Parallel Processors

ENCS5331: Advanced Computer Architecture
Fall 2024/2025
Instructor: Dr. Ayman Hroub

Special Thanks to Dr. Muhamed Mudawar (KFUPM) for most
of the Slides

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Presentation Outline
** Introduction to Parallel Processors
»» Challenges of Parallel Programming
»» Cache Coherence
»» Directory Cache Coherence

»» Synchronization

Muﬁa];cgsgpsgm-ego%gbgﬁd&nom COE 501 — Computer Architecture - KFUPM © Muhamed MHanlro—giggd By ‘J I breel Bornat

Motivation to Move to Multicore - Technology Constraints

10,000,000 |
'Dual-Core tanium 2 P4l
1,000,000 -
| Intel CPU Trends gy ¢
1 (sources: Intel, Wikipedia, K. Olukotun)
100,000 |
\
|
10,000 4
\
I
1,000 +
100
10
|
s " * '* @O Speed NPy
‘ ® .4.. & Power (W)
® Perf ok gLF)

1870 1975 1980 1985 1980 1995 2000 2005 2010

Muﬁa]gcgsgpsgm-egcﬁgbllajrﬁd&nom COE 501 — Computer Architecture - KFUPM © Muhamed MMQJQ%Q?d By ‘J I breel Bornat

Processor Trends
35 YEARS OF MICROPROCESSOR TREND DATA

7 b
10 ¢ Transistors
- (thousands)
6 f
10° ¢
5
i : : : : : Single-thread
4| : E : E E . . Performance
3 I
10° ©
2 : - Typical Power
10 ¢ - (Watts)
1T © Number of
10 3 - Cores
ol
10 ¢

1975 1980 1985 1990 1995 2000 2005 2010 2015

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

Muﬁa];cgsgpsgm-ego%gbgﬁd&nom COE 501 — Computer Architecture - KFUPM © Muhamed MHanlro—giggd By ‘J I breel Bornat

Single-Core Performance Walls

* Power Wall: cannot make the processor clock faster
¢ ILP (Instruction Level Parallelism) Wall

“ Memory Wall

Muﬁa]gcgsg?sgm-egoﬁg\,e_luajrﬁd&“fnom COE 501 — Computer Architecture - KFUPM © Muhamed Mwagiggiggd By ‘J I breel Bornat

What is a Multiprocessor?

*» “A parallel computer is a collection of processing elements that
cooperate and communicate to solve large problems fast.”

< Almasi and Gottlieb, Highly Parallel Computing,1989

¢ Collection of processors, memories, and storage devices

<> That communicate and cooperate to solve large problems fast

Mu%L%QEML%EJJ'Mﬁa&O[‘n COE 501 — Computer Architecture - KFUPM © Muhamed Mwﬁzlro—gig@d By ‘J I breel Bornat

Flynn's Taxonomy (1966)

“ SISD: Single instruction stream, single data stream

< Uniprocessors

< SIMD: Single instruction stream, multiple data streams
< Same instruction is executed on different data
< Exploits Data-Level Parallelism (DLP)
<> Vector processors, and Graphics Processing Units (GPUSs)

“* MISD: Multiple instruction streams, single data stream

< No commercial implementation

“* MIMD: Multiple instruction streams, multiple data streams
<> Most general and flexible architecture for parallel applications
< Exploits Thread-Level Parallelism (TLP) and Data-Level Parallelism

< Tightly-coupled versus loosely-coupled MIMD
Mu§p];cgs|;?s§m-e|;§g\,e_l|liur§e1&nom COE 501 — Computer Architecture - KFUPM © Muhamed Mwﬂzlp—giged By ‘Jibreel Bornat

s Uniprocessor

v b & N i GO M

SISD

Data
Stream

l

Processor

!

Instruction
Stream

COE 501 — Computer Architecture - KFUPM

Inlogded By: Jibreel Bornat

© Muhamed MH

MIMD

*» Multiple communicating processes

v b & N i GO M

Data Data Data
Stream Stream Stream
Processor Processor Processor
Instruction Instruction Instruction
Stream Stream Stream

COE 501 — Computer Architecture - KFUPM

Inlogded By: Jibreel Bornat

© Muhamed MH

MISD

* No commercial examples

» Different operations to a single data set

< Find primes
<> Crack passwords
Data
Stream
Ill
| v
Processor Processor Processor
Instruction Instruction Instruction
Stream Stream Stream

Muﬁa];cgsgpsgm-egoﬁg\huajrﬁdgnom COE 501 — Computer Architecture - KFUPM © Muhamed MUQVQJ—OS%ngd By ‘J I breel Bornat

SIMD

*» Vector/Array computers

Data Data Data
Stream Stream Stream
Processor Processor Processor
IL
Instruction
Stream

Muﬁa];cgsg?sgm-egcﬁg\,a'ligrﬁdgnom COE 501 — Computer Architecture - KFUPM © Muhamed MUQVQJ—OS@gl?d By ‘J I breel Bornat

Major Multiprocessor Organizations

s Symmetric Multiprocessors (SMP)
< Main memory is shared and equally accessible by all processors
< Called also Uniform Memory Access (UMA)

< Bus based or interconnection network based

*

» Distributed Memory Multiprocessors

L)

< Distributed Shared Memory (DSM) multiprocessors
= Memory is distributed and shared and accessed by all processors
* Non-uniform memory access (NUMA)
= Latency varies between local and remote memory access
< Message-Passing multiprocessors (Clusters)
= Memory is distributed, but NOT shared
= Each processor can access its own local memory

» Processors communicate by sending and receiving messages

Mu§p];cgs|;?s§m-e|;§g\,e_l|liur§e1&nom COE 501 — Computer Architecture - KFUPM © Muhamed MUQ\QJQ%gl?d By ‘J I breel Bornat

Shared Memory Architecture

¢ Any processor can directly reference any physical memory
*» Any |/O controller to any physical memory

* Operating system can run on any processor
< OS uses shared memory to coordinate

* Communication occurs implicitly as result of loads and stores

Processor
Processor
Processor

hared Physical

*» Wide range of scale
<-Few to hundreds of processors
Processor
<-Memory may be physically

distributed among processors

¢ History dates to early 1960s

Mu§p];cgs|;?s§m-e|;§g\,e_l|liur§e1&nom COE 501 — Computer Architecture - KFUPM © Muhamed MUQ\QJQ%gl?d By ‘J I breel Bornat

Single-Chip Multiprocessor (Multicores)

¢ Multiprocessor on a
Single Chlp (Ca”ed Processor Processor Processor Processor
multicores)

. .
o EaCh Core |S a One or One or One or One or Private
more levels more levels more levels more levels caches

of cache of cache of cache of cache

processor with
private caches

¢ All processors
share a common
cache on chip

s Uniform access to
sevier, | []
All rights reserved

main memory
Muﬁa]gcgsgpsgm-egcﬁg\,a'gﬁd&nom COE 501 — Computer Architecture - KFUPM © Muhamed MUQ\QJQ@QQCI By ‘J I breel Bornat

Shared cache

Distributed Memory Multiprocessors

r ' .
I/O Memory. e ' Memory' /10 ' Memory. e

Interconnection network

I I/O Memory Memory Memory

** Memory is distributed among all processors

¢ Interconnection network connects all the (Multicore MP) nodes
Muﬁa];cgsg?sgm-egoﬁg\,auajrﬁdgnom COE 501 — Computer Architecture - KFUPM © Muhamed MUQ\QJQS@(;L?CI By ‘Jibreel Bornat

Distributed Memory Architectures

» Distributed Shared Memory (tightly coupled)
<> Distributed memories are shared among all processors
< Processors can access local and remote memories
< Remote memory access over interconnection network

< Non-uniform memory access (NUMA)

**» Message Passing (loosely coupled)
< Distributed memories are NOT shared
<> Processors cannot access remote memories
<> Multiple private physical address spaces
< Easier to build and scale than distributed shared memory

<> Message passing communication over network
Mu§p];cgsl;?5§m;|;§g\,e_l|liur§e1&nom COE 501 — Computer Architecture - KFUPM © Muhamed MUQ\QJQ%gl@d By ‘Jibreel Bornat

Multiprocessor Communication Models

*» Shared Memory Architectures
<> One global physical address space
< Distributed among all physical memories
<> Any processor can read/write any physical memory
<> Processors communicate using load and store instructions

< Non-Uniform Memory Access (NUMA) for large-scale multiprocessors

*» Message Passing Architectures (Clusters)
<> Separate physical address spaces for nodes
< A compute node consists of one (or few) multicore chips and memory
<> A node cannot directly access the physical memory of another node
< Nodes communicate via sending and receiving messages

<> Nodes are interconnected via a high-speed network
Mu%L%QEML%EJJ'Mﬁa&O[‘n COE 501 — Computer Architecture - KFUPM © Muhamed MUQ\QJQ%gled By ‘Jibreel Bornat

Next . ..

¢ Introduction to Multiprocessors

»» Challenges of Parallel Programming
»» Cache Coherence

»» Directory Cache Coherence

¢ Synchronization

Muﬁa];cgsgpsgm-egoﬁg\,;'ligrﬁdgfnom COE 501 — Computer Architecture - KFUPM © Muhamed Muyﬂjg@ggd By ‘J I breel Bornat

Parallel Programming Models (1)

*» Parallel Task is the unit of parallel computation

s Two major parallel programming models

1. Shared Memory
< Popular for small machines consisting of at most hundreds of cores
< Parallel tasks are executed as separate threads on different cores
< Threads communicate using load and store instructions to shared memory

< Threads must synchronize explicitly to control their execution order

Muﬁa];cgsg?sgm-egoﬁg\,e_luajrﬁdgnom COE 501 — Computer Architecture - KFUPM © Muhamed MUQ\/QJQsﬁgl@d By ‘J I bree' Bornat

Parallel Programming Models (2)

2. Message Passing
<> Popular for large machines consisting of hundreds of thousands of cores
< Parallel tasks cannot share memory, each task has its own memory
< Parallel tasks communicate explicitly using send and receive messages

< Synchronization is done implicitly using send and receive

Muﬁa]gcgsg?sgm-egoﬁg\,e_luajrﬁdgnom COE 501 — Computer Architecture - KFUPM © Muhamed MUQ\IQJQ@EL@CI By ‘J I breel Bornat

Speedup Challenge: Amdahl's Law

** F = Fraction of the original execution time which is parallelizable
** P = Number of Processors
“* (1 — F) = Fraction of the execution time that cannot be parallelized

1 Speedup _ 1

%+(1—F) P> (1-F)

Speedup =

s+ Parallelism has an overhead

<> Thread communication, synchronization, and load balancing

<> Overhead increases with the number of processors P

< Alarge group of processors cannot be interconnected with short distances

Muﬁa];cgsg?sgm-egoﬁg\,e_luajrﬁdgnom COE 501 — Computer Architecture - KFUPM © Muhamed MUQ\IQJ—OS%QZ?CI By ‘J I bree' Bornat

Amdahl's Law Sublinear Speedup

Speedup
70 ‘ ‘
-
sl Superlinear / i F= 9%///
Speedup Q/ Speedup
S
S
%
>
@
40 \§ 1
Speedup = 3
/) + (1 —-F)

30 //
20 /
//é/;,,fﬁff*“#“”“’ﬂ'ﬂ#"' F=95%

/ééi:;# F=90%
O
o L0 o L0 o 0 P ~ -

Number of processors

Muﬁa];cgsg?sgm-egoﬁg\,e_luajrﬁagnom COE 501 — Computer Architecture - KFUPM © Muhamed MUQVQJQS@ggd By ‘J I breel BOmat

Amdahl's Law: Example 1
*» Want to achieve 50x speedup on 100 processors
What fraction of the original execution time can be sequential?

%+ Solution

FLarael = Fraction of the execution time, which is parallelizable
Fsequentiat = (1 — Fparailer) = Fraction of time, which is sequential
1
Speedup = =50
parallel

100 + (1 o Fparallel)

SolVing: Foaraiel = 98/99 = 0.99 and F g enia = 0-01

* Sequential time is at most 1% of original execution time
Mu§p];cgs|;?s§m-e|;§g\,e_l|liur§e1&nom COE 501 — Computer Architecture - KFUPM © Muhamed MUQ\IQJ—OS%di By ‘Jibreel Bornat

Impact of Inefficient Communication on Speedup

Speedup
7

| | |
1
/ Speedup = 095 //

5 + 0.01

S
d]
@
@
:)Q
&
$

|
1

4 Speedup = 0.99 001 P
/ o
; vd I —
V Communication
2 / Overhead |

peedup = -
099 + 0.01 *\@ %

o

—

e

Number of processors

Muﬁa];cgsg?sgm-e[to%g\,e_l'gﬁd&nom COE 501 — Computer Architecture - KFUPM © Muhamed MUQ\IQJ—OS%gizgd By ‘J I breel Bornat

25
50
75
100
125
150
175
200

Next . ..

¢ Introduction to Multiprocessors

»» Challenges of Parallel Programming
»» Cache Coherence

»» Directory Cache Coherence

¢ Synchronization

Muﬁa]gcgsg?sgm-egoﬁg\,e_luajrﬁdgnom COE 501 — Computer Architecture - KFUPM © Muhamed MUQVQJQS%giZ@d By ‘J I breel Bornat

Caches in a Single-Chip Multiprocessor

*+ Private Caches are used inside processor cores

** Reduce average latency
Processor Processor Processor Processor
< Data is closer to processor

*» Reduce traffic to memory

One or One or One or One or
more levels more levels more levels more levels
i of private of private of private of private
<> When data IS CaChEd cache cache cache cache

¢ Caching shared data

Interconnection network

<> Shared data is replicated

In multiple private caches Bank 0 Bank 1 Bank 2 Bank 3

shared shared shared shared
cache cache cache cache

<> This requires maintaining

copies of the shared data coherent
Memory I/O system
=» Cache coherence problem [}{ }

Muﬁa];cgsgpsgm-egcﬁg\,jligrﬁdgnom COE 501 — Computer Architecture - KFUPM © Muhamed MUQ\/QJQsﬁigzgd By ‘J I breel Bornat

Cache Coherence Problem

¢ Private processor caches create the coherence problem
<> Copies of a shared variable can be present in multiple private data caches
*» Updating copy of the shared data in one private data cache only
< Other processors do not see the update!

<> Processors may read different data values through their caches

*» Unacceptable to programming and is frequent!

Event Memory Processor A Processor B Processor C
variable X Data Cache Data Cache Data Cache

Processor Areads X 4 4

Processor B reads X 4 4 4

Processor A stores X =7 4 I 4

Processor C reads X 4 7 4 4

Mu§p];cgs|;?5§m;|;§5\,e_l|llajr§e1&nom COE 501 — Computer Architecture - KFUPM © Muhamed MUQ\HJQ%gzed By J I breel Bornat

Intuitive Coherent Memory Model

¢ Caches are supposed to be transparent

*» What would happen if there were no caches?

< All reads and writes would go to the main memory

< Reading a location X should return the last value written to X
** What does last value written mean in a multiprocessor?

< All operations on a particular location X would be serialized

< All processors would see the same access order to location X

Muﬁa];cgsgpsgm-ego%gbgﬁd&nom COE 501 — Computer Architecture - KFUPM © Muhamed MUQ\IQJ—OS%EIZQd By ‘J I breel Bornat

Formal Definition of Memory Coherence

A memory system is coherent if it satisfies two properties:

1. Write Propagation

Writes by a processor become visible to other processors

All reads by any processor to location X must return the most
recently written value to location X, if the read and last write are
sufficiently separated in time.

2. Write Serialization

Writes to the same location X are serialized. Two writes to the
same location X by any two processors are seen in the same
order by all processors.

Mu§p];cgs|;?s§m-e|;§g\,e_l|lila)r§e1§nom COE 501 — Computer Architecture - KFUPM © Muhamed MUQ\IQJ—OS%di By ‘J I bree' Bornat

What to do about Cache Coherence?

* Organize the memory hierarchy to make it go away
<> Remove private caches and use one cache shared by all processors
< No private caches =» No replication of shared data
< A switch (interconnection network) is needed to access shared cache

< Increases the access latency of the shared cache
*» Mark shared data pages as uncacheable
<> Shared data pages are not cached (must access memory)
< Private data is cached only
< We loose performance
*» Detect and take actions to eliminate the problem

<> Can be addressed as a basic cache design issue
Mu§p];cgs|;?s§m-e|;§g\,e_l|liur§e1&nom COE 501 — Computer Architecture - KFUPM © Muhamed MUQ\IQJ—OS%QL@CI By ‘Jibreel Bornat

Hardware Cache Coherence Solutions

¢ Coherent Caches should provide

< Migration: movement of shared data between processors

< Replication: multiple copies of shared data (simultaneous reading)
*» Cache Coherence Protocol

< Tracking the sharing (replication) of data blocks in private caches
* Snooping Cache

< Works well with small bus-based multiprocessors

<> Each cache monitors bus to track sharing status of each block

*» Directory Based Schemes
< Keep track of what is being shared in one place, called directory
<> Centralized memory = Centralized directory

< Distributed shared memory =» Distributed directory
Mu%L%QEML%EJJ'Mﬁa&O[‘n COE 501 — Computer Architecture - KFUPM © Muhamed MUQ\IQJ—OS%QS?d By ‘Jibreel Bornat

Snooping Cache Coherence Protocols

¢ Cache controller snoops all transactions on the shared bus

¢ Transaction is relevant if address matches tag in the cache

+» Take action for coherence
< Invalidate Processor Processor Processor Processor
< Update

One or
more levels
of cache

One or One or One or .
Private

caches

more levels more levels more levels

<> Supply data of cache of cache of cache

State Tag Data Block

Bus Snoop Bus Transaction

*» Write Invalidate protocol

<> Must invalidate shared copies

*» Write Update protocol
<> Must update shared copies Maln memery I—' /O system '

Shared cache

Muﬁa];cgsgpsgm-egcﬁg\,jligrﬁdgnom COE 501 — Computer Architecture - KFUPM © Muhamed MUQ\/QJQsﬁiggd By ‘J I breel Bornat

MST Snoopy Cache Coherence Protocol

s Three States for write-back data cache
1. Modified: only this cache has a modified copy of this block
2. Shared: block is read-only and can be replicated in other caches

3. Invalid: block is invalid

¢ Four Bus Transactions
1. Read Miss: Service a read miss on bus
2. Write Miss: Service a write miss on bus (obtain exclusive copy)
3. Invalidate: Invalidate copies of this block in other caches

4. Write Back: Write back a modified block on replacement

* On Write, invalidate all other copies
<> Write cannot complete until invalidate transaction appears on bus

< Write serialization: transactions are serialized on bus
Muﬁa]gcgsg?sgm-egoﬁg\,e_luajrﬁdgnom COE 501 — Computer Architecture - KFUPM © Muhamed MUQ\IQJ—OS%di By ‘Jibreel Bornat

MST Snoopy Cache Coherence Protocol

** Three Cache States: M (Modified), S (Shared), | (Invalid)

<> Only one cache can have block in Modified state

CPU read hit
Write miss for this block

Invalidate for
this block

Shared
(read only)

Shared
(read only)

CPU read
Place read miss on bus

CPU
read
miss

9 CPU
CPU write & read
miss
Place read

miss on bus

Place write
miss on bus

Transfer

che-to-Cache
abort memory
access

Write miss S
for this block

Read miss

for this block Cache state transitions based
on requests from the bus

Modified
(read/write)

Modified
(read/write)

Cache state transitions
based on requests from CPU

CPU write miss

Write-back cache block
Place write miss on bus

CPU write hit Copyright © Elsevier Inc. All rights reserved.
CPU read hit

Muﬁa]gcgsgpsgm-egcﬁgbllajrﬁd&nom COE 501 — Computer Architecture - KFUPM © Muhamed MUQVQJ—OS@Q?CI By ‘J I breel Bornat

MSI Snoopy Cache Coherence Protocol

Request
Read Hit

Read Miss
Read Miss

Read Miss

Write Hit

Write Hit

Write Miss
Write Miss
Write Miss
Read Miss
Read Miss
Invalidate

Write Miss
Write Miss

Source

Processor

Processor

Processor

Processor

Processor
Processor
Processor
Processor
Processor
Bus
Bus
Bus
Bus

Bus

v b & N b GO m

State

Shared or
Modified

Invalid

Shared

Modified

Modified
Shared
Invalid
Shared
Modified
Shared
Modified
Shared
Shared
Modified

COE 501 — Computer Architecture - KFUPM

Action and Explanation
Normal Hit: Read data in local data cache (no transaction)

Normal Miss: Read miss on bus, Wait for data, then change state to Shared
Replace block: Place Read miss on bus, Wait for data block, keep Shared state

Replace block: Place Write-Back block, Place Read miss on bus, Wait for data
block, then change state to Shared

Normal Hit: Write data in local data cache (no transaction)

Coherence: Place Invalidate on bus (no data), then change state to Modified
Normal Miss: Place Write miss on bus, wait for data, change state to Modified
Replace block: Place Write miss on bus, wait for data, change state Modified
Replace block: Write-Back block, Place Write miss on bus, wait for data block
No action: Serve read miss from shared cache or memory

Coherence: Write-Back & Serve read miss, then change state to Shared
Coherence: Invalidate shared block in other caches (change state to Invalid)
Coherence: Invalidate shared block in other caches, Serve write miss

Coherence: Serve write miss (cache-to-cache transfer) and Invalidate block

© Muhamed MUQ

Iploaded By: Jibreel Bornat

Example on MSTI Cache Coherence

Request Processor P1

State Addr Value State Addr Value Proc Addr

P1: Read Al

S Al
P2: Read Al

S Al
P2: Write 10 to Al

I Al
P1: Read Al

S Al
P1: Write 20 to Al

M Al
P2: Write 35 to Al

I Al

v b & N i GO M

15

15

15

10

20

20

Processor P2

M

Al

Al

Al

Al

Al

COE 501 — Computer Architecture - KFUPM

15

10

10

10

35

P1

P2

P2

P1

P2

P1

P2
P1

Al

Al

Al

Al

Al

Al

Al
Al

Bus

Action State Addr Value

Rd Miss S Al

Rd Miss S Al

Invalidate

Rd Miss
Wr Back M Al

Invalidate

I Al
Wr Miss
Transfer I Al

© Muhamed MUQ

Shared Cache

15

15

15

10

10

10

Iploaded By: Jibreel Bornat

Alternative Cache Coherence Protocols

“* MESI Cache Coherence Protocol: Four States
1. Modified: only this cache has a modified copy of this block
2. Exclusive: only this cache has a clean copy of this block
3. Shared: block may be replicated in more than one cache (read-only)

4. Invalid: block is invalid
Exclusive State: prevents invalidate on a write hit (no bus transaction)

<+* MOESI Cache Coherence Protocol: Five States

L)

Modified: only this cache has a modified copy of this block
Owned: this cache is owner, other caches can share block (read-only)

Exclusive: only this cache has a clean copy of this block

-

Shared: block may be replicated in more than one cache (read-only)

5. Invalid: block is invalid

Owner must supply data to others on a miss: cache-to-cache transfer
Muﬁa];cgsgpsgm-ego%gbgﬁd&nom COE 501 — Computer Architecture - KFUPM © Muhamed MUQ\/QJQsﬁng@d By ‘Jlbreel Bornat

Next . ..

¢ Introduction to Multiprocessors

»» Challenges of Parallel Programming
»» Cache Coherence

»» Directory Cache Coherence

¢ Synchronization

Muﬁa];cgsg?sgm-e[to%g\,e_l'gﬁd&nom COE 501 — Computer Architecture - KFUPM © Muhamed MUQ\/QJQsﬁng?d By ‘J I breel Bornat

Limitations of Snooping Protocols

*» Buses have limitations for scalability
< Limited number of processor cores that can be attached to a bus
< Contention on the use of the shared bus

< Snooping bandwidth is a bottleneck for large number of processor cores
“ On-Chip interconnection network =» Parallel communication
<> Multiple processor cores can access shared cache banks at the same time
< Allows chip multiprocessor to scale beyond few processor cores
“ Snooping is difficult on network other than bus or ring
<> Must broadcast coherence traffic to all processors, which is inefficient
* How to enforce cache coherence without broadcast?

<> Have a directory that records the state of each cached block

< Directory entry specifies which private caches have copies of the block
Mu§p];cgsl;?5§m;|;§g\,e_l|llajr§e1&nom COE 501 — Computer Architecture - KFUPM © Muhamed MUQ\IQJQS%QLgd By ‘Jibreel BOrnat

Directory in a Chip Multiprocessor

¢ Directory in outermost cache (shared by all processor cores)

< Directory keeps track of copies of each block in local caches

s Outermost cache is split into multiple banks (parallel access)

<> Number of cache banks can vary (not related to number of cores)

Processor | Processor | Processor | Processor | Processor | Processor | Processor | Processor
Core O Core 1l Core 2 Core 3 Core 4 Core 5 Core 6 Core 7
Local Local Local Local Local Local Local Local
Cache O Cache 1 Cache 2 Cache 3 Cache 4 Cache 5 Cache 6 Cache 7

a a a a a a a a

A 4 A 4 \ 4 A 4 \ 4 A 4 \ 4 A 4

Interconnection Network (or Crossbar Switch)

a a a a

A 4 A 4 A 4 A 4

Shared Cache Bank 0 Shared Cache Bank 1 Shared Cache Bank 2 Shared Cache Bank 3
+ Directory O + Directory 1 + Directory 2 + Directory 3

Memory Controller 0

v b & N i GO M

Memory Controller 1 Memory Controller 2

! !

COE 501 — Computer Architecture - KFUPM

Memory Controller 3

{
Iploaded By: Jibreel Bornat

© Muhamed MUQ

Directory in the Shared Cache

¢ Shared Cache is inclusive with respect to all local caches

<> Shared cache contains a superset of the blocks in local caches

< Example: Intel Core i7

¢ Directory is implemented in the shared cache

<> Each block in the shared cache is augmented with presence bits

< If k processors then k presence bits + state per block in shared cache

<> Presence bits indicate which cores have a copy of the cache block

<> Each block has state information in private and shared cache

< State = M (Modified), S (Shared), or | (Invalid) in local cache

State

Tag

Block Data

Presence bits

State

Tag

Block Data

v b & N i GO M

COE 501 — Computer Architecture - KFUPM

Block in a Local Cache

Block in a Shared Cache
Iploaded By: Jibreel Bornat

© Muhamed MUQ

Terminology

*» Local (or Private) Cache (local node or requesting node)
<> Where a processor request originates

“* Home Directory (home node)
<> Where information about a cache block is kept
< Directory uses presence bits and state to track cache blocks

“* Remote Cache (remote node)
<> Has a copy of the cache block

+»» Cache Coherence ensures Single-Writer, Multiple-Readers
< If a block is modified in a local cache then one valid copy can exist

» Shared Cache and memory are not updated
*+ No bus and don’t want to broadcast to all processor cores

< All messages have explicit responses
Muﬁa];cgsgpsgm-egoﬁg\huajrﬁdgnom COE 501 — Computer Architecture - KFUPM © Muhamed MUQVQIJ—OS%gL@d By ‘Jibreel Bornat

States for Local and Shared Cache

¢ Three states for a local (private) cache block:
1. Modified: only this cache has a modified copy of this block
2. Shared: block may be replicated in more than one cache (read-only)

3. Invalid: block is invalid, not present in this local cache

¢ Four states for a shared cache block (directory):
1. Modified: only one local cache is the owner of this block
= One local cache (one presence bit) has a modified copy of this block
2. Owned: shared cache is the owner of the modified block
= Modified block was written-back to shared cache, but not to memory
= A block in the owned state can be shared by multiple local caches
3. Shared: block may be replicated in more than one cache (read-only)

4. Invalid: block is invalid in the shared cache and in any local cache

Muﬁa]gcgsg?sgm-egoﬁg\,e_luajrﬁd&“fnom COE 501 — Computer Architecture - KFUPM © Muhamed MUQ\/QJQsﬁnged By ‘J I bree' Bornat

Read Miss by Processor P

*» Processor P sends Read Miss message to home directory

*» Home Directory: block is Shared or Owned
< Directory sends data reply message to P, and sets presence bit of P

<> Local cache of processor P changes state of received block to shared

*+ Home Directory: block is Modified

< Directory sends Fetch message to remote cache that modified block
Remote cache sends Write-Back message to directory (shared cache)
Remote cache changes state of block to shared

Directory changes state of shared block to owned

S > v 2

Directory sends data reply message to P, and sets presence bit of P

<> Local cache of processor P changes state of received block to shared

* Home Directory: block is Invalid =» get block from memory
Muﬁa]gcgsg?sgm-egoﬁg\,e_luajrﬁdgnom COE 501 — Computer Architecture - KFUPM © Muhamed MUQ\IQJ—OS%gL@d By ‘Jibreel Bornat

Read Miss to a Block in Modified State

1. Read Miss by P
Requestor Requesting block A

Processor P
Local Cache

~—— 4. Data block A

reply message to P

Total of 4 messages

Processor Q writes-back
Block A to shared cache

Block A is shared by P and Q
It is owned by shared cache

Muﬁa]gcgsg?sgm-egoﬁg\,e_l'ligrﬁd gfno m COE 501 — Computer Architecture - KFUPM

Shared Cache

+ Directory

<> Memory

/

\

2. Fetch Block A
Requested by P

3. Write-Back Block A
Requested by P

Processor Q
Local Cache

© Muhamed MUQ\/QJQsﬁngd By ‘Jibreel Bornat

Write Miss Message by P to Directory

s Home Directory: block is Modified
<> Directory sends Fetch-Invalidate message to remote cache of Q
< Remote cache of processor Q sends data reply message directly to P
<> Remote cache changes state of block to invalid
< Local cache of P changes the state of received block to modified

< Directory clears presence bit of Q and sets presence bit of P

* Home Directory: block is Shared or Owned
<> Directory sends invalidate messages to all sharers (presence hits)
< Directory receives acknowledge message and clears presence bits
< Directory sends data reply message to P, sets presence bit of P

<> Local cache of P and directory change state of the block to modified

“* Home Directory: Invalid = get block from memory
Muﬁa]gcgsgpsgm-egoﬁgbgﬁel&nom COE 501 — Computer Architecture - KFUPM © Muhamed MUQ\IQJ—OS%QL@CI By ‘Jlbreel Bornat

Write Miss to a Block in Modified State

Requestor

Processor P
Private Cache

1. Write Miss by P

Requesting block A

Shared Cache

BN

3. Data block A
reply message to P

<> Memory

+ Directory

Total of 3 messages

Processor Q sends data reply to P
Q invalidates its copy of block A

Block A is then modified by P

v b & N i GO M

COE 501 — Computer Architecture - KFUPM

2. Fetch-Invalidate
Block A Requested by P

|

Processor Q

Private Cache

Iploaded By: Jibreel Bornat

© Muhamed MUQ

Write Miss to a Block with Sharers

R tor 1. Write Miss by P
ki g ___—1 Requesting block A)
Processor P Shared Cache
: _ <> Memory
Private Cache + Directory
«— | s5.DatablockA |—
reply message to P
2. Invalidate A
Directory sends invalidate messages Y

Processor
to all sharers Q

Private Cache <

Directory receives acknowledge k.
message for all invalidates and 3. Invalidate A i;)
. . O

clears their presence bits ! £

<

ql

Processor R

Directory sends data reply message,
and changes state of block A to
modified

Mu§p];cgs|;?s§m-e|;§g\,e_l|lila)r§e1§nom COE 501 — Computer Architecture - KFUPM © Muhamed MUQ\IQJ—OS%QL?CI By ‘J I breel Bornat

Private Cache

Invalidating a Block with Sharers

1. Invalidate block A

Requestor

__—1 RequestedbyP [
: _ <> Memory

Private Cache — + Directory
— Acknowledge A
2. Invalidate A
Directory sends invalidate messages Y

Processor Q

to all sharers

Private Cache <

Directory receives acknowledge k.
message for all invalidates and 3. Invalidate A i;)
. . O

clears their presence bits ! £

<

ql

Processor R

Directory sends acknowledge
message to P, and changes state of
block A to modified

Muﬁa];cgsg?sgm-egoﬁg\,e_luajrﬁdgnom COE 501 — Computer Architecture - KFUPM © Muhamed MUQ\IQJ—OS%QL?CI By ‘J I breel Bornat

Private Cache

MST State Diagram for a Local Cache

¢ Three states for a cache block in a local (private) cache

CPU read hit

*» Similar to snooping coherence protocol

Invalidate / Acknowledge

< Requests by processor

CPU read / Read miss message

Shared

< Black arrows Invalid
(read only)
** Requests by directory
5 | @] CPuwrite o
< Red arrows g | g ~ 2
28 |E -
== |a E 5
T 8 € - 2
sz |3 :E
S o | € > B
28

Modified

read/write

CPU read hit
CPU write hit

CPU write miss /
Write-back, Write-miss message

Muﬁa]gcgsg?sgm-egoﬁg\,e_luajrﬁd&“fnom COE 501 — Computer Architecture - KFUPM © Muhamed MUQ\IQJ—OS%QL@CI By ‘J I breel Bornat

v b & N i GO M

MOSI State Diagram for

Read Miss request by P
Get block from memory;
Data reply to P, Set presence[P] =1

Invalid
e
seo"
Write Miss Q Q&‘?'
> S
5 request by P
g
: 3
gEago
S2og
o > c
-
© 9 o
_— S
-gs
TR
OO wv

Write Miss or Invalidate request by P
Invalidate all sharers, clear presence bits
Data reply to P, Set presence[P] =1

(read only)

Directory

Read Miss request by P
Datareply to P
Set presence[P] =1

Shared

Read Miss request by P
Data reply to P, Set presence[P] =1

Owned

Modified

(Processor P)

by shared

Read miss by Q = Fetch P, Data reply to Q

Write Miss Write-Back by P 2 Presence[P] =0

Request by Q
Fetch-Invalidate P, Data-reply to Q, Presence[P] = 0, Presence[Q] = 1

COE 501 — Computer Architecture - KFUPM

cache

Iploaded By: Jibreel Bornat

© Muhamed MUQ

Next . ..

¢ Introduction to Multiprocessors

»» Challenges of Parallel Programming
»» Cache Coherence

»» Directory Cache Coherence

% Synchronization

Muﬁa]gcgsg?sgm-egoﬁg\,e_luajrﬁd&“fnom COE 501 — Computer Architecture - KFUPM © Muhamed MUQ\IQJ—OS%QL@CI By ‘J I breel Bornat

Synchronization

¢ Cache coherence allows parallel threads to communicate

¢ However, coherence does not synchronize parallel threads

“* Synchronization is required to control the execution of threads
“* Three types of synchronization are widely used:

1. Lock synchronization

2. Barrier synchronization

¢ Synchronization ensures the correctness of parallel execution

“* However, synchronization can be a performance bottleneck

< Reduces the speedup and performance of parallel threads

Muﬁa]gcgsg?sgm-egoﬁg\,e_luajrﬁdgnom COE 501 — Computer Architecture - KFUPM © Muhamed MUQ\IQJ—OS%EL@CI By ‘J I breel Bornat

Lock Synchronization

¢ Protects a critical section accessed by parallel threads

¢ A critical section is a sequence of instructions that
< Read — Modify — Write shared data in memory
< Only one thread can be in the critical section at a time
¢ Two synchronization operations are defined:
1. Lock(X), just before entering critical section
2. Unlock(X), just before leaving critical section
“ Only one thread is allowed to lock variable X at a time

+» Other threads must wait until the variable X is unlocked

s+ Access to the critical section iIs serialized
Muﬁa]gcgsg?sgm-egoﬁg\,e_luajrﬁd&“fnom COE 501 — Computer Architecture - KFUPM © Muhamed MUQ\IQJ—OS%QL@CI By ‘Jibreel Bornat

Critical Section

+» Critical sections with lock/unlock make threads wait

¢ Using one lock variable X to lock an array increases contention

“* Using many lock variables (fine-grain locking) reduces contention

*» Atomic (read-modify-write) instructions can help reducing locks

Each thread:

Computel T1
lock (X)
Critical T2
Section
unlock(X) T3
Compute2

lock(X) lock(X)
V

unlock(X)

: Computel I Wait

Critical

Compute?2

lock(X) unlock(X)

Computel | Critical

Compute2

lock(X)

lock(X)

unlock(X)

Computel

Wait

Critical

Compute2

Mu§p];cgsl;25§m;|;§g\,e_l|llajr§e1 &no m COE 501 — Computer Architecture - KFUPM

© Muhamed MUQ

Time —
Iploaded By: Jibreel Bornat

Barrier Synchronization

¢ Threads must wait until All threads reach the barrier
“ Last thread arriving the barrier releases all waiting threads
¢ Total execution time depends on the slowest thread

*» Threads must be balanced to avoid loosing performance

Each thread: barrier(X, 4)
loop { T1 ComputelI Wait Compute2

Computel barrier(X, 4)
} T2 | Computel Wait Compute2

. barrier(X, 4)
Barrier(X,4)
T3 Computel Compute?2

loop { barrie\l/r(X, 4)

Compute2 T4 Computel Wait | Compute2

P I i Time —

}
Mu§p];cgs|;?s§m-e|;§g\,e_l|lila)r§e1§nom COE 501 — Computer Architecture - KFUPM © Muhamed MUQ\/QJQS%QS@C! By ‘J I bree' Bornat

Concluding Remarks

¢ Goal: higher performance using multiple processors
¢ Difficulties

< Developing parallel software

< Devising appropriate architectures
* Many reasons for optimism

<> Changing software and application environment

< Chip-level multiprocessors

= Lower latency, higher bandwidth interconnect

*+ An ongoing challenge for computer architects
Mu%L%QEML%EJJ'Mﬁa&O[‘n COE 501 — Computer Architecture - KFUPM © Muhamed MUQ\/QJQS%QS?C! By ‘Jibreel Bornat

