
9.   Use the Laplace transform and Table 15.1.1 to solve the integral equation

10.   Use the third and fifth entries in Table 15.1.1 to derive the sixth entry.
11.   Show that 

12.   Show that 

   Computer Lab Assignment
13.   The functions erf(x) and erfc(x) are defined for x < 0. Use a CAS to superimpose the graphs of

erf(x) and erfc(x) on the same axes for –10 ≤ x ≤ 10. Do the graphs possess any symmetry? What
are limx→–∞ erf(x) and limx→–∞ erfc(x)?

15.2 Applications of the Laplace Transform

   Introduction In Chapter 4 we defined the Laplace transform of a function f(t), t ≥ 0, to be

whenever the improper integral converges. This integral transforms a function f(t) into another
function F of the transform parameter s, that is, {f(t)} = F(s). The main application of the Laplace
transform in Chapter 4 was to the solution of certain types of initial-value problems involving linear
ordinary differential equations with constant coefficients. Recall, the Laplace transform of such an
equation reduces the ODE to an algebraic equation. In this section we are going to apply the Laplace
transform to linear partial differential equations. We will see that this transform reduces a PDE to an
ODE.

   Transform of Partial Derivatives The boundary-value problems considered in this section will
involve either the one-dimensional wave and heat equations or slight variations of these equations.
These PDEs involve an unknown function of two independent variables u(x, t), where the variable t
represents time t > 0. We define the Laplace transform of u(x, t) with respect to t by

where x is treated as a parameter. Throughout this section we shall assume that all the operational
properties of Sections 4.2, 4.3, and 4.4 apply to functions of two variables. For example, by Theorem
4.2.2, the transform of the partial derivative ∂u/∂t is

that is,
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Similarly,

Since we are transforming with respect to t, we further suppose that it is legitimate to interchange
integration and differentiation in the transform of ∂2u/∂x2:

that is,

In view of (1) and (2) we see that the Laplace transform is suited to problems with initial
conditions—namely, those problems associated with the heat equation or the wave equation.

EXAMPLE 1  Laplace Transform of a PDE

Find the Laplace transform of the wave equation 

SOLUTION  From (2) and (3),

becomes

or

The Laplace transform with respect to t of either the wave equation or the heat equation eliminates
that variable, and for the one-dimensional equations the transformed equations are then ordinary
differential equations in the spatial variable x. In solving a transformed equation, we treat s as a
parameter.
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Solve

subject to

SOLUTION  The partial differential equation is recognized as the wave equation with a = 1. From
(4) and the given initial conditions, the transformed equation is

where U(x, s) = {u(x, t)}. Since the boundary conditions are functions of t, we must also find their
Laplace transforms:

The results in (6) are boundary conditions for the ordinary differential equation (5). Since (5) is
defined over a finite interval, its complementary function is

Uc(x, s) = c1 cosh sx + c2 sinh sx.

The method of undetermined coefficients yields a particular solution

Hence

But the conditions U(0, s) = 0 and U(1, s) = 0 yield, in turn, c1 = 0 and c2 = 0. We conclude that

Therefore
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EXAMPLE 3  Using the Laplace Transform to Solve a BVP

A very long string is initially at rest on the nonnegative x-axis. The string is secured at x = 0, and its
distant right end slides down a frictionless vertical support. The string is set in motion by letting it
fall under its own weight. Find the displacement u(x, t).

SOLUTION  Since the force of gravity is taken into consideration, it can be shown that the wave
equation has the form

where g is the acceleration due to gravity. The boundary and initial conditions are, respectively,

The second boundary condition limx→–∞ ∂u/∂x = 0 indicates that the string is horizontal at a great
distance from the left end. Now from (2) and (3),

becomes

or, in view of the initial conditions,

The transforms of the boundary conditions are

With the aid of undetermined coefficients, the general solution of the transformed equation is found to
be

The boundary condition limx→–∞ dU/dx = 0 implies c2 = 0, and U(0, s) = 0 gives c1 = g/s3. Therefore
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Now by the second translation theorem we have

or

To interpret the solution, let us suppose t > 0 is fixed. For 0 ≤ x ≤ at, the string is the shape of a
parabola passing through the points (0, 0) and (at, ). For x > at, the string is described by the
horizontal line u = . See FIGURE 15.2.1.

FIGURE 15.2.1 A long string falling under its own weight in Example 3

Observe that the problem in the next example could be solved by the procedure in Section 13.6.
The Laplace transform provides an alternative solution.

EXAMPLE 4  A Solution in Terms of erf(x)

Solve the heat equation

subject to

SOLUTION  From (1) and (3) and the given initial condition,

becomes
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The transforms of the boundary conditions are

Since we are concerned with a finite interval on the x-axis, we choose to write the general solution of
(7) as

Applying the two boundary conditions in (8) yields, respectively, c1 = 0 and  Thus

Now the inverse transform of the latter function cannot be found in most tables. However, by
writing

and using the geometric series

we find

If we assume that the inverse Laplace transform can be done term by term, it follows from entry 3 of
Table 15.1.1 that

   Also see Problem 8 in Exercises 15.1

The solution (9) can be rewritten in terms of the error function using erfc(x) = 1 – erf(x):
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FIGURE 15.2.2(a), obtained with the aid of the 3D plot function in a CAS, shows the surface over
the rectangular region 0 ≤ x ≤ 1, 0 ≤ t ≤ 6 defined by the partial sum S10(x, t) of the solution (10). It is
apparent from the surface and the accompanying two-dimensional graphs that at a fixed value of x (the
curve of intersection of a plane slicing the surface perpendicular to the x-axis on the interval [0, 1],
the temperature u(x, t) increases rapidly to a constant value as time increases. See Figure 15.2.2(b)
and 15.2.2(c). For a fixed time (the curve of intersection of a plane slicing the surface perpendicular
to the t-axis), the temperature u(x, t) naturally increases from 0 to 100. See Figure 15.2.2(d) and
15.2.2(e).

FIGURE 15.2.2 Graph of solution given in (10). In (b) and (c), x is held constant. In (d) and (e), t is
held constant.

15.2  Exercises  Answers to selected odd-numbered problems begin on page ANS-34.
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In the following problems use tables as necessary.
1.   A string is secured to the x-axis at (0, 0) and (L, 0). Find the displacement u(x, t) if the string

starts from rest in the initial position A sin(πx/L).
2.   Solve the boundary-value problem

Solve for u(x, t).
3.   The displacement of a semi-infinite elastic string is determined from

Solve for u(x, t).
4.   Solve the boundary-value problem in Problem 3 when

Sketch the displacement u(x, t) for t > 1.
5.   In Example 3, find the displacement u(x, t) when the left end of the string at x = 0 is given an

oscillatory motion described by f(t) = A sin ωt.
6.   The displacement u(x, t) of a string that is driven by an external force is determined from

Solve for u(x, t).
7.   A uniform bar is clamped at x = 0 and is initially at rest. If a constant force F0 is applied to the

free end at x = L, the longitudinal displacement u(x, t) of a cross section of the bar is determined
from
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Solve for u(x, t). [Hint: Expand 1/(1 + e–2sL/a) in a geometric series.]
8.   A uniform semi-infinite elastic beam moving along the x-axis with a constant velocity –v0 is

brought to a stop by hitting a wall at time t = 0. See FIGURE 15.2.3. The longitudinal
displacement u(x, t) is determined from

Solve for u(x, t).

FIGURE 15.2.3 Moving elastic beam in Problem 8

9.   Solve the boundary-value problem

10.   Solve the boundary-value problem
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In Problems 11–18, use the Laplace transform to solve the heat equation uxx = ut, x > 0, t > 0 subject
to the given conditions.
11.   

12.   

13.   

14.   

15.   

[Hint: Use the convolution theorem.]
16.   

17.   

18.   

19.   Solve the boundary-value problem

20.   Show that a solution of the boundary-value problem

where r is a constant, is given by

21.   A rod of length L is held at a constant temperature u0 at its ends x = 0 and x = L. If the rod’s
initial temperature is u0 + u0 sin(xπ/L), solve the heat equation uxx = ut, 0 < x < L, t > 0 for the
temperature u(x, t). Uploaded By: anonymousSTUDENTS-HUB.com



22.   If there is a heat transfer from the lateral surface of a thin wire of length L into a medium at
constant temperature um, then the heat equation takes on the form

where h is a constant. Find the temperature u(x, t) if the initial temperature is a constant u0
throughout and the ends x = 0 and x = L are insulated.

23.   A rod of unit length is insulated at x = 0 and is kept at temperature zero at x = 1. If the initial
temperature of the rod is a constant u0, solve kuxx = ut, 0 < x < 1, t ≥ 0 for the temperature u(x,
t). [Hint: Expand  in a geometric series.]

24.   An infinite porous slab of unit width is immersed in a solution of constant concentration c0. A
dissolved substance in the solution diffuses into the slab. The concentration c(x, t) in the slab is
determined from

where D is a constant. Solve for c(x, t).
25.   A very long telephone transmission line is initially at a constant potential u0. If the line is

grounded at x = 0 and insulated at the distant right end, then the potential u(x, t) at a point x along
the line at time t is determined from

w here R, C, and G are constants known as resistance, capacitance, and conductance,
respectively. Solve for u(x, t). [Hint: See Problem 7 in Exercises 15.1.]

26.   Starting at t = 0, a concentrated load of magnitude F0 moves with a constant velocity v0 along a
semi-infinite string. In this case the wave equation becomes

where δ(t – x/v0) is the Dirac delta function. Solve this PDE subject to
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(a)   when v0 ≠ a, and
(b)   when v0 = a.

27.   In Problem 9 of Exercises 14.3 you were asked to find the time-dependent temperatures u(r, t )
within a unit sphere. The temperatures outside the sphere are described by the boundary-value
problem

Use the Laplace transform to find u(r, t ). [Hint: After transforming the PDE, let v(r, s ) = r U(r,
s), where {u(r, t)} = U(r, s).]

28.   Show that a solution of the boundary-value problem

is

   Computer Lab Assignment
29.   (a)   The temperature in a semi-infinite solid is modeled by the boundary-value problem

Solve for u(x, t). Use the solution to determine analytically the value of limt→∞ u(x, t), x < 0.
(b)   Use a CAS to graph u(x, t) over the rectangular region defined by 0 ≤ x ≤ 10, 0 ≤ t ≤ 15.

Assume u0 = 100 and k = 1. Indicate the two boundary conditions and initial condition on
your graph. Use 2D and 3D plots of u(x, t) to verify your answer to part (a).

30.   (a)   In Problem 29, if there is a constant flux of heat into the solid at its left-hand boundary, then
the boundary condition is . Solve for u(x, t). Use the solution to

determine analytically the value of limt→∞ u(x, t), x > 0. Uploaded By: anonymousSTUDENTS-HUB.com


