
Parallel Processors

ENCS5331: Advanced Computer Architecture

Fall 2024/2025

Instructor: Dr. Ayman Hroub

Special Thanks to Dr. Muhamed Mudawar (KFUPM) for most
of the Slides

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 2

Presentation Outline

 Introduction to Parallel Processors

 Challenges of Parallel Programming

 Cache Coherence

 Directory Cache Coherence

 Synchronization

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 3

Motivation to Move to Multicore – Technology Constraints

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 4

Processor Trends

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 5

Single-Core Performance Walls

 Power Wall: cannot make the processor clock faster

 ILP (Instruction Level Parallelism) Wall

Memory Wall

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 6

What is a Multiprocessor?

 “A parallel computer is a collection of processing elements that

cooperate and communicate to solve large problems fast.”

 Almasi and Gottlieb, Highly Parallel Computing,1989

 Collection of processors, memories, and storage devices

 That communicate and cooperate to solve large problems fast

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 7

Flynn’s Taxonomy (1966)

 SISD: Single instruction stream, single data stream

 Uniprocessors

 SIMD: Single instruction stream, multiple data streams

 Same instruction is executed on different data

 Exploits Data-Level Parallelism (DLP)

 Vector processors, and Graphics Processing Units (GPUs)

MISD: Multiple instruction streams, single data stream

 No commercial implementation

MIMD: Multiple instruction streams, multiple data streams

 Most general and flexible architecture for parallel applications

 Exploits Thread-Level Parallelism (TLP) and Data-Level Parallelism

 Tightly-coupled versus loosely-coupled MIMD

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 8

SISD

 Uniprocessor

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 9

MIMD

Multiple communicating processes

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 10

MISD

 No commercial examples

 Different operations to a single data set

 Find primes

 Crack passwords

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 11

SIMD

 Vector/Array computers

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 12

Major Multiprocessor Organizations
 Symmetric Multiprocessors (SMP)

 Main memory is shared and equally accessible by all processors

 Called also Uniform Memory Access (UMA)

 Bus based or interconnection network based

 Distributed Memory Multiprocessors

 Distributed Shared Memory (DSM) multiprocessors

 Memory is distributed and shared and accessed by all processors

 Non-uniform memory access (NUMA)

 Latency varies between local and remote memory access

 Message-Passing multiprocessors (Clusters)

 Memory is distributed, but NOT shared

 Each processor can access its own local memory

 Processors communicate by sending and receiving messages

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 13

Shared Memory Architecture
 Any processor can directly reference any physical memory

 Any I/O controller to any physical memory

 Operating system can run on any processor

OS uses shared memory to coordinate

 Communication occurs implicitly as result of loads and stores

Wide range of scale

Few to hundreds of processors

Memory may be physically

distributed among processors

 History dates to early 1960s

Shared Physical

Memory

I/O I/O

I/O

Processor
Processor

Processor

Processor

Processor

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 14

Single-Chip Multiprocessor (Multicores)

Multiprocessor on a

single chip (called

multicores)

 Each core is a

processor with

private caches

 All processors

share a common

cache on chip

 Uniform access to

shared cache and

main memory
© Elsevier,

All rights reserved

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 15

Distributed Memory Multiprocessors

Memory is distributed among all processors

 Interconnection network connects all the (Multicore MP) nodes

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 16

Distributed Memory Architectures

Distributed Shared Memory (tightly coupled)

 Distributed memories are shared among all processors

 Processors can access local and remote memories

 Remote memory access over interconnection network

 Non-uniform memory access (NUMA)

Message Passing (loosely coupled)

 Distributed memories are NOT shared

 Processors cannot access remote memories

 Multiple private physical address spaces

 Easier to build and scale than distributed shared memory

 Message passing communication over network

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 17

Multiprocessor Communication Models

 Shared Memory Architectures

 One global physical address space

 Distributed among all physical memories

 Any processor can read/write any physical memory

 Processors communicate using load and store instructions

 Non-Uniform Memory Access (NUMA) for large-scale multiprocessors

Message Passing Architectures (Clusters)

 Separate physical address spaces for nodes

 A compute node consists of one (or few) multicore chips and memory

 A node cannot directly access the physical memory of another node

 Nodes communicate via sending and receiving messages

 Nodes are interconnected via a high-speed network

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 18

Next . . .

 Introduction to Multiprocessors

 Challenges of Parallel Programming

 Cache Coherence

 Directory Cache Coherence

 Synchronization

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 19

Parallel Programming Models (1)

 Parallel Task is the unit of parallel computation

 Two major parallel programming models

1. Shared Memory

 Popular for small machines consisting of at most hundreds of cores

 Parallel tasks are executed as separate threads on different cores

 Threads communicate using load and store instructions to shared memory

 Threads must synchronize explicitly to control their execution order

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 20

Parallel Programming Models (2)

2. Message Passing

 Popular for large machines consisting of hundreds of thousands of cores

 Parallel tasks cannot share memory, each task has its own memory

 Parallel tasks communicate explicitly using send and receive messages

 Synchronization is done implicitly using send and receive

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 21

Speedup Challenge: Amdahl’s Law

 F = Fraction of the original execution time which is parallelizable

 P = Number of Processors

 (1 – F) = Fraction of the execution time that cannot be parallelized

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
1

𝐹
𝑃
+ (1 − 𝐹)

𝑆𝑝𝑒𝑒𝑑𝑢𝑝
𝑃 → ∞

=
1

(1 − 𝐹)

 Parallelism has an overhead

 Thread communication, synchronization, and load balancing

 Overhead increases with the number of processors P

 A large group of processors cannot be interconnected with short distances

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 22

Amdahl’s Law Sublinear Speedup

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
1

𝐹
𝑃
+ (1 − 𝐹)

F = 90%

F = 95%

F = 99%Sublinear
Speedup

Superlinear
Speedup

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 23

Amdahl’s Law: Example 1

Want to achieve 50× speedup on 100 processors

What fraction of the original execution time can be sequential?

 Solution

Fparallel = Fraction of the execution time, which is parallelizable

Fsequential = (1 – Fparallel) = Fraction of time, which is sequential

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
1

𝐹𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
100

+ (1 − 𝐹𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙)

= 50

Solving: Fparallel = 98/99 ≅ 0.99 and Fsequential = 0.01

 Sequential time is at most 1% of original execution time

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 24

Impact of Inefficient Communication on Speedup

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
1

0.99
𝑃

+ 0.01

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
1

0.99
𝑃

+ 0.01 +
𝑃2

105

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
1

0.99
𝑃

+ 0.01 +
𝑃
104

Communication

Overhead

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 25

Next . . .

 Introduction to Multiprocessors

 Challenges of Parallel Programming

 Cache Coherence

 Directory Cache Coherence

 Synchronization

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 26

Caches in a Single-Chip Multiprocessor

 Private Caches are used inside processor cores

 Reduce average latency

 Data is closer to processor

 Reduce traffic to memory

 When data is cached

 Caching shared data

 Shared data is replicated

in multiple private caches

 This requires maintaining

copies of the shared data coherent

 Cache coherence problem

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 27

Cache Coherence Problem

 Private processor caches create the coherence problem

 Copies of a shared variable can be present in multiple private data caches

 Updating copy of the shared data in one private data cache only

 Other processors do not see the update!

 Processors may read different data values through their caches

 Unacceptable to programming and is frequent!

Event
Memory

variable X
Processor A
Data Cache

Processor B
Data Cache

Processor C
Data Cache

Processor A reads X 4 4

Processor B reads X 4 4 4

Processor A stores X = 7 4 7 4

Processor C reads X 4 7 4 4

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 28

Intuitive Coherent Memory Model

 Caches are supposed to be transparent

What would happen if there were no caches?

 All reads and writes would go to the main memory

 Reading a location X should return the last value written to X

What does last value written mean in a multiprocessor?

 All operations on a particular location X would be serialized

 All processors would see the same access order to location X

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 29

Formal Definition of Memory Coherence

A memory system is coherent if it satisfies two properties:

1. Write Propagation

Writes by a processor become visible to other processors

All reads by any processor to location X must return the most

recently written value to location X, if the read and last write are

sufficiently separated in time.

2. Write Serialization

Writes to the same location X are serialized. Two writes to the

same location X by any two processors are seen in the same

order by all processors.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 30

What to do about Cache Coherence?

 Organize the memory hierarchy to make it go away

 Remove private caches and use one cache shared by all processors

 No private caches  No replication of shared data

 A switch (interconnection network) is needed to access shared cache

 Increases the access latency of the shared cache

Mark shared data pages as uncacheable

 Shared data pages are not cached (must access memory)

 Private data is cached only

 We loose performance

 Detect and take actions to eliminate the problem

 Can be addressed as a basic cache design issue

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 31

Hardware Cache Coherence Solutions

 Coherent Caches should provide

 Migration: movement of shared data between processors

 Replication: multiple copies of shared data (simultaneous reading)

 Cache Coherence Protocol

 Tracking the sharing (replication) of data blocks in private caches

 Snooping Cache

 Works well with small bus-based multiprocessors

 Each cache monitors bus to track sharing status of each block

 Directory Based Schemes

 Keep track of what is being shared in one place, called directory

 Centralized memory  Centralized directory

 Distributed shared memory  Distributed directory

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 32

Snooping Cache Coherence Protocols

 Cache controller snoops all transactions on the shared bus

 Transaction is relevant if address matches tag in the cache

 Take action for coherence

 Invalidate

 Update

 Supply data

Bus TransactionBus Snoop

Write Invalidate protocol

 Must invalidate shared copies

Write Update protocol

 Must update shared copies

Data BlockTagState

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 34

MSI Snoopy Cache Coherence Protocol

 Three States for write-back data cache

1. Modified: only this cache has a modified copy of this block

2. Shared: block is read-only and can be replicated in other caches

3. Invalid: block is invalid

 Four Bus Transactions

1. Read Miss: Service a read miss on bus

2. Write Miss: Service a write miss on bus (obtain exclusive copy)

3. Invalidate: Invalidate copies of this block in other caches

4. Write Back: Write back a modified block on replacement

 On Write, invalidate all other copies

 Write cannot complete until invalidate transaction appears on bus

 Write serialization: transactions are serialized on bus

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 35

MSI Snoopy Cache Coherence Protocol

Copyright © Elsevier Inc. All rights reserved.

 Three Cache States: M (Modified), S (Shared), I (Invalid)

 Only one cache can have block in Modified state

C
ac

h
e

-t
o

-C
ac

h
e

Tr
an

sf
er

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 36

MSI Snoopy Cache Coherence Protocol
Request Source State Action and Explanation

Read Hit Processor
Shared or
Modified

Normal Hit: Read data in local data cache (no transaction)

Read Miss Processor Invalid Normal Miss: Read miss on bus, Wait for data, then change state to Shared

Read Miss Processor Shared Replace block: Place Read miss on bus, Wait for data block, keep Shared state

Read Miss Processor Modified
Replace block: Place Write-Back block, Place Read miss on bus, Wait for data
block, then change state to Shared

Write Hit Processor Modified Normal Hit: Write data in local data cache (no transaction)

Write Hit Processor Shared Coherence: Place Invalidate on bus (no data), then change state to Modified

Write Miss Processor Invalid Normal Miss: Place Write miss on bus, wait for data, change state to Modified

Write Miss Processor Shared Replace block: Place Write miss on bus, wait for data, change state Modified

Write Miss Processor Modified Replace block: Write-Back block, Place Write miss on bus, wait for data block

Read Miss Bus Shared No action: Serve read miss from shared cache or memory

Read Miss Bus Modified Coherence: Write-Back & Serve read miss, then change state to Shared

Invalidate Bus Shared Coherence: Invalidate shared block in other caches (change state to Invalid)

Write Miss Bus Shared Coherence: Invalidate shared block in other caches, Serve write miss

Write Miss Bus Modified Coherence: Serve write miss (cache-to-cache transfer) and Invalidate block
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 37

Example on MSI Cache Coherence
Request Processor P1 Processor P2 Bus Shared Cache

State Addr Value State Addr Value Proc Addr Action State Addr Value

P2 A1 Invalidate

I A1 10

I A1 15

P2 A1 Wr Back M A1 10S A1 10

P1 A1 Invalidate

M A1 35

S A1 15P1 A1 Rd Miss

S A1 15

M A1 10I A1 15

P1 A1 Rd Miss

S A1 10

M A1 20 I A1 10

P1: Write 20 to A1

P2: Write 10 to A1

P1: Read A1

P1: Read A1

P2: Write 35 to A1 P2 A1 Wr Miss

I A1 10I A1 20

S A1 15P2 A1 Rd Miss

S A1 15

P2: Read A1

S A1 15

P1 A1 Transfer

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 40

Alternative Cache Coherence Protocols
MESI Cache Coherence Protocol: Four States

1. Modified: only this cache has a modified copy of this block

2. Exclusive: only this cache has a clean copy of this block

3. Shared: block may be replicated in more than one cache (read-only)

4. Invalid: block is invalid

Exclusive State: prevents invalidate on a write hit (no bus transaction)

MOESI Cache Coherence Protocol: Five States

1. Modified: only this cache has a modified copy of this block

2. Owned: this cache is owner, other caches can share block (read-only)

3. Exclusive: only this cache has a clean copy of this block

4. Shared: block may be replicated in more than one cache (read-only)

5. Invalid: block is invalid

Owner must supply data to others on a miss: cache-to-cache transfer
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 42

Next . . .

 Introduction to Multiprocessors

 Challenges of Parallel Programming

 Cache Coherence

 Directory Cache Coherence

 Synchronization

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 43

Limitations of Snooping Protocols

 Buses have limitations for scalability

 Limited number of processor cores that can be attached to a bus

 Contention on the use of the shared bus

 Snooping bandwidth is a bottleneck for large number of processor cores

 On-Chip interconnection network  Parallel communication

 Multiple processor cores can access shared cache banks at the same time

 Allows chip multiprocessor to scale beyond few processor cores

 Snooping is difficult on network other than bus or ring

 Must broadcast coherence traffic to all processors, which is inefficient

 How to enforce cache coherence without broadcast?

 Have a directory that records the state of each cached block

 Directory entry specifies which private caches have copies of the block

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 44

Directory in a Chip Multiprocessor

 Directory in outermost cache (shared by all processor cores)

 Directory keeps track of copies of each block in local caches

 Outermost cache is split into multiple banks (parallel access)

 Number of cache banks can vary (not related to number of cores)

Processor
Core 0

Local
Cache 0

Processor
Core 1

Local
Cache 1

Processor
Core 2

Local
Cache 2

Processor
Core 3

Local
Cache 3

Processor
Core 4

Local
Cache 4

Processor
Core 5

Local
Cache 5

Processor
Core 6

Local
Cache 6

Processor
Core 7

Local
Cache 7

Interconnection Network (or Crossbar Switch)

Shared Cache Bank 0
+ Directory 0

Shared Cache Bank 1
+ Directory 1

Shared Cache Bank 2
+ Directory 2

Shared Cache Bank 3
+ Directory 3

Memory Controller 0 Memory Controller 1 Memory Controller 2 Memory Controller 3

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 45

Directory in the Shared Cache

 Shared Cache is inclusive with respect to all local caches

 Shared cache contains a superset of the blocks in local caches

 Example: Intel Core i7

 Directory is implemented in the shared cache

 Each block in the shared cache is augmented with presence bits

 If k processors then k presence bits + state per block in shared cache

 Presence bits indicate which cores have a copy of the cache block

 Each block has state information in private and shared cache

 State = M (Modified), S (Shared), or I (Invalid) in local cache

Block DataTagState

Block DataTagStatePresence bits

Block in a Local Cache

Block in a Shared Cache

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 46

Terminology

 Local (or Private) Cache (local node or requesting node)

 Where a processor request originates

 Home Directory (home node)

 Where information about a cache block is kept

 Directory uses presence bits and state to track cache blocks

 Remote Cache (remote node)

 Has a copy of the cache block

 Cache Coherence ensures Single-Writer, Multiple-Readers

 If a block is modified in a local cache then one valid copy can exist

 Shared Cache and memory are not updated

 No bus and don’t want to broadcast to all processor cores

 All messages have explicit responses

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 47

States for Local and Shared Cache

 Three states for a local (private) cache block:

1. Modified: only this cache has a modified copy of this block

2. Shared: block may be replicated in more than one cache (read-only)

3. Invalid: block is invalid, not present in this local cache

 Four states for a shared cache block (directory):

1. Modified: only one local cache is the owner of this block

 One local cache (one presence bit) has a modified copy of this block

2. Owned: shared cache is the owner of the modified block

 Modified block was written-back to shared cache, but not to memory

 A block in the owned state can be shared by multiple local caches

3. Shared: block may be replicated in more than one cache (read-only)

4. Invalid: block is invalid in the shared cache and in any local cache

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 48

Read Miss by Processor P

 Processor P sends Read Miss message to home directory

 Home Directory: block is Shared or Owned

 Directory sends data reply message to P, and sets presence bit of P

 Local cache of processor P changes state of received block to shared

 Home Directory: block is Modified

 Directory sends Fetch message to remote cache that modified block

 Remote cache sends Write-Back message to directory (shared cache)

 Remote cache changes state of block to shared

 Directory changes state of shared block to owned

 Directory sends data reply message to P, and sets presence bit of P

 Local cache of processor P changes state of received block to shared

 Home Directory: block is Invalid  get block from memory
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 49

Read Miss to a Block in Modified State

Processor P

Local Cache

Shared Cache

+ Directory

Processor Q

Local Cache

1. Read Miss by P
Requesting block A

4. Data block A
reply message to P

2. Fetch Block A
Requested by P

3. Write-Back Block A
Requested by P

Requestor

Total of 4 messages

Processor Q writes-back
Block A to shared cache

Block A is shared by P and Q
It is owned by shared cache

Memory

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 50

Write Miss Message by P to Directory

 Home Directory: block is Modified

 Directory sends Fetch-Invalidate message to remote cache of Q

 Remote cache of processor Q sends data reply message directly to P

 Remote cache changes state of block to invalid

 Local cache of P changes the state of received block to modified

 Directory clears presence bit of Q and sets presence bit of P

 Home Directory: block is Shared or Owned

 Directory sends invalidate messages to all sharers (presence bits)

 Directory receives acknowledge message and clears presence bits

 Directory sends data reply message to P, sets presence bit of P

 Local cache of P and directory change state of the block to modified

 Home Directory: Invalid  get block from memory

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 51

Write Miss to a Block in Modified State

Total of 3 messages

Processor Q sends data reply to P
Q invalidates its copy of block A

Block A is then modified by P

Processor P

Private Cache

Shared Cache

+ Directory

Processor Q

Private Cache

3. Data block A
reply message to P

Requestor

Memory
1. Write Miss by P
Requesting block A

2. Fetch-Invalidate
Block A Requested by P

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 52

Write Miss to a Block with Sharers

Directory sends invalidate messages
to all sharers

Directory receives acknowledge
message for all invalidates and

clears their presence bits

Directory sends data reply message,
and changes state of block A to

modified

Processor P

Private Cache

Shared Cache

+ Directory

Processor Q

Private Cache

Requestor

Memory

2. Invalidate A

Processor R

Private Cache

3. Invalidate A

1. Write Miss by P
Requesting block A

5. Data block A
reply message to P

4
. A

ck
n

o
w

le
d

ge
 A

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 53

Invalidating a Block with Sharers

Directory sends invalidate messages
to all sharers

Directory receives acknowledge
message for all invalidates and

clears their presence bits

Directory sends acknowledge
message to P, and changes state of

block A to modified

Processor P

Private Cache

Shared Cache

+ Directory

Processor Q

Private Cache

Requestor

Memory

2. Invalidate A

Processor R

Private Cache

3. Invalidate A

1. Invalidate block A
Requested by P

5. Acknowledge A

4
. A

ck
n

o
w

le
d

ge
 A

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 54

MSI State Diagram for a Local Cache

 Three states for a cache block in a local (private) cache

 Similar to snooping coherence protocol

 Requests by processor

 Black arrows

 Requests by directory

 Red arrows

Invalid Shared
(read only)

Modified
read/write

CPU write miss /
Write-back, Write-miss message

CPU read hit
CPU write hit

Fe
tc

h
-I

n
va

lid
at

e
/

D
at

a
re

p
ly

 t
o

 r
e

q
u

e
st

o
r

W
ri

te
-m

is
s

m
e

ss
ag

e CPU write

Invalidate / Acknowledge

CPU read hit

CPU read / Read miss message

C
P

U
 r

ea
d

 m
is

s
/

R
e

ad
-m

is
s

m
e

ss
ag

e

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 55

MOSI State Diagram for Directory

Invalid Shared
(read only)

Modified
(Processor P)

Write Miss
Request by Q
Fetch-Invalidate P, Data-reply to Q, Presence[P] = 0, Presence[Q] = 1

G
et

 b
lo

ck
 f

ro
m

 m
e

m
o

ry
D

at
a

re
p

ly
 t

o
 P

Se
t

p
re

se
n

ce
[P

]=
1

Write Miss
request by P

Read Miss request by P
Get block from memory;
Data reply to P, Set presence[P] = 1

Owned
by shared

cache

Read Miss request by P
Data reply to P
Set presence[P] = 1

Read miss by Q  Fetch P, Data reply to Q
Write-Back by P Presence[P] = 0

Read Miss request by P
Data reply to P, Set presence[P] = 1

Write Miss or Invalidate request by P
Invalidate all sharers, clear presence bits
Data reply to P, Set presence[P] = 1

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 56

Next . . .

 Introduction to Multiprocessors

 Challenges of Parallel Programming

 Cache Coherence

 Directory Cache Coherence

 Synchronization

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 57

Synchronization

 Cache coherence allows parallel threads to communicate

 However, coherence does not synchronize parallel threads

 Synchronization is required to control the execution of threads

 Three types of synchronization are widely used:

1. Lock synchronization

2. Barrier synchronization

 Synchronization ensures the correctness of parallel execution

 However, synchronization can be a performance bottleneck

 Reduces the speedup and performance of parallel threads

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 58

Lock Synchronization

 Protects a critical section accessed by parallel threads

 A critical section is a sequence of instructions that

 Read – Modify – Write shared data in memory

 Only one thread can be in the critical section at a time

 Two synchronization operations are defined:

1. Lock(X), just before entering critical section

2. Unlock(X), just before leaving critical section

 Only one thread is allowed to lock variable X at a time

 Other threads must wait until the variable X is unlocked

 Access to the critical section is serialized

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 59

Critical Section

 Critical sections with lock/unlock make threads wait

 Using one lock variable X to lock an array increases contention

 Using many lock variables (fine-grain locking) reduces contention

 Atomic (read-modify-write) instructions can help reducing locks

Each thread:

Compute1

lock(X)

Critical

Section

unlock(X)

Compute2

Compute1 Critical Compute2

Compute1 Wait Critical Compute2

Compute1 Wait Critical Compute2

T1

T2

T3

Time

lock(X) unlock(X)

lock(X) unlock(X)lock(X)

lock(X) unlock(X)lock(X)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 60

Barrier Synchronization

 Threads must wait until All threads reach the barrier

 Last thread arriving the barrier releases all waiting threads

 Total execution time depends on the slowest thread

 Threads must be balanced to avoid loosing performance

Each thread:

loop {

Compute1
}

Barrier(X,4)

loop {

Compute2
}

Compute1 Wait Compute2

Compute1 Wait Compute2T1

T4
Time

Compute1 Compute2T2 Wait

barrier(X, 4)

barrier(X, 4)

Compute1 Compute2T3

barrier(X, 4)

barrier(X, 4)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 61

Concluding Remarks

 Goal: higher performance using multiple processors

 Difficulties

 Developing parallel software

 Devising appropriate architectures

Many reasons for optimism

 Changing software and application environment

 Chip-level multiprocessors

 Lower latency, higher bandwidth interconnect

 An ongoing challenge for computer architects

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

