9. Use the Laplace transform and Table 15.1.1 to solve the integral equation

wiT)

 Wit—1

viry=1— | dr.

10. Use the thlrd and fifth entries in Table 15.1.1 to derive the sixth entry.
11. Show that J“be‘"‘ du = L [erf (b)) — erfia)].

12. Show that e

=7 re:t[u]

= Computer Lab Assignment

13. The functions erf(x) and erfc(x) are defined for x < 0. Use a CAS to superimpose the graphs o
erf(x) and erfc(x) on the same axes for —10 < x < 10. Do the graphs possess any symmetry? What
are lim,_, . erf(x) and lim,_,  erfc(x)?

15.2 Applications of the Laplace Transform

= Introduction In Chapter 4 we defined the Laplace transform of a function f{¢), t > 0, to be

L==]

E{fn} = | e ~"f(t) dt,
A

whenever the improper integral converges. This integral transforms a functionf{t) into another
function F of the transform parameter s, that is, £{f(¢#)} = F(s). The main application of the Laplace
transform in Chapter 4 was to the solution of certain types of initial-value problems involving linear
ordinary differential equations with constant coefficients. Recall, the Laplace transform of such ar
equation reduces the ODE to an algebraic equation. In this section we are going to apply the Laplacc
transform to linear partial differential equations. We will see that this transform reduces a PDE to ar
ODE.

[I Transform of Partial Derivatives The boundary-value problems considered in this section will
involve either the one-dimensional wave and heat equations or slight variations of these equations.
These PDEs involve an unknown function of two independent variablesu(x, ¢), where the variable ¢
represents time ¢ > 0. We define the Laplace transform of u(x, #) with respect to ¢ by

f O

Llux, 0} = | e "uitx, 1) df = Ulx, 5),
A0

where x is treated as a parameter. Throughout this section we shall assume that all the operational
properties of Sections 4.2, 4.3, and 4.4 apply to functions of two variables. For example, by Theoremnr
4.2.2, the transform of the partial derivative ou/ot is

g :
:E{ I:} = sE{ulx, H} — ulx, 0

that 1s,
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aii

EE{E} s ) — i O (1)
Similarly,
a s
{ H} = s*U(x, 5) — su(x.0) — wix, 0). (2)
af

Since we are transforming with respect to ¢, we further suppose that it is legitimate to interchange
integration and differentiation in the transform of 6%u/0x*:

| *u I T 3
.‘f{ﬁ} = | & =il — | [c’ “u(x, 1] dt
dx- o {JT o

¥ R S d?
e~ ulx, ndt = —5 E{ulx, n)};
dx? | dx?

that 1s,

f 2 ”} LB 3)

a‘l’

In view of (1) and (2) we see that the Laplace transform is suited to problems with initial
conditions—namely, those problems associated with the heat equation or the wave equation.

EXAMPLE 1| Laplace Transform of a PDE

Find the Laplace transform of the wave equation Fu _ ﬂ:”~ o,

dx- dt -

SOLUTION From (2) and (3),

SE{a: d—ri} = .“F{a H}
dx? at

becomes

F{uix, n} = s*%{u(x.n} — su(x,0) — u,(x, 0)

or

- — s°U = —su(x, 0) — u,(x, 0). (4)

The Laplace transform with respect to ¢ of either the wave equation or the heat equation eliminates
that variable, and for the one-dimensional equations the transformed equations are then ordinary
differential equations in the spatial variable x. In solving a transformed equation, we treats as a
parameter.

EXAMBPLER Hsimeds]aplace Transform to Solve a BVP Uploaded By: anonymous




Solve

du ot

i e S W g
ax’

at*
subject to

w0, H=0, wl,n=0 t=0
dil :

wx, =0 —| =sinwx, 0<<x<1.
it [,=g

SOLUTION The partial differential equation is recognized as the wave equation witha = 1. From
(4) and the given initial conditions, the transformed equation is

d’u

dx?
where U(x, s) = %{u(x, t)}. Since the boundary conditions are functions of#, we must also find their
Laplace transforms:

— 5 = —sinx, (5)

{0, n}) =U0,5=0 and Flu(l,n} = Ull,5)=0. (6)

The results in (6) are boundary conditions for the ordinary differential equation (5). Since (5) is
defined over a finite interval, its complementary function is

U.(x, s) = c; cosh sx + ¢, sinh sx.

The method of undetermined coefficients yields a particular solution

l .
{.-’P:j_r_. 5) = — — SN TX.

ol e s

Hence

Uix, 5) = ¢, cosh sx + ¢, sinh sy + — = §in X,
e

But the conditions U(0, s) = 0 and U(1, s) = 0 yield, in turn, ¢; = 0 and ¢, = 0. We conclude that

Uix,5) = = - Sin Ty
5 + o’

; 1 , 1 , T
wix, f) = i"'{ ~ = sin mr} = —sinwx :E"{ ﬁ ﬁ}.
2 + 7 0 2 + o

Therefore
1
Hx.ry= P SN 77X sin 77l —
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EXAMPLE 3| Using the Laplace Transform to Solve a BVP

A very long string is 1nitially at rest on the nonnegative x-axis. The string is secured atx = 0, and its
distant right end slides down a frictionless vertical support. The string is set in motion by letting 1t
fall under its own weight. Find the displacement u(x, 7).

SOLUTION Since the force of gravity is taken into consideration, it can be shown that the wave
equation has the form

@5 -g=_5 x>0,1>0,
where g 1s the acceleration due to gravity. The boundary and initial conditions are, respectively,

dil

w0, =0, lim—=0,r=0
x—soo O
dit

ux,)=0, —| =0, x>0.
ot lr=0

The second boundary condition lim_,  ou/Ox = 0 indicates that the string is horizontal at a great
distance from the left end. Now from (2) and (3),

5&{{{3 t”ﬂ} — g} = f{ﬂ}
ax - dr-

becomes

gdfU. & 5 .
d~ - — == @) <~
ax” §

or, in view of the initial conditions,

dr 5t
ot i :
dx - a- a

5w

5
The transforms of the boundary conditions are

3 .4 o du
L{uw(0,n}=U(0,5=0 and i { lim —”} = lim—— = 0.

oo OX x—roo (1Y

With the aid of undetermined coefficients, the general solution of the transformed equation is found to
be
2

Lk, 8)= g Wy peials
5

The boundary condition lim,_, , dU/dx = 0 implies ¢, = 0, and U(0, 5) = 0 gives ¢, = g/s°>. Therefore

; B s g
x 8) = =g Wi
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Now by the second translation theorem we have

. ] , g | x\ x T ey
wx, t) = ':E"{ic"” W —} = —E(F = —) 'fU,(I = —j — —gt®
§° 5 2 d y a 2

or

|' 2 =
_E ,l:"rlr -5. {:J, = <= —
wx, r) =

—= 0= kT PE——
2a° a

To interpret the solution, let us suppose ¢ > 0 is fixed. For 0 <x < at, the string is the shape of a
parabola passing through the points (0, 0) and (at, —L¢2). Forx > at, the string is described by the
horizontal line u = _1 4;2. See FIGURE 15.2.1.

wvertical
SUPPOTTE —=
“at oo

{at, —% g}
FIGURE 15.2.1 A long string falling under its own weight in Example 3

Observe that the problem in the next example could be solved by the procedure in Section 13.6.
The Laplace transform provides an alternative solution.

EXAMPLE 4| A Solution in Terms of erf(x)

Solve the heat equation

Fu
—=— 0<x<11:>0
ax- al

subject to

w0, =0, w(l.ty=uy t=0
wx,MH=0, 0<x<l1.

SOLUTION From (1) and (3) and the given initial condition,

of ) - of2]
dx” at
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i2U
— — U =0. (7)

dx

The transforms of the boundary conditions are

ly
U,5)=0 and U(l,5)= rT (8)

Since we are concerned with a finite interval on the x-axis, we choose to write the general solution of
(7) as
U(x, s) = ¢, cosh (V5x) + ¢, sinh (V/sx).

Applying the two boundary conditions in (8) yields, respectively, ¢; = 0 and ¢z =us/(rsinh Vs). Thus

sinh ( V/sx)
xS =iy ———
ssinh Vs

Now the inverse transform of the latter function cannot be found in most tables. However, by
writing

sinh (V3x)  eV® — gV pu—VE _ Vs

ssinh Vs s(e"* — V) L e D

and using the geometric series

we find

sinh (W 5x) o [omiatl=aVG =1+

ssinhvs =) s 5

If we assume that the inverse Laplace transform can be done term by term, it follows from entry 3 of
Table 15.1.1 that

P Also see Problem 8 in Exercises 15.1

) sinh (V/5x)
BEE 1) = g {— = }
5 sinh Vs

oo [ {?—12n+l—x1\;;
| Rkl b
n=0L

eI+l +x0V's
-1
%

=1 Int Lo 2+ 1+x
= U >, | erfc (”—Hj — erfc (”—1_1)-‘ (9)

r=i0L :J.. 1'\,-"?

o

§

The solution (9) can be rewritten in terms of the error function using erfc(x) = 1 — erf(x):
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uix, ) = u, i

e T B
. —a
', ALV |

)|

(10}

ke

i o L Ij
2Ve

n=1l

FIGURE 15.2.2(a), obtained with the aid of the 3D plot function in a CAS, shows the surface over
the rectangular region 0 <x < 1, 0 <¢ < 6 defined by the partial sum S;y(x, #) of the solution (10). It 1s

apparent from the surface

and the accompanying two-dimensional graphs that at a fixed value of x (the

curve of intersection of a plane slicing the surface perpendicular to the x-axis on the interval [0, 1],
the temperature u(x, ¢) increases rapidly to a constant value as time increases. See Figure 15.2.2(b)
and 15.2.2(c). For a fixed time (the curve of intersection of a plane slicing the surface perpendicular
to the #-axis), the temperature u(x, ¢) naturally increases from 0 to 100. See Figure 15.2.2(d) and

15.2.2(e).

(a) uy = 100
u(0.2, 1) w07, 16
J R i aa o A 100 ey
B0 - B0+
60 m(
40} 40
20 20 ¢
1 1 1 1 1 1 1 1 1 1 1 i r
o 1 2 3 4 5 6 0o 1 2 3 & 35 6
(byx=02 (chx=0.7
wix, 0.1) wix.4)
120 11 120 ey
100 - 100
20 B0 ¢
6 - 60
40} 40f
20 20
1 1 1 1 X 1 1 1 1 u T
0 02 04 06 08 1 0 02 04 06 08 1
(dj e =01 iele=4

FIGURE 15.2.2 Graph of solution given in (10). In (b) and (¢), x is held constant. In (d) and (e), ¢ is

held constant.

15.2 | Exercises Answers to selected odd-numbered problems begin on page ANS-34.
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In the following problems use tables as necessary.

1. A string is secured to the x-axis at (0, 0) and (L, 0). Find the displacement u(x, ¢) if the string

starts from rest in the initial position A4 sin(mx/L).
2. Solve the boundary-value problem

Fu 8
—i=— @ X<, 0
ax?  ar?

wD,n=0 wl =0

dil
wx, )y =0, — = 2 sinwx + 4 sin 37y,
ol |i=0
Solve for u(x, t).

3. The displacement of a semi-infinite elastic string is determined from

, °u &
a- 5 = X r = U, I ﬂ
ax<  ar-
w0, =70, limux,t)=0,1t>0
X—rinD
dii
wix, 0) =0, — =0, x =0
ot |, =g

Solve for u(x, ?).
4. Solve the boundary-value problem in Problem 3 when

sinat, 0=r=1
) = { 11 77 _
0, -

Sketch the displacement u(x, ¢) for ¢t > 1.

5. In Example 3, find the displacementu(x, #) when the left end of the string at x = 0 is given an

oscillatory motion described by f{(¢) = 4 sin wt.

6. The displacement u(x, ¢) of a string that is driven by an external force is determined from

2
oy L

Pu ) a*u -
> tsinmxsinef =——, 0<x<1,1>0

dx - at -
w0, H=0 wl,.H=0t=0

au
u(x,0)=0, — =00<x<lI,

r=10

Solve for u(x, t).

7. A uniform bar 1s clamped at x = 0 and 1s initially at rest. If a constant force F, is applied to the
free end at x = L, the longitudinal displacement u(x, ) of a cross section of the bar is determined

from

STUDENTS-HUB.com
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i —imee—,  MhEgiel L 1R
ax- af =

) au 3

wo,n=0 E— = F,, Eaconstant, t > 0
dX x=1L

S— i : ,

wx,0) =0 — =0, 0<x<L.
=0

Solve for u(x, £). [Hint: Expand 1/(1 + e >%%) in a geometric series.]

8. A uniform semi-infinite elastic beam moving along the x-axis with a constant velocity —v 1s
brought to a stop by hitting a wall at time ¢ = 0. See FIGURE 15.2.3 The longitudinal
displacement u(x, ¢) is determined from

=1 )
5 Ol i |
a- — = — x> 1:}’ =0
dx- of =
. . du
#(0,)=0, lim—=0,f>0
x—oo OO0
. di
”{'x-" ﬂ':l iz [}’ T = Vo X =0,
r=10
Solve for u(x, ?).
wall b eam
i - S
\- =

x=0

FIGURE 15.2.3 Moving elastic beam in Problem 8

9. Solve the boundary-value problem

Fu u

—=— x>0, t>0

ax-  ar

w0, 6) =0, limuwx,H=0, =0

K=o
. du|
wx,0) =xe*, —| =0x=>0.
it =

10. Solve the boundary-value problem

Fu Fu
—eemros i ) )
ax- at=
w0, =1, limuwx.H=0,1t=0
X—roo
did

wix,0)y = ¢, — =0 x>0
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In Problems 11-18, use the Laplace transform to solve the heat equationu,, = u,, x > 0, ¢ > 0 subject
to the given conditions.

11. w0, 1) = up, muix, ) = wy, wix,0)=u,

X—rod
12. _ o Hix, )
w0, = uz, lim = iy, Hix,0)=ux
X—roD
13- I:”I ) ) ) )
= = w0, 1), limuix, 1) =y, wix,0)=u,
dX | =g K=o
14- -I:i” .
— = w0, 60— 50, limuwx, ) =0, wx0)=0
::'JJ.’ v =0 K—sm
13. w0, 0 =f(h, limuix,) =0, wx,0)=0
X—ro
[Hint: Use the convolution theorem.]
16. au P
—| = —f(f), limuix.f) =0, wx,0)=0
d.‘{- x=0 X—ro

17. u(0, 1) = 60 + 40Ut — 2), limu(x,t) = 60,
w(x, 0) = 60

18. s x 7, T B g7~ KN
Wi, n = . limuix, ) = 100,

0, = f5
wix, 0) = 100
19. Solve the boundary-value problem

=

au dil

—i=mr—y e Xl L= 0

ax~ di

dit | . _ _

=1 =100 —w(l,n), limux, =0, 1t=0
X = s

wx, =0, —o<x<l1.

20. Show that a solution of the boundary-value problem

a*u i _
k— 4+ r=—; x=0,t=0
ax- al
o du
w0, ) =0, lim —=0,¢:>=0
X—roo OX

wx, =0, x=10,

where 7 is a constant, is given by

wx,ry=rt—r ea'fc( 1,_) dr.
lo 2Vkr

21. A rod of length L 1s held at a constant temperature u,, at its ends x = 0 and x = L. If the rod’s
initial temperature is u + u, sin(xz/L), solve the heat equation u,, =u, 0 <x <L, ¢ > 0 for the
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22. [If there is a heat transfer from the lateral surface of a thin wire of length L into a medium at
constant temperature u,,, then the heat equation takes on the form
k d_rf — u — u,) = EH O0<x<L t>0(,
ax’ ot
where /1 1s a constant. Find the temperature u(x, #) if the initial temperature is a constant u,
throughout and the ends x = 0 and x = L are insulated.

23. A rod of unit length 1s insulated at x = 0 and is kept at temperature zero atx = 1. If the initial
temperature of the rod is a constant u, solve ku,, =u,, 0 <x <1, ¢ > 0 for the temperature u(x,
f). [Hint: Expand ;| 4 ,-2V5k, Ina geometric series. |

24. An infinite porous slab of unit width is immersed in a solution of constant concentration c,. A
dissolved substance in the solution diffuses into the slab. The concentration c(x, ¢) in the slab is
determined from

T
D—=—; O=<x<1, >0
axt
c(0,f)=¢. c(l,.ty=¢p, =0
cx,0)=0, 0<x<1,
where D is a constant. Solve for c(x, 7).

25. A very long telephone transmission line is initially at a constant potential u,. If the line is
grounded at x = 0 and insulated at the distant right end, then the potential u(x, ¢) at a point x along
the line at time ¢ is determined from

3 au

— —RC— —RGu=0, x>0, t>0

ax? at

w0, ) =0, lim L” =0, t=0

x—sen O

wix, ) = uz, x=0,
where R, C, and G are constants known as resistance, capacitance, and conductance,
respectively. Solve for u(x, ¢). [Hint: See Problem 7 in Exercises 15.1.]

26. Starting atz = 0, a concentrated load of magnitude /|y moves with a constant velocity v, along a

semi-infinite string. In this case the wave equation becomes
L' du ( .rj
a- o — ,._.+.F.::.IS.I+___-
ax?  ar? S
where d(f — x/v) 1s the Dirac delta function. Solve this PDE subject to
u(0, 1) = 0, ]_imm‘.‘r_. H=01t>0
_ au
w(x,0) =0, e =0, x>0
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27.

28.

(a) whenvy#a, and

(b) whenvy=a.

In Problem 9 of Exercises 14.3 you were asked to find the time-dependent temperaturesu(z, ¢)
within a unit sphere. The temperatures outside the sphere are described by the boundary-value

problem
u . 20u _ du

— 4+ —, r>1,t>0
ar- rar dr

wl, ) = 100, t=0

limui(r, 1)y = 0

F—¥o0

wr, ) =0, r>=1.

Use the Laplace transform to findu(r, ¢). [Hint: After transforming the PDE, letv(r;, s) =r U(r,
s), where £{u(r, t)} = U(r, s).]

Show that a solution of the boundary-value problem
ﬂi — hu = ﬂ x =0, t =0, hconstant
ax>

w0, 1) = g imuix, 1) =0, 1t =0

X—o
wx,0y=0 x=0
1S
g X ~i {_.,—ﬂf—.r--l-r

ulx, ) = — — T

2V o s

Computer Lab Assignment

29. (a) The temperature in a semi-infinite solid is modeled by the boundary-value problem

au du
k——=—, x>=>0,t>10
ar? at

w0, 1) = wy, limu(x, ) =0, t=10

wx, 0y =0 x>0,
Solve for u(x, 7). Use the solution to determine analytically the value of lim,_, u(x, 7), x <O.

(b) Use a CAS to graphu(x, ¢) over the rectangular region defined by 0 <x <10, 0 <¢ < 15.
Assume uy, = 100 and £ = 1. Indicate the two boundary conditions and initial condition on

your graph. Use 2D and 3D plots of u(x, ¢) to verify your answer to part (a).

30. (a) InProblem 29, if there is a constant flux of heat into the solid at its left-hand boundary, then

the boundary condition is 2| — 4 4=0.r>0. Solve foru(x, ). Use the solution to
ax | =g
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