

Lecture 10: Recursion Analysis & Binary Search

PIC 10B
Todd Wittman

Recursion Analysis

- Analyzing the running time T of a recursive algorithm is generally harder than analyzing a non-recursive one.
- The most common strategy is to write the run time as a function of N: T(N). This indicates the time needed to process N items.
- By tracing carefully through the recursion, we can write down a recurrence relation for the algorithm. For example,

$$T(N) = T(N-1) + 1$$

Then we repeat the recurrence

$$T(N) = [T(N-2)+1] + 1 = T(N-2) + 2$$

$$T(N) = [T(N-3)+1] + 2 = T(N-3) + 3$$

- Look for a pattern: T(N) = T(N-k) + k
- By tracing the pattern all the way to the base case T(1), we can determine the running time of the algorithm.

$$T(N) = O(N)$$

Analyzing the Factorial

Last class, we computed the factorial recursively.

```
int factorial (int N) {
    if (N==0) return 1;
    return N*factorial(N-1);
}
```

 Checking the if statement and multiplying by N is O(1) operation.

Time for factorial(N) = Time for factorial(N-1) + O(1)

 Dropping the Big O for the moment, we get the recurrence:

$$T(N) = T(N-1) + 1$$

Analyzing the Factorial

Repeatedly plug in the recurrence.

$$T(N) = T(N-1) + 1$$

= $T(N-2) + 1 + 1 = T(N-2) + 2$
= $T(N-3) + 1 + 2 = T(N-3) + 3$

So the pattern is:

$$T(N) = T(N-k) + k$$

Let k = N.

$$T(N) = T(0) + N$$

• T(0) is the time to compute the base case factorial(0), which is just O(1).

$$T(N) = 1 + N = O(N)$$

The non-recursive version also runs in O(N) time.

Analyzing the Palindrome

Sec 10.6: Fibonacci's Rabbits

```
    Last class we showed how to compute the Nth
Fibonacci number.
    int Fibonacci (int N) {
```

```
if (N==1) return 1;
if (N==2) return 1;
return Fibonacci(N-1) + Fibonacci(N-2);
}
```

What's the recurrence?

$$T(N) = T(N-1) + T(N-2) + 1$$

• The time recurrence looks just like the Fibonacci recurrence relation!

Fibonacci's Rabbits

 Sometimes we can't write out the full pattern, but we can still figure out how many computations we're making.

```
T(N) = T(N-1) + T(N-2) + 1
= [T(N-2)+T(N-3)+1]+[T(N-3)+T(N-4)+1]+1
= T(N-2) + T(N-3) + T(N-3) + T(N-4) + 3 Lv/2
```

- If we repeat the recurrence, we're going to get 8 T's on level 3. Then 16, 32, and so on...
- So we get 2^k T's at level k.
- To get down T(N-1) to the base case T(2), we'll need to go to level k = N-2.
- We'll have 2^{N-2} T's there, so $T(N) = O(2^N)$.

```
Permutations
            Ready for the monster?
           vector<string> permute (string word) {
               vector<string> result;
               if (word.length() == 1) {
                    result.push back(word);
    O(1)
                    return result;
               for (int i=0; i<word.length(); i++) {
                    string shorter = word.substr(0,i)
Loops N times
                            + word.substr(i+1,word.length()-i-1);
                   vector<string> shortWords = permute(shorter);
 T(N-1) -
                    for (int j=0; j<shortWords.size(); j++) {</pre>
 size=(N-1)!-
                            string longer = word[i]+shortWords[j];
                            result.push_back(longer);
               return result;
                                          T(N) = N T(N-1) + N! + 1
```

Permutations

Repeat the recurrence...
T(N) = N T(N-1) + N! + 1
= N [(N-1) T(N-2) + (N-1)! + 1] + N! + 1
= N (N-1) T(N-2) + 2 N! + 2
Repeat once more....
T(N) = N (N-1) [(N-2) T(N-3) + (N-2)! + 1] + 2 N! + 2
= N (N-1) (N-2) T(N-3) + 3 N! + 3
So the pattern is...
T(N) = N (N-1)...(N-k+1) T(N-k) + k N! + k
Let k=N to get down to base case N=0 letters.
T(N) = N (N-1)...1 T(0) + N N! + N = N! + N N! + N
Run time T(N) = O(N*N!)
If you think about how many letters we have to print out,

Sec 11.6: Linear Search

- Suppose we want to find the position of the first occurrence of a value in a integer vector.
- Let's return -1 if the number is not found.

this is the bare minimum running time.

```
int search (vector<int> v, int val) {
  for (int i=0; i < v.size(); i++)
     if (v[i] == val)
         return i;
  return -1;
}</pre>
```

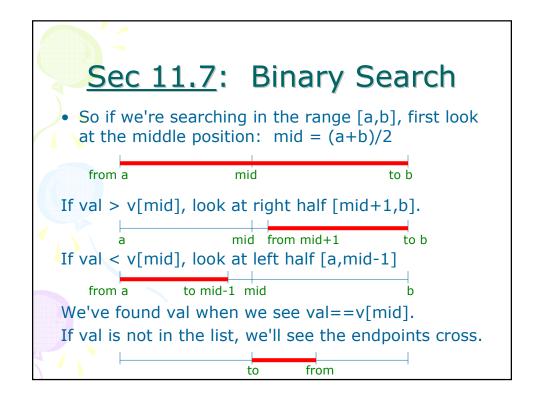
- If there are N items in the list, this is an O(N) algorithm.
- This is called a *linear* or *sequential search*.
- If the list is unsorted, this is the best we can do.

Sec 11.7: Binary Search

- But what if the list is sorted?
- Certainly we don't have to check every word in the dictionary to look up a word.
- A basic strategy is to repeatedly halve our search range until we find the value: binary search.
- For example, look for 5 in the list of 9 #s below.

$$v = 1 1 3 5 8 10 18 33 42$$

- We would first start in the middle: 8
- Since 5<8, we know we can look at just the first half: 1 1 3 5
- Looking at the middle # again, narrow down to 3 5
- Then we stop when we're down to one #: 5



Sec 11.7: Binary Search

```
• There is a recursive procedure here.
int search (vector<int> v, int from, int to, int val) {
   if (from>to) return -1; //val not found
   int mid = (from+to)/2;
   if (v[mid] == val)
      return mid;
   else if (val > v[mid])
      return search(v,mid+1,to,val);
   else
      return search(v,from,mid-1,val);
}
```

Call function: int pos = search(v,0,v.size()-1,val);

Sec 11.7: Binary Search

- Recursion eats up memory because it has to create local copies of all the parameters.
- We have to pass parameters by value if they change at the recursion step.
- But does our dictionary vector v ever change?
- Changing it to pass by reference introduces a significant speed-up.

int search (const vector<int>& v, int from, int to, int val) {

• For this week's HW, I want you to figure out just how much speed-up you get with this little trick.

Sec 11.7: Binary Search

- Let's analyze the run time.
- It takes O(1) time to do the comparisons, then it cuts the search range in half.

```
T(N) = T(N/2) + 1
• Repeat the recurrence...

T(N) = T(N/4) + 2
= T(N/8) + 3
... = T(N/2^k) + k
```

• Round up N to nearest power of 2: $N \le 2^m$.

```
T(N) \le T(2^m/2^k) + k
```

Let k = m.

```
T(N) \le T(2^m/2^m) + m = T(1) + m = 1 + m = O(m)
```

If N=2^m, then m=log N. So T(N) = O(log N)

Non-Recursive Binary Search

```
int non_recursive_binary_search (vector<int> v, int val) {
   int from = 0;
  int to = v.size()-1;
  int mid;
   while (from <= to) {
                                      This version's running time is
       mid = (from+to)/2;
                                      also O(logN), but it should be
       if (val == v[mid])
                                      much faster than the recursive
               return mid;
                                      version of binary search.
       else if (val > v[mid])
               from = mid+1;
        else
               to = mid-1;
   return -1;
```

For your HW...

- The binary search algorithm is easy to template. So you can search a vector of ints, doubles, strings, etc.
- For your HW, you have to write the isInDictionary() function for the text parsing routine.
- A linear search would be very slow: O(N).
- A binary search should be faster: O(logN).
- Theoretically, the binary searches are both O(logN) and the linear search is O(N). But Big O hides the constants.
- Should we use the recursive or non-recursive binary search?
- The search comparison program is online to help you decide.