify all simple cases and provide a terminating condition for
each one.

➢ Also, be sure that each recursive step redefines the problem in terms of arguments

that are closer to simple cases so that repeated recursive calls will eventually lead to
simple cases only.

9.7 COMMON PROGRAMMING
ERRORS

➢ The recopying of large arrays or other data structures can quickly consume all
available memory. (1)

➢ It is also a good idea to introduce a nonrecursive function to handle preliminaries

and call the recursive function when there is error checking. (2)

➢ Sometimes, it is difficult to observe the output produced when running recursive
functions that you have made self-tracing. (3)

9.7 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 09

Recursion

Loading…

Chapter Objectives:

1. How recursion is used as a problem solving tool.

2. Trace recursive functions.

3. Implement mathematical functions with recursive definitions as C functions.

4. Use recursion to solve problems involving arrays and strings.

5. Learn a recursive sort function

And more….

➢ A recursive function is:
● A function that calls itself.
● A function f1 is also recursive if it calls a function f2 , which under some

circumstances calls f1 (1).

➢ The ability to invoke itself enables a recursive function to be repeated with

different parameter values.

➢ You can use recursion as an alternative to iteration (looping) (2)

RECURSIVE
FUNCTIONS

Loading…

Problems that lend themselves to a recursive solution have the following characteristics:

● One or more simple cases of the problem have a straightforward, non-recursive
solution.

● The other cases can be redefined in terms of problems that are closer to the simple

cases.

● By applying this redefinition process every time the recursive function is called,
eventually the problem is reduced entirely to simple cases, which are relatively easy to
solve.

9.1 THE NATURE OF RECURSION

The recursive algorithms that we write will generally consist of an if statement with the
following form (1):

9.1 THE NATURE OF RECURSION

if this is a simple case
 solve it
else
 redefine the problem using recursion

● EXAMPLE 9.1: solve the problem of multiplying 6 by 3:

9.1 THE NATURE OF RECURSION

1. Multiply 6 by 2.
2. Add 6 to the result of problem 1.

1. Multiply 6 by 2.

 1.1 Multiply 6 by 1.

 1.2 Add 6 to the result of problem 1.1.

2. Add 6 to the result of problem 1.

9.1 THE NATURE OF RECURSION

● EXAMPLE 9.2, Figure 9.4

➢ Figure 9.5

9.2 TRACING A RECURSIVE FUNCTION

➢ EXAMPLE 9.3, Figure 9.6

TRACING A VOID FUNCTION THAT IS RECURSIVE

Loading…

TRACING A VOID FUNCTION THAT IS RECURSIVE

PARAMETER AND LOCAL VARIABLE
STACKS

PARAMETER AND LOCAL VARIABLE
STACKS

➢ Doing a trace by hand of multiple calls to a recursive function is helpful in
understanding how recursion works but less useful when trying to develop a recursive
algorithm.

➢ During algorithm development, it is best to trace a specific case (1)

➢ Then the hand trace can check whether this value is manipulated properly to produce

a correct function result for the case under consideration.

➢ The function can be made to trace itself by inserting debugging print statements
showing entry to and exit from the function. (2)

➢ FIGURE 9.9, p.531 (3)

WHEN AND HOW TO TRACE RECURSIVE
FUNCTIONS

➢ Example: factorial of a number n (n!).

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Factorial with recursion

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ 0! is 1 (1)

➢ n! is n X (n − 1)!, for n > 0

4! is 4 X 3!

4 X 3 X 2 X 1 = 24

Figure9.11

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ EXAMPLE 9.6: Finding the Greatest common divisor.

• The greatest common divisor of two integers is the largest integer that
divides them both evenly.

➢ Figure 9.14.

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Algorithm for finding gcd: (1)

o gcd(x , y) is y if y divides x evenly

o gcd(x , y) is gcd(y , remainder of x divided by y) otherwise

CASE STUDY (Homework)
P.538 – 544

Finding Capital Letters in a String &
Recursive Selection Sort

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ In general, if there are recursive and iterative solutions to the same problem, the
recursive solution will require more time and space because of the extra function
calls.

➢ Although recursion was not really needed to solve the simpler problems in this

section, it was extremely useful in formulating algorithms to problems.

➢ For certain problems, recursion leads naturally to solutions that are much easier to
read and understand than their iterative counterparts.

COMPARISON OF ITERATIVE AND RECURSIVE
FUNCTIONS

➢ The most common problem with a recursive function is that it may not terminate
properly. (1)

➢ Frequently, a run-time error message noting stack overflow or an access violation

is an indicator that a recursive function is not terminating.

➢ Make sure that you identify all simple cases and provide a terminating condition for
each one.

➢ Also, be sure that each recursive step redefines the problem in terms of arguments

that are closer to simple cases so that repeated recursive calls will eventually lead to
simple cases only.

9.7 COMMON PROGRAMMING
ERRORS

➢ The recopying of large arrays or other data structures can quickly consume all
available memory. (1)

➢ It is also a good idea to introduce a nonrecursive function to handle preliminaries

and call the recursive function when there is error checking. (2)

➢ Sometimes, it is difficult to observe the output produced when running recursive
functions that you have made self-tracing. (3)

9.7 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 09

Recursion

Loading…

Chapter Objectives:

1. How recursion is used as a problem solving tool.

2. Trace recursive functions.

3. Implement mathematical functions with recursive definitions as C functions.

4. Use recursion to solve problems involving arrays and strings.

5. Learn a recursive sort function

And more….

➢ A recursive function is:
● A function that calls itself.
● A function f1 is also recursive if it calls a function f2 , which under some

circumstances calls f1 (1).

➢ The ability to invoke itself enables a recursive function to be repeated with

different parameter values.

➢ You can use recursion as an alternative to iteration (looping) (2)

RECURSIVE
FUNCTIONS

Loading…

Problems that lend themselves to a recursive solution have the following characteristics:

● One or more simple cases of the problem have a straightforward, non-recursive
solution.

● The other cases can be redefined in terms of problems that are closer to the simple

cases.

● By applying this redefinition process every time the recursive function is called,
eventually the problem is reduced entirely to simple cases, which are relatively easy to
solve.

9.1 THE NATURE OF RECURSION

The recursive algorithms that we write will generally consist of an if statement with the
following form (1):

9.1 THE NATURE OF RECURSION

if this is a simple case
 solve it
else
 redefine the problem using recursion

● EXAMPLE 9.1: solve the problem of multiplying 6 by 3:

9.1 THE NATURE OF RECURSION

1. Multiply 6 by 2.
2. Add 6 to the result of problem 1.

1. Multiply 6 by 2.

 1.1 Multiply 6 by 1.

 1.2 Add 6 to the result of problem 1.1.

2. Add 6 to the result of problem 1.

9.1 THE NATURE OF RECURSION

● EXAMPLE 9.2, Figure 9.4

➢ Figure 9.5

9.2 TRACING A RECURSIVE FUNCTION

➢ EXAMPLE 9.3, Figure 9.6

TRACING A VOID FUNCTION THAT IS RECURSIVE

Loading…

TRACING A VOID FUNCTION THAT IS RECURSIVE

PARAMETER AND LOCAL VARIABLE
STACKS

PARAMETER AND LOCAL VARIABLE
STACKS

➢ Doing a trace by hand of multiple calls to a recursive function is helpful in
understanding how recursion works but less useful when trying to develop a recursive
algorithm.

➢ During algorithm development, it is best to trace a specific case (1)

➢ Then the hand trace can check whether this value is manipulated properly to produce

a correct function result for the case under consideration.

➢ The function can be made to trace itself by inserting debugging print statements
showing entry to and exit from the function. (2)

➢ FIGURE 9.9, p.531 (3)

WHEN AND HOW TO TRACE RECURSIVE
FUNCTIONS

➢ Example: factorial of a number n (n!).

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Factorial with recursion

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ 0! is 1 (1)

➢ n! is n X (n − 1)!, for n > 0

4! is 4 X 3!

4 X 3 X 2 X 1 = 24

Figure9.11

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ EXAMPLE 9.6: Finding the Greatest common divisor.

• The greatest common divisor of two integers is the largest integer that
divides them both evenly.

➢ Figure 9.14.

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Algorithm for finding gcd: (1)

o gcd(x , y) is y if y divides x evenly

o gcd(x , y) is gcd(y , remainder of x divided by y) otherwise

CASE STUDY (Homework)
P.538 – 544

Finding Capital Letters in a String &
Recursive Selection Sort

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ In general, if there are recursive and iterative solutions to the same problem, the
recursive solution will require more time and space because of the extra function
calls.

➢ Although recursion was not really needed to solve the simpler problems in this

section, it was extremely useful in formulating algorithms to problems.

➢ For certain problems, recursion leads naturally to solutions that are much easier to
read and understand than their iterative counterparts.

COMPARISON OF ITERATIVE AND RECURSIVE
FUNCTIONS

➢ The most common problem with a recursive function is that it may not terminate
properly. (1)

➢ Frequently, a run-time error message noting stack overflow or an access violation

is an indicator that a recursive function is not terminating.

➢ Make sure that you identify all simple cases and provide a terminating condition for
each one.

➢ Also, be sure that each recursive step redefines the problem in terms of arguments

that are closer to simple cases so that repeated recursive calls will eventually lead to
simple cases only.

9.7 COMMON PROGRAMMING
ERRORS

➢ The recopying of large arrays or other data structures can quickly consume all
available memory. (1)

➢ It is also a good idea to introduce a nonrecursive function to handle preliminaries

and call the recursive function when there is error checking. (2)

➢ Sometimes, it is difficult to observe the output produced when running recursive
functions that you have made self-tracing. (3)

9.7 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 09

Recursion

Loading…

Chapter Objectives:

1. How recursion is used as a problem solving tool.

2. Trace recursive functions.

3. Implement mathematical functions with recursive definitions as C functions.

4. Use recursion to solve problems involving arrays and strings.

5. Learn a recursive sort function

And more….

➢ A recursive function is:
● A function that calls itself.
● A function f1 is also recursive if it calls a function f2 , which under some

circumstances calls f1 (1).

➢ The ability to invoke itself enables a recursive function to be repeated with

different parameter values.

➢ You can use recursion as an alternative to iteration (looping) (2)

RECURSIVE
FUNCTIONS

Loading…

Problems that lend themselves to a recursive solution have the following characteristics:

● One or more simple cases of the problem have a straightforward, non-recursive
solution.

● The other cases can be redefined in terms of problems that are closer to the simple

cases.

● By applying this redefinition process every time the recursive function is called,
eventually the problem is reduced entirely to simple cases, which are relatively easy to
solve.

9.1 THE NATURE OF RECURSION

The recursive algorithms that we write will generally consist of an if statement with the
following form (1):

9.1 THE NATURE OF RECURSION

if this is a simple case
 solve it
else
 redefine the problem using recursion

● EXAMPLE 9.1: solve the problem of multiplying 6 by 3:

9.1 THE NATURE OF RECURSION

1. Multiply 6 by 2.
2. Add 6 to the result of problem 1.

1. Multiply 6 by 2.

 1.1 Multiply 6 by 1.

 1.2 Add 6 to the result of problem 1.1.

2. Add 6 to the result of problem 1.

9.1 THE NATURE OF RECURSION

● EXAMPLE 9.2, Figure 9.4

➢ Figure 9.5

9.2 TRACING A RECURSIVE FUNCTION

➢ EXAMPLE 9.3, Figure 9.6

TRACING A VOID FUNCTION THAT IS RECURSIVE

Loading…

TRACING A VOID FUNCTION THAT IS RECURSIVE

PARAMETER AND LOCAL VARIABLE
STACKS

PARAMETER AND LOCAL VARIABLE
STACKS

➢ Doing a trace by hand of multiple calls to a recursive function is helpful in
understanding how recursion works but less useful when trying to develop a recursive
algorithm.

➢ During algorithm development, it is best to trace a specific case (1)

➢ Then the hand trace can check whether this value is manipulated properly to produce

a correct function result for the case under consideration.

➢ The function can be made to trace itself by inserting debugging print statements
showing entry to and exit from the function. (2)

➢ FIGURE 9.9, p.531 (3)

WHEN AND HOW TO TRACE RECURSIVE
FUNCTIONS

➢ Example: factorial of a number n (n!).

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Factorial with recursion

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ 0! is 1 (1)

➢ n! is n X (n − 1)!, for n > 0

4! is 4 X 3!

4 X 3 X 2 X 1 = 24

Figure9.11

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ EXAMPLE 9.6: Finding the Greatest common divisor.

• The greatest common divisor of two integers is the largest integer that
divides them both evenly.

➢ Figure 9.14.

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Algorithm for finding gcd: (1)

o gcd(x , y) is y if y divides x evenly

o gcd(x , y) is gcd(y , remainder of x divided by y) otherwise

CASE STUDY (Homework)
P.538 – 544

Finding Capital Letters in a String &
Recursive Selection Sort

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ In general, if there are recursive and iterative solutions to the same problem, the
recursive solution will require more time and space because of the extra function
calls.

➢ Although recursion was not really needed to solve the simpler problems in this

section, it was extremely useful in formulating algorithms to problems.

➢ For certain problems, recursion leads naturally to solutions that are much easier to
read and understand than their iterative counterparts.

COMPARISON OF ITERATIVE AND RECURSIVE
FUNCTIONS

➢ The most common problem with a recursive function is that it may not terminate
properly. (1)

➢ Frequently, a run-time error message noting stack overflow or an access violation

is an indicator that a recursive function is not terminating.

➢ Make sure that you identify all simple cases and provide a terminating condition for
each one.

➢ Also, be sure that each recursive step redefines the problem in terms of arguments

that are closer to simple cases so that repeated recursive calls will eventually lead to
simple cases only.

9.7 COMMON PROGRAMMING
ERRORS

➢ The recopying of large arrays or other data structures can quickly consume all
available memory. (1)

➢ It is also a good idea to introduce a nonrecursive function to handle preliminaries

and call the recursive function when there is error checking. (2)

➢ Sometimes, it is difficult to observe the output produced when running recursive
functions that you have made self-tracing. (3)

9.7 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 09

Recursion

Loading…

Chapter Objectives:

1. How recursion is used as a problem solving tool.

2. Trace recursive functions.

3. Implement mathematical functions with recursive definitions as C functions.

4. Use recursion to solve problems involving arrays and strings.

5. Learn a recursive sort function

And more….

➢ A recursive function is:
● A function that calls itself.
● A function f1 is also recursive if it calls a function f2 , which under some

circumstances calls f1 (1).

➢ The ability to invoke itself enables a recursive function to be repeated with

different parameter values.

➢ You can use recursion as an alternative to iteration (looping) (2)

RECURSIVE
FUNCTIONS

Loading…

Problems that lend themselves to a recursive solution have the following characteristics:

● One or more simple cases of the problem have a straightforward, non-recursive
solution.

● The other cases can be redefined in terms of problems that are closer to the simple

cases.

● By applying this redefinition process every time the recursive function is called,
eventually the problem is reduced entirely to simple cases, which are relatively easy to
solve.

9.1 THE NATURE OF RECURSION

The recursive algorithms that we write will generally consist of an if statement with the
following form (1):

9.1 THE NATURE OF RECURSION

if this is a simple case
 solve it
else
 redefine the problem using recursion

● EXAMPLE 9.1: solve the problem of multiplying 6 by 3:

9.1 THE NATURE OF RECURSION

1. Multiply 6 by 2.
2. Add 6 to the result of problem 1.

1. Multiply 6 by 2.

 1.1 Multiply 6 by 1.

 1.2 Add 6 to the result of problem 1.1.

2. Add 6 to the result of problem 1.

9.1 THE NATURE OF RECURSION

● EXAMPLE 9.2, Figure 9.4

➢ Figure 9.5

9.2 TRACING A RECURSIVE FUNCTION

➢ EXAMPLE 9.3, Figure 9.6

TRACING A VOID FUNCTION THAT IS RECURSIVE

Loading…

TRACING A VOID FUNCTION THAT IS RECURSIVE

PARAMETER AND LOCAL VARIABLE
STACKS

PARAMETER AND LOCAL VARIABLE
STACKS

➢ Doing a trace by hand of multiple calls to a recursive function is helpful in
understanding how recursion works but less useful when trying to develop a recursive
algorithm.

➢ During algorithm development, it is best to trace a specific case (1)

➢ Then the hand trace can check whether this value is manipulated properly to produce

a correct function result for the case under consideration.

➢ The function can be made to trace itself by inserting debugging print statements
showing entry to and exit from the function. (2)

➢ FIGURE 9.9, p.531 (3)

WHEN AND HOW TO TRACE RECURSIVE
FUNCTIONS

➢ Example: factorial of a number n (n!).

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Factorial with recursion

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ 0! is 1 (1)

➢ n! is n X (n − 1)!, for n > 0

4! is 4 X 3!

4 X 3 X 2 X 1 = 24

Figure9.11

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ EXAMPLE 9.6: Finding the Greatest common divisor.

• The greatest common divisor of two integers is the largest integer that
divides them both evenly.

➢ Figure 9.14.

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Algorithm for finding gcd: (1)

o gcd(x , y) is y if y divides x evenly

o gcd(x , y) is gcd(y , remainder of x divided by y) otherwise

CASE STUDY (Homework)
P.538 – 544

Finding Capital Letters in a String &
Recursive Selection Sort

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ In general, if there are recursive and iterative solutions to the same problem, the
recursive solution will require more time and space because of the extra function
calls.

➢ Although recursion was not really needed to solve the simpler problems in this

section, it was extremely useful in formulating algorithms to problems.

➢ For certain problems, recursion leads naturally to solutions that are much easier to
read and understand than their iterative counterparts.

COMPARISON OF ITERATIVE AND RECURSIVE
FUNCTIONS

➢ The most common problem with a recursive function is that it may not terminate
properly. (1)

➢ Frequently, a run-time error message noting stack overflow or an access violation

is an indicator that a recursive function is not terminating.

➢ Make sure that you identify all simple cases and provide a terminating condition for
each one.

➢ Also, be sure that each recursive step redefines the problem in terms of arguments

that are closer to simple cases so that repeated recursive calls will eventually lead to
simple cases only.

9.7 COMMON PROGRAMMING
ERRORS

➢ The recopying of large arrays or other data structures can quickly consume all
available memory. (1)

➢ It is also a good idea to introduce a nonrecursive function to handle preliminaries

and call the recursive function when there is error checking. (2)

➢ Sometimes, it is difficult to observe the output produced when running recursive
functions that you have made self-tracing. (3)

9.7 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 09

Recursion

Loading…

Chapter Objectives:

1. How recursion is used as a problem solving tool.

2. Trace recursive functions.

3. Implement mathematical functions with recursive definitions as C functions.

4. Use recursion to solve problems involving arrays and strings.

5. Learn a recursive sort function

And more….

➢ A recursive function is:
● A function that calls itself.
● A function f1 is also recursive if it calls a function f2 , which under some

circumstances calls f1 (1).

➢ The ability to invoke itself enables a recursive function to be repeated with

different parameter values.

➢ You can use recursion as an alternative to iteration (looping) (2)

RECURSIVE
FUNCTIONS

Loading…

Problems that lend themselves to a recursive solution have the following characteristics:

● One or more simple cases of the problem have a straightforward, non-recursive
solution.

● The other cases can be redefined in terms of problems that are closer to the simple

cases.

● By applying this redefinition process every time the recursive function is called,
eventually the problem is reduced entirely to simple cases, which are relatively easy to
solve.

9.1 THE NATURE OF RECURSION

The recursive algorithms that we write will generally consist of an if statement with the
following form (1):

9.1 THE NATURE OF RECURSION

if this is a simple case
 solve it
else
 redefine the problem using recursion

● EXAMPLE 9.1: solve the problem of multiplying 6 by 3:

9.1 THE NATURE OF RECURSION

1. Multiply 6 by 2.
2. Add 6 to the result of problem 1.

1. Multiply 6 by 2.

 1.1 Multiply 6 by 1.

 1.2 Add 6 to the result of problem 1.1.

2. Add 6 to the result of problem 1.

9.1 THE NATURE OF RECURSION

● EXAMPLE 9.2, Figure 9.4

➢ Figure 9.5

9.2 TRACING A RECURSIVE FUNCTION

➢ EXAMPLE 9.3, Figure 9.6

TRACING A VOID FUNCTION THAT IS RECURSIVE

Loading…

TRACING A VOID FUNCTION THAT IS RECURSIVE

PARAMETER AND LOCAL VARIABLE
STACKS

PARAMETER AND LOCAL VARIABLE
STACKS

➢ Doing a trace by hand of multiple calls to a recursive function is helpful in
understanding how recursion works but less useful when trying to develop a recursive
algorithm.

➢ During algorithm development, it is best to trace a specific case (1)

➢ Then the hand trace can check whether this value is manipulated properly to produce

a correct function result for the case under consideration.

➢ The function can be made to trace itself by inserting debugging print statements
showing entry to and exit from the function. (2)

➢ FIGURE 9.9, p.531 (3)

WHEN AND HOW TO TRACE RECURSIVE
FUNCTIONS

➢ Example: factorial of a number n (n!).

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Factorial with recursion

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ 0! is 1 (1)

➢ n! is n X (n − 1)!, for n > 0

4! is 4 X 3!

4 X 3 X 2 X 1 = 24

Figure9.11

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ EXAMPLE 9.6: Finding the Greatest common divisor.

• The greatest common divisor of two integers is the largest integer that
divides them both evenly.

➢ Figure 9.14.

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Algorithm for finding gcd: (1)

o gcd(x , y) is y if y divides x evenly

o gcd(x , y) is gcd(y , remainder of x divided by y) otherwise

CASE STUDY (Homework)
P.538 – 544

Finding Capital Letters in a String &
Recursive Selection Sort

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ In general, if there are recursive and iterative solutions to the same problem, the
recursive solution will require more time and space because of the extra function
calls.

➢ Although recursion was not really needed to solve the simpler problems in this

section, it was extremely useful in formulating algorithms to problems.

➢ For certain problems, recursion leads naturally to solutions that are much easier to
read and understand than their iterative counterparts.

COMPARISON OF ITERATIVE AND RECURSIVE
FUNCTIONS

➢ The most common problem with a recursive function is that it may not terminate
properly. (1)

➢ Frequently, a run-time error message noting stack overflow or an access violation

is an indicator that a recursive function is not terminating.

➢ Make sure that you identify all simple cases and provide a terminating condition for
each one.

➢ Also, be sure that each recursive step redefines the problem in terms of arguments

that are closer to simple cases so that repeated recursive calls will eventually lead to
simple cases only.

9.7 COMMON PROGRAMMING
ERRORS

➢ The recopying of large arrays or other data structures can quickly consume all
available memory. (1)

➢ It is also a good idea to introduce a nonrecursive function to handle preliminaries

and call the recursive function when there is error checking. (2)

➢ Sometimes, it is difficult to observe the output produced when running recursive
functions that you have made self-tracing. (3)

9.7 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 09

Recursion

Loading…

Chapter Objectives:

1. How recursion is used as a problem solving tool.

2. Trace recursive functions.

3. Implement mathematical functions with recursive definitions as C functions.

4. Use recursion to solve problems involving arrays and strings.

5. Learn a recursive sort function

And more….

➢ A recursive function is:
● A function that calls itself.
● A function f1 is also recursive if it calls a function f2 , which under some

circumstances calls f1 (1).

➢ The ability to invoke itself enables a recursive function to be repeated with

different parameter values.

➢ You can use recursion as an alternative to iteration (looping) (2)

RECURSIVE
FUNCTIONS

Loading…

Problems that lend themselves to a recursive solution have the following characteristics:

● One or more simple cases of the problem have a straightforward, non-recursive
solution.

● The other cases can be redefined in terms of problems that are closer to the simple

cases.

● By applying this redefinition process every time the recursive function is called,
eventually the problem is reduced entirely to simple cases, which are relatively easy to
solve.

9.1 THE NATURE OF RECURSION

The recursive algorithms that we write will generally consist of an if statement with the
following form (1):

9.1 THE NATURE OF RECURSION

if this is a simple case
 solve it
else
 redefine the problem using recursion

● EXAMPLE 9.1: solve the problem of multiplying 6 by 3:

9.1 THE NATURE OF RECURSION

1. Multiply 6 by 2.
2. Add 6 to the result of problem 1.

1. Multiply 6 by 2.

 1.1 Multiply 6 by 1.

 1.2 Add 6 to the result of problem 1.1.

2. Add 6 to the result of problem 1.

9.1 THE NATURE OF RECURSION

● EXAMPLE 9.2, Figure 9.4

➢ Figure 9.5

9.2 TRACING A RECURSIVE FUNCTION

➢ EXAMPLE 9.3, Figure 9.6

TRACING A VOID FUNCTION THAT IS RECURSIVE

Loading…

TRACING A VOID FUNCTION THAT IS RECURSIVE

PARAMETER AND LOCAL VARIABLE
STACKS

PARAMETER AND LOCAL VARIABLE
STACKS

➢ Doing a trace by hand of multiple calls to a recursive function is helpful in
understanding how recursion works but less useful when trying to develop a recursive
algorithm.

➢ During algorithm development, it is best to trace a specific case (1)

➢ Then the hand trace can check whether this value is manipulated properly to produce

a correct function result for the case under consideration.

➢ The function can be made to trace itself by inserting debugging print statements
showing entry to and exit from the function. (2)

➢ FIGURE 9.9, p.531 (3)

WHEN AND HOW TO TRACE RECURSIVE
FUNCTIONS

➢ Example: factorial of a number n (n!).

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Factorial with recursion

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ 0! is 1 (1)

➢ n! is n X (n − 1)!, for n > 0

4! is 4 X 3!

4 X 3 X 2 X 1 = 24

Figure9.11

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ EXAMPLE 9.6: Finding the Greatest common divisor.

• The greatest common divisor of two integers is the largest integer that
divides them both evenly.

➢ Figure 9.14.

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Algorithm for finding gcd: (1)

o gcd(x , y) is y if y divides x evenly

o gcd(x , y) is gcd(y , remainder of x divided by y) otherwise

CASE STUDY (Homework)
P.538 – 544

Finding Capital Letters in a String &
Recursive Selection Sort

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ In general, if there are recursive and iterative solutions to the same problem, the
recursive solution will require more time and space because of the extra function
calls.

➢ Although recursion was not really needed to solve the simpler problems in this

section, it was extremely useful in formulating algorithms to problems.

➢ For certain problems, recursion leads naturally to solutions that are much easier to
read and understand than their iterative counterparts.

COMPARISON OF ITERATIVE AND RECURSIVE
FUNCTIONS

➢ The most common problem with a recursive function is that it may not terminate
properly. (1)

➢ Frequently, a run-time error message noting stack overflow or an access violation

is an indicator that a recursive function is not terminating.

➢ Make sure that you identify all simple cases and provide a terminating condition for
each one.

➢ Also, be sure that each recursive step redefines the problem in terms of arguments

that are closer to simple cases so that repeated recursive calls will eventually lead to
simple cases only.

9.7 COMMON PROGRAMMING
ERRORS

➢ The recopying of large arrays or other data structures can quickly consume all
available memory. (1)

➢ It is also a good idea to introduce a nonrecursive function to handle preliminaries

and call the recursive function when there is error checking. (2)

➢ Sometimes, it is difficult to observe the output produced when running recursive
functions that you have made self-tracing. (3)

9.7 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 09

Recursion

Loading…

Chapter Objectives:

1. How recursion is used as a problem solving tool.

2. Trace recursive functions.

3. Implement mathematical functions with recursive definitions as C functions.

4. Use recursion to solve problems involving arrays and strings.

5. Learn a recursive sort function

And more….

➢ A recursive function is:
● A function that calls itself.
● A function f1 is also recursive if it calls a function f2 , which under some

circumstances calls f1 (1).

➢ The ability to invoke itself enables a recursive function to be repeated with

different parameter values.

➢ You can use recursion as an alternative to iteration (looping) (2)

RECURSIVE
FUNCTIONS

Loading…

Problems that lend themselves to a recursive solution have the following characteristics:

● One or more simple cases of the problem have a straightforward, non-recursive
solution.

● The other cases can be redefined in terms of problems that are closer to the simple

cases.

● By applying this redefinition process every time the recursive function is called,
eventually the problem is reduced entirely to simple cases, which are relatively easy to
solve.

9.1 THE NATURE OF RECURSION

The recursive algorithms that we write will generally consist of an if statement with the
following form (1):

9.1 THE NATURE OF RECURSION

if this is a simple case
 solve it
else
 redefine the problem using recursion

● EXAMPLE 9.1: solve the problem of multiplying 6 by 3:

9.1 THE NATURE OF RECURSION

1. Multiply 6 by 2.
2. Add 6 to the result of problem 1.

1. Multiply 6 by 2.

 1.1 Multiply 6 by 1.

 1.2 Add 6 to the result of problem 1.1.

2. Add 6 to the result of problem 1.

9.1 THE NATURE OF RECURSION

● EXAMPLE 9.2, Figure 9.4

➢ Figure 9.5

9.2 TRACING A RECURSIVE FUNCTION

➢ EXAMPLE 9.3, Figure 9.6

TRACING A VOID FUNCTION THAT IS RECURSIVE

Loading…

TRACING A VOID FUNCTION THAT IS RECURSIVE

PARAMETER AND LOCAL VARIABLE
STACKS

PARAMETER AND LOCAL VARIABLE
STACKS

➢ Doing a trace by hand of multiple calls to a recursive function is helpful in
understanding how recursion works but less useful when trying to develop a recursive
algorithm.

➢ During algorithm development, it is best to trace a specific case (1)

➢ Then the hand trace can check whether this value is manipulated properly to produce

a correct function result for the case under consideration.

➢ The function can be made to trace itself by inserting debugging print statements
showing entry to and exit from the function. (2)

➢ FIGURE 9.9, p.531 (3)

WHEN AND HOW TO TRACE RECURSIVE
FUNCTIONS

➢ Example: factorial of a number n (n!).

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Factorial with recursion

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ 0! is 1 (1)

➢ n! is n X (n − 1)!, for n > 0

4! is 4 X 3!

4 X 3 X 2 X 1 = 24

Figure9.11

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ EXAMPLE 9.6: Finding the Greatest common divisor.

• The greatest common divisor of two integers is the largest integer that
divides them both evenly.

➢ Figure 9.14.

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Algorithm for finding gcd: (1)

o gcd(x , y) is y if y divides x evenly

o gcd(x , y) is gcd(y , remainder of x divided by y) otherwise

CASE STUDY (Homework)
P.538 – 544

Finding Capital Letters in a String &
Recursive Selection Sort

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ In general, if there are recursive and iterative solutions to the same problem, the
recursive solution will require more time and space because of the extra function
calls.

➢ Although recursion was not really needed to solve the simpler problems in this

section, it was extremely useful in formulating algorithms to problems.

➢ For certain problems, recursion leads naturally to solutions that are much easier to
read and understand than their iterative counterparts.

COMPARISON OF ITERATIVE AND RECURSIVE
FUNCTIONS

➢ The most common problem with a recursive function is that it may not terminate
properly. (1)

➢ Frequently, a run-time error message noting stack overflow or an access violation

is an indicator that a recursive function is not terminating.

➢ Make sure that you identify all simple cases and provide a terminating condition for
each one.

➢ Also, be sure that each recursive step redefines the problem in terms of arguments

that are closer to simple cases so that repeated recursive calls will eventually lead to
simple cases only.

9.7 COMMON PROGRAMMING
ERRORS

➢ The recopying of large arrays or other data structures can quickly consume all
available memory. (1)

➢ It is also a good idea to introduce a nonrecursive function to handle preliminaries

and call the recursive function when there is error checking. (2)

➢ Sometimes, it is difficult to observe the output produced when running recursive
functions that you have made self-tracing. (3)

9.7 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 09

Recursion

Loading…

Chapter Objectives:

1. How recursion is used as a problem solving tool.

2. Trace recursive functions.

3. Implement mathematical functions with recursive definitions as C functions.

4. Use recursion to solve problems involving arrays and strings.

5. Learn a recursive sort function

And more….

➢ A recursive function is:
● A function that calls itself.
● A function f1 is also recursive if it calls a function f2 , which under some

circumstances calls f1 (1).

➢ The ability to invoke itself enables a recursive function to be repeated with

different parameter values.

➢ You can use recursion as an alternative to iteration (looping) (2)

RECURSIVE
FUNCTIONS

Loading…

Problems that lend themselves to a recursive solution have the following characteristics:

● One or more simple cases of the problem have a straightforward, non-recursive
solution.

● The other cases can be redefined in terms of problems that are closer to the simple

cases.

● By applying this redefinition process every time the recursive function is called,
eventually the problem is reduced entirely to simple cases, which are relatively easy to
solve.

9.1 THE NATURE OF RECURSION

The recursive algorithms that we write will generally consist of an if statement with the
following form (1):

9.1 THE NATURE OF RECURSION

if this is a simple case
 solve it
else
 redefine the problem using recursion

● EXAMPLE 9.1: solve the problem of multiplying 6 by 3:

9.1 THE NATURE OF RECURSION

1. Multiply 6 by 2.
2. Add 6 to the result of problem 1.

1. Multiply 6 by 2.

 1.1 Multiply 6 by 1.

 1.2 Add 6 to the result of problem 1.1.

2. Add 6 to the result of problem 1.

9.1 THE NATURE OF RECURSION

● EXAMPLE 9.2, Figure 9.4

➢ Figure 9.5

9.2 TRACING A RECURSIVE FUNCTION

➢ EXAMPLE 9.3, Figure 9.6

TRACING A VOID FUNCTION THAT IS RECURSIVE

Loading…

TRACING A VOID FUNCTION THAT IS RECURSIVE

PARAMETER AND LOCAL VARIABLE
STACKS

PARAMETER AND LOCAL VARIABLE
STACKS

➢ Doing a trace by hand of multiple calls to a recursive function is helpful in
understanding how recursion works but less useful when trying to develop a recursive
algorithm.

➢ During algorithm development, it is best to trace a specific case (1)

➢ Then the hand trace can check whether this value is manipulated properly to produce

a correct function result for the case under consideration.

➢ The function can be made to trace itself by inserting debugging print statements
showing entry to and exit from the function. (2)

➢ FIGURE 9.9, p.531 (3)

WHEN AND HOW TO TRACE RECURSIVE
FUNCTIONS

➢ Example: factorial of a number n (n!).

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Factorial with recursion

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ 0! is 1 (1)

➢ n! is n X (n − 1)!, for n > 0

4! is 4 X 3!

4 X 3 X 2 X 1 = 24

Figure9.11

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ EXAMPLE 9.6: Finding the Greatest common divisor.

• The greatest common divisor of two integers is the largest integer that
divides them both evenly.

➢ Figure 9.14.

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Algorithm for finding gcd: (1)

o gcd(x , y) is y if y divides x evenly

o gcd(x , y) is gcd(y , remainder of x divided by y) otherwise

CASE STUDY (Homework)
P.538 – 544

Finding Capital Letters in a String &
Recursive Selection Sort

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ In general, if there are recursive and iterative solutions to the same problem, the
recursive solution will require more time and space because of the extra function
calls.

➢ Although recursion was not really needed to solve the simpler problems in this

section, it was extremely useful in formulating algorithms to problems.

➢ For certain problems, recursion leads naturally to solutions that are much easier to
read and understand than their iterative counterparts.

COMPARISON OF ITERATIVE AND RECURSIVE
FUNCTIONS

➢ The most common problem with a recursive function is that it may not terminate
properly. (1)

➢ Frequently, a run-time error message noting stack overflow or an access violation

is an indicator that a recursive function is not terminating.

➢ Make sure that you identify all simple cases and provide a terminating condition for
each one.

➢ Also, be sure that each recursive step redefines the problem in terms of arguments

that are closer to simple cases so that repeated recursive calls will eventually lead to
simple cases only.

9.7 COMMON PROGRAMMING
ERRORS

➢ The recopying of large arrays or other data structures can quickly consume all
available memory. (1)

➢ It is also a good idea to introduce a nonrecursive function to handle preliminaries

and call the recursive function when there is error checking. (2)

➢ Sometimes, it is difficult to observe the output produced when running recursive
functions that you have made self-tracing. (3)

9.7 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 09

Recursion

Loading…

Chapter Objectives:

1. How recursion is used as a problem solving tool.

2. Trace recursive functions.

3. Implement mathematical functions with recursive definitions as C functions.

4. Use recursion to solve problems involving arrays and strings.

5. Learn a recursive sort function

And more….

➢ A recursive function is:
● A function that calls itself.
● A function f1 is also recursive if it calls a function f2 , which under some

circumstances calls f1 (1).

➢ The ability to invoke itself enables a recursive function to be repeated with

different parameter values.

➢ You can use recursion as an alternative to iteration (looping) (2)

RECURSIVE
FUNCTIONS

Loading…

Problems that lend themselves to a recursive solution have the following characteristics:

● One or more simple cases of the problem have a straightforward, non-recursive
solution.

● The other cases can be redefined in terms of problems that are closer to the simple

cases.

● By applying this redefinition process every time the recursive function is called,
eventually the problem is reduced entirely to simple cases, which are relatively easy to
solve.

9.1 THE NATURE OF RECURSION

The recursive algorithms that we write will generally consist of an if statement with the
following form (1):

9.1 THE NATURE OF RECURSION

if this is a simple case
 solve it
else
 redefine the problem using recursion

● EXAMPLE 9.1: solve the problem of multiplying 6 by 3:

9.1 THE NATURE OF RECURSION

1. Multiply 6 by 2.
2. Add 6 to the result of problem 1.

1. Multiply 6 by 2.

 1.1 Multiply 6 by 1.

 1.2 Add 6 to the result of problem 1.1.

2. Add 6 to the result of problem 1.

9.1 THE NATURE OF RECURSION

● EXAMPLE 9.2, Figure 9.4

➢ Figure 9.5

9.2 TRACING A RECURSIVE FUNCTION

➢ EXAMPLE 9.3, Figure 9.6

TRACING A VOID FUNCTION THAT IS RECURSIVE

Loading…

TRACING A VOID FUNCTION THAT IS RECURSIVE

PARAMETER AND LOCAL VARIABLE
STACKS

PARAMETER AND LOCAL VARIABLE
STACKS

➢ Doing a trace by hand of multiple calls to a recursive function is helpful in
understanding how recursion works but less useful when trying to develop a recursive
algorithm.

➢ During algorithm development, it is best to trace a specific case (1)

➢ Then the hand trace can check whether this value is manipulated properly to produce

a correct function result for the case under consideration.

➢ The function can be made to trace itself by inserting debugging print statements
showing entry to and exit from the function. (2)

➢ FIGURE 9.9, p.531 (3)

WHEN AND HOW TO TRACE RECURSIVE
FUNCTIONS

➢ Example: factorial of a number n (n!).

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Factorial with recursion

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ 0! is 1 (1)

➢ n! is n X (n − 1)!, for n > 0

4! is 4 X 3!

4 X 3 X 2 X 1 = 24

Figure9.11

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ EXAMPLE 9.6: Finding the Greatest common divisor.

• The greatest common divisor of two integers is the largest integer that
divides them both evenly.

➢ Figure 9.14.

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Algorithm for finding gcd: (1)

o gcd(x , y) is y if y divides x evenly

o gcd(x , y) is gcd(y , remainder of x divided by y) otherwise

CASE STUDY (Homework)
P.538 – 544

Finding Capital Letters in a String &
Recursive Selection Sort

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ In general, if there are recursive and iterative solutions to the same problem, the
recursive solution will require more time and space because of the extra function
calls.

➢ Although recursion was not really needed to solve the simpler problems in this

section, it was extremely useful in formulating algorithms to problems.

➢ For certain problems, recursion leads naturally to solutions that are much easier to
read and understand than their iterative counterparts.

COMPARISON OF ITERATIVE AND RECURSIVE
FUNCTIONS

➢ The most common problem with a recursive function is that it may not terminate
properly. (1)

➢ Frequently, a run-time error message noting stack overflow or an access violation

is an indicator that a recursive function is not terminating.

➢ Make sure that you identify all simple cases and provide a terminating condition for
each one.

➢ Also, be sure that each recursive step redefines the problem in terms of arguments

that are closer to simple cases so that repeated recursive calls will eventually lead to
simple cases only.

9.7 COMMON PROGRAMMING
ERRORS

➢ The recopying of large arrays or other data structures can quickly consume all
available memory. (1)

➢ It is also a good idea to introduce a nonrecursive function to handle preliminaries

and call the recursive function when there is error checking. (2)

➢ Sometimes, it is difficult to observe the output produced when running recursive
functions that you have made self-tracing. (3)

9.7 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 09

Recursion

Loading…

Chapter Objectives:

1. How recursion is used as a problem solving tool.

2. Trace recursive functions.

3. Implement mathematical functions with recursive definitions as C functions.

4. Use recursion to solve problems involving arrays and strings.

5. Learn a recursive sort function

And more….

➢ A recursive function is:
● A function that calls itself.
● A function f1 is also recursive if it calls a function f2 , which under some

circumstances calls f1 (1).

➢ The ability to invoke itself enables a recursive function to be repeated with

different parameter values.

➢ You can use recursion as an alternative to iteration (looping) (2)

RECURSIVE
FUNCTIONS

Loading…

Problems that lend themselves to a recursive solution have the following characteristics:

● One or more simple cases of the problem have a straightforward, non-recursive
solution.

● The other cases can be redefined in terms of problems that are closer to the simple

cases.

● By applying this redefinition process every time the recursive function is called,
eventually the problem is reduced entirely to simple cases, which are relatively easy to
solve.

9.1 THE NATURE OF RECURSION

The recursive algorithms that we write will generally consist of an if statement with the
following form (1):

9.1 THE NATURE OF RECURSION

if this is a simple case
 solve it
else
 redefine the problem using recursion

● EXAMPLE 9.1: solve the problem of multiplying 6 by 3:

9.1 THE NATURE OF RECURSION

1. Multiply 6 by 2.
2. Add 6 to the result of problem 1.

1. Multiply 6 by 2.

 1.1 Multiply 6 by 1.

 1.2 Add 6 to the result of problem 1.1.

2. Add 6 to the result of problem 1.

9.1 THE NATURE OF RECURSION

● EXAMPLE 9.2, Figure 9.4

➢ Figure 9.5

9.2 TRACING A RECURSIVE FUNCTION

➢ EXAMPLE 9.3, Figure 9.6

TRACING A VOID FUNCTION THAT IS RECURSIVE

Loading…

TRACING A VOID FUNCTION THAT IS RECURSIVE

PARAMETER AND LOCAL VARIABLE
STACKS

PARAMETER AND LOCAL VARIABLE
STACKS

➢ Doing a trace by hand of multiple calls to a recursive function is helpful in
understanding how recursion works but less useful when trying to develop a recursive
algorithm.

➢ During algorithm development, it is best to trace a specific case (1)

➢ Then the hand trace can check whether this value is manipulated properly to produce

a correct function result for the case under consideration.

➢ The function can be made to trace itself by inserting debugging print statements
showing entry to and exit from the function. (2)

➢ FIGURE 9.9, p.531 (3)

WHEN AND HOW TO TRACE RECURSIVE
FUNCTIONS

➢ Example: factorial of a number n (n!).

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Factorial with recursion

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ 0! is 1 (1)

➢ n! is n X (n − 1)!, for n > 0

4! is 4 X 3!

4 X 3 X 2 X 1 = 24

Figure9.11

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ EXAMPLE 9.6: Finding the Greatest common divisor.

• The greatest common divisor of two integers is the largest integer that
divides them both evenly.

➢ Figure 9.14.

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Algorithm for finding gcd: (1)

o gcd(x , y) is y if y divides x evenly

o gcd(x , y) is gcd(y , remainder of x divided by y) otherwise

CASE STUDY (Homework)
P.538 – 544

Finding Capital Letters in a String &
Recursive Selection Sort

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ In general, if there are recursive and iterative solutions to the same problem, the
recursive solution will require more time and space because of the extra function
calls.

➢ Although recursion was not really needed to solve the simpler problems in this

section, it was extremely useful in formulating algorithms to problems.

➢ For certain problems, recursion leads naturally to solutions that are much easier to
read and understand than their iterative counterparts.

COMPARISON OF ITERATIVE AND RECURSIVE
FUNCTIONS

➢ The most common problem with a recursive function is that it may not terminate
properly. (1)

➢ Frequently, a run-time error message noting stack overflow or an access violation

is an indicator that a recursive function is not terminating.

➢ Make sure that you identify all simple cases and provide a terminating condition for
each one.

➢ Also, be sure that each recursive step redefines the problem in terms of arguments

that are closer to simple cases so that repeated recursive calls will eventually lead to
simple cases only.

9.7 COMMON PROGRAMMING
ERRORS

➢ The recopying of large arrays or other data structures can quickly consume all
available memory. (1)

➢ It is also a good idea to introduce a nonrecursive function to handle preliminaries

and call the recursive function when there is error checking. (2)

➢ Sometimes, it is difficult to observe the output produced when running recursive
functions that you have made self-tracing. (3)

9.7 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 09

Recursion

Loading…

Chapter Objectives:

1. How recursion is used as a problem solving tool.

2. Trace recursive functions.

3. Implement mathematical functions with recursive definitions as C functions.

4. Use recursion to solve problems involving arrays and strings.

5. Learn a recursive sort function

And more….

➢ A recursive function is:
● A function that calls itself.
● A function f1 is also recursive if it calls a function f2 , which under some

circumstances calls f1 (1).

➢ The ability to invoke itself enables a recursive function to be repeated with

different parameter values.

➢ You can use recursion as an alternative to iteration (looping) (2)

RECURSIVE
FUNCTIONS

Loading…

Problems that lend themselves to a recursive solution have the following characteristics:

● One or more simple cases of the problem have a straightforward, non-recursive
solution.

● The other cases can be redefined in terms of problems that are closer to the simple

cases.

● By applying this redefinition process every time the recursive function is called,
eventually the problem is reduced entirely to simple cases, which are relatively easy to
solve.

9.1 THE NATURE OF RECURSION

The recursive algorithms that we write will generally consist of an if statement with the
following form (1):

9.1 THE NATURE OF RECURSION

if this is a simple case
 solve it
else
 redefine the problem using recursion

● EXAMPLE 9.1: solve the problem of multiplying 6 by 3:

9.1 THE NATURE OF RECURSION

1. Multiply 6 by 2.
2. Add 6 to the result of problem 1.

1. Multiply 6 by 2.

 1.1 Multiply 6 by 1.

 1.2 Add 6 to the result of problem 1.1.

2. Add 6 to the result of problem 1.

9.1 THE NATURE OF RECURSION

● EXAMPLE 9.2, Figure 9.4

➢ Figure 9.5

9.2 TRACING A RECURSIVE FUNCTION

➢ EXAMPLE 9.3, Figure 9.6

TRACING A VOID FUNCTION THAT IS RECURSIVE

Loading…

TRACING A VOID FUNCTION THAT IS RECURSIVE

PARAMETER AND LOCAL VARIABLE
STACKS

PARAMETER AND LOCAL VARIABLE
STACKS

➢ Doing a trace by hand of multiple calls to a recursive function is helpful in
understanding how recursion works but less useful when trying to develop a recursive
algorithm.

➢ During algorithm development, it is best to trace a specific case (1)

➢ Then the hand trace can check whether this value is manipulated properly to produce

a correct function result for the case under consideration.

➢ The function can be made to trace itself by inserting debugging print statements
showing entry to and exit from the function. (2)

➢ FIGURE 9.9, p.531 (3)

WHEN AND HOW TO TRACE RECURSIVE
FUNCTIONS

➢ Example: factorial of a number n (n!).

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Factorial with recursion

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ 0! is 1 (1)

➢ n! is n X (n − 1)!, for n > 0

4! is 4 X 3!

4 X 3 X 2 X 1 = 24

Figure9.11

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ EXAMPLE 9.6: Finding the Greatest common divisor.

• The greatest common divisor of two integers is the largest integer that
divides them both evenly.

➢ Figure 9.14.

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Algorithm for finding gcd: (1)

o gcd(x , y) is y if y divides x evenly

o gcd(x , y) is gcd(y , remainder of x divided by y) otherwise

CASE STUDY (Homework)
P.538 – 544

Finding Capital Letters in a String &
Recursive Selection Sort

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ In general, if there are recursive and iterative solutions to the same problem, the
recursive solution will require more time and space because of the extra function
calls.

➢ Although recursion was not really needed to solve the simpler problems in this

section, it was extremely useful in formulating algorithms to problems.

➢ For certain problems, recursion leads naturally to solutions that are much easier to
read and understand than their iterative counterparts.

COMPARISON OF ITERATIVE AND RECURSIVE
FUNCTIONS

➢ The most common problem with a recursive function is that it may not terminate
properly. (1)

➢ Frequently, a run-time error message noting stack overflow or an access violation

is an indicator that a recursive function is not terminating.

➢ Make sure that you identify all simple cases and provide a terminating condition for
each one.

➢ Also, be sure that each recursive step redefines the problem in terms of arguments

that are closer to simple cases so that repeated recursive calls will eventually lead to
simple cases only.

9.7 COMMON PROGRAMMING
ERRORS

➢ The recopying of large arrays or other data structures can quickly consume all
available memory. (1)

➢ It is also a good idea to introduce a nonrecursive function to handle preliminaries

and call the recursive function when there is error checking. (2)

➢ Sometimes, it is difficult to observe the output produced when running recursive
functions that you have made self-tracing. (3)

9.7 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 09

Recursion

Loading…

Chapter Objectives:

1. How recursion is used as a problem solving tool.

2. Trace recursive functions.

3. Implement mathematical functions with recursive definitions as C functions.

4. Use recursion to solve problems involving arrays and strings.

5. Learn a recursive sort function

And more….

➢ A recursive function is:
● A function that calls itself.
● A function f1 is also recursive if it calls a function f2 , which under some

circumstances calls f1 (1).

➢ The ability to invoke itself enables a recursive function to be repeated with

different parameter values.

➢ You can use recursion as an alternative to iteration (looping) (2)

RECURSIVE
FUNCTIONS

Loading…

Problems that lend themselves to a recursive solution have the following characteristics:

● One or more simple cases of the problem have a straightforward, non-recursive
solution.

● The other cases can be redefined in terms of problems that are closer to the simple

cases.

● By applying this redefinition process every time the recursive function is called,
eventually the problem is reduced entirely to simple cases, which are relatively easy to
solve.

9.1 THE NATURE OF RECURSION

The recursive algorithms that we write will generally consist of an if statement with the
following form (1):

9.1 THE NATURE OF RECURSION

if this is a simple case
 solve it
else
 redefine the problem using recursion

● EXAMPLE 9.1: solve the problem of multiplying 6 by 3:

9.1 THE NATURE OF RECURSION

1. Multiply 6 by 2.
2. Add 6 to the result of problem 1.

1. Multiply 6 by 2.

 1.1 Multiply 6 by 1.

 1.2 Add 6 to the result of problem 1.1.

2. Add 6 to the result of problem 1.

9.1 THE NATURE OF RECURSION

● EXAMPLE 9.2, Figure 9.4

➢ Figure 9.5

9.2 TRACING A RECURSIVE FUNCTION

➢ EXAMPLE 9.3, Figure 9.6

TRACING A VOID FUNCTION THAT IS RECURSIVE

Loading…

TRACING A VOID FUNCTION THAT IS RECURSIVE

PARAMETER AND LOCAL VARIABLE
STACKS

PARAMETER AND LOCAL VARIABLE
STACKS

➢ Doing a trace by hand of multiple calls to a recursive function is helpful in
understanding how recursion works but less useful when trying to develop a recursive
algorithm.

➢ During algorithm development, it is best to trace a specific case (1)

➢ Then the hand trace can check whether this value is manipulated properly to produce

a correct function result for the case under consideration.

➢ The function can be made to trace itself by inserting debugging print statements
showing entry to and exit from the function. (2)

➢ FIGURE 9.9, p.531 (3)

WHEN AND HOW TO TRACE RECURSIVE
FUNCTIONS

➢ Example: factorial of a number n (n!).

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Factorial with recursion

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ 0! is 1 (1)

➢ n! is n X (n − 1)!, for n > 0

4! is 4 X 3!

4 X 3 X 2 X 1 = 24

Figure9.11

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ EXAMPLE 9.6: Finding the Greatest common divisor.

• The greatest common divisor of two integers is the largest integer that
divides them both evenly.

➢ Figure 9.14.

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Algorithm for finding gcd: (1)

o gcd(x , y) is y if y divides x evenly

o gcd(x , y) is gcd(y , remainder of x divided by y) otherwise

CASE STUDY (Homework)
P.538 – 544

Finding Capital Letters in a String &
Recursive Selection Sort

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ In general, if there are recursive and iterative solutions to the same problem, the
recursive solution will require more time and space because of the extra function
calls.

➢ Although recursion was not really needed to solve the simpler problems in this

section, it was extremely useful in formulating algorithms to problems.

➢ For certain problems, recursion leads naturally to solutions that are much easier to
read and understand than their iterative counterparts.

COMPARISON OF ITERATIVE AND RECURSIVE
FUNCTIONS

➢ The most common problem with a recursive function is that it may not terminate
properly. (1)

➢ Frequently, a run-time error message noting stack overflow or an access violation

is an indicator that a recursive function is not terminating.

➢ Make sure that you identify all simple cases and provide a terminating condition for
each one.

➢ Also, be sure that each recursive step redefines the problem in terms of arguments

that are closer to simple cases so that repeated recursive calls will eventually lead to
simple cases only.

9.7 COMMON PROGRAMMING
ERRORS

➢ The recopying of large arrays or other data structures can quickly consume all
available memory. (1)

➢ It is also a good idea to introduce a nonrecursive function to handle preliminaries

and call the recursive function when there is error checking. (2)

➢ Sometimes, it is difficult to observe the output produced when running recursive
functions that you have made self-tracing. (3)

9.7 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 09

Recursion

Loading…

Chapter Objectives:

1. How recursion is used as a problem solving tool.

2. Trace recursive functions.

3. Implement mathematical functions with recursive definitions as C functions.

4. Use recursion to solve problems involving arrays and strings.

5. Learn a recursive sort function

And more….

➢ A recursive function is:
● A function that calls itself.
● A function f1 is also recursive if it calls a function f2 , which under some

circumstances calls f1 (1).

➢ The ability to invoke itself enables a recursive function to be repeated with

different parameter values.

➢ You can use recursion as an alternative to iteration (looping) (2)

RECURSIVE
FUNCTIONS

Loading…

Problems that lend themselves to a recursive solution have the following characteristics:

● One or more simple cases of the problem have a straightforward, non-recursive
solution.

● The other cases can be redefined in terms of problems that are closer to the simple

cases.

● By applying this redefinition process every time the recursive function is called,
eventually the problem is reduced entirely to simple cases, which are relatively easy to
solve.

9.1 THE NATURE OF RECURSION

The recursive algorithms that we write will generally consist of an if statement with the
following form (1):

9.1 THE NATURE OF RECURSION

if this is a simple case
 solve it
else
 redefine the problem using recursion

● EXAMPLE 9.1: solve the problem of multiplying 6 by 3:

9.1 THE NATURE OF RECURSION

1. Multiply 6 by 2.
2. Add 6 to the result of problem 1.

1. Multiply 6 by 2.

 1.1 Multiply 6 by 1.

 1.2 Add 6 to the result of problem 1.1.

2. Add 6 to the result of problem 1.

9.1 THE NATURE OF RECURSION

● EXAMPLE 9.2, Figure 9.4

➢ Figure 9.5

9.2 TRACING A RECURSIVE FUNCTION

➢ EXAMPLE 9.3, Figure 9.6

TRACING A VOID FUNCTION THAT IS RECURSIVE

Loading…

TRACING A VOID FUNCTION THAT IS RECURSIVE

PARAMETER AND LOCAL VARIABLE
STACKS

PARAMETER AND LOCAL VARIABLE
STACKS

➢ Doing a trace by hand of multiple calls to a recursive function is helpful in
understanding how recursion works but less useful when trying to develop a recursive
algorithm.

➢ During algorithm development, it is best to trace a specific case (1)

➢ Then the hand trace can check whether this value is manipulated properly to produce

a correct function result for the case under consideration.

➢ The function can be made to trace itself by inserting debugging print statements
showing entry to and exit from the function. (2)

➢ FIGURE 9.9, p.531 (3)

WHEN AND HOW TO TRACE RECURSIVE
FUNCTIONS

➢ Example: factorial of a number n (n!).

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Factorial with recursion

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ 0! is 1 (1)

➢ n! is n X (n − 1)!, for n > 0

4! is 4 X 3!

4 X 3 X 2 X 1 = 24

Figure9.11

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ EXAMPLE 9.6: Finding the Greatest common divisor.

• The greatest common divisor of two integers is the largest integer that
divides them both evenly.

➢ Figure 9.14.

9.3 RECURSIVE MATHEMATICAL
FUNCTIONS

➢ Algorithm for finding gcd: (1)

o gcd(x , y) is y if y divides x evenly

o gcd(x , y) is gcd(y , remainder of x divided by y) otherwise

CASE STUDY (Homework)
P.538 – 544

Finding Capital Letters in a String &
Recursive Selection Sort

9.4 RECURSIVE FUNCTIONS WITH ARRAY AND STRING
PARAMETERS

➢ In general, if there are recursive and iterative solutions to the same problem, the
recursive solution will require more time and space because of the extra function
calls.

➢ Although recursion was not really needed to solve the simpler problems in this

section, it was extremely useful in formulating algorithms to problems.

➢ For certain problems, recursion leads naturally to solutions that are much easier to
read and understand than their iterative counterparts.

COMPARISON OF ITERATIVE AND RECURSIVE
FUNCTIONS

➢ The most common problem with a recursive function is that it may not terminate
properly. (1)

➢ Frequently, a run-time error message noting stack overflow or an access violation

is an indicator that a recursive function is not terminating.

➢ Make sure that you identify all simple cases and provide a terminating condition for
each one.

➢ Also, be sure that each recursive step redefines the problem in terms of arguments

that are closer to simple cases so that repeated recursive calls will eventually lead to
simple cases only.

9.7 COMMON PROGRAMMING
ERRORS

➢ The recopying of large arrays or other data structures can quickly consume all
available memory. (1)

➢ It is also a good idea to introduce a nonrecursive function to handle preliminaries

and call the recursive function when there is error checking. (2)

➢ Sometimes, it is difficult to observe the output produced when running recursive
functions that you have made self-tracing. (3)

9.7 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

